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Summary.--By the use of Temple and Jahn's theory 1 for the oscillating flat plate and Busemann's theory 2 for 
aerofoils in steady motion, derivatives are obtained for symmetrical circular-arc and double-wedge aerofoils describing 
low frequency oscillations at supersonic speeds. I t  is known that  theoretically the torsional aerodynamic damping 
for a flat plate oscillating about an axis forward of the two-thirds chord position is negative at  low frequencies for 
a limited range of supersonic speeds. In this report, however, it is shown that  the effect of increasing thickness/chord 
ratio is to decrease the range of speeds for which the aerodynamic damping is negative, and for which one degree of 
freedom flutter is possible. The present theory also allows for the forward movement of the centre of pressure from 
the half-chord position as the aerofoil thickness is increased, and leads to better estimates of the stiffness derivatives 
for an actual aerofoil. In practice, the centre of pressure is not at half-chord as predicted by linear theory. 

1. I~¢troductory Remarks . - -Recent  experimental values obtained by Bratt s for the aerodynamic 
stiffness and damping derivatives of a 7.5 per cent thick symmetrical circular-arc aerofoil 
tested at supersonic speeds differ widely from the theoretical results of Temple and Jahn 1, and 
the main object of this theoretical investigation is to find an explanation for the discrepancies. 
It  was thought that the thickness of the aerofoil might be the main cause of the differences 
between experiment and theory, and so, as a first step, the influence of thickness/chord ratio 
on the derivatives for low-frequency oscillations is investigated. As shown in Figs. 5 and 6, 
better agreement between experiment and theory is obtained when this effect is taken into 
account. 

It  should be remembered, however, that the given theoretical results are only valid as long 
as the bow-wave is attached to the leading edge and the flow supersonic everywhere. For the 
aerofoil tested by Bratt, it becomes detached at about M0 = 1.4 and the flow immediately 
behind the shock-wave becomes subsonic; the Math number M0 being the ratio of the wind 
speed to the speed of sound. Extrapolated theory, however, indicates, in agreement with 
experiment, a sharp rise in the damping coefficient as the speed is decreased. It also gives the 
aerodynamic stiffness derivative to better accuracy than the flat-plate theory. 

t3usemann's theory 2 for aerofoils in steady motion is briefly summarised in section 2, and what 
are believed to be errors in Busemann's third-order coefficients? are pointed out in Appendix I. 

No account is taken of boundary-layer effects which are probably responsible for the remaining 
differences between the theoretical and the experimental results plotted in Figs. 5 and 6. 

* Published with the permission of the Director, National Physical Laboratory. 
t Since this paper was written, the a~lthor has been informed that  Laitone 6 has already given the correct third- 

order coefficient (Ca - -  D) for the oblique shock case (see section 2 and Appendix I). In a letter to the Journal 
of the Aeronautical Sciences (August, 1947), Chieh-Chien Chang gives the same formulae for Ca and D as those derived 
independently by the writer. 



2. Steady M o t i o n . ~ ( a )  Pressure D i s t r ibu t ions . - - I t  has been shown by  Busemann  2 t ha t  the 
pressure at any  point  of an aerofoil in a supersonic s t ream can be expressed in terms of the local 
angle of incidence and the  leading-edge angle. Thus,  for a symmetr ica l  biconvex aerofoil inclined 
at  an angle of incidence c~ as shown in Fig. 1, 

FIG. 1. 

the  pressure at  any  point  .on the  upper  surface is given to th i rd-order  accuracy by 

1 ~- - -  + C~¢,~ 8 - -  Dw,, 3 
~poVo 

(1) 

Similarly, at  any  point  o n t h e  lower surface, 

P , -  P0 _ 01¢, + c # ?  + 0~¢? - -  D w ? ,  
½p0v02 

(2) 

where C1, C2, C'3 and  D are functions of t h e  Mach number  M0 of the free stream. The angles 
¢,~ ( =  0 - -  ~) and Cz(= 0 + ~) represent  the  local angles of incidence to the  free s t ream of speed 
V0, and 0 denotes the  local incl inat ion of the  surface at P~ (or Pz) to the aerofoil chord. At the 
leading edge, 0 = w, and  wz, w ,  respect ively denote the corresponding values of ¢~ and  ¢,,, namely,  
w~ = w + c¢, and w,, = w - -  c~. The terms Dw~3 and Dw~ ~ give the  effect of the shock-waves 
each side of the  leading edge of the  aerofoil, but ,  when  the incidence is increased unt i l  0c > w, 
w,~ becomes negat ive and the  flow over the upper  surface becomes expansive. The pressure on 
the  upper  surface is then  given by  equat ion  (1) wi th  the Dw~ 3 t e rm omit ted.  Since the pressure 
change due to the  presence of a shock-wave is constant  everywhere  over the aerofoil 's surface, 
it cannot  affect the  ae rodynamic  m o m e n t  about  its half-chord axis. 

The coefficients C1, C2, C3, D are defined as fol lows:--  

_ 2 

V ( M d -  1)' 

C2-- 1 [ Mo * + ( M : - -  
2 (Mo ~ - -  1) 2 

C3 = (y + 1)M°S + (2~'2 - -  7), 5 ) M o  6 + 10(), + 1)Mo 4 - -  12Mo ~ + 8 
6(Mo 2 - -  1)7/2 

(3) 

D = (Y + 1)M°4 
48(Mo2 . 1)~/2 [(5 - -  3),)Mo ~ + 4(~ - -  3)Mo 2 + 81, 

and they  are t abu la ted  for a range of M0 values in Table 1 ; ~ = 1.4 being assumed. I t  should 
be no ted  tha t  in  equat ion  (3) the  expressions for C8 and D differ from those given by  Busemann  2, 
which  are believed to be in error. The der ivat ion of the coefficients is discussed in some detail  
in Appendix  I. 
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For some aerodynamic problems, it may be more convenient to express equations (1) and (2) 
in the form 

/5 /50 CI(W/Vo) Jr- C2(W/Vo) "2 JF ( C 3 _  I" \O,l~_~_)(W/Vo)3__ O(If~re/~r°)3 
½poVo ~" 

(4) 

where W = Vo tan ~ represents the local vertical component of velocity and We denotes the 
component at the leading edge. 

(b) A e r o d y n a m i c  F o r c e s . - - T o  illustrate the use of formulae (1) and (2), expressions for the 
force coefficients for an aerofoil with circular-arc surfaces of equal curvature are derived (see 
Fig. 1). Let R be the radius of curvature, c the chord, and k the thickness/chord ratio. I t  
then follows that  

c 0 +k~),  

and tan w = 2k/(1 --  k2). I t  is supposed that  the aerofoil incidence ~ is less than tile semi-wedge 
angle w. 

The aerodynamic forces are defined as follows:-- 

Lift = f]~ ~(~' -/50) cos +~ - (/5,~ -/50) cos +,,IR do, } 

Drag = flw [(/5¢ --/5°) sin ~bz + (/5,, --/5o) sin G,]R dO.  

(5) 

The pitching moment M about an axis at a distance hc behind the leading edge is given by 

M =  R c  ~ (~, - -  p,,) h - - ~  + 4-k---tan0 cos0d0 . . . . . . . .  (6) 

where p~ and/5,, are given by equations (l) and (2) with the D terms included. From equations 
(3), (5), and (6), it follows that  

+ + + + + + . .  (7) 

A comparison of the numerical values yielded by the above formulae* and results given by 
exact theory 4 is made in Tables 2a and 2b for M0 = 1.5, 2.0, 2-5 and 3.0, with c~ = 1 deg, 
k = 0.075 for a range of h values. 

The accuracy of the formulae is slightly better when the C~ and D terms are included. 

* Similar formulae for more general aerofoil sections have been given by  Lock 6. 
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The pressure on a wedge of infinite chord placed in a supersonic stream is known exactlyL 
In Table 3, a comparison is made between the exact results and those,given by formula (1) for 
wedge semi-angles of 5 deg and 10 deg. For such cases G, = w, = w. 

3. Unsteady Motion.--(a)  Flat Plate Theory . - - In  R. & M. 21401 Temple and Jahn derive a 
solution for the problem of the oscillating plate which is based on linearisation of the equations 
of motion. The velocity potential ¢ corresponding to the assigned boundary conditions is first 
determined and then the pressure change fl(x) due to the motion is derived from the formula 

~(~) = + p o ( ~  + VOW). (s) 

As the motion is simple harmonic, let ¢ = ¢'e ~ , 

and fl = p 'e  ~ . Then if a _= (oc/Vo and x = cX, formula (8) gives 

~ ' (x )  = + poVo @ ¢ ,  + a¢'3 
c OX/  

(9) 

according as points below or above the surface are considered (see Fig. 2). The amplitude of 
the velocity potential is expressed as an integral involving the Bessel Function J0, namely, 

¢'(X) = + c  tanff0 f ]  e-"~°°°'°J°(rZ sec2#° sinff0)W'(X - -  r ) d r ,  

where W'(X)  is the assigned amplitude of the downwash distribution over the chord, and where 
~0 is the Mach angle defined by sin #0 = 1/Mo. 

Next suppose that  a ---> 0. Then, to first order in a, J0 ---> 1 and 

= c  t a n . o  (1 - -  iX s e o 2 . o  - -  r) (11) 

On substitution in equation (9), it follows that  

. . . . . .  (12) 

for points on the lower surface. Since tan ~0 ----- C1/2, and Z = coc/Vo, the actual pressure change 
can be expressed in the form 

p(X)  = ~ poVoC1 W ( X ,  t) - -  tan~t~o Vo at 

where W ( X ,  t) = W ' ( X )  e ~ for the case considered. Formula (13) 
motion formula (4) with second and third-order terms omitted. 
that  the pressure change due to slow variations in W with time would be given t o  greater 
accuracy by 

where 

. . . . . .  (la) 

corresponds to the steady 
This immediately suggests 

½poyo ~ - c l ( G )  + c2(~) ~+ <yo]' . .  . .  (14) 

. . . .  (is) f': c aw(~, t)d~ 17V(X, t) -- W ( X ,  t) - -  tan 2 ~0 0 170 ~t 
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is regarded as the modified effective verticai component of velocity at the point X at time t. 
The integral in equation (15) allows for the effect of the motion of the aerofOil profile forward 
of the point X. 

A flat plate describing simple harmonic pitching and translational oscillations with displace- 
ments ~ and z respectively as indicated in the following diagram will have 

c(X -- h)s) 
W = Vo ~ + Vo + Vo (16) 

where a ~ ~e/Ot and ~ ~ Oz/Ot. 

v~ 

v 

FIG. 2. 

The modified effective downwash is then derived by the use of equation (15), and is defined by 

l~ = V0 + Voo + V00 (X --  h - - X  tan2~0)a . (18) 

For the lower surface, the pressure distribution is given by formula (14), where I/V/Vo is defined 
by formula (18), and where 1~ is the value of W at the lower side of the leading edge. For the 
upper surface, the flow is expansive ; the values of l~ are regarded as negative ; and as there 
is no shock the D term is omitted. Hence, for a flat plate, the lift distribution l(X) is given by 

 oVo 2 ' (x )  j . . (19) 

If the first term only is retained, equation (19) yields limiting values for the fundamental deriva- 
tive coefficients which agree with those given by Temple and Jahn 1 as will be shown in the next 
section. 

(b) Thick A erofoil Theory.--Consider next the aerodynamic forces on a symmetrical circular- 
arc aerofoil in unsteady motion. 

FIG. 3. 
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Let the re{erence point 0 be displaced a distance CZo relative to its initial position O ~ , and iet 
represent the angular displacement about O at time t. At the point P, the velocity component 

perpendicular to the direction of flow of the free stream is 

W -  8z V 8z (20) 
- -  t--/ + O S x ~ , ,  " . . . . . . . . .  

where z = CZo + x sin c~ + y cos c~. On differentiation, equation (20) yields 

W = c ~ 0 + V o t a n ( 0  + ~) + x ' a  . . . . . . .  (21) 

where 20 =--- 8Zo/St, a -~ 8o@t, and x'  = x cos c~ - - y  sin ~. If the rates of change of 20 and a 
are slow, and if 0 and c~ are small ; then, to second-order accuracy, the vertical component of 
velocity at P is 

W C2o c ( X  - -  h)a . . . .  ( 2 2 )  
V0--  Vo + 0  + c ~ +  Vo . . . .  

where c X  = hc + x '  represents the distance along the chord referred to the leading edge as 
origin. The modified effective vertical component IT/ for points on the lower surface of the 
aerofoil is given by equation (15) as 

17ff~ O(X) + ~ + C2o ca ( X  - - h  - - X  tan 2 ~o) 
V o -  ~ + ~  ' 

(23) 

and for the upper surface 

17~ C Zo 
V o  = o ( x )  - o : -  - -  _ c~ (X -- h -- X tan 2 #0) (24) 

Vo Vo . . . . .  

At the leading edge, 0 = w and X = 0, and equations (23) and (24) yield 

C~o hca ~ . . . .  Vo@ :F :F / . . . . . . .  (2s) 

the upper and lower signs corresponding to the upper and lower surfaces of the aerofoil 
respectively. The pressure changes on the surfaces can then be derived by the substitution 
of the appropriate values of l~, as given by equations (23), (24), and (25), in equation (14). The 
aerodynamic forces and moments are given by equations (5) and (6), when the substitutions 
¢~= 0 + c ~ , a n d ¢ , =  0 --  a are made. 

For a symmetrical circular-arc aerofoil, the profile is defined to second-order accuracy in the 
thickness/chord ratio k by 

y = 2 k c ( X  - -  X ~) , . .  

and the variation in incidence is given by 

(26) 

o = 4k(~ - x )  

with 0 = w = 2k at the leading edge. 

(27) 
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Let the llft L andmoment  M about a referenee axis at hc behind the leading edge be expressed 
in the form 

poCEo 2 ~ \V-o/  + l ~  + ~ \ V o /  ' 

M - -  - ~ , ~ o  + , ~  ( ~ o ~  
poc2Vo 2 " \ V o /  + ~o~ + ~ (C~o) 

(28) 

where the actual translational displacement is CZo and ~ represents the angular displacement. 
Then, to second-order accuracy in the displacements and the thickness/chord ratio, it follows 
from equations (5) and (6) that  

z = ~  Ii (--¢"-P") ax, 

M = - - ~  f'o ( p , -  .p,,)(X - -  h ) d X .  

(29) 

If to --= tan fro, equations (14), (23) and (24) yield 

_ I. f l ' -  ibm'= 2[~ + + (X h + 
lpoV: go Woo 

(3o) 

By the use of equations (29) and (30) the following set of fundamental derivatives is derived for 
symmetrical circular-arc profiles of thickness/chord ratio k : - -  

1 z = 0 l:~ C1,  m z = 0 ~v]/t2 = - -  C 1 (  1 - -  h)  + g C 2 k  , 

2 

(31) 

n % = - - C 1  --h+h 2 - t o  

Curves of ms and ms with k and h varied are given in Figs. 5 and 6. 

For a symmetrical double-wedge of thickness/chord ratio k, the appropriate formulae a re : - -  

l~=0, &=Cl, m~=0, m~=-Cl( 1 -h)+c~k  
2 ' 

l. : C1, l~ = C1 (1  --2 t°2 

mo = - -  C~(~  - -  h)  + C ~ k  
2 ' 

(1 - -  to ~) 
kC2 

h - - ~ -  

(32) 

t0  2 
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A comparison of formulae (31) and (32) shows that  the derivatives for a circuiar-arc profile of 
thickness/chord ratio k are equal to those for a double-wedge of thickness/chord ratio 4k/3. 
Alternatively, a double-wedge of thickness/chord ratio k corresponds to a circular-arc profile 
of ratiQ 3k/4. 

Formulae (31) and (32) are the limiting forms of the derivatives when the motion is very slow 
as for a very low-frequency oscillation. For a fiat-plate, k = 0, and formulae (31) and (32) then 
reduce to the limiting values given by tile Temple and .Tahn theory 1. To allow for frequency 
parameter variation, the approximations given below could be used for a symmetrical circular- 
arc profile, namely, 

= = L - - tg)kc , 

mo : ~o '+ ~C~k, " (33) 

where ~, 7~, etc., are tile frequency dependent derivatives for a flat plate as given by Temple and 
Jahn 1. For a double-wedge, tile factor k in formulae (33) must be replaced by 3k/4. I t  may 
be that  the influence of thickness varies with frequency parameter, but  for values of ~ near zero, 
formulae (33) may yield slightly better approximations to the derivatives for a circular-arc 
profile than those given by formulae (31). 

4. Conclusions.--The derivative formulae given in section 3(b) correspond to second-order 
theory and adiabatic conditions, and yield results in better agreement with experiment than 
those given by the linear flat=plate theory. The stiffness derivatives for zero frequency could 
be deduced exactly as in Ref. 4 or to third-order accuracy by the use of formulae (1) and (2). I t  
is doubtful, however, whether 13usemann's third-order formula used in conjunction with 
equation (15) would give reliable estimates of tile damping for thick aerofoils since the 
concept of a modified effective normal component of velocity may not be justifiable to this order 
of accuracy near M ---- 1. For larger values of M, the third-order term has little effect on the 
final results and can be neglected. 

Acknowledgement.--The writer is greatly indebted to Mrs. H. N. Wilkinson, B.Sc., who did 
most of the numerical work included in this report. 

8 



A P P E N D I X  i 

Formulae of the Busemann Type 

Third-Order Coefficients.---As the  th i rd-order  coefficients Ca and  D defined in section 2 of this 
repor t  differ f rom those given in Busemann ' s  paper  2, their  der ivat ion is discussed here in some 
detail.  The m e t h o d  used follows closely tha t  adopted  in Ref. 4 to obtain  the  second-order  
coefficients. Busemann  only gives the  final formulae in his report ,  and  he does not  s ta te  clearly 
how they  were derived.  

Consider the  case of supersonic flow past  a curved  surface inclined at  an angle w to the  free 
s t ream at its leading edge as shown in Fig. 4 below. 

vo 

FIG. 4. 

Let  cq be the  angle be tween  the shock-wave and  the  direct ion of flow, and  let 0 be the  local 
incidence at  a point  P on the  surface. The symbols p0, P0, Mo, and p~, pl, M~, represent  the  
densi ty ,  pressure, and  Mach number  respect ively in front and  beh ind  the  shock-wave,  and  
o, P, M define the  local condit ions at P. Then,  if X = p~/po, as in Ref. 4, it  can be shown tha t  

X = tan  C~s (34) 
tan  (cq - -  w) ' " . . . . . . . . .  

P l  (Y + 1 ) X - - r  + 1 
P0 ) , + l - - ( r - - 1 ) X '  

(as) 

Mo 2 sin 2 gs = 2 X  (36) , . . o o o • • 

r + 1 - - ( ~ ,  + 1 ) x '  

M12 sin 2 (~, - -  w) = 2 
(7 + 1 ) X - - y  + 1 

(37) 

These relat ions define condit ions beh ind  the  shock-wave for any  given w and M0. The pressure 
at a n y  point  P on the  surface is expressible in terms of the  condit ions immedia te ly  beh ind  the  
shock-wave by  means  of the following r e l a t i ons : - -  

P_ = .g(~) (3s) 
Pl  g ( , ~ ) ,  . . . . . . . . . . . . . .  

where 

w - o  = f ( ~ l )  - f ( . ) ,  . .  

g(fz) ---- [sin 2 ~/(y - -  cos 2t,)l ~/(~-~) , 

(39) 
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and the locai Mach angle ~ = sin -~ 1 /M.  By the use of formulae (34) to (39) and the tables 
given in Ref. 4, the  exact pressure distr ibution can then  be calculated. 

Approximat ions  to formtflae (35) and (38) are obtained by  expansion of the  various functions 
involved in ascending power series of the angular  deviations. If  t ---- t an  c~, formula (34) gives 

( 4 0 ) ,  

and, by  subst i tu t ing in formula (35), it  follows tha t  

/5~ = 1 + ~,(1 + F)w I1 + [1 - -  t 2 + ),(1 + t2)]w 
t5o t ( 2t 

+ 
12F " "j " 

(41)  

Let  

a ~ y ( 1  + t o  2) - - 1  + t o  2,  

b - -  (7 + 1)(1 + to~) ~ 
to 2 

to =- tan/~o = 1/~/(Mo 2 - -  1). 

Then, from formulae (34) and (36), it can be deduced tha t  

[ btoW (~b b2h ~2to~ ] 
t = t o  1 + ~ - - +  + 4 /  8 + "" " (42) 

Subst i tu t ion for t in equat ion (41) immedia te ly  yields 

2b~-- 2~°- rM°2 {C~(Mo)w + C2(Mo)w2 + [C3(Mo) - D(Mo)] w ~} 
Po 2 ' "" 

(43) 

where 

C I ( M )  = 2/~¢/(M 2 -  1), ] 

C2(M) = [~,M ~ + ( M  2 - -  2)2]/2(M 2 - -  1)2' t (44) 

C~(M) - -  D ( M )  = 3(r + 1) 2 M s + 4(372 - -  12~, --  7)M 6 + 72(~, -¢ 1)M 4 - -  96M 2 + 64 
48(M ~ - -  1)7/2 

Formula  (43) gives the pressure increase in passing th rough  the shock.  

For  adiabat ic  flow, formula (38) yields on expansion by  Taylor 's  theorem 

1 E ] bl g(.1) (~ - " t )  g'(~l) + (" - ~1)~g"(~1) + (~ - "1)3g ' ' '  
- -  2 6 (tq) 

10 
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where g'(ff) ~ ag/aff, etc. Fur thermore,  expansion of the  r igh t -hand side of formula (39) and 
inversion of the  series obtained yields 

- -  ffl = d , (O - -  w )  + d d o  - -  w )  2 + da(O - -  w) a, • . . . . .  (46) 

where 

__ 1 l f "  
dl --; ,  d 2 =  

] 

f , , ,  l f,,2 d a - -  + - ~  
6 f  '¢ 2 f '~ 

a n d f '  = af/affl, etc. B y  the use of formula (37), however, it can be proved tha t  

ffl = fro + (7 + 1)So 2 -  2 (w + (7 + 1) So2toW2") . . . .  
2 ~ 2 / 

(47) 

where So 2 = 1 + td = sec 2 fro. F rom equations (45) and (46), i t  follows t ha t  

P Pl 7M12 i- -] 
| G ( M 1 ) ( o  - -  w) + G ( M d ( O  - -  w) 2 + Ca(M1) (o  - -  . .  

Pl 2 L • 
(48) 

where C 1 and C2 are as defined by  formulae (44) and 

CdM) = (7 + l) Ms + ( 2 7 2 -  77 - -  5)M 6 + 10(7 + 1)M ~ -  12M 2 + 8 
6(M 2 - -  1)v 2 

(49) 

Now formula (43) gives PJPo and formula (48) gives P/P1, and hence by  mul t ip l ica t ion the  formula 
for P/Po can be deduced. B y  the use of formula (47), the  coefficients CdM1 ), etc., of formula 
(48) are expressed in terms of M0 or fro, and after considerable reduct ion a formula for fl/Po is 
derived, namely,  

7M°2 [CI(Mo)O C2(Mo)O 2 Ca(Mo)O a -  D(Mo)w a] • P - - 1 +  + + (5o) 

This formula mus t  correspond to (43) when 0 = w, hence it  follows tha t  

D ( M ) =  (7 + 1)M 4 
4 8 ( M 2  1)7/2 [(5 - -  3y)M 4 + 4(7 - -  3)M ~ + 8 ] .  (sl) 

In  Ref. 2, Busemann  gives 

C a =  {(r + l) M4 5 + 7 7 - - 2 7 2 ~  2 3 4 2 
4 ( M 2 -  ÷ ( M 2 - - 3 )  

+ M  ~ ( - 4 7  ~ + 2 8 7 a +  l l y  2 - 8 7 - 3 ) ) /  
~(i :/~) : i (M2 - 1 p ,  (52) 

12 L 4 \ 
6 --27"~ ~ 7 ~ + 1 q / , M  2 . . .  ; - - - E l / ( - - 1 )  7/2 (53) 

37/ D aT J /  
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i f  t he  f irst  t e r m  in fo rmu la  (52) is d iv ided  b y  6 i n s t ead  of 4, a n d  if ),~ + 1 is rep laced  b y  ~ - -  i 
in t he  las t  t e r m  of f o rmu la  (53), t h e n  the  above  express ions  can be r e d u c e d  to  t he  fo rmulae  
g iven  in th is  repor t .  

No. Author 
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2 A. Busemann . . . . . .  

3 J .B .  Bratt and A. Chinneck .. 
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R E F E R E N C E S  

Title, etc. 

. .  Flutter at Supersonic Speeds. Derivative Coefficients for a Thin 
Aerofoil at Zero Incidence. R. & M. 2140. April, 1945. 

.. Aerodynamic Lift at Supersonic Speeds. (Lecture given at the 5th 
Volta Conference at Rome). (L.F.F.,  Vol. 12, No. 6, 3.10.35). 
Translated by W. J. Stern, A.R.C.S. Communicated by D.S.R. 
Air Ministry. A.R.C. 2844. 

.. Measurements of Mid-chord Pitching Moment Derivatives at High 
Speeds. R. & M. 2680. July, 1947. 

.. The Theory and Practice of Two-dimensional Supersonic Pressure 
Calculations. Johns Hopkins University, ]Bumble Bee Report 
No. 26, 1945. 

.. Examples of the Application of Busemann's Formula to Evaluate 
the Aerodynamic Force Coefficients on Supersonic Aerofoils. 
R. & M. 2101. September, 1944. 

.. Exact and Approximate Solutions of Two-Dimensional Oblique 
Shock Flow. Jour. Aero. Sci. January, 1947. 

12 



~ ,=  1"4 

T A B L E  1 

Values of C1, C2, Ca and D 

Mach 
number 

1 .10  
1 .12  
1 .14  
1 "16 

C1 

4.364 
3.965 
3.654 
3"402 

C2 

30.32 
21.32 
15-91 
12.40 

C8 

568-9 
304-7 
180-0 
114-4 

1 "18 
1 "20 
1.22 
1.24 
1 "26 
1 "28 
1 "30 
1.32 
1.34 
1 "36 
1 "38 
1.40 
1.42 
1-44 
1.46 
1.48 
1.50 
1 .60  
1.70 
1 "80 
1 .90  
2"0 
2-5 
3.0 
3"5 
4-0 

3.193 
3"015 
2-862 
2.728 
2"609 
2"503 
2"408 
2.321 
2-242 
2"170 
2.103 
2"041 
1.984 
1-930 
1 "880 
1-833 
1"789 
1-601 
1"455 
1"336 
1.238 
1.155 
0-8730 
0.7072 
0.5963 
0-5164 

0 

10.01 
8"307 
7"049 
6.096 
5"357 
4"771 
4"300 
3.916 
3-598 
3"333 
3.109 
2.919 
2"755 
2"614 
2-491 
2"383 
2- 288 
1" 949 
1.748 
1-618 
1-529 
1.467 
1.320 
1-269 
1.245 
1.232 
1"200 

76"97 
54"00 
39.32 
29-46 
22.68 
17.81 
14.25 
11"59 
9"571 
8.005 
6-776 
5"801 
5.019 
4.375 
3"852 
3.419 
3.059 
1"938 
1.410 
1-145 
1.005 
0.9343 
0.9428 
1.112 
1.310 
1-513 

D 

24-53 
11"66 

5" 927 
3" 120 
1" 639 
0.8121 
0"3351 
0"05256 

- -0 .1169 
--0 .2184 
--0"2780 
--0-3111 
--0-3276 
--0"3330 
--0-3316 
--0"3258 
--0"3175 
--0"3069 
--0"2958 
- -0 .2839 
--0 .2725 
--0"2171 
--0"1715 
--0-1354 
- -0 .1062 
--0"08214 
--0-00442 

0.04251 
0"07805 
0"1081 

t3 



TABLE 2a 

Values of CM 

c t = l d e g ;  k = 0 . 0 7 5  

M0 = 1 . 5  Mo = 2 . 0  

h 
Second-order Third-order Second-order Third-order 

approximation approximation Exact  approximation approximation Exact  

0.5 
0.4 
0.3 
0.2 
0.1 

0 

0"00398 
- -0 .00228  
- -0 .00853 
- -0 .0148  
- -0 .0210  
- -0 .0273  

0.00398 
- -0 .00259 
- -0 .00915 
- -0 .0157  
- -0 .0223  
- -0 .0288  

0"00461 
--0-00207 
- -0 .00875 
- -0 .0154  
- -0 .0221 
- -0 .0288  

0.00255 
--0"00149 
- -0 .00553 
, -0 .00957  
- -0 .0136  
- -0 .0176  

0"00255 
- -0 .00158 
- - 0 . 0 0 5 7 2  
- -0 .00985 
- -0 .0140  

- - 0 . 0 1 8 1  

0.00254 
- -0 .00164 
--0-00587 
- -0 .01002 
- -0 .0142  
- -0 .0184  

M0 = 2-5 M0 =- 3-0 

h 

Exac t  E x a c t  

0-5 
0-4 
0-3 
0.2 
0"1 

0 

Second-order 
approximation 

0.00230 
--0"000757 
--0.00381 
--0-00686 
--0"00991 
--0-01296 

Third-order 
approximation 

0.00225 
--0"000890 
- -0 .00405 
--0"00719 
- -0 .01033 
- -0 .01347 

0.00230 
--0"000833 
- -0 .00396 
- -0 .00709 
- -0 .01022 
- -0 .01334 

Second-order 
approximation 

0"00221 
--0-000266 
--0"00274 
--0"00521 
--0"00768 
--0"01015 

Third-order 
approximation 

0"00221 
--0"000345 
--0"00290 
--0"00545 
--0"00800 
- -0 .01055 

0"00215 
--0-000419 
--0"00299 
--0"00555 
--0"00813 
--0"01072 

TABLE 2b 

Values of CL and C • 

c~-----1 deg;  k = 0 . 0 7 5  

CL CD 

Mo 
Second-order Third-order Exac t  Second-order Third-order Exac t  

approximation approximation approximation approximation 

1.5 
2.0 
2.5 
3 .0  

0.0628 
0.0405 
0-0306 
0.0248 

0.0652 
0.0410 
0.0310 
0-0253 

0"0663 
0"0416 
0.0312 
0"0255 

0"0280 
0.0181 
0.0137 
0"0111 

0.0287 
0.0183 
0"0139 
0-0113 

0.0288 
0.0182 
0-0138 
0.0112 
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TABLE 3 

Values of pl/pofor a Wedge of Angle 2w 

w = 5 deg 

Mo 
Second-order Third-order* Exact  

approximat ion approximat ion 

1- 1 1.518 1-825 No value 
1 • 2 1-329 1"365 No value 

1 "24 
1 "26 
1"3 
1"4 
1"5 
1"6 
1"7  
1"8 
1"9 
2"0 
2"5 
3"0 
3"5 
4"0 

1.306 
1 298 
1 287 
1 275 
1 273 
1 277 
1 284 
1-293 
1-302 
1.314 
1.378 
1.450 
1.527 
1.610 

1- 327 (1.336) t 
1.315 
1.299 
1.281 
1.277 
1.280 
1.286 
1.294 
1"305 
1.319 (1:316) 
1.380 
1.454 
1.535 
1.620 (1.626) 

1-417 
1"347 
1.312 
1.284 
1.278 
1.281 
1.286 
1.295 
1"304 
1"316 
1"380 
1.453 
1-534 
1.619 

w = 1 0  deg 

Second-order Third-order Exact  
approximat ion approximat ion 

2-428 
1" 786 
1.652 
1 "611 

1.608 
1 "603 
1"602 
1"607 
1" 622 
1 "641 
1" 664 
1" 690 
1.843 
2.022 
2.219 
2.430 

4.883 
2. 071 
1 "744 
1. 656 

1.648 (I .662) 

1.636 
I • 630 
I • 628 

I • 639 
1.656 
1 "679 
1.705 (1.711) 
1-865 
2.058 
2.274 
2.514 (2.559) 

No value 
No value 
No value 
No value 

1.830 
1.697 
1.667 
1.644 
1.647 
1.662 
1 • 682 
1.707 
1.864 
2"053 
2. 270 
2. 508 

* y = 1.4 assumed. 

Values given by  Busemann's formula are shown in brackets. 

15 



Ob 

1.0 

- io0 

-?°0 
1"0 

, I 

,~ \ \ \ 1  P='--~ 

f i l l -  
iJTI 

/1 , - - -~ is  posie~Jom be.hlm~ 
k k. ¢O9~. 

I 

0 71, = 0 " 5  

I 
I*1 1"2 M I-5 l-4, 1,0 

! 
I t 

: ,  .~k=i.,o . 

I'1 | '2 M 1'5 1'4 t'0 

I 

e.-k = 0°10 

k o J : /  
/ J I/:'k=O ~/I I 

N = O  

t 
I.I 1"2 M 1.5 J.4 v5 

FIG. 5. Influence of thickness/chord ratio on the torsional aerodynamic damping coefficient. 



- - t ~ q  

-2.0 

FIG. 6. 

; t - L ~  °~° ~:o.~ 

r 
~.o I.g I.Z ~ 1,4. ~'~ 1.6 J-~ I.fl 

H 

I n f l u e n c e  of t h i c k n e s s / c h o r d  r a t i o  on  t h e  t o r s i o n a l  a e r o d y n a m i c  s t i f f n e s s  coe f f i c i en t .  

(933) Wt. 15/680 K.9 8/54 H.P.Co. 34-261 
17 

P R I N T E D  IN G R E A ' ~  B R I T A I N  



J ! 

/ 

R. & M. No. 2679 

Publications of the 
Aeronautical Research Council 

ANNUAL TECHNICAL I~.EPORTS OF THE AERONAUTICAL RESEARCH COUNCIL 
(BOUND VOLUMES)-- 

1936 Vol. i. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 
40s. (41s. ld.) 

Vol. II .  Stability and Control, Structures, Seaplanes, Engines, etc. 508. (518. ld.) 
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 

40s. (41s. ld.) 
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 608. (618. ld.) 

1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (518. ld.) 
Vol. II. Stability and Control, Flutter, Structures, Seaplanes,  Wind Tunnels, 

Materials. 308. (318. ld.) 
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 508. (518. ld.) 

Vol. II. Stability and Control, F lu t t e r  and Vibration, Instruments, Structures, 
Seaplanes, etc. 638. (64s. 2d.) 

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability 
and Control, Structures, and a miscellaneous section. 50s. (51s. ld.) 

1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and 
ContrOl, Structures. 63s. (64s. 2d.) 

1942 Vol. I. Aero and Hydrodynamics, Aerofofls, Airscrews, Engines. 758. (768.3d.) 
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind 

Tunnels. 47s. 6d. (488.7d.) 
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 808. (81s. 4d.) 

Vol. II. Engines, Flutter, Materials, Parachutes, Performance,Stability and Control, 
Structures. 90s. (91s. 6d.) 

1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84s. 
(858. Sd.) 

Vol. I I .  Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, 
Performance, Plates and Panels, Stability, Structures, Test Equipment, 
Wind Tunnels. 84s. (858.8d.) 

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL--  
1933-34 ls. 6d. (Is. 8d.) 1937 2s. (2 s. 2d.) 
1934-35 ls. 6d. (ls. 8d.) 1938 ls. 6d. (ls. 8d.) 

April 1, 1935 to Dec. 31, 1936. 4s. (4s. 4d.) : 1939-48 3s. (3s. 2d.) 

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL 
TECHNICAL REPORTS, AND SEPARATELY-- 

April, 1950 R. & M. No. 2600. 2s. 6d. (2s. 7½d~) 

AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL 
RESEARCH COUNCIL-- 

1909-1949 . R. & 

............ INDEXES TO THE TECHNICAL REPORTS OF 
COUNCIL-- 

December I, 1936 - -  June 30, 1939. R. & 
July I, 1939 - -  June 30, 1945. R. & 
July I, 1945 - -  j une  30, 1946. R. & 
July I, 1946 - -  December 31, 1946. R. & 
January I, 1947 - -  June 30, 1947. R. & 
July, 1951. 

H E R  

M. No. 2570. 15s. (15s. 3d.) 

THE AERONAUTICAL RESEARCH 

M. No. 1850. 
M. No. 1950. 
M. No.  2050. 
M. No. 2150. 
M. No. 2250. 

R. & M. No. 2350. 
Prices in brackets include ~bostage. 

Obtainable from 

M A J E S T Y ' S  S T A T I O N E R Y  

ls. 3d. (ls. 4½d.) 
Is. (ls. 1½d.) 
ls. (ls. 1½d.) 
Is. 3d. (Is. 4½d.) 
Is. 3d. (ls. 4½d.) 
ls. 9d. (ls. 10½d.) 

O F F I C E  
York House, Kingsway, London, W.C.2 ; 423 Oxford Street, London, W.I  (Post Orders : P.O. Box 569, London, S.E.I)  ; 
13a Castle Street, Ed inburgh  2 ; 39 King Street, Manchester 2 ; 2 E d m u n d  Street, Bi rmingham 3 ; 1 St. Andrew's  

Crescent, Cardiff ; Tower Lane, Bristol  1 ;' 80 Chiehester Street, Belfast, or through any bookseller. 

S.O. Code No. 23-2679 

R. & M. No,. 2679 
i 

? 


