No. No
 LyBRABY?
R. \& N. No. 26.79 (10,871) A.R.C. Technicail Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA.

The Influence of Thickness/Chord

 Ratio on Supersonic Derivatives for Oscillating Aerofoils ByW. P. Jones, M.A.,
of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON: HER MAJESTY'S STATIONERY OFFICE 1954

FIVE SHITEINGS NHT

The Influence of Thickness/Chord \mathbb{R} atio on Supersonic Derivatives for Oscillating Aerofoils

By
W. P. Jones, M.A.,
of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2679^{*}
September, 1947

Summary.-By the use of Temple and Jahn's theory ${ }^{1}$ for the oscillating flat plate and Busemann's theory ${ }^{2}$ for aerofoils in steady motion, derivatives are obtained for symmetrical circular-arc and double-wedge aerofoils describing low frequency oscillations at supersonic speeds. It is known that theoretically the torsional aerodynamic damping for a flat plate oscillating about an axis forward of the two-thirds chord position is negative at low frequencies for a limited range of supersonic speeds. In this report, however, it is shown that the effect of increasing thickness/chord ratio is to decrease the range of speeds for which the aerodynamic damping is negative, and for which one degree of freedom flutter is possible. The present theory also allows for the forward movement of the centre of pressure from the half-chord position as the aerofoil thickness is increased, and leads to better estimates of the stiffness derivatives for an actual aerofoil. In practice, the centre of pressure is not at half-chord as predicted by linear theory.

1. Introductory Remarks.-Recent experimental values obtained by Bratt ${ }^{3}$ for the aerodynamic stiffness and damping derivatives of a $7 \cdot 5$ per cent thick symmetrical circular-arc aerofoil tested at supersonic speeds differ widely from the theoretical results of Temple and Jahn^{1}, and the main object of this theoretical investigation is to find an explanation for the discrepancies. It was thought that the thickness of the aerofoil might be the main cause of the differences between experiment and theory, and so, as a first step, the influence of thickness/chord ratio on the derivatives for low-frequency oscillations is investigated. As shown in Figs. 5 and 6, better agreement between experiment and theory is obtained when this effect is taken into account.

It should be remembered, however, that the given theoretical results are only valid as long as the bow-wave is attached to the leading edge and the flow supersonic everywhere. For the aerofoil tested by Bratt, it becomes detached at about $M_{0}=1.4$ and the flow immediately behind the shock-wave becomes subsonic ; the Mach number M_{0} being the ratio of the wind speed to the speed of sound. Extrapolated theory, however, indicates, in agreement with experiment, a sharp rise in the damping coefficient as the speed is decreased. It also gives the aerodynamic stiffness derivative to better accuracy than the flat-plate theory.

Busemann's theory ${ }^{2}$ for aerofoils in steady motion is briefly summarised in section 2, and what are believed to be errors in Busemann's third-order coefficients \dagger are pointed out in Appendix I.

No account is taken of boundary-layer effects which are probably responsible for the remaining differences between the theoretical and the experimental results plotted in Figs. 5 and 6.

[^0]2. Steady Motion.-(a) Pressure Distributions.-It has been shown by Busemann ${ }^{2}$ that the pressure at any point of an aerofoil in a supersonic stream can be expressed in terms of the local angle of incidence and the leading-edge angle. Thus, for a symmetrical biconvex aerofoil inclined at an angle of incidence α as shown in Fig. 1,

Fig. 1.
the pressure at any point on the upper surface is given to third-order accuracy by

$$
\begin{equation*}
\frac{p_{u}-p_{0}}{\frac{1}{2} \rho_{0} V_{0}{ }^{2}}=C_{1} \phi_{u}+C_{2} \phi_{u}{ }^{2}+C_{3} \phi_{u}{ }^{3}-D w_{u}{ }^{3} . \quad . . \quad . \tag{1}
\end{equation*}
$$

Similarly, at any point on the lower surface,

$$
\begin{equation*}
\frac{p_{l}-p_{0}}{\frac{1}{2} \rho_{0} V_{0}^{2}}=C_{1} \phi_{l}+C_{2} \phi_{l}^{2}+C_{3} \phi_{l}^{3}-D w_{l}^{3}, \quad . \quad . \quad . . \quad . \tag{2}
\end{equation*}
$$

where C_{1}, C_{2}, C_{3} and D are functions of the Mach number M_{0} of the free stream. The angles $\phi_{1 k}(=\theta-\alpha)$ and $\phi_{l}(=\theta+\alpha)$ represent the local angles of incidence to the free stream of speed V_{0}, and θ denotes the local inclination of the surface at P_{u} (or P_{l}) to the aerofoil chord. At the leading edge, $\theta=w$, and w_{l}, w_{u} respectively denote the corresponding values of ϕ_{l} and ϕ_{u}, namely, $w_{i}=w+\alpha$, and $w_{u}=w-\alpha$. The terms $D w_{u}{ }^{3}$ and $D w_{i}^{3}$ give the effect of the shock-waves each side of the leading edge of the aerofoil, but, when the incidence is increased until $\alpha>w$, w_{u} becomes negative and the flow over the upper surface becomes expansive. The pressure on the upper surface is then given by equation (1) with the $D w_{u}{ }^{3}$ term omitted. Since the pressure change due to the presence of a shock-wave is constant everywhere over the aerofoil's surface, it cannot affect the aerodynamic moment about its half-chord axis.

The coefficients C_{1}, C_{2}, C_{3}, D are defined as follows:-

$$
\begin{align*}
& C_{1}=\frac{2}{\sqrt{ }\left(M_{0}^{2}-1\right)}, \\
& C_{2}=\frac{1}{2} \frac{\left[\gamma M_{0}^{4}+\left(M_{0}{ }^{2}-2\right)^{2}\right]}{\left(M_{0}^{2}-1\right)^{2}}, \tag{3}\\
& C_{3}=\frac{(\gamma+1) M_{0}{ }^{8}+\left(2 \gamma^{2}-7 \gamma-5\right) M_{0}{ }^{6}+10(\gamma+1) M_{0}^{4}-12 M_{0}{ }^{2}+8}{6\left(M_{0}^{2}-1\right)^{7 / 2}} \\
& D=\frac{(\gamma+1) M_{0}{ }^{4}}{48\left(M_{0}^{2}-1\right)^{7 / 2}\left[(5-3 \gamma) M_{0}^{4}+4(\gamma-3) M_{0}{ }^{2}+8\right]},
\end{align*}
$$

and they are tabulated for a range of M_{0} values in Table $1 ; y=1.4$ being assumed. It should be noted that in equation (3) the expressions for C_{3} and D differ from those given by Busemann ${ }^{2}$, which are believed to be in error. The derivation of the coefficients is discussed in some detail in Appendix I.

For some aerodynamic problems, it may be more convenient to express equations (1) and (2) in the form

$$
\begin{equation*}
\frac{p-p_{0}}{\frac{1}{2} \rho_{0} V_{0}^{2}}=C_{1}\left(W / V_{0}\right)+C_{2}\left(W / V_{0}\right)^{2}+\left(C_{3}-\frac{C_{1}}{3}\right)\left(W / V_{0}\right)^{3}-D\left(W_{d} / V_{0}\right)^{3} \quad \ldots \quad . . \tag{4}
\end{equation*}
$$

where $W=V_{0} \tan \phi$ represents the local vertical component of velocity and W_{0} denotes the component at the leading edge.
(b) Aerodynamic Forces.-To illustrate the use of formulae (1) and (2), expressions for the force coefficients for an aerofoil with circular-arc surfaces of equal curvature are derived (see Fig. 1). Let R be the radius of curvature, c the chord, and k the thickness/chord ratio. It then follows that

$$
R=\frac{c}{4 k}\left(1+k^{2}\right),
$$

and $\tan w=2 k /\left(1-k^{2}\right)$. It is supposed that the aerofoil incidence α is less than the semi-wedge angle w.

The aerodynamic forces are defined as follows:-

$$
\left.\begin{array}{rl}
\text { Lift } & =\int_{-w}^{w}\left[\left(p_{l}-p_{0}\right) \cos \phi_{l}-\left(p_{u}-p_{0}\right) \cos \phi_{i z}\right] R d \theta \tag{5}\\
\text { Drag } & =\int_{-w}^{w}\left[\left(p_{l}-p_{0}\right) \sin \phi_{l}+\left(p_{u}-p_{0}\right) \sin \phi_{u}\right] R d \theta .
\end{array}\right\} \ldots \quad \ldots \quad \ldots \quad \ldots .
$$

The pitching moment M about an axis at a distance $h c$ behind the leading edge is given by

$$
\begin{equation*}
M=R c \int_{-w}^{w}\left(p_{l}-p_{w}\right)\left(h-\frac{1}{2}+\frac{1-k^{2}}{4 k} \tan \theta\right) \cos \theta d \theta \quad . \quad . \quad . . \quad . \tag{6}
\end{equation*}
$$

where p_{l} and p_{u} are given by equations (1) and (2) with the D terms included. From equations (3), (5), and (6), it follows that

$$
\left.\begin{array}{l}
C_{L}=2 \alpha\left[C_{1}\left(1+\frac{w w^{2}}{6}\right)+\left(C_{3}-\frac{C_{1}}{2}\right)\left(w^{2}+\alpha^{2}\right)-D\left(3 w^{2}+\alpha^{2}\right)\right] \\
C_{D}=2\left[C_{1}\left(1+\frac{w w^{2}}{6}\right)\left(\alpha^{2}+\frac{w^{2}}{3}\right)+\left(C_{3}-\frac{C_{1}}{6}\right)\left(\frac{w^{4}}{5}+2 \alpha^{2} w^{2}+\alpha^{4}\right)-D\left(3 w w^{2} \alpha^{2}+\alpha^{4}\right)\right], \tag{7}\\
C_{M}=2 \alpha\left[C_{2} \frac{w}{3}\left(1-\frac{4 w^{2}}{15}\right)+\left(h-\frac{1}{2}\right)\left[C_{1}+C_{3}\left(w^{2}+\alpha^{2}\right)-D\left(3 w^{2}+\alpha^{2}\right)\right] .\right.
\end{array}\right\} .
$$

A comparison of the numerical values yielded by the above formulae* and results given by exact theory ${ }^{4}$ is made in Tables 2 a and 2 b for $M_{0}=1 \cdot 5,2 \cdot 0,2 \cdot 5$ and $3 \cdot 0$, with $\alpha=1 \mathrm{deg}$, $k=0.075$ for a range of h values.

The accuracy of the formulae is slightly better when the C_{3} and D terms are included.

[^1]The pressure on a wedge of infinite chord placed in a supersonic stream is known exactly ${ }^{4}$. In Table 3, a comparison is made between the exact results and those given by formula (1) for wedge semi-angles of 5 deg and 10 deg . For such cases $\phi_{u}=w_{u}=w$.
3. Unsteady Motion.-(a) Flat Plate Theory.-In R. \& M. 2140^{1} Temple and Jahn derive a solution for the problem of the oscillating plate which is based on linearisation of the equations of motion. The velocity potential ϕ corresponding to the assigned boundary conditions is first determined and then the pressure change $p(x)$ due to the motion is derived from the formula

$$
\begin{equation*}
p(x)= \pm \rho_{0}\left(\frac{\partial \phi}{\partial t}+V_{0} \frac{\partial \phi}{\partial x}\right) . \quad . \quad . . \quad . . \tag{8}
\end{equation*}
$$

As the motion is simple harmonic, let $\phi \equiv \phi^{\prime} \mathrm{e}^{i a t}$,
and $p \equiv p^{\prime} \mathrm{e}^{i \omega t}$. Then if $\lambda \equiv \omega c / V_{0}$ and $x=c X$, formula (8) gives

$$
\begin{equation*}
p^{\prime}(X)= \pm \frac{p_{0} V_{0}}{c}\left(i \lambda \phi^{\prime}+\frac{\partial \phi^{\prime}}{\partial X}\right) \quad . \quad . \quad . . \quad . \tag{9}
\end{equation*}
$$

according as points below or above the surface are considered (see Fig. 2). The amplitude of the velocity potential is expressed as an integral involving the Bessel Function J_{0}, namely,

$$
\phi^{\prime}(X)=+c \tan \mu_{0} \int_{0}^{X} \mathrm{e}^{-i \hbar \lambda \sec ^{2} \mu_{0}} J_{0}\left(r \lambda \sec ^{2} \mu_{0} \sin \mu_{0}\right) W^{\prime}(X-r) d r
$$

where $W^{\prime}(X)$ is the assigned amplitude of the downwash distribution over the chord, and where μ_{0} is the Mach angle defined by $\sin \mu_{0}=1 / M_{0}$.

Next suppose that $\lambda \rightarrow 0$. Then, to first order in $\lambda, J_{0} \rightarrow 1$ and

$$
\begin{equation*}
\phi^{\prime}(X)=c \tan \mu_{0} \int_{0}^{X}\left(1-i \lambda \sec ^{2} \mu_{0} \cdot \gamma\right) W^{\prime}(X-r) d r . \quad . \quad . . \tag{11}
\end{equation*}
$$

On substitution in equation (9), it follows that

$$
\begin{equation*}
p^{\prime}(X)=\rho_{0} V_{0} \tan \mu_{0}\left(W^{\prime}(X)-i \lambda \tan ^{2} \mu_{0} \int_{0}^{X} W^{\prime}(\xi) d \xi\right) \quad \therefore \quad . \quad . \tag{12}
\end{equation*}
$$

for points on the lower surface. Since $\tan \mu_{0}=C_{1} / 2$, and $\lambda=\omega c / V_{0}$, the actual pressure change can be expressed in the form

$$
\begin{equation*}
p(X)=\frac{1}{2} \rho_{0} V_{0} C_{1}\left[W(X, t)-\tan ^{2} \mu_{0} \int_{0}^{X} \frac{c}{V_{0}} \frac{\partial W(\xi, t)}{\partial t} d \xi\right], \quad . \quad . \quad . \tag{13}
\end{equation*}
$$

where $W(X, t)=W^{\prime}(X) \mathrm{e}^{i \omega t}$ for the case considered. Formula (13) corresponds to the steady motion formula (4) with second and third-order terms omitted. This immediately suggests that the pressure change due to slow variations in W with time would be given to greater accuracy by

$$
\begin{equation*}
\frac{p(X)}{\frac{1}{2} \rho_{0} \bar{V}_{0}^{2}}=C_{1}\left(\frac{\bar{W}}{\bar{V}_{0}}\right)+C_{2}\left(\frac{\bar{W}}{\bar{V}_{0}}\right)^{2}+\left(C_{3}-\frac{C_{1}}{3}\right)\left(\frac{\bar{W}}{V_{0}}\right)^{3}-D\left(\frac{\bar{W}_{e}}{V_{0}}\right)^{3}, \quad \ldots \quad \ldots \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{W}(X, t) \equiv W(X, t)-\tan ^{2} \mu_{0} \int_{0}^{X} \frac{c}{V_{0}} \frac{\partial W(\xi, t)}{\partial t} d \xi \quad . \quad . \quad . \quad . . \quad . \tag{15}
\end{equation*}
$$

is regarded as the modified effective vertical component of velocity at the point \dot{X} at time t. The integral in equation (15) allows for the effect of the motion of the aerofoil profile forward of the point X.

A flat plate describing simple harmonic pitching and translational oscillations with displacements α and z respectively as indicated in the following diagram will have

$$
\begin{equation*}
W=V_{0}\left(\alpha+\frac{\dot{z}}{V_{0}}+\frac{c(X-h) \dot{\alpha}}{V_{0}}\right) \quad . \quad \ldots \quad \ldots \quad \ldots \quad \ldots \tag{16}
\end{equation*}
$$

where $\dot{\alpha} \equiv \partial \alpha / \partial t$ and $\dot{z} \equiv \partial z / \partial t$.

Fig. 2.
The modified effective downwash is then derived by the use of equation (15), and is defined by

$$
\begin{equation*}
\bar{W}=V_{0}\left[\alpha+\frac{\dot{z}}{\bar{V}_{0}}+\frac{c}{\bar{V}_{0}}\left(X-h-X \tan ^{2} \mu_{0}\right) \dot{\alpha}\right] . \quad . . \quad . \tag{18}
\end{equation*}
$$

For the lower surface, the pressure distribution is given by formula (14), where \bar{W} / V_{0} is defined by formula (18), and where \bar{W}_{e} is the value of \bar{W} at the lower side of the leading edge. For the upper surface, the flow is expansive ; the values of \bar{W} are regarded as negative; and as there is no shock the D term is omitted. Hence, for a flat plate, the lift distribution $l(X)$ is given by

$$
\begin{equation*}
\frac{l(X)}{\rho_{0} V_{0}^{2}}=C_{1}\left(\frac{\bar{W}}{\bar{V}_{0}}\right)+\left(C_{3}-\frac{C_{1}}{3}\right)\left(\frac{\bar{W}}{\overline{V_{0}}}\right)^{3}-\frac{D}{2}\left(\frac{\bar{W}_{e}}{V_{0}}\right)^{3} . \ldots \quad \ldots \quad \ldots \tag{19}
\end{equation*}
$$

If the first term only is retained, equation (19) yields limiting values for the fundamental derivative coefficients which agree with those given by Temple and Jahn ${ }^{1}$ as will be shown in the next section.
(b) Thick Aerofoil Theory.-Consider next the aerodynamic forces on a symmetrical circulararc aerofoil in unsteady motion.

Fig. 3.

Let the reference point O be displaced a distance $c z_{0}$ relative to its initial position O^{\prime}, and let α represent the angular displacement about O at time t. At the point P , the velocity component perpendicular to the direction of flow of the free stream is

$$
\begin{equation*}
W=\frac{\partial z}{\partial t}+V_{0} \frac{\partial z}{\partial x^{\prime}}, \quad . . \quad . \quad . \quad . . \quad . \tag{20}
\end{equation*}
$$

where $z=c z_{0}+x \sin \alpha+y \cos \alpha$. On differentiation, equation (20) yields

$$
\begin{equation*}
W=c \dot{\tilde{z}_{0}}+V_{0} \tan (\theta+\alpha)+x^{\prime} \dot{\alpha}, \quad . . \quad . . \quad . . \quad . \tag{21}
\end{equation*}
$$

where $\dot{z}_{0} \equiv \partial z_{0} / \partial t, \dot{\alpha} \equiv \partial \alpha / \partial t$, and $x^{\prime}=x \cos \alpha-y \sin \alpha$. If the rates of change of \dot{z}_{0} and $\dot{\alpha}$ are slow, and if θ and α are small ; then, to second-order accuracy, the vertical component of velocity at P is

$$
\begin{equation*}
\frac{W}{V_{0}}=\frac{c \dot{z}_{0}}{V_{0}}+\theta+\alpha+\frac{c(X-h) \dot{\alpha}}{V_{0}} \tag{22}
\end{equation*}
$$

where $c X=h c+x^{\prime}$ represents the distance along the chord referred to the leading edge as origin. The modified effective vertical component \bar{W} for points on the lower surface of the aerofoil is given by equation (15) as

$$
\begin{equation*}
\frac{\bar{W}_{l}}{V_{0}}=\theta(X)+\alpha+\frac{c \dot{z}_{0}}{V_{0}}+\frac{c \dot{\alpha}}{\bar{V}_{0}}\left(X-h-X \tan ^{2} \mu_{0}\right), \tag{23}
\end{equation*}
$$

and for the upper surface

$$
\begin{equation*}
\frac{\bar{W}_{u}}{V_{0}}=\theta(X)-\alpha-\frac{c \dot{z}_{0}}{V_{0}}-\frac{c \dot{\alpha}}{V_{0}}\left(X-h-X \tan ^{2} \mu_{0}^{\prime}\right) . \tag{24}
\end{equation*}
$$

At the leading edge, $\theta=w$ and $X=0$, and equations (23) and (24) yield

$$
\begin{equation*}
\bar{W}_{e}=V_{0}\left(w \mp \alpha \mp \frac{c \dot{z}_{0}}{V_{0}} \mp \frac{h c \dot{\alpha}}{\bar{V}_{0}}\right), \quad . . \quad . \quad . \quad . . \quad . \tag{25}
\end{equation*}
$$

the upper and lower signs corresponding to the upper and lower surfaces of the aerofoil respectively. The pressure changes on the surfaces can then be derived by the substitution of the appropriate values of \bar{W}, as given by equations (23), (24), and (25), in equation (14). The aerodynamic forces and moments are given by equations (5) and (6), when the substitutions $\phi_{l}=\theta+\alpha$, and $\phi_{u}=\theta-\alpha$ are made.

For a symmetrical circular-arc aerofoil, the profile is defined to second-order accuracy in the thickness/chord ratio k by

$$
\begin{equation*}
y=2 k c\left(X-X^{2}\right), \quad . \quad . . \quad . . \quad . . \quad . \quad . \tag{26}
\end{equation*}
$$

and the variation in incidence is given by

$$
\begin{equation*}
\theta=4 k\left(\frac{1}{2}-X\right) \quad . . \quad . \tag{27}
\end{equation*}
$$

with $\theta=w=2 k$ at the leading edge.

Let the lift \dot{L} and moment M about a reference axis at $h c$ behind the leading edge be expressed in the form

$$
\begin{align*}
& \frac{L}{\rho_{0} c V_{0}^{2}}=l_{z} z_{0}+l_{z}\left(\frac{c \dot{z}_{0}}{\overline{V_{0}}}\right)+l_{a} \alpha+l_{\dot{\alpha}}\left(\frac{c \dot{\alpha}}{\overline{V_{0}}}\right), \\
& \frac{M}{\rho_{0} c^{2} V_{0}{ }^{2}}=m_{z} z_{0}+m_{\dot{z}}\left(\frac{c \dot{z}_{0}}{V_{0}}\right)+m_{a} \alpha+m_{\dot{\alpha}}\left(\frac{c \dot{\alpha}}{\overline{V_{0}}}\right) \tag{28}
\end{align*}
$$

where the actual translational displacement is $c z_{0}$ and α represents the angular displacement. Then, to second-order accuracy in the displacements and the thickness/chord ratio, it follows from equations (5) and (6) that

$$
\begin{align*}
L & =c \int_{0}^{1}\left(p_{l}-p_{u}\right) d X \\
M & =-c^{2} \int_{0}^{1}\left(p_{l}-p_{u}\right)(X-h) d X \tag{29}
\end{align*}
$$

If $t_{0} \equiv \tan \mu_{0}$, equations (14), (23) and (24) yield

$$
\begin{equation*}
\frac{p_{l}-p_{u}}{\frac{1}{2} p_{0} V_{0}^{2}}=2\left[\alpha+\frac{c \dot{z}_{0}}{V_{0}}+\frac{c \dot{\alpha}}{V_{0}}\left(X-h-X t_{0}^{2}\right)\right]\left[C_{1}+2 C_{2} \theta\right] \tag{30}
\end{equation*}
$$

By the use of equations (29) and (30) the following set of fundamental derivatives is derived for symmetrical circular-arc profiles of thickness/chord ratio $k:-$

$$
\begin{align*}
& l_{z}=0, l_{\dot{z}}=C_{1}, m_{z}=0, m_{\dot{z}}=-C_{1}\left(\frac{1}{2}-h\right)+\frac{2}{3} C_{2} k, \\
& l_{\alpha}=C_{1}, l_{\dot{\alpha}}=C_{1}\left(\frac{1-t_{0}^{2}}{2}-h\right)-\frac{2}{3}\left(1-t_{0}^{2}\right) k C_{2}, \\
& m_{a}=-C_{1}\left(\frac{1}{2}-h\right)+\frac{2}{3} C_{2} k \tag{31}\\
& m_{\dot{\alpha}}=-C_{1}\left[\frac{1}{3}-h+h^{2}-t_{0}^{2}\left(\frac{1}{3}-\frac{h}{2}\right)\right]+\frac{4 k}{3} C_{2}\left[\frac{1}{2}-h-\frac{t_{0}^{2}}{2}(1-h)\right] .
\end{align*}
$$

Curves of m_{a} and $m_{\dot{\alpha}}$ with k and h varied are given in Figs. 5 and 6 .
For a symmetrical double-wedge of thickness/chord ratio k, the appropriate formulae are:-

$$
\begin{aligned}
& l_{z}=0, l_{z}=C_{1}, m_{z}=0, m_{z}=-C_{1}\left(\frac{1}{2}-h\right)+\frac{C_{2} k^{2}}{2} \\
& l_{\alpha}=C_{1}, l_{\dot{\alpha}}=C_{1}\left(\frac{1-t_{0}^{2}}{2}-h\right)-\frac{k C_{2}}{2}\left(1-t_{0}^{2}\right) \\
& m_{a}=-C_{1}\left(\frac{1}{2}-h\right)+\frac{C_{2} k}{2} \\
& \quad \cdot \\
& m_{\dot{u}}=-C_{1}\left[\frac{1}{3}-h+h^{2}-t_{0}^{2}\left(\frac{1}{3}-\frac{h}{2}\right)\right]+k C_{2}\left[\frac{1}{2}-h-\frac{t_{0}^{2}}{2}(1-h)\right] .
\end{aligned}
$$

A comparison of formulae (31) and (32) shows that the derivatives for a circular-arc profile of thickness/chord ratio k are equal to those for a double-wedge of thickness/chord ratio $4 k / 3$. Alternatively, a double-wedge of thickness/chord ratio k corresponds to a circular-arc profile of ratio $3 k / 4$.

Formulae (31) and (32) are the limiting forms of the derivatives when the motion is very slow as for a very low-frequency oscillation. For a flat-plate, $k=0$, and formulae (31) and (32) then reduce to the limiting values given by the Temple and Jahn theory ${ }^{1}$. To allow for frequency parameter variation, the approximations given below could be used for a symmetrical circulararc profile, namely,

$$
\begin{align*}
l_{z} & =\bar{l}_{z}, l_{\dot{z}}=\bar{l}_{z}, m_{z}=\bar{m}_{z}, m_{i}=\bar{m}_{\dot{z}}+\frac{2}{3} C_{2} k, \\
l_{\alpha} & =\bar{l}_{l_{a}}, l_{\dot{\alpha}}=\bar{l}_{\dot{b}}-\frac{2}{3}\left(1-t_{0}^{2}\right) k C_{2} \\
m_{\alpha} & =\bar{m}_{a}+\frac{2}{3} C_{2} k, \tag{33}\\
m_{a} & =\bar{m}_{\dot{\alpha}}+\frac{4 k}{3} C_{2}\left[\frac{1}{2}-h-\frac{t_{0}^{2}}{2}(1-h)\right],
\end{align*}
$$

where \bar{l}_{z}, \bar{l}_{a}, etc., are the frequency dependent derivatives for a flat plate as given by Temple and Jahn^{1}. For a double-wedge, the factor k in formulae (33) must be replaced by $3 k / 4$. It may be that the influence of thickness varies with frequency parameter, but for values of λ near zero, formulae (33) may yield slightly better approximations to the derivatives for a circular-arc profile than those given by formulae (31).
4. Conclusions.-The derivative formulae given in section $3(\mathrm{~b})$ correspond to second-order theory and adiabatic conditions, and yield results in better agreement with experiment than those given by the linear flat-plate theory. The stiffness derivatives for zero frequency could be deduced exactly as in Ref. 4 or to third-order accuracy by the use of formulae (1) and (2). It is doubtful, however, whether Busemann's third-order formula used in conjunction with equation (15) would give reliable estimates of the damping for thick aerofoils since the concept of a modified effective normal component of velocity may not be justifiable to this order of accuracy near' $M=1$. For larger values of M, the third-order term has little effect on the final results and can be neglected.

Acknowledgement.-The writer is greatly indebted to Mrs. H. N. Wilkinson, B.Sc., who did most of the numerical work included in this report.

APPENDIX I

Formulae of the Busemann Type

Third-Order Coefficients.-As the third-order coefficients C_{3} and D defined in section 2 of this report differ from those given in Busemann's paper ${ }^{2}$, their derivation is discussed here in some detail. The method used follows closely that adopted in Ref. 4 to obtain the second-order coefficients. Busemann only gives the final formulae in his report, and he does not state clearly how they were derived.

Consider the case of supersonic flow past a curved surface inclined at an angle w to the free stream at its leading edge as shown in Fig. 4 below.

Fig. 4.
Let α_{s} be the angle between the shock-wave and the direction of flow, and let θ be the local incidence at a point P on the surface. The symbols ρ_{0}, p_{0}, M_{0}, and ρ_{1}, p_{1}, M_{1}, represent the density, pressure, and Mach number respectively in front and behind the shock-wave, and ρ, p, M define the local conditions at P. Then, if $X=\rho_{1} / \rho_{0}$, as in Ref. 4, it can be shown that

$$
\begin{array}{ccccc}
X=\frac{\tan \alpha_{s}}{\tan \left(\alpha_{s}-w\right)}, & \ldots & \ldots & . . & \ldots \\
\frac{p_{1}}{p_{0}}=\frac{(\gamma+1) X-\gamma+1}{\gamma+1-(\gamma-1) X}, & \ldots & \ldots & . . & \ldots \\
M_{0}^{2} \sin ^{2} \alpha_{s}=\frac{2 X}{\gamma+1-(\gamma+1) X}, & \ldots & \ldots & \ldots & \ldots \\
M_{1}{ }^{2} \sin ^{2}\left(\alpha_{s}-w\right)=\frac{2}{(\gamma+1) X-\gamma+1} . & \ldots & \ldots & \ldots \tag{37}
\end{array}
$$

These relations define conditions behind the shock-wave for any given w and M_{0}. The pressure at any point P on the surface is expressible in terms of the conditions immediately behind the shock-wave by means of the following relations:-

$$
\begin{array}{rlllllll}
\frac{p}{p_{1}} & =\frac{g(\mu)}{g\left(\mu_{1}\right)}, & . & . & . . & . & . . & . . \\
w-\theta & =f\left(\mu_{1}\right)-f(\mu), & \ldots & \ldots & \ldots & \ldots & \ldots & . \tag{39}
\end{array}
$$

where

$$
\begin{aligned}
& g(\mu)=\left[\sin ^{2} \mu /(\gamma-\cos 2 \mu)\right]^{\gamma /(\gamma-1)} \\
& f(\mu)=\sqrt{ }\left(\frac{\gamma+1}{\gamma-1}\right) \tan ^{-1}\left(\sqrt{ }\left(\frac{\gamma+1}{\gamma-1}\right) \tan \mu\right)-\mu
\end{aligned}
$$

and the local Mach angle $\mu=\sin ^{-1} 1 / M$. By the use of formulae (34) to (39) and the tables given in Ref. 4, the exact pressure distribution can then be calculated.

Approximations to formulae (35) and (38) are obtained by expansion of the various functions involved in ascending power series of the angular deviations. If $t=\tan \alpha_{s}$, formula (34) gives

$$
\begin{equation*}
X=1+\left(\frac{1+t^{2}}{t}\right) w+\left(\frac{1+t^{2}}{t^{2}}\right) w^{2}+\frac{\left(1+t^{2}\right)\left(3+t^{2}\right)}{3 t^{3}} w^{3}+\mathrm{O}\left(w^{4}\right) \quad \ldots \quad . . \tag{40}
\end{equation*}
$$

and, by substituting in formula (35), it follows that

$$
\begin{align*}
\frac{p_{1}}{p_{0}}=1 & +\frac{\gamma\left(1+t^{2}\right) w}{t}\left\{1+\frac{\left[1-t^{2}+\gamma\left(1+t^{2}\right)\right] w}{2 t}\right. \\
& \left.+\frac{w^{2}\left[3 t^{4}-2 t^{2}+3+6 \gamma\left(1-t^{4}\right)+3 \gamma^{2}\left(1+t^{2}\right)^{2}\right]}{12 t^{2}}+\ldots\right\} \tag{41}
\end{align*}
$$

Let

$$
\begin{aligned}
a & \equiv \gamma\left(1+t_{0}^{2}\right)-1+t_{0}^{2} \\
b & \equiv \frac{(\gamma+1)\left(1+t_{0}^{2}\right)^{2}}{t_{0}^{2}} \\
t_{0} & \equiv \tan \mu_{0}=1 / \sqrt{ }\left(M_{0}^{2}-1\right)
\end{aligned}
$$

Then, from formulae (34) and (36), it can be deduced that

$$
\begin{equation*}
t=t_{0}\left[1+\frac{b t_{0} w}{4}+\left(a b+\frac{b^{2}}{4}\right) \frac{w w^{2} t_{0}^{2}}{8}+\ldots\right] . \quad \ldots \quad \ldots \quad . \tag{42}
\end{equation*}
$$

Substitution for t in equation (41) immediately yields

$$
\begin{equation*}
\frac{p_{1}-p_{0}}{p_{0}}=\frac{\gamma M_{0}^{2}}{2}\left\{C_{1}\left(M_{0}\right) w+C_{2}\left(M_{0}\right) w^{2}+\left[C_{3}\left(M_{0}\right)-D\left(M_{0}\right)\right] w w^{3}\right\}, \ldots \quad \ldots \tag{43}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
C_{1}(M) & =2 / \sqrt{ }\left(M^{2}-1\right) \\
C_{2}(M) & =\left[\gamma M^{4}+\left(M^{2}-2\right)^{2}\right] / 2\left(M^{2}-1\right)^{2} \tag{44}\\
C_{3}(M)-D(M) & =\frac{3(\gamma+1)^{2} M^{8}+4\left(3 \gamma^{2}-12 \gamma-7\right) M^{6}+72(\gamma+1) M^{4}-96 M^{2}+64}{48\left(M^{2}-1\right)^{7 / 2}}
\end{array}\right\}
$$

Formula (43) gives the pressure increase in passing through the shock.
For adiabatic flow, formula (38) yields on expansion by Taylor's theorem

$$
\begin{equation*}
\frac{p-p_{1}}{p_{1}}=\frac{1}{g\left(\mu_{1}\right)}\left[\left(\mu-\mu_{1}\right) g^{\prime}\left(\mu_{1}\right)+\frac{\left(\mu-\mu_{1}\right)^{2}}{2} g^{\prime \prime}\left(\mu_{1}\right)+\frac{\left(\mu-\mu_{1}\right)^{3}}{6} g^{\prime \prime \prime}\left(\mu_{1}\right)\right] \quad . \tag{45}
\end{equation*}
$$

where $g^{\prime}(\mu) \equiv \partial g / \partial \mu$, etc. Furthermore, expansion of the right-hand side of formula (39) and inversion of the series obtained yields

$$
\begin{equation*}
\mu-\mu_{1}=d_{1}(\theta-w)+d_{2}(\theta-w)^{2}+d_{3}(\theta-w)^{3}, \quad . . \quad . \quad . \tag{46}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{1}=\frac{1}{f^{\prime}}, d_{2}=-\frac{1}{2} \frac{f^{\prime \prime}}{f^{\prime 3}} \\
& d_{3}=-\frac{f^{\prime \prime \prime}}{6 f^{\prime 4}}+\frac{1}{2} \frac{f^{\prime \prime 2}}{f^{\prime 5}}
\end{aligned}
$$

and $f^{\prime}=\partial f / \partial \mu_{1}$, etc. By the use of formula (37), however, it can be proved that

$$
\begin{equation*}
\mu_{1}=\mu_{0}+\frac{(\gamma+1) s_{0}{ }^{2}-2}{2}\left(w+\frac{(\gamma+1)}{2} s_{0}{ }^{2} t_{0} w^{2}\right) \quad . \quad \quad . \quad . \tag{47}
\end{equation*}
$$

where $s_{0}{ }^{2} \equiv 1+t_{0}{ }^{2}=\sec ^{2} \mu_{0}$. From equations (45) and (46), it follows that

$$
\begin{equation*}
\frac{p-p_{1}}{p_{1}}=\frac{\gamma M_{1}^{2}}{2}\left[C_{1}\left(M_{1}\right)(\theta-w)+C_{2}\left(M_{1}\right)(\theta-w)^{2}+C_{3}\left(M_{1}\right)(\theta-w)^{3}\right], \ldots \quad \ldots \tag{48}
\end{equation*}
$$

where C_{1} and C_{2} are as defined by formulae (44) and

$$
\begin{equation*}
C_{3}(M)=\frac{(\gamma+1) M^{8}+\left(2 \gamma^{2}-7 \gamma-5\right) M^{6}+10(\gamma+1) M^{4}-12 M^{2}+8}{6\left(M^{2}-1\right)^{7 / 2}} . \quad \ldots \tag{49}
\end{equation*}
$$

Now formula (43) gives p_{1} / p_{0} and formula (48) gives p / p_{1}, and hence by multiplication the formula for p / p_{0} can be deduced. By the use of formula (47), the coefficients $C_{1}\left(M_{1}\right)$, etc., of formula (48) are expressed in terms of M_{0} or μ_{0}, and after considerable reduction a formula for p / p_{0} is derived, namely,

$$
\begin{equation*}
\frac{p}{p_{0}}=1+\frac{\gamma M_{0}^{2}}{2}\left[C_{1}\left(M_{0}\right) \theta+C_{2}\left(M_{0}\right) \theta^{2}+C_{3}\left(M_{0}\right) \theta^{3}-D\left(M_{0}\right) \not w^{3}\right] \tag{50}
\end{equation*}
$$

This formula must correspond to (43) when $\theta=w$, hence it follows that

$$
\begin{equation*}
D(M)=\frac{(\gamma+1) M^{4}}{48\left(M^{2}-1\right)^{7 / 2}}\left[(5-3 \gamma) M^{4}+4(\gamma-3) M^{2}+8\right] . \quad . \quad . \tag{51}
\end{equation*}
$$

In Ref. 2, Busemann gives

$$
\begin{align*}
C_{3}= & \left\{\frac{(\gamma+1) M^{4}}{4}\left(M^{2}-\frac{5+7 \gamma-2 \gamma^{2}}{2(\gamma+1)}\right)^{2}+\frac{3}{4}\left(M^{2}-\frac{4}{3}\right)^{2}\right. \\
& \left.+M^{4} \frac{\left(-4 \gamma^{4}+28 \gamma^{3}+11 \gamma^{2}-8 \gamma-3\right)}{24(\gamma+1)}\right\} /\left(M^{2}-1\right)^{7 / 2}, \quad \ldots
\end{aligned} \begin{aligned}
D= & \frac{(\gamma+1) M^{4}}{12}\left[\frac{5-3 \gamma}{4}\left(M^{2}-\frac{6-2 \gamma}{5-3 \gamma}\right)^{2}-\frac{\gamma^{2}+1}{5-3 \gamma}\right] /\left(M^{2}-1\right)^{7 / 2} \tag{52}
\end{align*} \quad \ldots .
$$

If the first term in formula (52) is divided by 6 instead of 4 , and if $\gamma^{2}+1$ is replaced by $\gamma^{2}-1$ in the last term of formula (53), then the above expressions can be reduced to the formulae given in this report.

REFERENCES

No.	Author				
Title, etc.					

TABLE 1
V alues of C_{1}, C_{2}, C_{3} and D

$\gamma=1 \cdot 4$				
Mach number	C_{1}	C_{2}	C_{3}	D
$1 \cdot 10$	$4 \cdot 364$	$30 \cdot 32$	$568 \cdot 9$	$24 \cdot 53$
$1 \cdot 12$	$3 \cdot 965$	$21 \cdot 32$	$304 \cdot 7$	$11 \cdot 66$
$1 \cdot 14$	$3 \cdot 654$	$15 \cdot 91$	$180 \cdot 0$	$5 \cdot 927$
$1 \cdot 16$	$3 \cdot 402$	$12 \cdot 40$	$114 \cdot 4$	$3 \cdot 120$
$1 \cdot 18$	$3 \cdot 193$	10.01	$76 \cdot 97$	1.639
$1 \cdot 20$	$3 \cdot 015$	$8 \cdot 307$	$54 \cdot 00$	$0 \cdot 8121$
$1 \cdot 22$	$2 \cdot 862$	$7 \cdot 049$	$39 \cdot 32$	$0 \cdot 3351$
$1 \cdot 24$	$2 \cdot 728$	$6 \cdot 096$	$29 \cdot 46$	$0 \cdot 05256$
$1 \cdot 26$	$2 \cdot 609$	$5 \cdot 357$	$22 \cdot 68$	-0.1169
$1 \cdot 28$	$2 \cdot 503$	$4 \cdot 771$	$17 \cdot 81$	-0.2184
$1 \cdot 30$	$2 \cdot 408$	$4 \cdot 300$	$14 \cdot 25$	-0.2780
$1 \cdot 32$	$2 \cdot 321$	$3 \cdot 916$	11.59	-0.3111
$1 \cdot 34$	$2 \cdot 242$	$3 \cdot 598$	$9 \cdot 571$	-0.3276
$1 \cdot 36$	$2 \cdot 170$	$3 \cdot 333$	$8 \cdot 005$	-0.3330
$1 \cdot 38$	$2 \cdot 103$	$3 \cdot 109$	$6 \cdot 776$	-0.3316
$1 \cdot 40$	$2 \cdot 041$	$2 \cdot 919$	$5 \cdot 801$	-0.3258
1.42	1.984	$2 \cdot 755$	$5 \cdot 019$	-0.3175
1.44	1.930	$2 \cdot 614$	$4 \cdot 375$	--0.3069
1.46	1.880	$2 \cdot 491$	$3 \cdot 852$	-0.2958
$1 \cdot 48$	1.833	$2 \cdot 383$	$3 \cdot 419$	-0.2839
1.50	1.789	$2 \cdot 288$	$3 \cdot 059$	-0.2725
$1 \cdot 60$	1.601	1.949	$1 \cdot 938$	-0.2171
1.70	$1 \cdot 455$	$1 \cdot 748$	$1 \cdot 410$	-0.1715
$1 \cdot 80$	$1 \cdot 336$	$1 \cdot 618$	$1 \cdot 145$	-0.1354
$1 \cdot 90$	1-238	$1 \cdot 529$	$1 \cdot 005$	-0.1062
$2 \cdot 0$	$1 \cdot 155$	1-467	$0 \cdot 9343$	-0.08214
$2 \cdot 5$	$0 \cdot 8730$	$1 \cdot 320$	$0 \cdot 9428$	-0.00442
$3 \cdot 0$	0.7072	$1 \cdot 269$	1-112	$0 \cdot 04251$
$3 \cdot 5$	$0 \cdot 5963$	$1 \cdot 245$	$1 \cdot 310$	$0 \cdot 07805$
$4 \cdot 0$	$0 \cdot 5164$	$1 \cdot 232$	$1 \cdot 513$	$0 \cdot 1081$
∞	0	$1 \cdot 200$	∞	∞

TABLE 2 a

Values of C_{M}
$\alpha=1 \mathrm{deg} ; k=0.075$

h	$M_{0}=1 \cdot 5$			$M_{0}=2 \cdot 0$		
	Second-order approximation	Third-order approximation	Exact	Second-order approximation	Third-order approximation	Exact
$0 \cdot 5$	0.00398	$0 \cdot 00398$	$0 \cdot 00461$	$0 \cdot 00255$	$0 \cdot 00255$	$0 \cdot 00254$
$0 \cdot 4$	-0.00228	-0.00259	-0.00207	-0.00149	-0.00158	-0.00164
$0 \cdot 3$	-0.00853	-0.00915	-0.00875	-0.00553	-0.00572	-0.00587
$0 \cdot 2$	-0.0148	-0.0157	-0.0154	-0.00957	-0.00985	$-\mathrm{-} 0.01002$
$0 \cdot 1$	-0.0210	-0.0223	-0.0221	-0.0136	-0.0140	-0.0142
0	-0.0273	-0.0288	-0.0288	-0.0176	-0.0181	-0.0184
.						
h	$M_{0}=2 \cdot 5$			$M_{0}=3 \cdot 0$		
	Second-order approximation	Third-order approximation	Exact	Second-order approximation	Third-order approximation	Exact
$0 \cdot 5$	$0 \cdot 00230$	$0 \cdot 00230$	$0 \cdot 00225$	0.00221	$0 \cdot 00221$	0.00215
$0 \cdot 4$	-0.000757	-0.000833	$-0 \cdot 000890$	-0.000266	-0.000345	-0.000419
$0 \cdot 3$	-0.00381	-0.00396	-0.00405	-0.00274	-0.00290	-0.00299
$0 \cdot 2$	-0.00686	-0.00709	-0.00719	-0.00521	-0.00545	-0.00555
$0 \cdot 1$	-0.00991	-0.01022	-0.01033	-0.00768	-0.00800	-0.00813
0	-0.01296	-0.01334	-0.01347	-0.01015	-0.01055	-0.01072

TABLE 2b
V alues of C_{L} and C_{D}
$\alpha=1 \mathrm{deg} ; k=0.075$

M_{0}	C_{L}			C_{D}		
	Second-order approximation	Third-order approximation	Exact	Second-order approximation	Third-order approximation	Exact
1.5	$0 \cdot 0628$	0.0652	$0 \cdot 0663$	$0 \cdot 0280$	$0 \cdot 0287$	$0 \cdot 0288$
$2 \cdot 0$	$0 \cdot 0405$	$0 \cdot 0410$	$0 \cdot 0416$	$0 \cdot 0181$	$0 \cdot 0183$	$0 \cdot 0182$
$2 \cdot 5$	$0 \cdot 0306$	0.0310	0.0312	$0 \cdot 0137$	$0 \cdot 0139$	$0 \cdot 0138$
$3 \cdot 0$	$0 \cdot 0248$	$0 \cdot 0253$	$0 \cdot 0255$	$0 \cdot 0111$	$0 \cdot 0113$	$0 \cdot 0112$

TABLE 3
V alues of p_{1} / p_{0} for a Wedge of Angle $2 w$

M_{0}	$w=5 \mathrm{deg}$			M_{0}	$w=10 \mathrm{deg}$		
	Second-order approximation	Third-order* approximation	Exact		Second-order approximation	Third-order approximation	Exact
$1 \cdot 1$	1.518	1.825	No value	$1 \cdot 1$	$2 \cdot 428$	4.883	No value
$1 \cdot 2$	1-329	$1 \cdot 365$	No value	$1 \cdot 2$	$1 \cdot 786$	$2 \cdot 071$	No value
$1 \cdot 24$	$1 \cdot 306$	$1 \cdot 327(1 \cdot 336) \dagger$	$1 \cdot 417$	$1 \cdot 4$	1.611	1.656	No value
$1 \cdot 26$	1.298	$1 \cdot 315$	1-347				
$1 \cdot 3$	$1 \cdot 287$	1-299	$1 \cdot 312$	1.42	$1 \cdot 608$	$1 \cdot 648(1.662)$	1.830
$1 \cdot 4$	$1 \cdot 275$	$1 \cdot 281$	1-284	$1 \cdot 46$	1.603	$1 \cdot 636$	$1 \cdot 697$
$1 \cdot 5$	$1 \cdot 273$	$1 \cdot 277$	$1 \cdot 278$	$1 \cdot 5$	$1 \cdot 602$	$1 \cdot 630$	$1 \cdot 667$
$1 \cdot 6$	$1 \cdot 277$	1.280	1.281	1.6	$1 \cdot 607$	1.628	1. 644
$1 \cdot 7$	$1 \cdot 284$	1.286	$1 \cdot 286$	$1 \cdot 7$	$1 \cdot 622$	$1 \cdot 639$	$1 \cdot 647$
$1 \cdot 8$	1.293	1-294	$1 \cdot 295$	$1 \cdot 8$	1.641	$1 \cdot 656$	1-662
$1 \cdot 9$	$1 \cdot 302$	$1 \cdot 305$	$1 \cdot 304$	1.9	$1 \cdot 664$	1.679	1.682
$2 \cdot 0$	$1 \cdot 314$	$1 \cdot 316(1: 316)$	$1 \cdot 316$	$2 \cdot 0$	1.690	1.705 (1-711)	$1 \cdot 707$
$2 \cdot 5$	1.378	$1 \cdot 380$	1.380	$2 \cdot 5$	1.843	$1 \cdot 865$	1.864
$3 \cdot 0$	1.450	1.454	1.453	$3 \cdot 0$	$2 \cdot 022$	$2 \cdot 058$	$2 \cdot 053$
$3 \cdot 5$	$1 \cdot 527$	1.535	1.534	$3 \cdot 5$	$2 \cdot 219$	$2 \cdot 274$	$2 \cdot 270$
$4 \cdot 0$	$1 \cdot 610$	$1 \cdot 620$ (1-626)	1.619	$4 \cdot 0$	$2 \cdot 430$	$2 \cdot 514(2 \cdot 559)$	$2 \cdot 508$

* $\gamma=1.4$ assumed.
\dagger Values given by Busemann's formula are shown in brackets.

Fig. 6. Influence of thickness/chord ratio on the torsional aerodynamic stiffness coefficient.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)-

1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40 s . (41 s .1 d .)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (51s. 1d.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (41s. 1d.)
Vol. II. Stability and Control, Structares, Seaplanes, Engines, etc. 60s. (61s. 1d.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. . 50s. (51s. 1d.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (31s. 1d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (51s. 1d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64s. 2d.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, F̈lutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (51s. 1d.)
1941 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Stability and Control, Structures. 63s. (64s. 2d.)
1942 Vol. I. Aero and Hydrodynamics, Aerofoils, Airscrews, Engines. 75s. (76s. 3ad)
Vol. II. Noise, Parachutes, Stability and Control, Structures, Vibration, Wind Tunnels. 47s. 6d. (48s. 7d.)
1943 Vol. I. Aerodynamics, Aerofoils, Airscrews. 80s. (81s. 4d.)
Vol. II. Engines, Flutter, Materials, Parachutes, Performance, Stability and Control, Structures. 90s. (91s. 6d.)
1944 Vol. I. Aero and Hydrodynamics, Aerofoils, Aircraft, Airscrews, Controls. 84 s . (85s. 8d.)
Vol. II. Flutter and Vibration, Materials, Miscellaneous, Navigation, Parachutes, Performance, Plates and Panels, Stability, Structures, Test Equipment, Wind Tunnels. 84s. (85s. 8d.)
ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-
1933-34 . 1s. 6d. (1s.8d.) 1937 - 2s. (2s. 2d.)

1934-35 1s. 6d. (1s.8d.) 1938 1s. 6d. (1s. 8d.)
April 1, 1935 to Dec. 31, 1936. 4 s. ($4 \mathrm{~s} .4 d$.) : 1939-48 3s. (3s. 2d.)
HNDEX TO ALL REPPRTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, 1950 R. \& M. No. 2600. 2s. 6d. (2s. 71 d.
AUTHOR INDEX TO ALL REPORTS AND MEMORANDA OF THE AERONAUTICAL RRESEARCH COUNCIL-

1909-1949 R. \& M. No. 2570. 15s. (15s. 3d.)
INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December 1, 1936 - June 30, 1939. R. \& M. No. 1850. 1s. 3d. (1s. $4 \frac{1}{2} d$.)
July 1, 1939 - June 30, 1945. R. \& M. No. 1950.1 s. ($1 \mathrm{~s} .1 \frac{1}{2}$ d.)

July 1, 1945 - June 30, 1946.
July 1, 1946 - December 31, 1946. R. \& M. No. 2050. 1s. (1s. $1 \frac{1}{2}$ d.)

January 1, 1947 - June 30, 1947. R. \& M. No. 2150 . 1s. 3 d. (1s. $4 \frac{1}{2 d .) ~}$

July, 1951.
R. \& M. No. 2250. 1s. 3 d . (1s. $4 \frac{1}{2 d .)}$

Prices in brackets include postage.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, London, W.C. 2 ; 423 Oxford Street, London, W. 1 (Post Orders: P.O. Box 569, London, S.E.1); $13 a$ Castle Street, Edinburgh 2; 39 King Street, Manchester 2; 2 Edmund Street, Birmingham 3; 1 St. Andrew's

Crescent, Cardiff; Tower Lane, Bristol 1; 80 Chichester Street, Belfast, or through any bookseller.

[^0]: * Published with the permission of the Director, National Physical Laboratory.
 \dagger Since this paper was written, the author has been informed that Laitone ${ }^{6}$ has already given the correct thirdorder coefficient ($C_{3}-D$) for the oblique shock case (see section 2 and Appendix I). In a letter to the Journal of the Aeronautical Sciences (August, 1947), Chieh-Chien Chang gives the same formulae for C_{3} and D as those derived independently by the writer.

[^1]: * Similar formulae for more general aerofoil sections have been given by Lock ${ }^{6}$.

