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S u m m a r y . - - T h e  theory of sandwich construction developed in this paper proceeds from the simple assumption 
that  the filling has only transverse direct and shear stiffnesses, corresponding to its functional requirements. This 
supposition permits integration of the equilibrium equations for the filling. The resulting integrals are used to study 
the compression buckling of a flat sandwich plate. The formulae obtained are complex, but may be simplified in 
practical cases. A second approach to sandwich problems is made in section 5, where a theory of ' bending ' of plates 
is outlined. This generalises the usual theory, malting allowance for flexibility in shear. This approach is applied 
to overall compression buckling of a plate, and agreement with the previous calculations is found. This suggests the 
possibility of calculating budding loads Ior curved sandwich shells. A simple example, the symmetrical buckling 
of a circular cylinder in compression is worked out. The theory developed would seem applicable to all cases of 
buckling of not too short a wave length. 

1. Assumptions.--The construction of a plate built according to the principles of Sandwich 
Construction is shown in Fig. 1. Metal or plywood faces are glued to the surface of a low density 
filling. The faces are the principal load carrying agent. The function of the filling is to 
stabilise the faces against lateral buckling and to provide a shear connection between the fa:ces 
without which the plate could not transmit bending actions. The filling may contribute to 
the load carrying capacity of the plate, but  it  is not essential that  it  should do so. The advantage 
of Sandwich Construction lies in the great flexural and torsional rigidity of plates constructed 
by this method. This rigidity arises from the stiffness of the faces in their planes combined 
with their relatively large separation. 
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FIG. 1. 

NOTE: This paper was read at the VII International Congress of Applied Mechanics (1948). 
* College of Aeronautics Report No. 15, received 12th June, 1948. 
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The theory of Sandwich Construction developed in this paper proceeds from an ideal model 
in which the component parts fulfil their essential functions but  play no other part  at a l l  The 
faces are idealised as thin plates with a thickness t of isotropic material having Young's Modulus E 
and Poisson's ratio ~. The filling is assumed to extend between the middle surfaces of the faces 
with thickness 2h large compared with t. I t  will be assumed homogeneous, but  anistropic, with 
direct stiffness at right-angles to the faces and shear stiffness in planes at right-angles to the 
faces. Other kinds of stiffness of the filling will be taken as zero. If Cartesian axes are taken 
with Ox and 0y in the middle surface of the filling and Oz at right-angles to the faces, the 
stress-strain relations for the filling can be wr i t ten : - -  

(i) • • ° • ° • • • • • 

Y ~ =  Ley,, Z , =  Le~, X y = 0  

The notation for stress and strain components is tha t  of Love's Treatisek C is Young's Modulus 
in the Oz direction while L is the shear modulus in the 0yz and Ozx planes. 

2. The Displacement.--The displacement in the filling can be calculated from equations (1) 
and the stress equations of equilibrium which can be written remembering (1) a s : - -  

aZx _ O, OYz _ O, aZx aYz  OZz 0 . . . . .  (2) 
az az ax ~ ~ + az - "" "" 

I t  follows tha t  Z~ and Y~ are functions of x and y alone, and that  

( 8 Z~ 0 Y~  
z ,  = - z \-g-x- + T y / +  z , 0  . . . . . . . . . . . .  (3) 

where Z~0 is (Z,), = o, a function of x and y. Using the formulae expressing the strain components 
in terms of the displacement (u, v, w), 

Ow 
a Z  - -  e " ~  

~w av ~u Ow 
(4) 

we obtain by  substitution from equatio n (1) and simple integration the formulae:--  

u = ~ d ~  ax ' -@-/ 2C ax + z  ~ 5-ix/+u° 

V = 6 c  ay \ - - ~  + T T /  2 c  ay + z g :5-j / + vo . .  . .  (s) 

w - 2c  \ - - ~  + T / +  - 5 -  + Wo 

where (Uo, Vo, wo) is the displacement of the plane z = 0. Equations (5) express the displacement 
in terms of six arbitrary functions of x and y, namely Z~, Yz, Zzo, Uo, Vo and Wo. 
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3. Buckling i~ Compressio~¢.--$ sandwich plate, occupying the region -- co < x < + co, 
0 ~< y ~ b, -- h ~< z ~< -[- h, is compressed in the x-direction by a uniform load P per unit length. 
The edges y = 0, b are simply supported. The plate will become unstable at a certain critical 
value of P. To find this value, a small displacement (u, v; w) is imposed upon the uniform 
compression and the examination of the possibility of equilibrium in this buckled form is carried 
out in the usual way . .  The displacement (u, v, w) is given by equations (5). This satisfies 
equilibrium conditions in the filling. The six unknown functions involved are determined by 
the boundary conditions at the faces. 

The calculations are simplified somewhat by introducing the areal dilatation A of the faces. 
This is related to the applied forces per unit area Z~ and Y, by the equation 

E¢ k-g)- -I- - @ - /  . . . . . . . . . . . .  (6) 

where in this, as in subsequent equations, the upper sign refers to z = h and the lower to 
z = -- h. From equation (5) it  follows tha t  

~ \ - V  + 7-f / - ~  Z~o T 

h (o< ov 4 OVo  
+ -£ k-g~- + - -~  / + ~ v ~  + - ~  / ' (7) 

Substituting from equation (7) into (6) and adding and subtracting the resulting equat ions:--  

' Z E t  t - ~ -  + = h ¢ w o  . . . . . .  (8) 

\-V + ~ - / =  ~ v°Zz° . . . . . . . . . . . . . . .  (9) 

The remaining condition of equilibrium at the faces is tha t  of balance of normal forces. Here 
the effects of the initial compression P must be introduced as well as the external force Zz. 
The resulting equations a re : - -  

(Dv  ~ + P O ~) 2 O-~ ~ (w)z=mh ~ (Zz)~=±h ---- 0 . . . . . . . . . .  (10) 

E t  3 
where D = 12 (1 -- ~ i  . . . . . . . . . . . . . . . .  (11) 

Substituting from equations (3) and (5) into equation (10) and again adding and subtracting 
the resulting equat ions:--  

~2 

(DI# + P a 2 C) 
2 ax ~ + Z.o = o . . . . . . . . . . . .  ( i s )  

Equations (8),' (9), (12) and '(13) involve only the four unknowns 

~ Z~ ~ Y" Z~o, ~Uo ~vo Ox -t Oy ' ~--Z + ~ and Wo. 
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This relative simplicity is due to the use of A. . The calculation of critical loads is unaffected 
by this artifice. The equations fall into two sets. Equations (8) and (12) involve only 
aZ~/Ox + 3Y~/~y and w0, while equations (9) and (13) involve Z~0 and Ouo/Ox + Ovo/Oy. 

There are thus two distinct types of buckling:--  
(a) Symmetric.--Here OZ~/Ox + OY~/ay = w0 = 0 and so w is an odd function of z. The 

critical loads follow from equation (13). 
(b) Antisymmetric.---Here Z~o = auo/ax + aVo/Oy = 0 and w is an even function of z. The 

critical loads follow from equations (8) and (12) which yield when OZ./ax + aye~ Oy 
is el iminated:--  

h~P a e hD [ 
k 3C 6C ax ~ L 

+ (1 -_ ~e)D t 7~ 
Et J 

h_P a e ( 1 -  ~ ) P  a~-I 
--  2--L Ox ---~ V ~ +  2Et a~_] wo = O. . .  . . . . . . . .  (14) 

The critical values of P follow from equations (13) 
Z~0 and Wo, vary as sin (~x/Z) sin (~y/b), where Z is the 
formulae are : - -  

and (14) by assuming that  w and hence 
half-wave length, as yet unknown. The 

2z~e D 2b~C 
Tybe(a)  P -  be ( b + b ) ~  + ---~h (b) ~ . . . . . . . . . . . .  (15) 

- ='hD (1 bYt Type (b) {1 + D (1 a s) ='°D (1 + ~ )  + + 
- -  (12~eEth2~)be( b 4- Eth2 ~- ~ ~ -~/ ] 1) 

- -  " t ~4Etha (1 b2~et 
(16) 

4. Discussion of the Buckling Formulae.'---The value of the smallest critical load follows 
from equations (15) and (16) by chosing 2 to make P a minimum. This is easy in the case 
of symmetrical buckling and yields 

b/;~ = (1 + b4C/=4hD) '/4. 

In practice b4C/=%d > > 1 and so 

(17). 

= ,~ ( h D / C )  ~1' . . . . . . .  . . . . . . . . . . .  (18) 

which shows that  symmetric buckling occurs in short wave-lengths of the order of the sandwich 
thickness 2h*. The corresponding critical load is given b y : - -  

Por,t = 4 ( ~ )  1 / ~  (19) 

The formula (16) for antisymmetric buckling is much more difficult to interpret. If the filling is 
so rigid that  the effects of C and L can be disregarded, the problem reduces to that  of an ordinary 
plate and so for minimum P, which will be written P~, the condition is Z = b. This gives 

8z~eEth ~ 
PE - -  (1 - -  a~)b ~ . . . . . . . . . . . . . . . .  (20) 

* x/h is proportional to (.E~3/ch3) 114 which in practice is of the order of unity. 
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Now so long as 2 is of the same order as b, inspection of equation (16) shows that  of the various 
terms of the correcting fraction only the unities and the term involving L in the denominator 
need be retained. Under these conditions equation (16) can be written 

RE = 4  + 1 + ~ - p ,  1 + p  ( 2 1 )  

• where R, = 2hL . . . . . . . . . . . . . . . . . .  (22) 

The minimum value of P occurs when 

Z [1 - -  REI4P@ i~ 
- b =  \1 + PE/4P, /  

(23) 

and this yields for Rcrit the formula 

1 1 1 PL. . . .  ( 24 )  
P ~ i t  - -  PE @ ~ @ 16P) . . . . . . . . . . . .  

The formula (24) governs the overall buckling of a sandwich panel, as opposed to the short wave 
wrinkling which is governed by equation (19). Its range of accuracy is revealed by equation (23), 
which shows that  it is certainly valid for PE < 3P,. Comparison may be made with the formula 
for a strut with low shear stiffness which is 

1 1 1 . . . .  ( 2 5 )  
Pet i t -  P~ + P, . . . . . . . . . . . . .  

where Ps is now the Euler load per unit  length. 

The relation (16) gives a further minimum value of P when 1/b < < 1. 
of I/b up to 2~/b ~ gives a formula with a minimum at 

Expansion in powers 

(hD'~ 1/~ . . . . . .  (26) = ~ \ ~ - d /  . . . . . . . . . . . . .  

The corresponding critical value of P i s : -  

petit = 4 ~/3. (~-~) 1/~ . . . . . . . . . . . . . .  (27) 

Comparison with equation (19) shows that  the critical load for anti-symmetrical wrinkling is 
larger than that  for the symmetrical variety. 

5. B e n d i n g . - - T h e  problem of the overall buckling of a sandwich panel may be approached 
via a theory of bending of sandwich plates. This may be developed from the displacement 
formulae (5) by taking that  part of the displacement which is antisymmetric about z = 0. The 
displacement at the face z - -  h, written (u', v', w'), is then given by 

u I 
- 6c  ox \ - ~  + --@-y / + h ~ /  

-- 6C ay \ -2 . -  + - @ - / +  h ~ /  . . . . . . . .  

- -  2C. \ -g~x  + -@--/ + wo. 
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The stress resultants T/, T( and S' in the face z = h are given by 

Et (o,,, ov,) ] 
T / - - ( 1  -- ~") \ -~  + c~.-~/ 

E~ (av' o~'~ [ . . . . . . . . .  (29) 
T(-- (1- -~")k-~-Y +~-~xx/. [ . . . .  

s, E~ (o~, ou,~ 
- 2(1 + ~) , , ~  + - @ - /  

Neglecting the contribution from the bending of the faces, the formulae for the normal stress 
resultants N1 and N~ and the stress couples G~, G, and H for the sandwich plate as a whole can 
be written:-- 

NI  = 2hZx, N ,  = 2 b Y  . . . . . . . . . . . . . . . .  (30) 

G I =  2 h T / ,  G , =  2 h T ( ,  H =  --  2 h S ' .  . . . . . . . . . .  (31) 

The sign convention for the quantities T/, T(, S', N1, Ns, G~, G, and H is given in Fig. 2. 

1 
S I 

, i t > X  
) X  

I 

Face z =  h 

l >)Hy 

Sandwich as a whohl. 

FIG. 2. 

The quantities Zx and Y, may be eliminated using equation (30)i Relations between G1, G~, 
and H and the normal displacement of the middle surface w0 can be obtained by substituting 
from equation (28) into equation (29) and thence into equation (31). The result may be written: 

G1 = - -  Di  {Kx --1- aKi  - -  - -  

G2 =- - -  D1 {K2 + o K 1 - -  

1 (aNi ONs~ h (a"p O"p'~} 
2 h L  \--g--fx + ~ -O-f-/ + ~ \Ox" -t- ~ 0y2] 

1 ( ON. ONI~ ]~ (02p _~_ 0"#"~} (32) 
2h L \-g-y + a --~x / + ]-ff-d \ Oy 2 a OxV 

1 (oN. one) h o.~ I 
-- 4h--L \--~- + - - ~ /  + 12C OxOy) 

H = Dl(1 -- a) {~ 

2Eth  ~ 
where D~- (I -- ~) " . . . . . . . . . . . .  . . . . .  (33) 
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K ~ - -  a~w° K s - -  a~wo , - -  Uw0 . . . . . .  . . . . . .  (34) 
Ox ~ ' Off' ax ay 

and p is the transverse load per unit  area of the plate, which is given by  equation (35) below. 
Equations (32) generalise the usual bending moment- -curvature  relations to allow for flexibility 
of the filling in shear and transverse tension and compression. In practice the terms in p are 
usually small and, therefore, may be omitted. 

The theory of the bending of sandwich plates is completed by the usual equilibrium equations :- 

ON1 ON~ 
+ - - ~ .  + p  = o 

Ox oy 

a t 1  OH N1 = 0 . . . . . . . . . . . . . .  (3S) 
~x 0y 

- -  O H  OG2 
~-=- N~ = O. 

Ox oy 

6. Alternative Calculation of Overall Compression Buckling.--A calculation of the .buckling 
load for compression buclding with half-wave length Z of the order of b can be based upon the 
bending theory of section 5. Allowance for the initial compression P is made by writing 

p = - p a2w° . . . . . . . . .  (36) 
0.%~ . . . . . . .  

The equations (32) and (35) are solved .by writing 

~x ~y 
wo = W sin -~- sin -~- 

:~x uy 
N~ = nl cos T sin --~ 

~x =y 
G~ = gz sin -2 sin -b- 

z~x z~y 
H = hl cos -T cos --b- 

~x ~y 
N2 = n2 sin ~- cos ~ -  

z~x z~y 
G2 = g2 sin -~- sin -g 

(37) 

where W, nl, n~, gl, g~, and h~ are constants. Substitution from equations (37) and the elimina- 
tion of these constants yields the following formula for P : - -  

(38) 

I t  is to be remarked that  the terms in p in equation (32) have been omitted. Inspection of 
equations (33) and (20) shows that  equation (38) is identical with equat ion (21). The approach 
via the bending theory of section 5 yields the same result for overall buckling as the more exact 
calculations of section 3. This suggests the possible application of the formulae (32) to more 
difficult problems, such as those of the buckling of curved shells. 

7 



f 

F l a .  3.  

7: Symmetrical Buckling of a Circular Cylinder in Com- 
firession.--The application of the formulae (32) to problems 
of curved shells may be exemplified by the simple case of the 
buckling of a circular cylinder in a symmetric mode. The 
assumed cross-sectional deformation is shown in Fig. 3. 'w' t h e  
radial displacement is a function of x the distance along t h e  
axis of the cylinder. The hoop tensile strain e, is w/r. 
Assuming no change in direct stress parallel to the axis, it 
follows that  the x-wise strain e~ has the v a l u e -  ~w/r. 

The hoop tension T~ is then given by 

2Et (s~ + ~e~) = 2Et~ . . . . . .  (39) 
T ~ -  (1 -- ~2) r . . . . . . .  

Ttle equations of equilibrium are : - -  

ON1 T~ ~- p = 0 
8x r 

OG1 N1 = 0 
Ox 

(40) 

where N~ and G~ are the shear and bending moment. The pressure/5 arises from the initial 
compression P and is given b y : - -  

i b -  P 3x----~ . . . . . . . . . . . . . . . .  (41) 

Finally the bending moment-curvature relation follows from formulae (32):-- 

( a~w 1 aNl~ 
Gl -~ -- Dl k g-~ 2hL ~ / (42) 

Elimination of T~, N1, p and G1 from equations (39), (40), (41) and (42) yields:--  

(1 D1 a 2 ) (  a2w 2Et ) O ~ w  
2hL g-/2 P ~ + 7 -  w + DI ~ 0 . . . . . .  (43) 

The critical load is obtained from equation (43) by assuming w proportional to sin ~x/~. This 
yields the result : - -  

(44) 

where, 2 (2EtD1)I n } PE = -; 

ZE = ~ \ -~ - t /  

(4s) 
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P~ and hE are the buckl ing load and half wave length  for the  case where shear flexibility of 
the  filling is small. Ps  is given by equat ion (22). The m i n i m u m  value of P in equat ion (44) 
occurs when  

(~.) ~ 1 PE .. (46) 
= 1 2 P s  . . . . . . . . . . . . . .  

This gives for Pc, i the fo rmula : - -  

Equa t ion  (47) is val id so long as equat ion (46) yields a wave length  sufficiently long to just ify 
3 tile use of the  bending  theory  of section 5. For practical application P~ < ~Ps  would seem 

qui te  a reasonable l imitat ion.  
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