
~,~-~..z~ ' " 
, ,  , - ,% 

, • ~r: ̧  ; ~ , , J  ~ , %  ~ ,,' 

....................... g,. & N, I~o. ~074 

MINISTRY OF A I R C R A F T  PRODUCTION 

A E R O N A U T I C A L  R E S E A R C H  C O U N C I L  

R E P O R T S  A N D  M E M O R A N D A  

o 

Lateral Stability of Tailless A~rcraft 
By 

: A . W .  T H o R w ,  B.A.  and M .  F. Cm~'ris 

Crown Copyright Reserved, 

L O N D O N :  HIS  M A J E S T Y ' S  S T A T I O N E R Y  O F F I C E  

I948 

Price 5 s. 6d. net 



NATIONAL AERONAUT~C&L ESTAt~LISHMt~T3 

L { g R A R.¥ 
Lateral Stability of Tmlless Aircrafk 

By 
A. W. THORPE, B.A.  and M.  FI CURTIS 

COMMUNICATED BY THE DIRECToR-GENERAL OF SCIENTIFIC RESEARCH, 

MINISTRY OF AIRCRAFT PRoDuCTIoN 

Reports and Memoranda _No. 2074 

June, 1943" 

Summary.--Reasons for Enquiry.--Inforrnation was required oll the probable effect on lateral behaviour of a change 
from conventional to tailless types. 

Range of Invesligation.£.--The essential features of a tailless design are represented by large reductions in the absolute 
values of the derivatives y~., n,, n,. As few tailless models have been studied, a numerical survey of stability boundaries 
has been made over a range of these parameters which probably covers the limits set by the all-wing design without 
end fins. 

Curves of constant period and constant damping have been drawn in a few cases and from these curves a numerical 
comparison of the stability characteristics of conventional and tailless aircraft has been made. ' 

Conclusions.--(1) For the larger values of n~ and y,, considered, oscillatory instability is more likely to occur at low 
speed than at high, and instability at high speed is unlikely. For the smaller values of n, and y~, oscillatory instability 
is more likely at high speed than at low speed, and stability at high speed can be attained only with a small value of --  l,. 

(2) Spiral instability is probable at a l l  speeds, but at high speed the  rate of growth.of this motion will be small. 

(3) The survey stresses the need for systematic measurements of y~, n,., n, (particularly the last) in the tailless range. 

1. I n t r o d u c t i o n . - - L a t e r a l  stabi l i ty  characterist ics have been invest igated previously (R. & M. 
19891, 3) bu t  such investigations have been concerned main ly  wi th  the convent ional  type  of 
aircraft ,  where it was possible wi th  fair approximat ion  to use s t andard  values for most  of the  
ae rodynamic  derivatives.  In  order  to examine the lateral  behaviour  of tailless aircraft ,  s imi la r  
calculations have  been made  using the range of values l ikely to occur in aircraft  of this type.  

At ten t ion  has been paid chiefly to tile case of the t rue  flying wing wi th  no fins. In  this case 
there  is no l inear relat ion between nv and n,. and it is necessary to t rea t  these as independent  
variables. For  a wing with  end fins there will be a relat ion of the form n~ = a - /  bn~., but  the  
quant i t ies  a and b can have such a wide range of values tha t  explorat ion on these lines would 
be impractical .  If nv and n~ are assumed to be unre la ted  then  we can take /~nv and --~l~ as 
independent  variables for p lot t ing s tabi l i ty  diagrams,  and var ia t ion of the  b o u n d a r y  w i t h / ,  is 
then  el iminated.  

I t  is considered tha t  in a tailless aircraft  wi thout  fins, the values of -- n, and n, are unl ikely 
to exceed 0 .03  and tha t  - - y ,  will be considerably smaller than  0 .2 .  The re la t ive-densi ty  
factor  ~ on an all-wing design should not  exceed 40. Informat ion  at present  available on this 
type  of aircraft  indicates tha t  iA and ic will be in tile region of 0 .09  to 0" 12 and  tha t  their  
difference will probably  be small. Wi th  these facts in mind  the following ranges have been 
invest igated : /~z~ = 0 to 1.4,  --  ~,: = 0 to 0.03,  --  yv --  0 to 0 . 2  for several different combina-  
tions of inertias. 

*R.A.E. Report No. Aero. 1826 received 30th July, 1943. 
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2. Notat ion.- -The notat ion is based on tha t  of R. & M. 18()P from which m a n y  of the following 
definitions are taken.  Many revisions are due to Dr. Mitchell. 4 

The x-axis is taken into the direction of the  relative wind in the undis tu rbed  condit ion and  in 
all this work has been assumed to be horizontal .  The y-axis is along the  wing, positive in the  
s tarboard  direction. The z-axis is then  perpendicular  to the  x- and y-axes and is positive down- 
wards. These axes remain fixed in the body  in the d is turbed motion.  

The forces and velocities along these axes and the couples and angular  velocities about  t hem 
are defined below : - -  

Force in I Couple Velocity in Angular 
Axis direction ' about direction of ! velocity 

of axis , axis axis I about axis 

Ox X L V +- u p 
Oy Y M v q 
Oz Z N w r 

These m a y  be expressed in the  following non-dimensional  form : - -  

Y L N 
c,. = -~..~,~ ~,-'~-~-°' c, = y ¢ % ,  c , , -  

p V ~ S s  ' 

; ' - -  v ,  f ' =  , ; =  ~ , 

w h e r e  S is the gross w i n g  area and s is the semi-span and ff is the relative densi ty  pa rame te r  
m/oSs. 

The uni t  of t ime chosen is I = ~, /pSV = l,s/V. The symbol d/dr denotes differentiation with 
respect to this uni t  of time. 

The moments  of iner t ia  about  the axes Ox and  Oz are denoted  by  A and C respect ively and 
these a re  expressed in coefficient form as follows : - -  

A C 
i4 - -  ~ n s  2 , i c  - -  r t l S  ~ • 

"Fhe product  of inert ia  about  the  axes Ox Oz is denoted  by  E and the dimensionless coefficient 
by i,.: =: --  E/ms ~. The ratios E/A and E/C are denoted by  ~, and <. respectively.  

The ae rodynamic  derivat ives can be expressed as 

aC,, " aCl aC,, 

~C~ ~C,, 
~p - ~ ( p s / v )  ' % - ~ ( p s / v )  ' 

~C~ aC~ 
l, =: ~,(rs/V)' n, - ~(rs/V)" 
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In this notation y~, l~, Ip, np, n,,  are usually negative and n~ and l, are usually positive. In order 
to facilitate numerical calculation it is convenient to write 

lp ~tp 
~.4 ¢c 

nr 

With this notation the equations of motion under no external forces in horizontal flight become 

d 

and the stability equation becomes 

where 

+~ --kS=0,] 
) ~ - -  12 ~ = 0 ,  

~+n~ ; =0, 
d +N~=o, 

A X 4 + BZ 3 + C2 ~ + D~ + E = O, 

A = 1 - -  sA e c ,  

B = l ~ + n 2 + ~ j 2 - -  ~ n ~ + y  ( 1 - - ~ ) ,  

C = (l~n, + l~n~) + :L (l~ + n2 + ~J2 - *An1) + , ~  + w ,  

D = .9~ (l~n2 + 12nl) + (,,L~nl + ./U/I) @- k (~...W -+ .APe4) , 

E = k (£°n~ -- XI~). 

All the stability diagrams and curves of constant damping have been plotted with ~n~ and 
--,ul~ as co-ordinates and it is convenient to calculate them first in t e rmsof  W and ~ ; for this 
reason the coefficients which are dependent on these quantities are conveniently written 

C = C1 + C~a~ + C3~ ,  

D = D1 + D2~ ° + DsJV, 

where 

(79722) 

E = E2~ E~4/', 

A = 1 - $A  CC 

B = (l~ + ~ + ~& - -  ~n~) + 9~ (1 - -  ~ ~c),  

C1 =, ( l ln2  + l~nx) + 9~ (ll + n2 + ~cl2 - -  ~An~) , C2 = ~c , C3 = 1 ,  

D ~ - - y ~  (l~n2 + l~nl) , D2--= (nl + k ) ,  D 3 =  (l~ + ksA) , 

E2 = kn2, E 2 =  kl~.  

A '2, 
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3. Stability Boundaries. It  has been shown by RouttP that the conditions for stability are 
that E shall be positive and the expression D(BC -- AD) -- B*E is positive. If E is negative, 
the motion will contain a divergence, and if D(BC - - A D )  - -B~E  is negative the motion will 
contain a divergent oscillation. 

\Ve therefore calculate the points at which E and D ( B C -  A D ) -  B2E change sign. 

3.1. Method of Calculation.--The E ..... 0 boundary is with the assumptions of this work a 
straight line through the origin and is easily plotted from its equation 

E,a2, -- E ~  =: 0 .  

The following method of calculating the oscillation boundary is due to Dr. Mitchell. 

The oscillation boundary is given by 

B E  
D -- (-22-7t D-IN =- O, 

i.e. D ( B C - -  A D ) - -  B 2 E -  R = O .  

Let R'  = BC -- A D ; 

then R'  = R ~ ' - -  R2 '~  47 R ( W ,  

where RI '=:  BC~--  AD~,  R (  = A D 2 - -  BC~, R~' = B C 3 - -  AD,~. 

Let the values of ~ on D ~= O, R'  =-- 0, E ---- 0 and R =: 0, corresponding to the value ,~f~ be 

denoted by - , f ,  , £fR,, 6e~,, and ~ respectively ; then 

E (~, ,4q):= E ~ , -  EaJ¢',, 

E(2,1. J~/'l) --- E2~e,~: - -  E ~  =: O, 

s o  that E(2,~W~) - -  E ~ ( , - ~ f ' l  - -  ~ f E )  • 

Similarly D(~,.,4~) D2(~  47.£"D) , 

R'(2,,,Arl) = R ( ( ~ , ~ , -  2,,);  

therefore R(2,~,/V~) =D(2,~W~) R t ( 2 , 1 d f / ' I )  - - -  B~E(~r/V~) 

= D2(~1 47 ~,,) R2'(~,~,-  2,,) -- B2E2(2,~ -- 2,,.), 

B=E= I I (o(~12 - -  [2',e" ~ "  --- D=R2' I 2 , t  - -  + 2',.: . i.e. 

The Method employed was to calculate A, B, C~, C2, etc. R ( ,  R ( ,  R3', B2E2/D2R(, and hence 
obtain at the requii~ed values of X;  ~ : ,  ~w , and ~ ,  and hence cMculate 

B2E~ B2E2 

and obtain two values of ~ ,  by solution of the quadratic equation. 
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3.2. Values of Derivatives and other Parameters,--It is considered tha t  derivat ives lp, 1,, n~, 
which are pr incipal ly due to the  wing, should be of the same order  as for a convent ional  design.* 
For  most  of the  present  work therefore,  the values assumed in Priest ley's  invest igat ion (R. & M. 
1989, Pt. P) have  been used. These are 

At CL = 0 '  1 At C~ = 1 '0 

l,, . . . .  - 0 . 4 s  - o . 4 o  
l~ . .  . .  O" 02 O" 235 
np . . . .  - -0"03  - -0"05 

For CL = 0.1 the  product-of- iner t ia  t e rm iz.: was taken  to be zero and for C~, = 1.0, ij~ was 
assumed to be -- (ic -- iA) sin ~ cos e, and ~ was assumed to be -- 10 deg. 

Boundar ies  where R -~ 0 and E = 0 have been calculated for the ext reme values y,, = 0 and 
y~. = --  0" 2 wi th  each of the  values n, = 0 and n, == --  0 .03  for the following pairs of inertias :--- 
iA = 0 ' 0 5 ,  ic-- -0"08;  iA = 0 " 0 9 ,  i c = 0 " 0 9 ;  iA=:0"09,  i c = 0 " 1 2 ;  i 4=0"12 ,  ic=0"12.  All 
these calculat ions have  been made  both  for CL -- 0 .1  and CL = 1.0. In  order  to examine the 
var ia t ion of the boundaries  wi th  y~ and n; more fully, boundaries  have been calculated for all 
possible combinat ions  of the following values of y,  and n, : - -  

y ~ = 0 ,  - - 0 . 0 5 ,  - - 0 . 1 0 ,  - - 0 . 1 5 ,  - - 0 - 2 0 ,  

n ~ - 0 ,  - - 0 . 0 1 ,  - - 0 ' 0 2 ,  - 0 "03 ,  j 

for it = 0 " 1 2 ,  i c = 0 " 1 2 ,  at C L = 0 " I .  

Boundar ies  have  also been calculated to show the  effect of vary ing  lp, 1,, np from the s t andard  
values given above in the case y~ --  --  0.05,  n, = -  0.01,  i,~ = 0.12,  ic ----- 0.12.  

Tile numer ica l  field surveyed  is summar ised  in Table 2. 

3.3. Variation of Stability Boundaries with the Parameters.--3.31. Variation with y~ and n,,.-- 
The ' : s p i r a l "  boundaries  have  the  equat ion  n ~ -  l~dr = 0 (for s tabi l i ty  the lef t -hand side 
mus t  be positive) or mul t ip ly ing  by  iA • ic 

( -  n,) - ( # n v )  l, = 0 ,  

so tha t  the E bounda ry  is a s t ra ight  line th rough  the  origin with  slope I,/-- n,. 

The oscillation boundar ies  are  displaced upwards  with  increase of ei ther  --  yo or - .  n,. T h e  
ra te  of displacement  upwards  is greater  at CL = 0.1 t han  at  CL = 1-0 (Figs. 2 and  11). In 
the  one ease in which ,a larger  n u m b e r  of these ~)arameters was considered (iA -- 0.12,  ic == 0.12,  
CL = 0.1)  the var ia t ion wi th  y~ and n, was found to be very  nearly l inear (Figs. 5-9) so tha t  
fur ther  detai led calculations of this type  were considered unnecessary.  

3.32. Variation with CL.--I t  has been shown elsewhere tha t  for the values of the  paralneters  
usual  in convent ional  designs, the R = 0 boundaries  are displaced downwards  wi th  increase of 
CL. In  the  range considered here the R -- 0 boundar ies  are displaced downwards  wi th  increase 
of CL at the  higher  values of Yv and  n,, but  the direction of displacement  is reversed at lower 
values of these parameters .  At low values of CL and very low values of y~ and n, tile stable 
region becomes very  small. 

*There is most  likelihood of variat ion in l~ and n~ since these parameters  depend on the moment  of inertia of the lift 
distr ibution about  the axis of the aircraft.  Tailless designs incorporate a fairly large washout  and at  low CL the lift at  
the tip m a y  be negative, thus substant ia l ly  reducing bo th  l,. and %. The effect of var ia t ion of these parameters  is deMt 
with in §3.35 and Figs. 14-19. The effect of changes in l~ is not large, but  overest imation of the numerical value of n,, 
m a y  make  the conclusions of this report  ra ther  on the pessimistic side. 
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The " spiral " bounda ry  is a s traight  line th rough the origin with slope l,/ .... n ,  i.e. the slope 

is roughly  proport ional  to CL. 

3.33. Variation with t~.--The stabil i ty boundaries  of this report  are plot ted with  /,n~ and 
--  f~,I~, as co-ordinates and in this way  are made  independent  of E*. I t  is obvious however  t h a t  
if t hey  are plot ted in the usual  way  against n~, and --  l,, the  oscillation b o u n d a r y w i l l  be displaced 
downwards  with increase of t~. 

I 

3.34. Variation with Iner t i a . - -The  few variat ions of inert ia  coefficients t ha t  have  been con- 
sidered are not  sufficient to give any  clear indicat ion of the  manner  in which the  oscillation 
boundar ies  va ry  with  inertia. They  do, however ,  serve to i l lustrate the  general  result  t ha t  the  
region of stabili ty tends to decrease when iA and ic increase together.  

3.35. Variation with lp, l, and np.--Calculat ions have  been made  to invest igate the effect on 
the R ---- 0 boundaries  if lp, l, and np deviate  from the  s t andard  values used in the remainder  
of the  work. 

An increase of -- lp causes a fairly large increase of the stable region in the case considered 
both  when CL = 0.1 and when CL = 1.0. This is shown in Figs. 14 and  17. The var ia t ion 
of l, seems un impor t an t  at CL = 0" 1, bu t  increases in impor tance  when CL = 1 . 0 ;  in both  
cases a decrease of lr causes the  R =  0 b o u n d a r y  to be displaced downwards  (Figs. 15 a n d  18). 
Changes in nt~ seem to have a small  effect at CL = 1.0, but  a much  greater  effect at CI. - = 0 . 1 ,  
the bounda ry  being displaced downwards with increase of --  n~ (Figs. 16 and 19). 

The E = 0 b o u n d a r y  is independent  of Ip and n~ and has a slope proport ional  to --  l~. 

4. Curves of Constant Damping . - -Curves  of constant  damping  of the  oscil latory and of the 
spiral motions have  been calculated in a few cases to indicate  the  gradient  Of damping  across the  
boundaries.  The inertias iA = 0"12, ic = 0"12 have  been used and the curves have been 
calculated for the pairs of v a l u e s y v = 0 ,  n r = 0 ;  y~ --- -- 0"05, n , = - - 0 . 0 1  ; 3'~ ---- --  0"10, 
nr = --  0"02. 

4.1. Method of Calculat ion. - -The curves of cons tant  damping  have been calcula ted  by  the 
method  described by  Brown (R. & tVI. 19056). 

If r~ _-4= is~ are two roots of 
o 

A~ ~ + B ~  3+C~ 2 + D ~  + E = 0 ,  

then  As~ ~ - -  if3(rz) s f  - f2(r 3 s f  + ifl(r,) s, + f(r~) = O, 

where  f(r~) = Arz ~ + B r f  + Crp + Dr1 + E ,  

f~(r,) = 4Arp + 3Brp + 2Cr, + D ,  

f2(rz) - 6Arp + 3Br~ + C ,  

f.~(r 3 = 4Art + B ,  

and equat ing  real and imaginary  parts  

A.h 4 --  f~(rz)sP + f(r~) ---- O, 
t "  

f~(r,ls, 2 --'f~(r~)= O. ] 



Now f(r~) can be written 
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f(r,) = f01(r ) f02(r,) ze + f0 (r,)w, 
where fol(r,) = Ar24 + Br~ 3 + Clrt~.+ D1r~, 

fo~(r~) - -  C~r~ ~ + D2r~ + E ~ ,  

fo3(r,) = C3rl ~ + D 3 r , -  E ~ ,  

and similarly for fl, f~, f.~. 

Now if we write 
al = As,4 - -  f~(r3s~ 2 + fo~(r,) , 

b~ - -  f o 2 ( r , ) -  f2~(r3s, 2 , 

c~ = fo3(r,) - -  f~3(r,)s, ~ , 

a2 = fn(r,)  - -  f~l(r3s, ~ , 

b., = A s ( r 3 ,  

c~ = flz(r,) , 

the equations become 

a ~ + b ~ + c ~ X = 0 ,  "~ 

as + b~w + c ~  = 0 ,  

which can be solved for ~ and ,,¢'. 

4.2. Resul t s  o f  Per iod  and  D a m p i n g  C a l c u l a t i o n s . - - T h e  curves of constant damping show that 
there is little variation of the gradient of damping across the R = 0 boundary with change of 
y~ and n,. 

When C L =  O. 1 the gradient of damping across the boundary E = 0 is very small so that no 
appreciable change in the spiral motion is likely to occur within the practical region of l~ and n~. 

5. A i r c ra f t  wi th  F i n s . - - T h e  present work has been undertaken mainly to investigate the 
characteristics of a pure flying wing with no fins. If there are fins there will be a linear relation 
between n~ and n, due to the contribution of the fin. The value of l~ to give R ----- 0 or E = 0 
may be interpolated at any  n,, and n, from the figures given and a stability diagram may be 
constructed. The stability diagram would in this case have an R boundary of degree 4 and 
an E boundary of degree 2 as in the case of conventional aircraft. The R and E boundaries 
will in general have one more intersection in the region of positive n~ and negative l, and there 
will be two completely Stable regions, one for small values of l~ and no and one for larger values 
of both parameters. The constant b in the relation n, = a + b n~ will for tailless aircraft be 
much smaller than for conventional aircraft (since the fin arm will be smaller), hence the two 
intersections of R = 0 and E = 0 will be farther apart and the region of large l~ and n~ may not 
be accessible. 

\ 

6. N u m e r i c a l  Compar i son  wi th  Convent ional  A i r c r a f l . - - V e r y  few data are at present available 
on the probable values of the derivatives for all-wing aircraft. Recent wind-tunnel tests on a 
swept-back wing have shown that n~ may vary from about 0.005 at low incidences to 0.01 at 
high incidences ; l~ can be varied for any design by a change of dihedral, bu t  there will be a 
considerable change in l~ with CL due to the large sweepback which is necessary in tailless 
aircraft to solve the problems of longitudinal stability and trim. In these recent tests l~ varied 
from -- 0.04 to -- 0.11. The same tests indicate that y~ will probably be in the region of -- 0.01. 

During systematic tests of rolling moment due to sideslip 7 yawing moments were measured 
on a few swept-back and swept-.forward wings. These results indicate that  there is no great 
change of n~ due to sweepback at zero incidence, but that  there is a greater increase of n~ with 
incidence on those wings with greater sweepback. 
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T h e r e  is e v e n  less  i n f o r m a t i o n  o n '  t h e  v a l u e  of  n, a n d  we  c a n  o n l y  f o l l o w  R e f e r e n c e  1 a n d  
a s s m n e  t h a t  n~ fo r  a w i n g  a l o n e  wil l  b e  of  t h e  o r d e r  0 t o  - -  0 . 0 1 .  F o r  the  r e m a i n d e r  of  t h e  
d e r i v a t i v e s  it  is a s s u m e d  t h a t  t h e  v a l u e s  wi l l  a p p r o x i m a t e  t o  t h o s e  g i v e n  in R.  & M. 1989,  P t .  P 
a n d  § 3.2 of  t h i s  r e p o r t . *  

I t  h a s  b e e n  s h o w n  s t h a t  f r o m  c o n s t r u c t i o n a l  a n d  p e r f o r m a n c e  c o n s i d e r a t i 0 n s  c o m p a r a b l e  
c o n v e n t i o n a l  a n d  a l l - w i n g  d e s i g n s  a r e  g i v e n  b y  t h e  f o l l o w i n g  T a b l e  : - -  ,, 

Weight (lb.) . . . . . . . . .  W'  
Span (ft.) . . . . . . . . .  b 
Wing loading (lb./sq. ft.) . . . . . .  

Conventional 

60,000 
100 
50 

All-wing 

60,000 
100 
35 

The change  of loading  f rom conven t iona l  to an all-wing design will largely consist  of a r emova l  
of load in the  rear  fuselage and  an increase of load in the  wing  tips. This  will give li t t le var ia t ion  
in the  m o m e n t  of iner t ia  C, bu t  a considerable  increase in A so t h a t  the  difference C --  A becomes  
small. The  values assumed  for the  two cases are therefore,  for the  conven t iona l  aircraft  
iA = 0 .0625,  is == 0. 1225 and for t he  tailless iA = 0 .12 ,  ic --= 0 .12.  

We can now summar i se  the  i m p o r t a n t  p a r a m e t e r s  for t he  two  types  of aircraft .  

Conventional [ All-wing 
I 

Weight (lb.) . . . .  . . . .  W 60,000 60,000 
. . . . . .  b 1 O0 ! 1 O0 Span (ft.) ..  

Wing loading (lb./sq. ft.) . . . .  w 50 :¢5 

Inertia coefficients .. f i a  0- 0625 0.12 
. . . .  ) i e  0.1225 0.12 

3'~ --0- 2 0 and - -0 .05 
, , , f a t  sea level 13 9 

Relative density par,uneter /~ ) a t  40,000 it'. 52 36 

['r" ,, , F a t  sea level .. I "42 i 1 • 19 
J ~ ' = - ° ' l ~ a t  40,000 ft. 2.85 2 '38 

Unit of time t " " /  (" 1 o f  at sealevel -" 4-50 3.77 
( - - L = - ' - , ~ a t  40,000 It. 9.01 7-54 

For  compar i son ,  curves  of cons t an t  d a m p i n g  have  been d rawn  for the  conven t iona l  aircraft  
ou t l ined  a b o v e  at  Cc = 0 .1 .  As a rough  compar i son  wi th  the  curves  for the  tailless aircraft  
at C L - -  1 .0  the  curves  of R. & M. 1989 Pt.  I I  2 rnay be used. T h e s e ' c u r v e s  are no t  s t r ic t ly  
comparab le  since the  curves  of this  repor t  are for level flight and those  at C~, = 1-0 in R. & M. 
1989, P t .  I I  ~ are for t an  0o =-: -- 0- 1. 

To obta in  a numer ica l  compar i son  we shall consider  the  values  for the  conven t iona l  a i rc ra f t  :- - 

( a )  n ~  - -  0 . 0 2 ,  l,, - -  - -  0 . 0 2 ,  

(b) = 0 . 0 2 ,  = -  0 . 1 0 ,  

(c) n~ = 0 . 1 0 ,  l~ = -- 0 . 0 2 ,  

(d) n ~ -  0 . 1 0 ,  l~ = - - 0 . 1 0 ,  

at C L = 0 " I  a n d C L =  1.0. 

• But see footnote to §3.2. 
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For the tailless aircraft 

(~) 

(a) 

(V) 

(~) 

(4  

(~) 

9 

n, = O, y~ - -  O, n~ = O, 

n, --  O, yo = O, n~ -= O, 

n , =  - 0 . 0 1 ,  y ~ - : - - 0 . 0 5 ,  n ~ - : O ' O 1 ,  

~ , ,=  - - 0 " 0 1 ,  y ~ =  - - 0 " 0 5 ,  n~= : ' 0 "01 ,  

l~== - - 0 . 0 1 . }  

I,, ....... 0 05 ,  

L = - - O  01,  

Iv- :  - -  0 05,  

Cl. -~: ()" 1 , 

(o) 

n, = O, y~. = O, n~ = 0.01 , l, = -- 0.01 , 

n, = 0 ,  y~ ----- 0 n~ = 0.01 l~ = . . . .  0 .05 
' ' ' C , .  -=: 1 " 0 .  

n , = - - 0 . 0 1 ,  y ~ = - - 0 . 0 5 ,  n ~ = 0 . 0 2 ,  I~- . . . .  0 . 0 1 ,  

n ~ = . - - 0 . 0 1 ,  y~'---=--0.05,  n ~ = 0 . 0 2 ,  l v =  - - 0 . 0 5 ,  

The ' informat ion  at present  available indicates tha t  tailless designs will probably approximate  
more closely t o  cases c~, fl, s, ~, than  to the others but  will probably have parameters  within 
the  above ranges. 

The dampings of the motions are compared in Table 1. 

It  will be seen tha t  a tailless aircraft is almost  certain to be spirally unstable. At low Cl, 
the rate  of divergence will ,be slow and at high CL the  rate of divergence is of the same order 
as for a conventfonal  aircraft. 

The oscillation may  be unstable in all conditions and in no case will the damping  be large. 
The lateraI oscillations may  be less t roublesome on a tailless aircraft because of the rather  longer 
period. 

In  view of the uncer ta in ty  of the  derivatives it is difficult to form any definite conclusions 
about  the  stabil i ty of tailless aircraft .  These calculations show tha t  the achievement  of stabili ty 
may  be difficult. This difficulty is due to the small values of n,. and n, and at present there is 
no information on the size of n~. It  wil l  be seen from the stabil i ty diagrams, Figs. 5-9, tha t  
this derivat ive is of considerable importance and until  more information becomes available 
it is difficult to obtain with any accuracy an esI/imate of the stabil i ty characteristics of tailless 
designs. 

7 .  C o n c l u s i o n s . - - T h e  conclusions of this work are compared with the cmresponding conclusions 
for a convent ional  design (from R. & M. 1989, Pt. I1). 

Conventional  aircraft  Tailless aircraft 

(1) At high speed, spiral instabil i ty is very  
unlikely to  be met .  

(2) The oscillation will usually be stable at  high 
speed provided no > 0. 

(3) At low speed, spiral instabil i ty is almost 
certain. 

(4) At low speed, the oscillation will usually be 
unstable except for low 1,, or n~. 

At high speed, spiral instabil i ty is likely to occur unless - - l ,  is 
large. 

The oscillation is likely to be unstable* a t  high speed unless - -  l~ is 
small or - -n ,  or - -  y ,  have the larger values considered. 

At low speed, spiral instabil i ty is even more likely to occur than  on a 
conventional  aircraft.  

Oscillatory instabil i ty is more likely to occur at  low speed than  at  
high for the larger values of - -  n, and - -  y ,  considered. For  the 
smaller values o f ,  y,  and - -  n, the oscillation is more likely to be 
unstable at  high speed than  at  low. A tow value of l,. will be 
required for stability. 

*But  s e e  footnote to §3.2. 
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T A B L E  1 

Numerical Comparison of a Tailless and a Conventional Aircraft 

CL = 0" 1 Ground Level 

Case 

"tl v 

- -  1 v 

Damping coefficient of oscillation 
Frequency coefficient of oscillation 
Damping coefficient of spiral motion 

St  

J's 

Oscillation fPe r iod  (secs.) 
"[.Time to halve amplitude* (secs.) 

0"02 
0"02 

--0.24 
1.5 

--0.002 

5.9 
4.1 

Conventional 

C 

0.02 0.10 
0.10 0.02 

--0.19 --0.57 

' d 

0"10 
0"10 

--0" 52 

0 
0.01 

+0" 002 

All-wing 

0 
0.05 

+0-025 

0"01 
0"01 

--0-07 

1"7 
--0.013 

5-2 
5.2 

3"4 
--0-0003 

2-6 
1.7 

3"4 
--0"01 

2"6 
1"9 

0.25 
0 

30 
--400 

0"25 
0 

30 
--30 

0.7 
+0-001 

11 
12 

0"01 
0"05 

--0-05 
0"8 

--0"001 

9 
16 

Spiral motion : Time to halve amplitude* (secs.) 500 76 3,000 t 100 Neutral --800 800 

Cz = 0" 1 40,000 ft. 

Conventional All-wing 

Case 

~v 
- -  l v 

0"02 
0"02 

0"02  
0"10 

Damping coefficient of oscillation rt --0"21 
Frequency coefficient of oscillation sz 3-0 
Damping coefficient of spiral motion rs , --0.002 

fPe r iod  (secs.) 5.9 5- 3 
Oscillation ).Time to halve amplitude* (sees.) 9.4 40 

Spiral motion • time to hah'e amplitude* (secs.) ] 1,000 150 

0"05 
3 '4  

--0"013 

0"I0 
0"02 

--0" 55 
i 6"5 

--0' 0003 
1 
i 

2"8 
3-6 

6,500 

d 

0"10 
0"10 

- - 0 -  44 
6-7 

- -0 .0 t  

2"7 
4-5 

200 

0 
0-01 

+0 .028  
0.25 
0 

60 
--60 

0 
0-05 

+0 .10  
0 . 2 5  
0 

60 
--16 

Neutral 

y 

0"01 
0.01 

- - 0 " 0 4 5  
1"7 

+0.001 

8-8 
37 

I-- 1,600 

0"01 
0"05 

+ O- 005 
1-9- 

--0.001 

7-9 
--3(/0 

1,600 

*A negative sign indicates a divergence • tile figure given is then the time to double amplitude. 



TABLE 1 (cont.) 

CL = 1-0 Ground Level 

Case 

--l,, 

Damping coefficient of oscillation 
Frequency coefficient of oscillation 
Damping coeffÉcient of spiral motion 

T t 

St 
f~ 

f P e r i o d  (secs.) 
Oscillation ~_Time to halve amplitude* (secs.) 

Spiral motion : Time to halve amplitude* (secs.) 

0"02 
0"02 

--0"45 
1"7 

-~0-16 

17 
6.9 

--19 

Conventional 

b C 

0-02 O, 10 
O. 10 0-02 

--0-30 - -0 .79 
2.2 3.4 
0 +0 -22  

13 8.3 
10-4 3.9 

Neutral --14 

0"10 
0"10 

- - 0 "  68 
3"7 

+ 0 - 1 0  

7"6 
4"6 

--31 

0"01 
0"01 

- -0 .18  
1.1 

+ 0 . 2 3  

22 
14 

--11 

All-wing 

0"01 
0"05 

--0"02 
1-3 

+0"12  

18 
130 

--22 

0"02 
0-01 

--0" 23 
1"4 

.@0-25 

i 17 
r 11 

--10 

0"02 
0"05 

--0"1 
1"6 

@0"15 

15 
26 

--17 

-. C L = I .  0 40,000 ft. 

5¢ 

Case 

- - I  v 

Damping coefficient of oscillation rt 
Frequency coefficient of oscillation st 
Damping coefficient of spiral motion G 

f P e r i o d  (secs.) 
Oscillation \ T i m e  to halve amplitude* (secs.) 

Spiral motion " Time to halve amplitude* (secs.) i 
I 

0"02 
0"02 

--0.40 
3-3 

+ 0 . 1 7  

17 
16 

--37 

Conventional 

b c 

0"02 O" 10 
O-10 0"02 

--0" 14 --0" 75 
4"3 6"7 
0 q O '23  

13 8.4 
45 i 8.3 

Neutral -- 27 

d 

0"10 
0-10 

- - 0 - 5 8  
7.2 

+ 0 - 1 0  

7"9 
10.8 

--62 

0"01 
0"01 

--0"08 
2"0 

@0.23 

24 
65 

--23 

All-wing 

0"01 
0-05 

+ 0 . 3  
2.2 

+0 -12  

22 
--17 

--44 

0"02 
0"01 

--0-13 
2 '7  

- -0 '  25 

18 
40 

--21 

0"02 
0 '05 

t0 .18  
3 . 0  

+ 0 . 1 5  

16 
--29 

_ 3 5  ¸ 

*A negative sign indicates a divergence • the figure given is then the time to double amplitude. 
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O" 1 

1.0 

T A B L E  2 

Key to Figures 

(1) S tab i l i ty  diagrams.  S t anda rd  values of l w l .  np 

--yo 

0 and 0 . 2  

0-05 
0"10  
0"15 
0"20 

0 and 0 .2  

- - -  ~ t  r 

4) and 0 .03  

O, 0 '01 ,  0 '02 ,  0 ' 0 3  

0 and 0 .03  

i A . 

0"05 
0"00 
0"09 
0"12 
0"12 

0 ' 0 5  
0"09 
0"09 
0"12 

ie 

0"08 
0"09 
0"12 
0"12 
0 ' 12  

0 ' 0 8  
0"09 
0"12 
0 :12  

.3 .  . . . . . .  

Fig. No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

(2) S tab i l i ty  diagrams. Variat ion of Is,, I,, n,,. 

ff 
Cz = 0.1  Variat ion with l~ Fig. 14 
c,. =: 0 .1  Varia t ion with l, Fig. 15 

v,,: . . . .  0.05, n~ = - -0 .01  CL = 0.1 Var ia t ion  with  % Fig. 16 
~,, =: 0"12, ie =: 0 . 1 2 ) C L  = 1 . 0 V a r i a t i o n w i t h l , ,  Fig. 17 

Cz 1.0 Var ia t ion  with  1~ Fig. 18 
= 1.0 Varia t ion with % Fig. 19 

(3) Curves of constant  period and damping  

ia = 0 .12  i v = 0 ' 1 2  

C,, , y , ,  

0"1 
0" 1 
0"1 
1"0 
1 ' 0  
1 ' 0  

0 0 
0"05 0.01 
O. 10 0 ' 02  
0 0 
0"05 0.01 
0 .10 0 ' 02  

--n~ Fig. No. 

20 
21 
22 
23 
24 
25 

(4) Curves of constant  period and damping  (conventional  aircraft)  

ia = 0.0625 ie = 0-1225 

/, : 13 Fig. 26 
~t = 52 Fig. 27 

C1~ = 0 '  1 
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r~ and st are the damping and frequency coefficients of the oscillatory motion. 
r, is the damping coefficient of the " s p i r a l "  motion.  

FIG. 20. Frequency and Damping Coefficients C~ = 0 .1 ,  i,~ = 0.12,  io -= 0.12,  y~ = 0, ~, ---- 0. 
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rz and s, are the damping and frequency coefficients of the oscillatory motion. 

r, is the damping coefficient of the " sp i r a l "  motion. 

Freqhency and  Damping  Coefficients CL : 0.1,  ia = 0-12, ie = 0.12, y,  = - - 0 '  05 n, = - -  0.01. 

bO 



, / 

I /  I /  I" / 

0.~. 0 . 4  0 . 6  0.5 /~n~ V t.O 

rz and  sz are the  damping  and  f requency coefficients of the  osci l la tory  motion.  
r~ is the  damping  coefficient of the  "spiral" motion .  

FIG. 22. Frequency  and Damping  Coefficients C~ = 0 .1 ,  ia = 0 .12,  i ,  = 0 .12,  y,, = --" 0 .10,  nr = - -  0" 02. 
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r~ and s~ are the damping and frequency coefficients of the oscillatory motion.  
r, is  the damping coefficient of the "spiral" motion.  

Frequency and Damping  Coefficients CL ----- 1.0,  ia = 0 .12 ,  ic ---- 0 .12 ,  Yv = 0, n, = 0. 
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r~ and sz are the damping and frequency coefficients of the oscillatory motion. 

r, is the damping coefficient of the " s p i r a l "  motion. 

Frequency and Damping Coefficients CL ~ 1 "0, ia = O. 12, io = O. 12,  y~ - -  0 . 0 5 ,  n, = - -0 .01.  
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r~ and s ,are the damping and frequency coefficients of the oscillatory motion. 
~; i s  the damping  coefficient of the "spiral" motion. 

Frequency and Damp in g  Coefficients Cz = 1.0,  i a ~ -  0"  1:2, io ---- 0 .12 ,  y~ = - -  0-1,  nr = - -  0"02. 
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r~ and s are the damping and frequency coefficients of the oscillatory motion. 

r, is the damping coefficient of the "spiral" motion.  

Frequency and Damping Coefficients (Conventional Aircraft) CL = 0.1,  ~ = 13, i~ ~ 0.0625, ic. = 0. 1225 
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rt and s, are the d~/mping and frequency coefficients of the oscillatory motion.  
r, is the damping coefficient of the "spiral" motion.  

Frequency and Damping  Coefficients (Conventional Aircraft) C~ = 0 .1 ,  v = 52, ia = 0 .0625 ,  ic = 0-1225.  
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