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Summary.—Reasons for Enguiry —Information was required on the probable effect on lateral behaviour of a change
from conventional to tailless types.

Range of I nvestigatﬂions'.~The essential features of a tailless design are represented by large reductions in the absolute
values of the derivatives y,, #,, #,. As few tailless models have been studied, a numerical survey of stability boundaries
has been made over a range of these parameters which probably covers the limits set by the all-wing design without
end fins.

Curves of constant period and constant damping have been drawn in a few cases and from these curves a numerical
comparison of the stability characteristics of conventional and tailless aircraft has been made. '

" Conclusions.—(1) For the larger values of #, and ¥, considered, oscillatory instability is more likely to occur at low
speed than at high, and instability at high speed is unlikely. For the smaller values of #, and y,, oscillatory instability
is more likely at high speed than at low speed, and stability at high speed can be attained only with a small value of — /,.

(2) Spiral instability is probable at all speeds, but at high speed the rate of growth-of this motion will be small.
(3) The survey stresses the need for systematic measurements of y,, #,, #, (particularly the last) in the tailless range.

1. Introduction.—Lateral stability characteristics have been investigated previously (R. & M.
1989 %) but such investigations have been concerned mainly with the conventional type of
aircraft, where it was possible with fair approximation to use standard values for most of the
aerodynamlc derivatives. In order to examine the lateral behaviour of tailless aircraft, similar
calculations have been made using the range of values likely to occur in aircraft of this type.

Attention has been paid chiefly to the case of the true flying wing with no fins. In this case
there is no linear relation between #, and #, and it is necessary to treat these as independent
variables. For a wing with end fins there will be a relation of the form », = a + b#n,, but the
quantities @ and & can have such a wide range of values that exploration on these lines would
be impractical. If #n, and #, are assumed to be unrelated then we can take unm, and — u/, as
independent variables for plottlng stability diagrams, and variation of the boundary with ux is
then eliminated.

It is considered that in a tailless aircraft without fins, the values of — %, and %, are unlikely
to exceed 0-03 and that — y, will be considerably smaller than 0-2. The relative-density
factor x on an all-wing design should not exceed 40. Information at present available on this
type of aircraft indicates that 7, and ¢, will be in the region of 0-09 to 0-12 and that their
difference will probably be small. With these facts in mind the following ranges have been
investigated : un, =0to1-4, — 2, =0t00-03, — vy, = 0 to 0-2 for several different combina-
tions of inertias.

*R.AE. Report.No. Aero. 1826 received 30th July, 1943.
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2. Notation.—The notation is based on that of R. & M. 1801° from whlch many of the following
definitions are taken. Many revisions are due to Dr. Mitchell.*

The x-axis is taken into the direction of the relative wind in the undisturbed condition and in
all this work has been assumed to be horizontal. The y-axis is along the wing, positive in the
starboard direction. The z-axis is then perpendicular to the x- and y-axes and is positive down-
wards. These axes remain fixed in the body in the disturbed motion.

The forces and velocities along these axes and the couples and angular velocities about them
are defined below :—

| : :
i TForce in Couple . Velocity in Angular
Axis i direction about direction of |  wvelocity
| of axis axis axis % about axis
; \ !
S - : ‘
Ox X L V4 u ! P
Oy 1 Y M v ‘ q
0Oz | Z N w | ¥
“ |

These may be expressed in the following non-dimensiconal form :—

Y L N
€= g Co= sy Co= oSy
y U R wps . MYS
U == I/ , ]5 — Yy = *'17. ,

‘where S is the gross wing area and s is ‘the semi- -span and # 1s the relative density parameter
m/pSS‘

The unit of time chosen is £ = m/pSV = us/V. The symbol d/dr denotes differentiation with
respect to this unit of time.

The moments of inertia about the axes Ox and Oz are denoted by A and C respectively and
these are expressed in coefficient form as follows :—

) A4 . C
1, — ~—— B = — .
A msz ) C ms2

The product of inertia about the axes Ox Oz is denoted by E and the dimensionless coefficient
by ¢, = — E/ms®. The ratios E/4 and E/C are denoted by &, and ¢ respectively.

The aerodynamic derivatives can be expressed as

LoC, G e,
'V aﬁ v T 53— ’ #, == —évﬁ H
oC . eC
Z — L N, = e
roapsY)” "apsV)”
- oC, oC,

sV T = As V)
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In this notation v, 4, 4, 7,, #,, are usually negative and #», and /, are usually positive. In order
to facilitate numerical calculation it is convenient to write

- ‘ pl, n,
Vo= =2, L=—7 A=
l 7
4 P
= — Wy == — =
Zl Z_»l ) 1 ZC ’
] L, n,
e Nog =— — =
* ta’ ? 2

With this notation the equations of motion under no external forces in horizontal flight become

(& +7.)9 4 =0,
36—}-(%—[—[1) ]S+<8A'd3i——l2)f —90,
. _ \
——-/V“Ij—I“(Ec%—f—Wl)ﬁ—F (%—1—%2)? =0,

” a
-7 +7#¢=0,

and the stability equation becomes

where

AX* 4+ B +CA2 4+ DA+ E =0,
A =1—¢,¢,
B =16 +mn+ ehy—cem+y (1 — s4¢),
C = (lmy 4 I)) + 5, (l + 1y + ecdy — e0,) + & + N,

D =3, (b, + Iny) + (Zn, + 41) + k(& + Ne,),
E =%k (&ny, — ).

All the stability diagrams and curves of constant damping have been plotted with un, and
— ul, as co-ordinates and it is convenient to calculate them first in terms of 4" and 2 ; for this
reason the coefficients which are dependent on these quantities are conveniently written

where

(79722)

C :C1+62$+C3*/V;
D:D1+D2$+D3'/V:

E = E.y — E.nx,

A =1—¢,¢., ‘

B = (Zl + 1y + ecdy — €47) + 3, (1 — &4 &),

C, = (hmy + 12%1) + 3, (b + ny + ey — eaty), Co=1¢.,Ci=1,

o

1=y (l1%2 + Z?”l) y Dy = (nl + k) , ‘Da = (ll + ksA) ’
Ey,=rFkn,, E,=F%,. '
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3. Stability Boundaries.—It has been shown by Routh® that the conditions for stability are
that E shall be positive and the expression D(BC — AD) — BE is positive. If E is negative,
the motion will contain a divergence, and if D(BC — A D) — B°E is negative the motion will
contain a divergent oscillation.

We therefore calculate the points at which £ and D(BC — AD) — B?E change sign.

3.1. Method of Calculation.— The E = 0 boundary is with the assumptions of this work a
straight line through the origin and is easily plotted from its equation

Eza(f — Ean/V == O B
The following method of calculating the oscillation boundary is due to Dr. Mitchell.

The oscillation boundary is given by

D= C"ZBZED‘/-”E =0,
i.e. _ D(BC — 4D)— BPE=R = 0.
Let R = BC — AD;
then R' =R,/ — R,/)¥ + R/,
where R,/ = BC,— AD,, R, =AD,— BC,, R, = BC;— AD,.

TLet the valueé of # on D —0, R" =0, E =0 and R = 0, corresponding to the value ./, be
denoted by — #,, , Lp, Z; and £, respectively ; then

E (¢, ) = E % — Ef,

E(@, ) = Ey¥, — Eph'y =0,
so that E(@Ny) = Ey(&) — L) .
Similarly D(Z,47) = Do(Z, + %)) ,

R(# W) = R, (Lw —Z1);
therefore R(Z4)) = D(£4,) RI(&LN\) ~- BPE(Z 4

= Dy(&, + ;) R/(Lw — L) — BEJ(Z, — ¢,),
ie. £2 — 'lf,\,, — &y — 5—%51}31 - {.!f,?« L+ —~—-]~E: y,,,.} =),
The Method employed was to calculate 4, B, C, C, etc. R,’, Ry, R,’, B*E,/D,R,’, and hence

obtain at the required values of #7; &y, £y, and .#,, and hence calculate

BE, BE, .
O =2y Ly~ pro Y=Lt pRy T

’
242

and obtain two values of &, by solution of the quadratic equation.
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3.2, Values of Derivatives and other Pavameters.—It is considered that derivatives /,, I, n,,
which are principally due to the wing, should be of the same order as for a conventional design.*
For most of the present work therefore, the values assumed in Priestley’s investigation (R. & M.
1989, Pt. I" have been used. These are

AtC, =01 AtC,=1-0

L .. .. —045 —0-40
... 0-02 0-235
w, .. .. —0-03 —0-05

For C, = 0-1 the product-of-inertia term 7, was taken to be zero and for C; = 1-0, 7, was
assumed to be — (50 — %,) sin & cos ¢, and ¢ was assumed to be — 10 deg.

Boundaries where R = 0 and E = 0 have been calculated for the extreme values y, = 0 and
y, = — 0-2 with each of the values #, = 0 and s, = — 0-03 for the following pairs of inertias :—-
i, =005, ic = 0-08; 7, =009, . =0-09; ¢,=:0:09,4.=0-12; 7,=0-12, 7, =0-12. All
these calculations have been made both for €, =0:1and C,=1:0. In order to examine the
variation of the boundaries with vy, and #, more fully, boundaries have been calculated for all
possible combinations of the following values of v, and 7, :—

y, =0, —0:05, —0-10, —0-15, —0-20, )
n,=0, —0-01, —0:02, —0-03,
for ' i, =0-12, ie = 0-12, at C,=10-1.

Boundaries have also been célculated to show the effect of varying /,, /,, n, from the standard
values given above in the case y, = — 0:05, #,= —0:01, ¢, = 0-12, 20 = 0-12.

The numerical field surveyed is sﬁmmarised in Table 2.

3.3. Variation of Stability Boundaries with the Parameters.—3.31. Variation with vy, and n,.—
The ““spiral”’ boundaries have the equation #,% — [# = 0 (for stability the left-hand side
must be positive) or multiplying by z, . 4.

(— ul) (—n,) — (wn,) I, =0,
so that the E boundary is a straight line through the origin with slope L|— n,

The ostillation boundaries are displaced upwards with increase of either — y, or — #n,. The
rate of displacement upwards is greater at C, = 0-1 than at C; = 1-0 (Figs. 2 and 11). In
the one case in which a larger number of these parameters was considered (7, = 0-12, 7, = 0-12,
C, = 0-1) the variation with y, and », was found to be very nearly linear (Figs. 5-9) so that
further detailed calculations of this type were considered unnecessary.

3.32. Variation with C,.—It has been shown elsewhere that for the values of the parameters
usual in conventional designs, the R = 0 boundaries are displaced downwards with increase of
C,;. In the range considered here the R = 0 boundaries are displaced downwards with increase
of C, at the higher values of v, and #,, but the direction of displacement is reversed at lower

values of these parameters. At low values of C; and very low values of y, and #, the stable
region becomes very small.

*There is most likelihood of variation in /, and #, since these parameters depend on the moment of inertia of the lift
distribution about the axis of the aircraft. Tailless designs incorporate a fairly large washout and at low C; the lift at
the tip may be negative, thus substantially reducing both /, and »,. The effect of variation of these parameters is dealt
with in §3.35 and Figs. 14-19. The effect of changes in /, is not large, but overestimation of the numerical value of #,
may make the conclusions of this report rather on the pessimistic side.
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The ¢ spiral ” boundary is a straight line through the origin with slope /,/— #,, i.e. the slope
1s roughly proportional to C;.

3.33. Variation with p.—The stability boundaries of this report are plotted with un, and
— pl, as co-ordinates and in this way are made independent of 4. It is obvious however that
if they are plotted in the usual way against #, and — /, the oscillation boundary will be displaced
downwards with increase of p.

3.34. Variation with Inertia.—The few variations of inertia coefficients that have been con-
sidered are not sufficient to give any clear indication of the manner in which the oscillation
boundaries vary with inertia. They do, however, serve to illustrate the general result that the
region of stability tends to decrease when 7, and 7. increase together.

3.35. Variation with 1, I, and n,—Calculations have been made to investigate the effect on
the R = 0 boundaries if /,, /, and #, deviate from the standard values used in the remainder
of the work.

An increase of — /, causes a fairly large increase of the stable region in the case considered
both when C, = 0-1 and when C, = 1-0. This is shown in Figs. 14 and 17. The variation
of 7, seems unimportant at C, = 0-1, but increases in importance when C, = 1-0; in both
cases a decrease of /, causes the R = 0 boundary to be displaced downwards (Figs. 15 and 18).
Changes in 7, seem to have a small effect at C, = 1-0, but a much greater effect at C;, = 0-1,
the boundary being displaced downwards with increase of — #, (Figs. 16 and 19).

The E = 0 boundary is independent of /, and %, and has a slope proportional to — /.

4. Curves of Constant Damping.—Curves of constant damping of the oscillatory and of the
spiral motions have been calculated in a few cases to indicate the gradient of damping across the
boundaries. The inertias ¢, = 0-12, ¢, = 0-12 have been used and the curves have been
calculated for the pairs of values y, =0, #, =0; y,= —0-05, n,= — 0-01; y,= — 0-10,
n, = — 0-02. :

4.1. Method of Calculation.—The curves of constant damping have been calculated by the
method described by Brown (R. & M. 1905%).

If », + is;are two roots of
AW+ B+ Ci 4+ DA+ E =0,
then Ast — iflr) P — fulr) P i) s+ fir) =0,
where fr) =4rt + Br? + Cv2 + Dy, + E |
filr) = 4Ar? 4+ 8Br? + 2Cv, + D,
folr)) = 6472 + 3Br, + C,
fs(r) = 447, + B,

and equating real and imaginary parts
Ast — fulr)s? + flr) =0, l
fir)s® — filr)=0. ]



Now f(r) can be written
Ar) = faln) + fulr) £ + fuln)A,
~where Jalr) = Ar} + Br? + C? + Dy,
.f02(7'l) = Cy* -+ Dy, + E,,
Jus(r) = Car® +‘ Dy, — Ey,
and similarly for £, f,, f5.
Now if we write

a, = As’ — faln)s? +fo1(7'z) ;

by = foult) — fulr)s®
& = fuln) — fuslr)s® )
@y = fu(r) — fu(r)s?®,
by = ful?) ,

¢ = fuln) ,

the equations become
a,+ 0% + ¥ =0,

Ay 4 0¥ ooV =0, }
which can be solved for & and 4.

4.2. Results of Period and Damping Calculations.—The curves of constant damping show that
there is little variation of the gradient of damping across the R = 0 boundary with change of
y, and #,. o

When C; = 0-1 the gradient of damping across the boundary E = 0 is very small so that no
appreciable change in the spiral motion is likely to occur within the practical region of 7, and #,.

5. Asrcraft with Fins.—The present work has been undertaken mainly to investigate the
characteristics of a pure flying wing with no fins. If there are fins there will be a linear relation
between %, and #, due to the contribution of the fin. The value of /, to give R=00r E =0
may be interpolated at any #, and #, from the figures given and a stability diagram may be
constructed. The stability diagram would in this case have an R boundary of degree 4 and
an E boundary of degree 2 as in the case of conventional aircraft. The R and E boundaries
will in general have one more intersection in the region of positive #, and negative /, and there
will be two completely stable regions, one for small values of /, and #, and one for larger values
of both parameters. The constant & in the relation #, = a -+ b #, will for tailless aircraft be
much smaller than for conventional aircraft (since the fin arm will be smaller), hence the two
intersections of R = 0 and E = 0 will be farther apart and the region of large /, and #, may not
be accessible.

6. Numerical Comparison with Conventional Aircraft.—Very few data are at present available
on the probable values of the derivatives for all-wing aircraft. Recent wind-tunnel tests on a
swept-back wing have shown that #, may vary from about 0-005 at low incidences to 0-01 at
high incidences ; /, can be varied for any design by a change of dihedral, but there will be a
considerable change in /, with C, due to the large sweepback which is necessary in tailless
aircraft to solve the problems of longitudinal stability and trim. In these recent tests J, varied
from — 0-04to — 0-11. The same tests indicate that y, will probably be in the region of — 0-01.

During systematic tests of rolling moment due to sideslip’ yawing moments were measured
on a few swept-back and swept-forward wings. These results indicate that there is no great
change of %, due to sweepback at zero incidence, but that there is a greater increase of #, with
incidence on those wings with greater sweepback.
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There 1s even less information on'the value of #, and we can only follow Reference 1 and
assume that #, for a wing alone will be of the order 0 to — 0-01. For the remainder of the
derivatives it is assumed that the values will approximate to those given in R. & M. 1989, Pt. I*
and § 3.2 of this report.*

It has been shown® that from constructional and performance considerations comparable
conventional and all-wing designs are given by the following Table :(— ’

Conventional All-wing
Weight (Ib.) .. o . .. w 60,000 60,000
Span (ft.) .. . . . b 100 100
Wing loading (lb. /sq ft. ) . . .. - 50 35

The change of loading from conventional to an all-wing design will largely consist of a removal
of load in the rear fuselage and an increase of load in the wing tips. This will give little variation
in the moment of inertia C, but a considerable increase in A so that the difference C — A becomes
small. The values 1s€umed for the two cases are therefore, for the conventlonal aircraft
i, = 0-0625, i, = 0-1225 and for the tailless 7, = 0-12, 7, = 0-12.

We can now summarise the important parameters for the two types of aircraft.

Conventional All-wing

Weight (Ib.) .. .. .. .. w 60,000 ' 60,000

Span (ft.) .. . .. .. b 100 100

- Wing loading (lb. /sq ft. ) .. .. w 50 35

S i, 0-0625 0-12

Inertia coefficients s 0-1295 0-12
Y, —0-2 0 and —0-05

Relative density parameter p Zﬁ SZS%)(E;()C 1 f t.. : ég 32

(C 0-1 at sea level .. ¢ 1-42 ‘ 1419

Unit of time ¢ ) at 40,000 ft. 2-85 2-38

o C 140 at sea level . . 4-50 3-77

LT at 40,000 ft. 9-01 7-54

For comparison, curves of constant damping have been drawn for the conventional aircraft
outlined above at C, = 0-1. As a rough comparison with the curves for the tailless aircraft
at C, = 1-0 the curves of R. & M. 1989 Pt. 11> may be used. These curves arc not strictly
comparable since the curves of this report are for level flight and those at C, == 1-0in R. & M.
1989, Pt. I1% are for tan 0, == — 0-1.

To obtain a numerical comparison we shall consider the values for the conventional aircraft :—

(@) n, = 0-02 , I, = — 0-02,
(8) m, = 0-02, = —0-10,
(c) n, = 0-10, I, = —0-02,
(d) n, = 0-10, l, = —0-10,

at C, =0-1and C, = 1-0.

*But see footnote to §3.2.
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For the tailless aircraft

() m, = O, v, = 0, #, =0, I, = — 0-01.,7

By m = 0, yo= 0, m=0, =005, |
(y) #,= —0-01, Yy, = —0-05, n,=0-01, [ = —0-01, ‘

(@) #,= — 001, y,=—0:05, n,=0:01, [,=—005, ]

(6) m, = O, yo= 0, =001, L=—0-01,

€ n= 0, o= 0, m=001, L= 005, e
() = —0-01, y,=—0-05, n,=002, I[=—001,[ "

(0) n,——0-01, y,=—005, n,=002, [ =—005,

o

The information at present available indicates that tailless designs will probably approximate
more closely to cases «, f§, &, ¢, than to the others but will probably have parameters within
the above ranges.

The dampings of the motions are compared in Table 1. ‘

It will b2 seen that a tailless aircraft is almost certain to be spirally unstable. At low C,
the rate of divergence will be slow and at high C; the rate of divergence is of the same order
as for a conventional aircraft.

The oscillation may be unstable in all conditions and in no case will the damping be large.
The lateral cscillations may be less troublesome on a tailless aircraft because of the rather longer
period.

In view of the uncertainty of the derivatives it is difficult to form any definite conclusions
about the stability of tailless aircraft. These calculations show that the achievement of stability
may be difficult. - This difficulty is due to the small values of %, and %, and at present there is
no information on the size of n,. 1t will be seen from the stability diagrams, Figs. 5-9, that’
this derivative is of considerable importance and until more information becomes available
it is difficult to obtain with any accuracy an estimate of the stability characteristics of tailless
designs.

7. Conclusions.—The conclusions of this work are compared with the corresponding conclusions
for a conventional design (from R. & M. 1989, Pt. IY).

Conventional aircraft Tailless aircraft
(1) At high speed, spiral instability is very | At high speed, spiral instability is likely to occur unless —/, is
unlikely to be met. large.
(2) The oscillation will usually be stable at high | The oscillation is likely to be unstable* at high speed unless — /, is
speed provided #, > 0. small or —#, or — ¥, have the larger values considered.
(3) At low speed, spiral instability is almost | At low speed, spiral instability is even more likely to occur than on a
certain. conventional aircraft.
(4) At low speed, the oscillation will usually be | Oscillatory instability is more likely to occur at low speed than at
unstable except for low £, or n,. high for the larger values of — %, and — y, considered. For the
smaller values of — y, and — #, the oscillation is more likely to be
unstable at high speed than at low. A low value of /, will be
required for stability. '

*But see footnote to §3.2.
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LIST OF SYMBOLS

A Moment of inertia of aircraft in roll.
4, B, C, D, E  Coefficients of stability quartic f(2).
C  Moment of inertia of aircraft in yaw.
C,, D;  Terms independent of £ and 4" in coefficients C and D.
C,, D,, E, Coefficients of Z in C, D and E.
Cs, Dy, — E;  Coefficients of #in C, D and E.
E  Product of inertia of aircraft about the axes of roll and yaw.
f(2)  The stability quartic A4* + BA* + CA* 4+ DA + E.
fu fa fa fi  The coefficients of the Taylor expansion of f.
for, fu, fa, etc.  The terms of f, fi, fs, efc. independent of # and .+,
foz, f12, €tc.  The coefficients of Z in f, f,, eic.
Jos» f1s, ete. The coefficients of 4 in f, f;, efc.

i, i  Inertia coefficients in roll and yaw ¢, = A/ms®

i, Productof inertia coefficient about the rolling and yawing axes. i, == — E/ms".
ko 3C,.

z — M lv/ L .

Lo L, Ly, Z,  Valuesof # corresponding to #” = #,on D = 0, R" =0, E=0and R=0
respectively. :

I,  Coefficient of rolling moment due to sideslip, oC,/0 8.
i, Coefficient of rolling moment due to rolling, 9C,/9(ps/V).
I, Coefficient of rolling moment due to yawing aC,/e(rs/V).
L, =L,
Iy L.

A un,fic

=

Coefficient of yawing moment due to sideslip, oC,/o8.
n, Coefficient of yawing moment due to rolling, oC,/2(ps/V).
n, Coefficient of yawing moment due to yawing, oC,[o(rs/V).

ny o Wyt

Ny — Mt

#  Dimensionless coefficient of rolling velocity, ups/V.
R Routh’s discriminant, D(BC — A D) — B*E.

R’ Test function (BC — AD).
R,’ Term of R’ independent of & and 4.
R,’, Ry’  Coefficients of # and .# in R’.

Dimensionless coefficient of yawing velocity, u#s/V

~a
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LIST OF SYMBOLS--contd.

r  Damping coefficient of lateral oscillation.

7, Damping coefficient of “ spiral ”’ motion.

s  Semispan of aircraft, 1b.

s, Frequency coefficient of lateral oscillation.

{  Unit of time in dimensionless system, m/pSV.

7  Dimensionless coefficient of sideslip velocity.
e . oC
y, Coefficient of sideforce due to sideslip, %?ﬁ .

Y T Ye
i 'Angl'e of sideslip (# = ¢ for small angles).
¢ Angle between principal axis of inertia and x-axis.
ey, — EJA =ig/i,.
e — EJC = igfic.
2 Dummy variable of stability quartic.
g Aircraft relative density parameter, #/pSs.
v  Time in dimensionless units.
¢  Angle of bank.
v

D, Coefficients in quadratic equation for ¥
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TABLE 1

Numerical Comparison of a Tailless and a Conventional Aircraft

C,=0-1 Ground Level
Conventional All-wing
Case ‘
a ; b ¢ d o B y , é
| |
PR " [ E
7, 0-02 0-02 0-10 0-10 0 0 . 001 . o001
-1, 0-02 0-10 0-02 0-10 0-01 0-05 0-01 0-05
Damping coefficient of oscillation i —0:24 —0-19 —0-57 - —0-52 +0-002 4-0-025 1 —0-07 —0-05
Frequency coefficient of oscillation o 1-5 1-7 34 3-4 0-25 0-25 | 0-7 0-8
Damping coefficient of spiral motion 7, —0-002 —0-013 —0-0003 —0-01 0 0 I 40-001 —0-001
Oscillati f Period (secs.) 5-9 5-2 2-6 2-6 30 30 n 9
scillation 3 Time to halve amplitude* (secs.) 4-1 5.2 1-7 1-9 —400 —30 12 I
Spiral motion : Time to halve amplitude* (secs.) 500 76 3,000 100 Neutral -—800 800
C,=0-1 40,000 ft.
Conventional All-wing
Case
a b ¢ d o B y d
| |
#, 0-02 0-02 0-10 0-10 0 0 0-01 0-01
— 1, 0-02 0-10 0-02 0-10 0-01 0-05 0-01 0-05
Damping coefficient of oscillation 7 —0-21 —0-05 —0-55 —0-44 +0-028 +0-10 —0-045 +0-005
Frequency coefficient of oscillation s, 3-0 3-4 6-5 6-7 0-25 0-25 1-7 1-9-
Damping coefficient of spiral motion r, . —0-002 —0-013 —0-0003 —0-01 0 0 +0-001 —0-00
Oscillation J Period (secs.) 5-9 53 2-8 27 60 60 88 7-9
scillation 9 Time to halve amplitude* (secs.) 9-4 40 3-6 45 —60 16 37 —300
Spiral motion : time to halve amplitude® (secs.) 1,000 150 ‘ 6,500 200 Neutral —1,600 | 1,600

*A negative sign indicates a divergence ; the figure given is then the time to double amplitude.
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TABLE 1 (cont.)

C,= 1-0 Ground Level
Conventional All-wing
Case _ '
a b ¢ d € z Y 0
#, 0-02 0-02 0-10 0-10 0-01 0-01 0-02 0-02
—, 0-02 0-10 0-02 0-10 0-01 0-05 0-01 0-05
Damping coefficient of oscillation # —0-45 —0-30 —0-79 —0-68 —0-18 —0-02 —0-23 —0-1
Frequency coefficient of oscillation s, 1-7 2-2 3-4 3-7 1-1 1-3 1-4 1-6
Damping coefficient of spiral moj:ion I +0-16 0 +0-22 +0-10 +0-23 +0-12 L0-25 +0-15
Oscillati Period (secs.) 17 13 8-3 7:6 22 18 17 15
sciiation Time to halve amplitude* (secs.) 6-9 10-4 3-9 4-6 14 130 11 26
Spiral motion : Time to halve amplitude* (secs.) | —19 Neutral —14 —31 —11 —22 —10 —17
Cp=1-0 40,000 ft.
Conventional All-wing
Case
a b ¢ - £ < ] 6
., 0-02 0-02 0-10 0-10 0-01 0-01 0-02 0-02
—1, 0-02 0-10 0-02 0-10 0-01 0-05 0-01 0-05
Damping coefficient of oscillation 7 —0-40 —0-14 —0-75 —0-58 —0-08 +0-3 —0-13 -10-18
Frequency coefficient of oscillation 5 3-3 4-3 6-7 7:2 2-0 ! 2-2 2-7 - 3-0
PDamping coefficient of spiral motion r, +0-17 0 4+0-23 +0-10 +0-23 . +0-12 40-25 +0-15
Oscillati Period (secs.) 17 13 8-4 7-9 24 22 18 16
scillation 3 Time to halve amplitude® (secs.) 16 45 83 10-8 65 —17 10 —29
Spiral motion : Time to halve amplitude® (secs.) —37 Neutral —27 —62 —23 —44 I —21 —35
| . | |

*A negative sign indicates a divergence ; the figure given is then the time to double amplitude.
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TABLE 2
Key to Figures
(1) Stability diagrams. Standard values of £,, ,, #, .
s _— S
C, oy, —, i . Lo Fig. No.
0-1 0 and 0-2 (0 and 0-03 0-05 0-08 1
‘ 0-09 0-09 2
0-09 0-12 3
0-12 0-12 4
0 0, 0-01, 0:02, 0:03 0-12 0-12 5
0-05 ' 6
0-10 7
0-15 8
0-20 9
1-0 Oand 0-2 | 0 and 0-03 0:-05 0-08 10
0-09 0-09 11
0-09 012 12
0-12 0-12 13

(2) Stability diagrams. Variationofl,/, »,.

pr Yry

C, == 0-1 Variation with /, Fig. 14
C, = 0-1 Variation w1thl Fig. 15
Yo = —0-05, %, = —0-01 | C;, = 0-1 Variation with #, Fig. 16
1, = 0:12,4, = 0-123 C; = 1-0 Variation with /, Fig. 17
C, = 1-0 Variation Wlthl Fig. 18
Cy = 1-0 Variation with », Fig. 19
(8) Curves of constant period and damping
' i, = 0-12 o= 012
C, —4, —, Fig. No.
01 | 0 0 20
0-1 0-05 0-01 21
0-1 0-10 0-02 22
1-0 0 0 23 ,
1-0 0-05 0-01 24
10 0-10 0-02 25

(4) Curves of constant period and damping (conventional aircraft)
. == 0-0625 ig = 0-1225 C,=10-1

n = 13 Fig. 26
w = 52 Fig. 27
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r,and s; are the damping and frequency coefficients of the oscillatory motion.
7, is the damping coefficient of the * spiral”’ motion. '

FiG. 20. Frequency and Damping Coefficients C, = 0+1,7, =012, 4,=0-12, 3, = 0, #, = 0.
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n,and s, are the damping and frequency coefficients of the oscillatory motion.

#, is the damping coefficient of the ““ spiral ” motion.

v

Fic. 21. Frequency and Damping Coefficients C;, = 0-1, ¢, = 0-12, i, = 0-12, 3, = —0-05, #, = — 0-01.
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7,and s, are the damping and frequency coefficients of the oscillatory motion.
#, is the damping coefficient of the ““spiral ”’ motion.

Fic. 22, Frequency and Damping Coefficients C, = 0-1, 7, = 0-12, 4, = 012, y, = —0-10, #, = — 0-02.
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7, and s, are the damping and frequency coefficients of the oscillatory motion.
7, is the damping coefficient of the ““spiral” motion.

Fic. 23. Frequency and Damping Coefficients C; = 1-0, 7, = 0-12, ip =0-12,y, =0, n, = 0.
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#,and s; are the damping and frequency coefficients of the oscillatory motion.
7, is the damping coefficient of the * spiral”’ motion. '

Fig. 24. Frequency and Damping Coefficients C, = 1-0, ¢, = 0:12, 4, = 0-12, 9, — 0-05, n, = —0-01.



7, and s are the damping and frequency coefficients of the oscillatory motion.
7, is:the damping coefficient of the ““spiral ” motion. ‘

F16. 25. Frequency and Damping Coefficients C, = 10,4, = 0:12,4, = 0-12, 3, = — 0:1, #, = — 0-02.
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r,and s are the damping and frequency coefficients of the oscillatory motion.
7, is the damping coefficient of the ““spiral” motion.

F16. 26. Frequency and Damping Coefficients (Conventional Aircraft) C, = 0-1, u = 13, i, = 0-0625, 7, = 0-1225
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7,and s, are the ddmping and frequency coefficients of the oscillatory motion.
7, is the damping coefficient of the “ spiral ” motion.

F16. 27. Frequency and Damping Coefficients (Conventional Aircraft) C, = 0-1, p = 32, 7, = 0-0625, 7, = 0-1225.
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