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Summary.—The lateral motion of a symmetrical aeroplane slightly disturbed from steady flight is determined, to the
first order of small quantities, by the solution of a system of six simultaneous linear differential equations with constant
coefficients, in which the inhomogeneous terms, representing contrel forces or the effects of gusts, may be arbitrary
functions of time. In virtue of the general properties of such equations, as is well known, their most general solution
can always be written down in a form involving definite integrals. Calculations of such theoretical expressions can be
very tedious, and it is now shown that the most general solution can be much more simply obtained, by processes of
addition, multiplication, and integration, from a set of three fundamental solutions. A large number of such sets of
fundamental solutions has already been obtained by means of the differential analyser, and the application to these of
the methods of this report will make possible a large range of more special response calculations, some of which may
well develop into important matters of routine.

After an introductory statement of the equations of motion, the three fundamental solutions are defined in sect. 3.1,
with four further solutions which are conveniently regarded as fundamental, though they can be derived from the original
three. Relations between these seven solutions are given in sects. 3.2 to 3.6, Sect. 4 is concerned with the derivation
of other solutions corresponding to constant or piecewise constant disturbances, and generalisation to disturbances
given as any functions of time is made in sect. 5. A few particular examples of the technique developed are given in
sect. 6, the fundamental solutions used being chosen from the differential analyser results mentioned above, A brief
account of the scope of these is given in an Appendix, which includes in tabular form an index to the complete series of
1188 figures in which the results are contained.

1. Introduction.—During the period from Dec., 1943 to Feb., 1944, a laige programme of
" calculations referring to the lateral response of aeroplanes was carried out on the differential
analyser at Manchester University, by the author and collaboratorst. One report on these
tesults has so far been written, by Mitchell, Thorpe and Frayn® (1944), and the “ full set of
curves ~’ referred to therein has also been reproduced. The potential usefulness of the curves
obtained in the whole programme is, however, so great that it has been decided to make the
complete collection of results available on loan as soon as possible, without waiting for the issue
of individual reports analysing the various aspects of the work. The present report has been
written with the twofold purpose of making known the existence and scope of the differential
analyser results, and of indicating how more general results can be deduced, and in particular
how the curves can be used to facilitate certain important types of routine calculation.

*R.A.E. Technical Note No. Aero. 1570 received 4th August, 1945.

tA. W. Thorpe and Miss E. M: Frayn, for the whole programme, with Miss M. M. Dent and F. G. H. Jones for the
parts listed respectively as (i) to (iii), and (iv), in the Appendix.

(78824) A
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2
Eguations vof Motion.—The equations of lateral motion of a symmetrical aeroplane slightly

disturbed from steady motion may be written
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The notation used is as follows :—

 denotes time measured in airsecs, the dimensionless unit equal to f true seconds, where
., 7

S being the wing area (sq. ft.), U, the relative velocity in steady motion (it./sec.), m the
mass of the aeroplane (slugs), and p the density of the air (slugs/cu. ft.) :

y. 1s the angle of climb in steady motion :
é, v, are the angles of bank and azimuth in the disturbed motion, in radians :

? + 9,(r) is the relative velocity of sideslip in disturbed motion, taking U, as unit, split
up into a part 9 due to sideways velocity of the aeroplane relative to a fixed datum, and a
part 9,(r) due to change in the velocity of the local air (i.e. due to a gust velocity — 9(7)).
Since the equations are valid for small disturbances only, # 4~ 7(r) can also be interpreted
as the angle of sideslip in the disturbed motion :

P, #, are angular velocities in bank and yaw (rad./airsec.) 3

v is the sideways displacement of the aeroplane consequent upon disturbance, in units
Ujft.:

Vo by, L, m,, L, n, are the usual dimensionless lateral stability derivatives; ¢,’, 7.’ the
dimensionless moment of inertia coefficients; u, the lateral relative density, 2m/(pSb),
where b is wing span (ft.) ; and & = 4C, ; all in the notation of Bryant and Gates? ( 1937) :
the additional derivative v, (usually neglected) has been added, given in terms of its
natural counterpart by

_ Y :
V=5 .. .. .. . .. .. . .. .. (3)

where Y7 is the sideforce in Ib. wt. due to a rate of yaw 7 rad./sec. We have also added
the symbol ¢,

. 4F

where E'is the product of inertia (slugs ft. squared) with respect to the axes of roll and yaw :

Cy(7), Ci(r), C,(v) are the dimensionless coefficients of applied sideforce, rolling moment,
and yawing moment,
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- Solutions of equations (1) have been calculated b
initial conditions appropriate to three
numerical values of the parameters.

y means of the differential analyser, using
particular types of disturbance, for a large range of
The full scheme is given in the Appendix.

Our purpose

in the text of this report is to show how solutions corresponding to arbitrary disturbances can

be deduced. For this purpose a less

cumbersome notation is to be desired, and we have used,

in the remainder of the text, the modified notation of Mitchell® (1943), and have further taken

i and y, as zero*.

With these changes the equations (1) become

(d% +y'v) 5 +‘(1 - jv—)r — kp = €.(v) — Fs(c)
2o+ (% 11)3 — L =) — Zi)
i b+ (Em) s = A,
—? +§f§=o,
"y —p+Z 0.

J

The meanings of the new symbols can be inferred, on comparing (5) and (1) : see also sect. A3,

and the list of symbols.

3. Relations between Fundamental Solutions.—3.1. Fundamenial Solutions.—The differential
analyser results are the solutions of the equations (1) or ( 5) for three particular combinations of

initial conditions and applied moments, and for various co

parameters. We shall now adopt a matrix motation, writing
~ p 3
b
7
x=4"1,
¢
A4
- y o
and express these solutions in the forms
d=1,p=7=¢ —yp = § = 0, initiall )
X=X(@),4 P #=v=9=0 iitally
€, =% =%, =0, throughout
A‘_—_.A:A':: — :-:'A'::O’ -'t‘ll
X = X, (2), p=90=7%=4¢ ) y mitially ,
¢ =%,=0 % =1, throughoutt
X=X, () p=t=F=¢ =y =19=0, initially
€, =% =09,=1, throughoutTJ

mbinations of values of the stability

(9)

" *Formulz valid in the more general case when these parameters are not zero can easily be written down.
* tSome of the results (see Appendix) use other values than unity for %, and %,.

(78824)
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These solutions form a fundamental set, endbling us to find (by elementary processes and
quadratures) ‘the solution corresponding to arbitrary initial conditions and applied forces and
moments.

It is convenient to regard as fundamental four further solutions :—

=7 =7F=¢ =y =49 =0, initially
Xox @b i==d=r=7 : , .. (10)
¢ =1 % =¢,=0, throughout
D=1, 6=F=¢=yp =79 =0, initiall
X =X, (), p=r=¢=vy=y=0mitaly , Loan
€, =€ = €, =0, throughout
f1p=0=¢—yp =7 =0, initiall
X=X, (z),4 p=it=d=v=7 Y , (12
€ =% =1%,=0, throughout
=1,p=15=7=ryp =1 =0, initiall ]
X=X, 4= Y Y . (13)
€, =% =%,=0, throughout

The solutions corresponding to initial y and initial y are, of course, trivial.

These solutions will be referred to frequently as response to initial unit sideslip (X,), unit .
constant rolling moment (X)), or the like. It must be clearly understood that the unit referred
to is the_ dimensionless, ‘and not the natural, unit.

3.2. Relations between the Seven Fundamental Solutions.—Let us now integrate equations (5)
formally with respect to z, from 0 to 7, neglecting terms involving #;(z). We have

"dX : a (°
Cl — X))~ XO) = L[ X - X(0), . .. . (4
where X(0) stands for the matrix of initial values dg o, 7, ¢o, vo, . Hence, writing
v—[da, P=|par, R=| #dr,
(15)
o6—[4ar, w=[var, YV=|ga,
we obtain the equations
’ d ) . T B
<d;+5}” Vv +<1——%;>R~k@:vo—k-.lo(é’},(r)dr,
d L T
ffV—{—(dT—{—l,)P — LR —po+ | () ar,
’ d . rT »
—wv 4w P(fra)R =k [ emar, L
16
dd (16)
— P + 7 = Pos
¥
- R + EE: = Yo,
ay
-V — ¥ 4 de = Yoo
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Comparing (16) and (5) we deduce the following conclusions :—

PO

. (i) The solution of (16) with the initial conditions p, = 1, 9, = #, = ¢y = yo = J, = 0, and
with €, = %, = ¢, = 0 throughout is identical with the solutlon of (5) for unit applied rolhng
moment. Formally this is expressed by the equation

ﬂ&mhz&m. W)
(ii) Similarly
jX =X,(x) .. . .

and [ Xty de =X,(v). .. .. .. .. ... .9

J0

Again, writing ¢ = 1 4 ¢’ in (5), and taking ¢, = %, = ¢, = 9, = 0, we obtain the system
of equations :

J

i\, AP .
;{t—l—yv)v —|—<1——%21f——k¢ =k,
A d 4 A
29+ (5 +4)5 L7 ~0,
. : . d
— N +%lp+<6—i‘—r+%2 74 =0,
‘ s (20)
X de’ 0
.—p +dT- 3
L, d
—'1/'—!_25-:,:0)
-4 _9,4_'62%’:
from which we deduce that
Xyr) =k X, (x), .. .. .. .. .. .. .. .. .. (2D
where
r A )
7
p
;-
X' = > .. .. . .. .. .. .. . (22)
¢ — 1
’l/) 1

rd

We can now proceed to 1nvest1gate methods of calculating the four added fundamental
solutions (10) to (13).
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3.3. Calculation of Response to Imitial Rate of Roll.—The solution X,() being known, we have
from (17)
B =P L (23)
volt) = 7(r)

immediately, and

Vp(7) = dFfdr = G(z) + wlz), .. .. .. .. .. .. o (24)
from the last equation of (5).

Also, on using the equations of motion,

Pol) = dp(r)jdr = 1 + Ip(z) — Lp(z) — £ 6,(v) )
7p(7) = dé|(r)jdv = & B(7) — mpi(z) — nefi(t) [L .. .. .. (25)
0,(7) = dby(z)/de = k(v (1 - y) A(x) — F0(z) . J

The appropriate curves can therefore be obtained by multiplication and addition from the curves
for constant applied rolling moment. '

3.4. Calculation of Response to Initial Rate of Yaw.—Similarly, from (18), we have

$,(7) = pul7) } ‘
. . . . . . .. .o (26)
vil(7) = 7ulT) ,
V() = 3,(7) + v.(7), .. - .. .. .. .. .. ..o (27
ple) = L) — hpule) — £ 3,(x) , )
) =1+ 4 (1) — mpu(r) — nih(x) } (28)
i) = k() — (1 — 2)h.(e) — ) J
3.5. Calculation of Response to Sideforce.—In this case, by (19), we have immediately
Pu(z) = ¢u(7) }
. .. .. . . . . .. o (29)
7(z) = p.(7) .
Also b(0) = | g,
w(r) = l pAr
ne - . . . . . . .. (30)

These can be evaluated with the aid of a continuous integraph.
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3.6. Calculation of Response to Initial Angle of Bank.—When résponse to sideforce has been
obtained, this follows from the relations

ﬁ4) = kﬁy ’

7, = B,

3, = K,

bo=1+kt,, [ 1)
vy = Ry, ,

Vo =k, . ’

-

4. Derived Solutions for Constant or Piecewise Constant Disturbances.—4.1. Response to Sharp-
edged Sidegusts.—If an aeroplane moving steadily with controls central encounters a sidegust of
velocity dg(z), the motion is determined by solving (5), with ¢, = ¢, = ¢, = 0, and with the

initial conditions § =% =7 =¢ =y = 9 = 0. For a constant 9; = 1, we may remove the
terms in 9;, by replacing ¢ and 9 in (5) by 9’ and 7', where

B =01, )
V=y+r-} o . . ) L (3

we thus see that the motion required, in ¢’, §, 4. ¢, p, §’, is the same as that already determined,
iAn 9, , 9, ¢, », ¥, for no disturbance force or moment, and for the initial conditions # — 1,

=7 =¢ =y = 4§ = 0. The motion is therefore given, in %', §, #, ¢, v, §’, by the response to
initial sideslip. In fact, if the suffix g identifies the solution for constant unit gust velocity,
ﬁf(r) :?2”(7) ’ #dr) = ol .. . . . o (33)
«(7) = 7.(7) , ve(v) = vul7)
with ,
e) = =1+ 40, R - 2
Je(e) = Julz) — 7.

4.2. Any Combination of Conditions involving Constant or Plecewise Constant Applied Forces,
Moments, or Gusts.—The fundamental solutions can be made to yield an extraordinary variety
of results under this heading. Most generally, we may consider the disturbance motion following
arbitrary initial values p,, 7y, #,, ¢,at = = 0, with a sharp-edged gust velocity 4., and with constant
control forces ¥,, ¥, ¢, The motion, as long as gust velocity and control forces remain
unchanged, is given by :

X(v) = poX,(x) + X, (z) + 76X, (r) + $X,(r)
+ €.X,(7) + €X,(1) + €.X,(c) + 6X(x) . .. .. .. .. (35)

If at time v, the gust velocity changes to 7; + ', and the control forces to ¢, + %,”, 6, + %/,
%, + €,’, the solution will be given by (35) up to time v,, and subsequently by

X(r) = poXy(7) + 5oX,(7) + 7X,(7) + 60X ,(2)
+ €, X,(7) + %.Xi(zr) + €, X.(7) + 9. X,(7)
+ €,/ X, (v — 7o) + €/ X)(v — 7o) + €,/ X, (v — 70)
+ 9’ X (v — 7). .. .. . . s .. .. (36)
Further changes can follow by addition in the same way.

Particular examples of this technique follow.
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4.31. Sharp-edged sidegust, on and off, duration v,, motion initially steady
X(1) = 3.X,(r), ' 0<7<m1,, }

- ﬁ“ {Xf:<T) - ‘Yg(‘r - TO)}, To < 7. (37)

4.32. Picking up a dropped wing by constant rolling moment.—We represent the dropped wing
by initial ¢,, the motion is then given by

X(1) == ¢ Xy4(7) + € X\(7), . .. . .. .. .. .. (38)

X(r) = ¢Xy(7) + €.X\(7) + €,X,(v), .. .. .. . .. .. (39
if the yawing moment produced by aileron application is taken into account.

or by

If the ailerons are centralised after time t,, the motion is given by the above expressions for
0 < 7 < 74, and thereafter by

X(z) = o Xy(r) + € {X\(z) — Xi(r — 7o)} + %, {X,(z) — X.(v — o)} - .. (40)

4.33. Engine cut—If %,, ¢, are rolling and yawing moment due to engine failure,

X() = @Xx) - 6,X,(0) . .. .. .. ... .. ..o4

It at time 7z, the controls are moved so as instantaneously to balance the engine cut moments,
we have subsequently

X(z) = €. {X\(r) — X)(v — 70)} + %,.{X.(z) — X, (v — )} . .. .o (42)
Alternatively, if the applied rolling and yawing moments do not balance the engine cut moment,
X(r) = . X(r) + ¢X\(v — 7o) + %, X.(r) + €,X.(v — 7o) . . .. (43)

4.34.  Fun stall following engine failure or rudder application.—This is a much more com-
plicated example of the possible utility of the curves and it should be remarked that it is not
likely to be one to which linear equations can be applied. It is not recommended that calculations
of this type should be carried out. The case considered, however, is an example of the potential
range of calculations which can be made, when sufficient thought is given to the possibilities.

We shall suppose that stalling the fin causes a decrease in both .4 and #,: we then have two
systems of equations to deal with, system 1 applying until the fin stalls, and system 2 thereafter.
We shall denote the solutions corresponding to the two systems by upper suffices ‘enclosed in
brackets, e.g. X,V(r), efc.  We shall suppose also that the fin stalls when the fin incidence reaches
a certain value, say

4 '
T SIS .. .. .. .. .- .. - .. .. (44)

where 1 is the dimensionless fin and rudder arm.

Suppose the initial motion is due to rudder application. We have then

X(r) = ¢,X, "), .. .. .. .. .. .. .. .. (49)
which holds until a time 7, such that
| ! | _
%, lvn‘l (o) — Mrn‘“(ro)J =®. .. .. . .. .. .. .. (46)

At this instant the values of the disturbances are
(gnpn(l)(rﬂ) ’ (‘gnvn(l)(ro) H %n'yn(l) (7’-0) ’ }

47
.(511(]511(1)(70) ’ (‘gnl/'n(l)(‘l‘io) > (gny;z(l) (Tﬂ)' ( )
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Subsequently system 2 moves from these initial conditions under the same applied moment and
with an extra yawing moment #,” needed to give the correct fin lift at the stall. The motion
is then given by

X(r) = €,p,0(x0) X, H(x — ) + €. 0(r0) X,2(z — 7o)
—I_ (gnyn(l)(rﬂ)' Xr(z‘)(r - TO) _!" %ﬁﬁn(l)(ro) X¢(2)<T - TO)
LG, ) X — 1), e e 48

apart from correction terms in y and 9. We may proceed to move the controls at time 7, in an
attempt to unstall the fin. If ¢, #,” are the extra moments introduced, we have subsequently

X(7) = €000 X2 — 7o) + €.0.0(z0) X,P(z — 7o)
+ G700z X2 (v — 10) + €,6,9(1) X,P(r — 7o)
+ (%, + ) XPr — 1) + €' XO (v — 1) + 6 XD (v — ). .. (49)

Equations (48) and (49) will remain valid as long as the fin incidence exceeds « or some lower
critical angle at which the fin unstalls. If it drops to this value, we return to system 1 with the
original applied forces but with the initial conditions determined at the instant when the fin
ceases to be stalled.

5. Derived Solutions for Variable Applied Forces, Moments, or Gust Velocities.—5.1. Dis-
turbances Varying Linearly with Time.—The general curves can also be used, though not so
simply, for calculations on variable applied forces and moments, or on variable gust velocities.
The simplest obvious cases are those in which the disturbances vary linearly with the time.
The results here, in the case of applied forces and moments, can be obtained by comparing with
the integrated equations (16). We then see that integration of the response to unit sideforce,
rolling moment, or yawing moment yields the response to linearly applied sideforce, rollmg
moment, or yawing moment respectively, the rate of growth of the applied force or moment
being umty If we denote these solutions by X, (r), Xu(zv), Xa(z), we thus have

~

X, (7) fX
Xau(7) le S S (:10)
Xalt) = [ X,fe)

In full, for X (<), we have
Palr) = dilr } T (-1}

Palr) = ’PI(T)
imniediately, and .
balr) = [ hfx) dr,

Valt) = jowl( ) de
a(r) = Fi(z) — valv) ,.
falr) = [ 9(x) dv.

Exactly similar equations can be written down for response to linearly applied sldeforce or
yawing moment. The use of a continuous integraph is indicated.

-
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We may also define a further solution for a linearly increasing sidegust, with dd./dv = 1.
Calling this X, (), we have ‘

‘ng(r):J‘TXg(r)dr, S 0
¢
leading to equations like (51) and (52) as before.

5.2. Mixed Disturbances.—With the four extra solutions thus obtained much more general
calculations may be made. We may take as an example a sudden engine failure, at time 0,
which the pilot attempts to correct, after an interval z,, by moving the controls with constant
velocity until the asymmetric moments due to engine failure, %,, €, say, are balanced at
time z;, after which the controls are held fixed. The solution is then given by

X(1) = €, X,(v) + €. X.(v) , 0<t <1y, |
X(r) = %,X,(c) + €..X,(7)

— T Xl — ) — 2 Kl — 7, nr<n, Ly
X(r) = €,X,(x) 4+ €.X,{7) — ;ﬁ“{o (Xult — 70) — Xale — 1))

— T (Xl — ) — Kalr — ) nr

o

As another example, if the motion is due to a gust which grows linearly to velocity 9, in time 7,,
and then falls linearly to zero in the same time, thereafter remaining zero, the motion is given by

B, N
X(r) = 2 Xy, O<v<n,,
= X Xu(r) — 2Xulr — )}, T <2, b.. (55
0 .
= ﬂ{) {de(T) - Zng(t - '59) + ng(r - 270)} s 2ry < 7.

B

5.3. Use of the Curves as Influence Functions.—Variable applied forces, moments, or gust
velocities can also be dealt with by a much more powerful method, which may also be found
preferable, in the case of linear variations, to the method given above. We shall illustrate this
by considering the case of a variably applied rolling moment.

The solution X,(r) can be regarded as an influence function giving the magnitudes of the
disturbances at time =+ after the sudden application of a unit rolling moment %,, Hence if at
time 7, rolling moment 4%, is applied, the corresponding magnitudes of the disturbances will
be X,(v+ — 7,) 4%, All such magnitudes are additive, and the motion due to any variations of
%, can therefore be expressed in the form

i a%
Xte) = | Xfr - Wgdn. (56

Similar cquations can be written down for the motion due to arbitrary. changes of gust velocity
or to arbitrary control motions. The most general motion, starting with arbitrary p,, %, 7o, $q,
with arbitrary disturbances, can then be written down in the form

‘Y(T) G f)oXﬁ<T) -+ Z4’01‘{1)(7") + fof‘(r(r) + ¢°X¢<T)
T [i(g1 d(gn d(g‘ d'ﬁ“ 5
Xl =) e Xl ) G Xl = G X e )

This type of integral can be evaluated very simply by means of the Stieltjes-planimeter,
Nystrém?* (1935). :
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6. Examples of Solutions Derived from the Fundamental Solutions.—A number of calculations
have been made to illustrate the possible applications of the curves, discussed above. The
results are given in Figs. 1-10, each of which shows all six components of the motion. The
curves and the method of calculation, are as follows :— ~

6.1. Fundamental Solutions (Figs. 1-3).—The fundamental solutions X,, X,, X, are shown
in Figs. 1-3, together with the derived solution X,. These solutions were obtained by the
differential analyser, and belong (se¢ Appendix), to the basic stage of the programme on the
lateral response of conventional aircraft at high speeds. The numerical data used are as follows :—

k=01, us = 20, i, = 0-12, i = 0-18, i =0,
Y.=02 9,=010=--042, [,=0-06, n,=—0-024, n,=— 0-03, (58)
=1, I, = —0-06, ny = 0-072 (n, == 0-048, #n, = — 0-072),

and the solutions X;, X, X, are as defined in sect. 3.1, corresponding to unit applied rolling and
yawing moments (the modified moments €, and %,) and unit initial sideslip (3 = 1); while X,
gives the response to a sidegust of unit velocity (4; = 1) given by

ﬁg:ﬁv’ fg:i;v) ¢g:¢71) 1/)5,’:1/)1)5 }
A
U,

) y , (59)
:_1+vu; yg:'_—r—{—yv'

8.2. Solutions for Unit Constant Sideforce, and Unit Initial Angle of Bank (Fig. 4).—-The résponse |
to unit constant sideforce (#,) has been derived by the formule of sect. 3.5, and is shown in
Fig. 4. The solution for unit initial angle of bank differs from this only in scale, and the addition
of a constant to ¢, and the alternative scales for this solution have been added to Fig. 4. The
extreme slowness of the motion which develops when the wings are not level should be noted.

6.3. Solutions for Initial Rates of Roll and Yaw (Figs. 5, 6).—The response to initial unit
rate of roll, and to initial unit rate of yaw, have been calculated by the formule of sects. 3.3
and 3.4, which in this case become

-~

by = P, Vp == 7, }A’p =g, 4 y,,
ﬁp =1 %f, - %ﬁl — 109, , (
A 1ean 14 9 F \60)
Vp = gl — gp — £,
'ﬁp = 1ot — - l,ﬁz ; J
4 A A 3
¢r :pn > 1/}1' - 7” ) yf == vn + q)n >
ﬁr — %fn - "Z’ﬁn - 107};» ’ L
A 1G4 1 7 A (61)
¥y 1 _I— Uy — @Pn — 5V,
Ar = '1"1?)'9611 - 11)1» - %{}n g

The results are shown in Figs. 5 and 6 respectively.

6.4. Picking wp a Dropped Wing by Application of Rolling Moment (Fig. 7).—The appropriate
formulz for this case are given in sect. 4.32. The case taken is where the initial angle of bank
is § radian, and unit rolling moment (%)) is applied initially, and held constant thereafter, or
until the angle of bank is zero, and the controls are then centralised. The results are given in
Fig. 7, the full-line curves showing the response when the rolling moment is maintained constant
throughout, and the dotted curves showing the results if the controls are centralised when
¢ = 0. ‘



12

8.5. Respouse to a Graded Gust (Figs. 8, 9).—The response to a linearly increasing sidegust,
with unit rate of growth, is shown in Fig. 8, each component being the time-integral of the
corresponding component in Fig. 3. This solution has then been used with the results shown
in Fig. 9, to construct the response to an on-off graded gust which grows at unit rate from 0 to 1
airsec, and immediately decreases at the same rate from 1 to 2 airsecs.

6.6. Response to a Sharp-edged Constant Sidegust, Duration § Airsec (Fig. 10).—This final
example illustrates the technique of sect 4.2, the working formule being given in sect. 4.31,
with 7, == 1. The curves obtained are shown in Fig. 10. )

LIST OF SYMBOLS

C"l; Cu; C\'; EJ Z.A,: 1.("; kJ Zp; ln lv; lnfu %n M’z'; yw /’LZJ are as deﬁned in R' & M' 18012-

b

span of aeroplane (ft.)

%, == /L‘zCI/'I'.A’: €, = qucn/z’(;,’ %, = %C.\'

v’ &', €, eic.
a%,
4

dg

Values of #,, ¢, due to engine failure

Changes of %, ¢,, ¢, during an manceuvre

Increment of &, '

As suffix, identifies the solution for sharp-edged sidegust

As suffix, identifies the solution for linearly increasing sidegust (unit rate)

i, = 4E|(Wb?)

1

al

L =
g —

wm

7

Dimensionless fin arm. As suffix, identifies the solution for unit constant
rolling moment

As suffix, identifies the solution for linearly increasing rolling moment
(unit rate)

—Lfi,, ly =Lty

- /’L2Zv/ 24"

Mass of aeroplane (slugs)

As suffix, identifies the solution for unit constant yawing moment

dn  As suffix, identifies the solution for linearly increasing yawing moment
(unit rate)

Ny = — Wfie’, My = -— N1
n, Value of n, for a particular fin size
n, Value of n, for a particular fin size
Ty Extra n, due to change of fin size “

N == ,u,zn,,/i(;'

p  As suffix, identifies the solution for unit initial rate of roll

P = JO pdx
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~
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)

Toy T1

13

LIST OF SYMBOLS (continued)
Rate of roll, rad./airsec ‘
Initial value of
Rate of yaw, rad./sec.
As suffix, identifies the solution for unit initial rate of yaw
": fde ‘
Rate of roll, rad. /airsec‘.
Initial value of #

Wing area of aeroplane (sq. ft.)

" Value of airsec in seconds

Steady velocity of aeroplane (ft./sec.)

. As suffix, identifies the solution for unit initial sideslip

f fdr

0

Sideslip in radians

Initial value of 9

74+ 1

Gust velocity

Change of gust velocity

Matrix of components 4, §, #, ¢, v, ¥.

Matrix of components 9, 5, 7, ¢ — 1, v, §

As suffix, identifies the solution for unit constant sideforce

As suffix, identifies the solution for linearly increasing sideforce (unit rate)
R

0
Sideforce . due to rate of yaw (Ib. wt./rad./sec.)

Sideways displacement, in units Uf

Initial value of ¥

=5+

— Dimensionless sideforce due to rate of yaw

Value of y, for a particular fin size

R y’v '

Fin incidence at which the.fin stalls (radians)
Angle of climb of aeroplane (radians)

Air density (slugs./cu. ft.)

Time in airsecs

Special values of ©
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LIST OF SYMBOLS (continued)
¢  Angle of bank (radians)

As suffix, identifies the solution for unit initial angle of bank

b [ pde
q jo Ppdr
$,  Initial value of ¢
b =4 —1

¢ = Angle of azimuth (radians)
o= J; ddx

¥, Initial value of ¥

(1), (2)  As upper suffices, identify solutions for normal and fin-stalled conditions

respectively
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APPENDIX

The programme of work referred to in the text covers four aspects of the lateral response
problem :—

(i) Lateral response of conventional aeroplanes at high speed (C, = 0-2).
(ii) Lateral response of tailless aeroplanes at high speed (C, = 0-2).
 (iif) Lateral response of tailless aeroplanes at low speeds (C, = 1-0).
(iv) Lateral response of ultra high-lift aeroplanes (C, = 2-8).

Each stage is described, under its appropriate heading, below.

Al. Lateral Response of Conventional Aeroplanes at High Speeds (C, = 0-2).—The quantities

. E=0-1, ,=0, i,=0, =0 .. .. .. .. .. (ALl

remained fixed throughout the whole of this stage of the programme. The remaining quantities
-were treated as follows :—

() Basic values were attached to all of
Yo by by My 47 0, iy e e e (ALY
and #, and /, were varied independently, #, vérying with #, according to the laws
‘ 1, = Ny -+ Ny, n, = — In,, .. .. .. .. .. .. (A13)

with basic values of 7, and the dimensionless fin arm /. This part of the programme is referred
to as ‘ Basic”’

(ii) Similar results with independently varied #, (#,) and /, were obtained with modified values
of 7,7, 1c/, but with basic values for all other quantities. This part is referred to as ** Variation
of inertias . The values of ¥, and €, were changed, with the inertias, so as to keep the standard
dlmens1onless C,and C, constant.

(iii) Similar results with independently varied #, (#,) and /,, with all quantities basic except u,,
which was given modified values. This part is referred to as < Variation of g, ”’

(iv) With basic values of 7,’, 4.’, with fixed u,, and with independently varied #, (»,) and Z,
the remaining quantities were altered one by one from their basic values to new values estimated
for a particular aeroplane, which will be referred to in the sequel as Aeroplane K. This part is
referred to as ‘ Transition ”

(v) Finally, further calculations were made with the values of the derivatives for Aeroplane K
with two values of y,, and with independently varied #, ( ,) and /,. This part is referred to as
“ Aeroplane K ”’

The graphs corresponding to this whole section of the programme are numbered S1 to S396,
and bear, in addition to the number, a code caption indicating what they represent. The fo]lowmg
conventions are used in making up the caption :—

(1) The type of disturbance is indicated by the letters S, A or R, indicating response to initial
sideslip, unit rolling (Aileron) moment, and unit yawing (Rudder) moment, respectively.

(ii) The stage of the programme is indicated by the letters B (Basic), I (Variation of inertia),
p (Variation of p,) or T (Transition). In the case of Aeroplane K the results for u, = 5 and
#e = 10 are distinguished by the headings K5 and K10 respectively.
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(iii) The component of the motion shown in any particular graph is indicated by the corres-
ponding small letter, placed last in the caption.

(iv) Where /,is constant in all the results shown on a particular graph, the value of 100/, appears
before the code letters indicating the part of the programme or the type of disturbance applied.

(v) Similarly where #,; is constant, the value of 1,000n,, follows the code letters for part of
programme and type of solution.

As an example, the caption BS120v indicates response to initial sideslip for basic conditions
with #,, = 0-120, the component shown being sideslip.

An index to the figures S1 to S396 for this stage of the programme, with the numerical values
used, is given in Table 1. )

A2. Lateral Response of Ultra High-lift Aeroplanes (C; = 2-8).—This programme splits into
parts in a very similar way. The quantities ‘ =

B=14, 5, =0 . .. S . . .. (A21)
were constant throughout, and the derivatives were assumed to be connected by the relations
1 )
yv :y:'(] - 7 %vf )
Vr == Tt s s e .. (A22)

Hy == Mo —|_ ”1:{ ;

n, = W — Ny,

-~

Basic values were attached to each of

C e,
Yoos bos by Tpy Po, Mgy b, 24’5 207, py Ha, .- .. .. .. .. (A2.3)

and n,, and [, were independently varied, y,, j/,, n, and #n, varying with »,,.  This constitutes the
“ High-lift basic ”’ part of the programme.

)

High-lift « Variation of y,” and * Variation of inertias ”’ sections were obtained by making
calculations for basic values with i, modified, and with 7,” and ¢." modified, respectively.

A “ High-lift transition "’ section was obtained, in which the effect of changing ¢, and the
effects of altering the rotary derivatives y,, I, I, #,, n,, were investigated. These parameters
were altered separately from their basic values to new values and back again, and not camulatively
as in the high-speed programme. ’

An index to the figures S397 to S756 for this section of the programme, with the numerical
values used, is given in Table 2. The captioning of these figures follows the general lines of
those of the bhasic stage, except that 100, is indicated instead of 1,000 #,,.

A3. Lateral Response of Tailless Aeroplanes at High or Low Speeds.—These programmes differ
markedly from those for conventional aeroplanes, and are considerably simpler. As in the first
part of the programme, #, ¥, v, were assumed to be zero. Further, no relations between
derivatives were assumed, and this makes it natural to work in terms of the modified quantities
of equations (5), rather than to use the standard dimensionless derivatives of equations (1).
Variations of g, are then absorbed in those of & and 47, and those of ¢,’, 7." in these and in the
remaining quantities.
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The programme was therefore as follows. For each speed, given values were assigned to the
quantities :

b, ls, kR, 1y ; .. .. .. .. .. .. .. .. (A1)

the quantities #, and n, were then given all combinations of two values each, while # and ,
for each combination of 7, and #,, were independently varied. All results have been plotted
for fixed 4" and varying %, with captions of the form bydp, where the letters b or B indicate
small or large C,, the suffix refers to the combination of 4, and #, used ; the next numeral is the
value of 47, and p is the component shown.

An index to the figures S757 to S1188 for this stage of the programme, with the numerical
values used, is given in Table 3.

(7882.1) ) : B



TABLE

Lateral Response of Conventional

List of Fzgwes

=
i 1 “ i Response to Sideslip
Code Rotary . i i Parameters ' Parameters S
Caption Derivatives fr 4 ¢ . Tixed \ . Varied | : ;
| A S A
06B Basic 20 0-12 | 0-18 | l, = 4008 .. | iy (and »,) S.1 1 8.2 S3 | s4
0013 Basic 20 0-12 | 018 |7, = O .|y andw) 57 S8 S.9 $.10
—06B Basic 20 0-12 0-18 l, = —0-08 .y (and n,) 13 S.14 S.15 S.16
—12B Basic 20 0-12 018 |1, = —0-12 n,g (and 52,) S.19 5.20 S.21 S.22
B.000 Basic 20 0-12 0-18 ny = 0 A 5.25 S.26 S.27 5.28
13.024 Basic 20 0-12 0-18 ny —=  0-024 Iy S.31 $.52 ! s.33 5.34
B.072 Basic 20 0-12 0-18 ey = 0-:072 l 1, ‘ 5.37 5.38 S5.39 $.40
B.120 Basic 20 0-12 0-18 By = 1-120 1 543 S.44 $.45 S5.46
001.048 Basic 20 Var. Var. I, = 0 wy-—0-048 | 14" and ie S.49 3.50 S.51 S.52
—121.048 Basic 20 Var. Var. Iy, = —0:12 5y ==0-048 | iy  and i’ $.55 S.56 S.57 S$.58
001.120 Basic 20 Var. Var. l, = 0 oy == 0120 | 44" and i¢ ‘ S.61 S.62 S.63 S.64
—121.120 Basic 20 Var. Var. Ly = —0-12 == 0-120 | 4," and i¢’ S.67 S.68 5.69 5.70
004048 Basic Var. 0-12 018 17, = 0 fyy == 0-048 | u, S5.78 S.74 \ S.75 S.76
—12u048 Basic Var. 0-12 0:18 |7, = —0:12 2y =0-048 | p, S.79 \ S.80 ‘ S.81 $.82
00u120 Basic Var. 0-12 0-18 Ih = 0 Hyp = 0-120 | p, S.85 ‘ .86 S.87 S.88
— 12,120 Basic Var. 0-12 0-18 7, = —0:12 #,;=0-120 | p, $.91 5.92 $.93 S.94
00T.048 Var. 5 0-12 0-18 L = 0 g == 0-048 | Rotaries .. \ 8.97 \ S.98 S.99 S.100
—12T.048 Var. 5 0-12 0-18 I, = —0-12 =n; = 0-048 | Rotaries .. i $.108 S.104 \ $.105 S.106
007.120 Var. 5 0-12 0-18 L = 0 s = 0-120 | Rotaries .. ‘ S.109 S.110 S.111 \ S.112
—12T.120 Var. 5 0-12 0-18 I, = —0-12 s, = 0120 | Rotarics .. l S.115 S.116 S.117 S.118
K.5 Acroplane K 5 0-12 0-18 —— Iy 1y (and #,) . ‘ 5.361 $.362 S5.363 5.364
K.10 Aeroplane K 10 0-12 0-18 — \ l. 1y (and #n,) 5.379 \ 5.380 ‘ 5.381 = 5.382
| | i \
Relations between Derivatives Values of Fixed Derivatives
Ny = Mo + W,
] v + 2 Stage ‘ — 4 1 —_ l}, \ I — Ry ’l —Nyo ] /
Py = - lnvj JE ,JA_ . B, R i [ S
k o=0-1 " Basic ‘ 0-2 ‘ 0-42 | 0-0G 0-03 0-024 1
0] 2 0-42 0-06 0-015 0-024 1
Gy | 0-2 042 0-052 | 0.015 | 0-024 1
‘Transition (iii) 0-2 054 0-052 0-015 0-024 1
(iv) 0-233 0-54 0-052 0-015 0-024 1
() 0-233 0-54 0-052 0:015 0-024 0-652
Aeroplane K (-233 0-54 0-052 0-015 | 0-033 0652
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1
Aeroplanes at High Speeds (C, = 0-2)
nd Data
Response to Rolling Moment Response to Yawing Moment
P ¥ P v . T @ P y P v T @ Y ¥
S.s S.6 S.12‘1 S.122 5.123 S.124 S.125 | S.126 5.241 S.242 ! S.243 S.244 S.245 S.246
S.11 S.12 S.127 S.128 5,129 S.130 S.131 S.132 S.247 S.248 S.249 8.250 S.251 5.252
S.17 S.18 S.133 S5.134 - S.135 S.136 S.137 S.138 §.253 S.254 5.255 S.256 §.257 5.258
S.23 8.24 S.139 S.140 5.141 S.142 S.143 S.144 S.259 S.260 5.261 5.262 $.263 S.264
S.29 5.30 S.145 S.148 5.147 S.148 S.149 S.150 S.265 5.266 S.267 S.26é 5.269 S.270
S5.35 S.36 $.151 S.152 S.153 S.154 S.155 | S.156 S.271 S.272 5.273 5.274 5.275 $.276
S.41 8.42 S.157 S.158 S.159 S.160 S.161 S.162 S.277 ‘ 5.278 S.279 5.280 5.281 S.282
S5.47 5.48 S.163 S.164 5.165 S.166 S.167 S.168 $.283 $.284 $.285 5.286 S.287 5.288
S.53 5.54 5.1689 8,170 S.171 S.172 S.173 S.174 S.289 S.290 S.291 S.292 $.293 5.294
S.59 S.60 S.175 S.176 S.177 S.178 S.179 S.180 5.295 5.296 5.297 $.298 5.299 S.300
S5.65 5.66 S.181 S.182 $.183 5.184 S.185 S.186 $.301 5.302 5.308 S.304 S.305 S.306
5.71 8.72 S.187 5.188 S.189 S.190 S.191 S.192 8.307 $.308 5.309 8.310 S.311 S.312
5.77 S.78 S.193 S.194 5.195 5.196 S.197 S.198 S.313 $.314 5.315 5.316 S.317 S.318
S.83 S.84 S.199 S.200 5.201 $.202 $.203 $.204 S.319 $.320 5.321 S.322 $.323 $.324
S.89 $.90 5.205 $.206 $.207 5.208 S.209 s.210 $.325 S.326 S.327 5.328 5.329 $.330
S.95 5.96 s.211 S.212 $.213 S.214 5.215 S.216 S.331 §.332 S.333 S.334 5.335 $.336
5.101 S.102 5.217 8.218 $.219 $.220 | s.221 S.222 S.337 5.338 §.339 5.340 S.341 | S.342
5.107 | S.108 5.223 S.224 8.225 S.226 $.227 S.228 $.343 5.344 8.345 $5.346 S.347 5.348
S.113 S.114 S.229 5.230 | S.231 s232 | S$.233 S.234 S.349 5.350 5.351 $.352 $.353 S.354
S.119 S.120 $.235 5.236 5.237 S.238 | $.239 S.240 S.355 S.35é S.357 8.358 5.359 S.360
S.365 5.366 S.367 $.368 S.369 S.370 5.371 $.372 $.373 5.374 S.375 5.376 S.377 5.378
S..383 5.384 S.385 S.386 S.387 5.388 $.389 5.390 $.391 5.392 5.393 S.394 $.395 S.396
Values of #,y and Asscciated Derivatives Values of /,
Basic to . Basic {, = 0-06, 0, —0-:06, —0-12
Transition (iv) Transition (v) Aeroplane K Aeroplane K, 7, = 0, —0-06, —0-12
[ All Other Cases, I, = 0, —0-12
s Hy — 7y i — 1, Ny — Ny
0 —0-024 0 — — —_ —_
0-024 0 ‘ 0-024 — — — i —
0-048 0-024 0-048 0-024 0-0313 0-015 0-0313
0-072 0-048 0072 — — —_— —_
0-120 0-096 0-120 0-096 0:0782 0-087 0-0782
0-084 — — — — 0-051 | 0-0549




Caode
Caption

COTI
- 0GHI
—12H
H. — 06
H. — 01
H. 07
-6 - 06
= 12Hp - 08
O6Hpu 01
—12Hu €1
H/40
H/10
- O8HI--('6
—12HI - 06
—06H1 01
—12HI - 01
-U6HT 08
- 1210T 06
—O6HT --01

—12HT--01

Rotary
Derivatives

Basic High
Basic High
Basic High
Basic High
Basic High Lift
Basic High
Basie High
Basic High
Basie High

Basic High

Basic High

Basic High
Basic High
Rasic High
Rasic High
Basic High Lift

Var.

! Var.
‘ Var.
" Var.

20
20
20
20
20
20

I Var.’
Var.
Var,

" Var.

40
10

20

20
20
20
20
20

20

. Relations between Derivatives

1
Yoo TN — [y ¥y o= g
Wy Moy F Hyp e = ny — g
ko= 14
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TABLF
Lateral Response of Conventiona:
List of Figures

Response to Sideslip

. ., Parameters Parameters R, -
ta te Fixed Varied
P v v P
o ,\ B S - *1_‘ — S i, R
0-06 0-12 1, 0 U Tfy M, Ve, Voo 1y 5.397 5.398 $5.399 S.400
. 0-08 0-12 {2, = —0-06 Hop, My, Moy Yy, Ry $.403 $.404 S.405 5.406
0-06 0-12 | 5 = —0-12 Ragy Way Yo, Vo Hy $.409 S.410 S.411 S.412
0-08 012 | 95 == —0-06 Iy S.415 S.416 S.417 S5.418
0-06 0-12 & sy o= —0:01 I S.421 $.422 S.423 S.424
006 012 | 5, 007 I8 S.427 S.428 5.429 S.430
0-06 0-12 |, - 006 n,p = —0-08 | 1, $.433 5.434 S.435 5.436
0-06 0-12 |7, —0:12 5, —0-06 | pu, 5.439 S.440 S.441 S.442
006 0-12 | 7, = —0-08 my - —0-01 | s, S445 | 5446 | S447 | S448
0-08 0-12 I = —=0-12 ny —0-01 | gy 5.451 5.452 5453 5.454
0-06 0-12 — by, My, cte. 5.457 5.458 5.459 5.460
0-06 012 Iy, 1,4, cte. 5.463 S.464 S.465 5.466
Var, Var. 1l - —0:068 py - —0-06 | iy and i’ S.469 S.470 S.471 S.472
Var. Var. | A —0-12 my - —0-08 | iy and i’ $.475 S.476 5.477 5.478
Var. Var. |, - —0-08 ny —0:01 | iy’ and i¢’ 5,481 5.482 5.483 S5.484
Var. Var. “ Lo —0-12 5y o= —0-01 | 4" and i’ S.487 $5.488 S$.489 S5.490
0-U6 0-12 |/, = —0-08 ny := —0:06 | Rotarics .. $.493 5.494 S.495 5.496
0-06 ‘ 0-12 ly, = —0-:12 ny == —0-06 | Rotaries .. S.499 S.500 5.501 5.502
006 ‘ 0-12 ly = --0-06 1, = —0-01 | Rotaries .. S.505 5.506 5.507 $.508
0-06 0-12 Iy = —0-12 5y == —0-01 ‘ Rotaries .. S.511 S.512 S.513 S.514
i | i
Values of IMixed Deriqvati\'cs

Stage 4, I ‘ — Ve Hoy — iy — 1y, { iy

Basic 048 | 06 | 0z | 000 | vess | oors 10

G| 048 | 06 | 0.4 | 000 | 033 | 018 1 0

Giy | 0-384] 06 | 0.2 | 000 | 0.33 | 0-18 1 0

Transition (1ii) 0-48 0-8 0-2 409 0-33 0-18 1 0

(iv) 0-48 0 6 ‘| 0-2 0-09 0-33 0-27 1 0

()| 048 | 06 ' 0.2 | 009 | 0-24 | 0-18 1 0
Product of Inertia | 0-48 06 ; 0-2 0-09 ()-:’33 ‘ 0-18 1 0-018

Lo
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2
Aevoplanes at High Lift (C, = 2-8)
and Data
: Response to Rolling Moment Respor se to Yawing Moment
P y p v z 9 vy p v T e v
J |
S.401 S.402 S.517 S.518 5.519 S.520 S.521 5.522 5.637 5.638 $.639 S.640 S.641
8.407 5.408 5.523 5.524 5.525 S.526 5.527 S.528 5.643 S.644 5.645 S.646 5.647
S.413 S.414 5.529 $.530 S.531 5.532 S.533 5.534 S.649 5.650 S.651 $.652 5.653
5.419 5.420 5.535 5.536 5.537 S.538 S.539 S.540 5.655 5.656 5.657 5.658 5.659
5.425 5.426 5.541 S.542 5.543 S.544 5.545 S.546 S.661 | 5.662 5.663 5.664 5.665
S.431 S.432 5.547 5.548 S.549‘ 5.550 5.551 S.552 S.667 S.668 S.669 S.670 $.671
$.487 5.438 5.553 5.554 5.555 5.556 S.557 S.558 5.673 5.674 5.675 5.676 5.677
5.443 S.444 S.559 5.560 5.561 5.562 5.563 5.564 S.679 $.680 S.681 5.682 5.683
S.449 | 5.450 5.565 5.566 5.567 5.568 5.569 5.570 5.685 5.686 5.687 S.688 5.689
5.455 5.456 S.571 S.572 S.573 5.574 S.575 S.576 5.691 5.692 S.693 5.694 5.695
-5.461 5.462 S.577 5.578 S.579 S.580 5.581 5.582 S.697 5.698 S.699 S.700 5.701
-5.467 5.468 5.583 5.584 S.585 S.586 S.587 S.588 $.703 5.704 5.705 5.706 S.707
5.473 S.474 S.589 S.590 S.591 S.592 S.593 5.594 8.709 S.710 S.711 5.712 8.713
5.479 5.480 5.595 S.598 5.597 S.598 S.599 S.600 S.715 S.716 5.717 S.718 8.719
5.485 5.486 $.601 S.602 5.603 5.604 5.605 5.606 S.721 8.722 $.723 S.724 5.725
5.491 5.492 S 607 5.608 5.609 S.610 5.611 S.612 8.727 5.728 S.729 5.730 5.731
S.497 S.498 S.613 S.614 S.615 S.616 $.617 $.618 S.733 5.734 5.735 S.736 5.737
5.503 S.504 S.619 5.620 S.621 S.622 $.623 S.624 $.739 S.740 $.741 S.742 5.743
$.509 S.510 $.625 5.626 5.627 $.628 S.629 S.630 5.745 $.746 5.747 5.748 5.749
S.515 S.516 S.631 5.632 S.633 ¥ S.634 5.635 5.636 $.751 8.752 ’ 5.753 5.754 8.755
B |
#y and Associated Derivatives
iy Basfié:l‘ :r?gt}:)?((l::)cﬁlﬁg %ixlsrtia Transition (i)
v ) | B
A ”n, — — Yy Yy iy — i, I
—0-06 0-03 0-27 0-14 |-0-06 0-03 0-27 0-34 [—0-08
-'0'01 0-08 0-32 0-19 —0-01 0-08 0-32 0-39 |{—0-01
0-07 0-16 0-40 0-27 0-07 0-16 0-40 | 0-47 0-07
| ¥ I
Transition (v)
—0-06 0-03 O-1<8 0-14 [—0-06
—0-01 0-08 0-23 0-19 |—0-01
0-07 0-16 0-31 0.27 0-07

|

¥

5.642
5.648
5.654
S.660
5.666
5.672
S5.678
5.684
5.690
5.696
S5.702
5.708
5.714
8.720
8.726
5.732
5.738
S5.744
5.750

5.756
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TABLE
Lateral Response of Tailless
List of Figures

1‘ 1 ' ‘ ‘ Responsc to Si-deslip
(%’g;n " I ooloom i 7, 120, & N -

4 ‘ 1 | | P U T
bl “ 0-1 \ 3-5 l 05 | o025 | oa > | var 3 s757 | S758 | $759 | 5.760
byl S l 35 05 ! 0-25 0-1 2 Var. 1 5763 | S764 | $.765 | $.766
b4 o1 35 05 ‘ 0-25 0-1 2 Var. 4 S.769 | $.770 | S771 | $.772
b1 0l 35 0.3 025 0-1 0 Var. 1 8775 | S.776 | S.777 | S.778
byl ‘ 0-1 35 0-5 0-25 01 0 Var. 1 S781 | $.782 | 783 | S.784
bt \\ 0-1 35 0-5 0-25 0-1 ! 0 Var. g 4 5.787 S.788 S.789 5.790
byl ‘ 01 35 0-5 0-25 0 b2 Var. 3 S793 | S$.794 | $.795 | S.796
byl 0-1 35 05 0-25 0 2 Var. 1 S799 | $.800 . S801 | S.802
by (R 35 05 0-25 0 2 Var. 4 $805 | S.806 | $.807 | S.808
b} ‘ 0-1 35 05 0-25 0 0 Var. 1 S.811 | S.812 | S813 | S.814
b, 0-1 35 0-5 0-25 0 0 Var. 1 S.817 | S.818 | S.819 | $.820
byd 0-1 3-5 0-5 0-25 0 0 Var, 4 $.823 | S.824 ' 5825 | $.826
B,1 05 35 2 0-5 0-1 3 Var. 1 S.973 | S974 | S975 | S.976
B4 P05 : 35 2 05 0-1 3 Var. 4 S979 | S980 | S.981 | S.982
B,16 0-5 35 2 05 0-1 3 Var, 16 S985 | S98 | S.087 | $.988
B, 0-5 35 2 0-5 01 1 Var. 1 S.991 | S.992 | S.993 | S5.994
By 0-5 3-5 2 05 0-1 1 Var. 4 S.997 | $.998 | $.999 | S.1000
B,16 05 35 2 0-5 0-1 1 Var. 16 $.1003 | $.1004 | S.1005 | $.1008
B,l 05 35 2 05 0 3 Var. 1 $.1009 | S.1010, S.1011| S.1012
Byt 0-5 35 2 0-5 0 3 Var, 4 $.1015| S.1016 | S.1017 | S.1018
B,16 0-5 35 2 05 0 3 Var. 16 S.1021 | S.1022| S.1023| S.1024
B,1 05 J 35 2 05 0 1 Var. 1 $.1027 | S.1028 | S$.1029 | S.1030
B4 05 | 35 2 05 0 1 Var. 4 " | S.1033| S.1034| S.1035| S.1036
B,16 0-5 3-5 2 0-5 o I Var. 16 S.1039 | S.1040 | $.1041| S.1042

Relations between Derivatives

None,
Values of &

AtC =02 £ =0,114
AtCr=10 % =1,4,16
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Aeroplanes at C, = 0-2 and C, = 1-0-

and Data

Response te Rolling Moment Response to Yawing Moment
Y ¥ ? v T @ p ¥ P v T @ ] v

S761 | s762 | .82 | s.830 5.831 S832 | $.833 | S.834 | s.e01 S902 | 5803 | S904 | S905 | S.906
s767 | s7es | 8835 $.836 | S.837 | S.838 | $839 | S840 | S907 | s908 @ sece | s.910 S.911 s.912
S.773 | S.774 | s.841 S.842 | 8843 | S844 | S845 - S846 | S913 | S9l14 S915 | $916 | $917 | s918
S.779 | S780 | $.847 | S848 . S.849 | $.850 | S.851 s.es2 | se19 | $920 | s.921 S.922 | $923 | sS.994
S785 | S.786 | S.853 | S.854 ! S855 | S.856 | $.857 | S.858 | so925 | s926 | so927 | sg¢28 | so929 | s.930
5701 | 5792 | S859 | S.s60 S.861 S862 | S.863 | S.864 | 5931 5932 | 8933 | 5934 5935 | $.936
5797 | S.798 | S.865 s866 | 5867 S.868 | S.869 | S.870 S937 | S958 | S.939 | $.940 $.941 S.942
S.803 | S.804 | S.871 S872 | S873 | S874 | S875 | S876 | $943 | S944 | S945 | $946 | S047 | S.048
S809 | 5810 | s.877 | s878 | ss7 | ssso | sest | sssz | soas | ses0 | sest | ses2 | $.953 $.954
S815 | $816 | s883 | s8¢ | sss5 | 5886 $.887 | S.888 | $955 | $956 | S957 | S.958 | S.959 | 5.960
S.821 | S822 | s889 | S890 | s.891 5802 | s893 | sso4 | soer S.962 | S963 | S964 | S.985 | S.966
5827 | s828 | S895 | 5896 | s807 | ss808 5809 | 5900 | s967 | soes | soee | sero | se71 $.972
S.977 | S978 | S.1045 | S.1046 | $.1047 | S.1048 | S.1049 | S.1050 | s1117 | s.a118 | s.1119  S.1120 | S.1121 | S.1122
S.983 | S.984 | S.1051 | S.1052 | S.1058 | S.1054 | S.1055 | S.1056 | S.1123 | S.1124 | S.1125 | S.1126 | S.1127 | S.1128
5989 | $990 | s1057 | s.1088 | s.1050 S1060 | $.1061 | S1062 | S1129 | S.1I50 | SJI81 | S1182 | S1133 | S.1134
$.995 | S.996 | S.1063 | S.1064 | S.1065 | S.1066 | S.1067 | S.1068 | S.1135 | $.1136 | S.1137 | S.1138 | S.1139 | S.1140
S5.1001 | $.1002 | S.1069 | S.1070 | S.1071 | S.1072 | S.1073 | S.1074 | S.1141°| S.1142 | S.1143 | S.1144 | S.1145 | S.1146
S.1007 | S.1008 | $.1075 | S.1076 | S.1077 | S.1078 | S.1079 | S.1080 | S.1147 | S.1148 | S.1149 | $.1150 | S.1151 | S.1152
$.1013 | $.1014 | $.1081 | s.1082 . S.1083 | S.1084 | S.1085 | S.1086 | S.1153 , S.1154 | S.1155 | S.1156 | S.1157 . S.1158
S.1019 | $.1020 | S.1087 | S.1088 | S.1089 | S.1090 | S.1091 | $.1092 | S.1159 | S.1160 | S.1161 | S.1162 | $.1163 | S.1164
5.1025 | S.1026| $.1093 | S$.1094 | S.1095 | S.1096 | S.1097 | S.1098 | S.1165 | S.1166 | S.1167 | S.1168 | $.1169 | S.1170
S.1031 | 8.1032| $.1099 | S.1100 | S.1101 | S1102 | ,S.1103 | S$.1104 | S.1171 | S.1172 | S.1173 | S.1174 | S.1175 | S.1176
S.1087 | S.1038 S.1105 | S$.1106 | S.1107 | S.1108 | S.1109 | S.1110 | s1177 | s.1178 | s.1179 | S1180 | S.1181 | S.1182
S.1043 | S.1044| Sa111 | san1z | S1118 | Sa114 | sa115 | S1116 | S1183 | S.1184 | S.1185  S.1186 | S.1187 | S.1188
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F1G. 1. Response to Unit Constant Rolling Moment (Fundamental Machine Solution).
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Fia. 2. Response to Unit Constant Yawing Moment (Fundamental Machine Solution).
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F1c. 3. Response to Unit Initial Sideslip or Sidegust (Fundamental Machine Solution).
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F16. 4. Response to Unit Const;nt Sideforce and to Unit Initial Angle of Bank (Derived Solution).
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F1c. 5. Response to Unit Initial Rate of Roll (Derived Solution).
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F1c. 6. Response to Unit Initial Rate of Yaw (Derived Solution).
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(@) Full line : rolling moment constant.
(6) Dotted line : controls centralised when ¢ = 0.
Fie. 7+ Picking Up a Dropped Wing.
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F16. 8. Response to Linearly Increasing Sidegust (Derived Solution).
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Fic. 10. Response to Sharp Edged Unit Sidegust,
Duration } airsec. (Derived Solution).

2 sec., Peak Value Unity at 1 sec., Linear Rise

Response to On—off Graded Gust, Duration
and Fall (Derived Solution).
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