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Summary.—It has been shown in R. & M. 26111 how lift may be obtained on aerofoils independently of the incidence.  _
In this paper mathematical processes are set out of designing such aerofoils to have specified velocity distributions
at certain incidences and lift-coefficients. Approximate and exact methods are given, corresponding to the methods
employed in the design of ordinary aerofoils. Several shapes are worked out, some of them being the product of
ideas not given in R. & M. 2611%. A full discussion of the characteristics of such aerofoils is given.

Introduction—In R. & M. 2611, a method was explained whereby lift could be obtained
on aerofoils independently of incidence. An essential part of the method is the prevention of
separation of flow by continuous suction over the parts of the surface where large adverse
velocity gradients occur. Such aerofoils can certainly be called low-drag aerofoils, expecially
if the amount of suction is sufficiently great not only to prevent separation but also to keep
the boundary layer everywhere very thin. This amount of suction depends on whether the
boundary layer has remained laminar or become turbulent over the non-porous parts of the
surface. : '

Much economy, therefore, can be gained by designing such aerofoils to have suitable velocity
distributions so that the flow remains laminar on the non-porous parts and also so that there
is a large range of C; for which low drag can be obtained with a small amount of suction. The
now well-known ideas for achieving low drag on ordinary aerofoils are just as applicable to
aerofoils which, for example, fly at zero incidence always. It is necessary, therefore, to extend
the usual methods of aerofoil design to the case in which incidence and circulation are not
related.

1. Exact Theory.—1.1. The general method given by Lighthill* is followed and generalised.

- Let the region outside an aerofoil be transformed conformally into the region outside a circle.

Then, if z and ¢ are complex variables in the planes of the aerofoil and circle respectively, there
is a unique analytic function z(¢) of transformation such that dz/d; — 1 as [¢| — oco. If the
radius of the circle is unity and the velocity of fluid at infinity is also unity, the most general
flow about the circle is given by the complex potential w({) for which

1
Ce—ia

wil) = w,x = te™ + 1- 4K log ¢ .. .. . . .. (1)

o is called the incidence of the stream, and 2z K the circulation.
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The velocity of fluid on the circle at the point { = e is easily found from equation (2) to

be
‘ dw, x . : . )
7 = |2sin (0 —«) + K| = 2]sin (§ —«) + sin g (3)

in which K = 2 sin § for convenience.
If ¢q.x and g, are the velocities at the surface of the aerofoil for general values of incidence

and circulation, and for zero values respectively, the following relations hold:—

r=eif

_ dwaK ac and Go = dwo ac
Qo = = . = 0 —_ = .
’ dac dz foei® ac dz fei®
Hence '
. a
go = 2 sin f d_i » (4)
Further,
Qa,K — dwa,K . %
o /3 P R N T P
or, using equation (3),
wg | SN (0 —a) f-smpB| __ . . .
Q_qD_K — ( sin)ﬂ l = icos « — cot § sin « - cosec 6 sin g . (5)

By means of this formula, the value of g, in terms of ¢,x, « and # is obtained.

Certain conditions must be imposed upon'qo which are now found.
Since the aerofoil is a totally enclosed region, the integrals [dz or [(dz/d) df taken round

contours enclosing the aerofoil and circle must be zero.

From equation (2),

%’%" =1 — _51_2 and so the closing-up condition becomes
dz 1 o _
dw, <1 N ?) =0 (6)
Now dw,/dz — 1 as 'z| — o0, hence dz/dw, may be written as
dz A | Gs <1> ;
%0_1—}——5%52—{—052 ast — oo
and equation (6) then gives the result a, = 0. '
dz\ _ a, (1) L <dw0\
Hence log <M> ——?—}— 0 ) = log ) (7)
And so, on the aerofoil, if % = g, &7
dZ o )
dac . a
log <d_w0> = —logq, + iy = [?Z e :Leie (8)




Thus log ¢, may be expanded in a Fourier series containing terms in cos#f and sin#zf only
for » > 2. Therefore,

-~
I

f log go 48 = 0
f sin 6 log g, d0 = 0 S .. .. .. .. .. .. (9)

f cos 9 log g, d0 = O.

-t

These equations must always be satisfied.
From equation (7), log dw,/dz = log ¢, — 1%, and since w, is an analytic function in the region

outside the circle, log ¢, and y on the circle are expansible as conjugate Fourier serles in 0.
Therefore, x is determinable from g, by Poisson’s integral :

x(e)z_ziﬂpfn1ogg[,(¢)cotg-(t-e)dt. o

P denotmg that the Cauchy principal value of the integral is taken at { = 6.
The ordinates and abscissae of the aerofoil are given by the two relations
% = [dscosy, ¥y =/[dssiny
which, using equation (4) can be written

sin @ sin 6

(11)

The theory having been set out, methods of design are now described.

1.2. If g, is given, x is obtainable from equation (10), and the shape is. deriveable from
equation (11). g, in its turn can be obtained in terms of ¢., from equation (5), which gives

log g, = log g.x — log |cosa — sina cot® -+ sinp cosecf| . .. .o (12)

Thus in the general case it is necessary to derive the conjugate and first three Fourier
coefficients of the last term in equation (12), taken over any range of 6 in which g, is specified.
This, however, is complicated, and since it seems that the practical use of aerofoils for which
lift is independent of incidence will be confined to zero incidence, only the case « = 0 will be
considered.

1.3. For « = 0, equation (12) becomes

log ¢, = log gx — log |1 - sing cosec? | .. . .. . o (18)
and equation (5) becomes, ¢y x = gx
__ ggsin®
& sinf + sinf ° (14)

The conjugate and first three Fourier coefficients of the last term in equation (13) are
therefore required. Here again the work in the general case is complicated, and the following
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simplifications are made which are justified at any rate by practical requirements. Only the
case of the specification of gx over the whole range of § for one K is considered. There are then
two cases: symmetrical and cambered aerofoils, with which the paper deals separately.

1.4. Symmetrical Aerofoils:—in which® = 0 and 6 = correspond respectively to the trailing
and leading-edges. log g, is then an even function of , and for this case, equation (10) becomes

_ _siné " log 0(%)
2.0) = 7 P J cos® — cos t di.
(1]

The conjugate of the even function which takes the value log |1 4- sin g cosec 8| for 0 <6 < =,
shown in Appendix I to be

= _7 B ot f b 9)
G, 0) = 2—{—F(tan2c0t 2>+F(cot2cot2 ,
a2’ log % |
in which F(p) = —J - ax.
m) % — 1
Thus ‘
— G S0 p [ logact) |
% (0) = — G(5.9) 2x P JO cos B — cos ¢ dt' (15)

Also in Appendix I are calculated the first three Fourier coefficients of the function, and using
these results, equation (9) becomes

n g
f log gy d0 = 2f log cotj—; ap
0 0 (16)

”

f log gx cosf d6 = 0.
0

7T

In the case of symmetrical aerofoils the condition f

sinf log g, @9 = 0 is automatically
satisfied. - '

It is worthwhile to point out an interesting result from the second of equations (16). Integration
by parts gives :

: i 9 sin 6
<Sln 0 log qK> — f dgx = 0
0 gK(0) Ix
ot Csing dge g
J 7 o s = 0.

0

Since sinf/g, = 0 for 0<0< m, dqx/d0 must take both positive and negative values in this
range, unless it is everywhere zero. Thus the interesting result is obtained that the velocity
cannot be monotonically increasing on the whole of the upper surface.

1.5. Cambered Aerofoils.—If g is specified over the whole surface for a certain K, the conjugate
is required of log | 1 4 sin g cosec 6 | . In Appendix II, it is shown that this is identically
ZEro.
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Thus, simply, ‘
x(e)z_Zl Pf log ge(t) cot 3¢ —0)dt. .. .. .. .. .. (17)
s —

Also in Appendix II are found the necessary Fourier coefficients of log | 1 4 sin g cosec 6 |,
and therefore, equation (9) becomes : :

~

T

f log gx dt = 0

—JT

f sinf log gx 46 = 2nsin g - .. ' - . .. .. .. (18)

~JT

f cosf log gx dbf = 0.

—7 J

The design of some aerofoils according to these methods will be explained in sections 3 and 4.

2. Approximate Theory—2.1. In this paragraph the general process of Goldstein’s approxi--
mations based on Theodorsen’s method of transformation of an aerofoil into a circle is followed.

The aerofoil shape is given by

% = 2a (cosh p; — coshy cos)
| 0
v = 2a sinhy cosf
in which 8 = 0 is the leading edge,* and the chord, ¢, lies along y = 0.
The circle | ¢ | = e¥ is transformed into this aerofcil by the relation { = ¢ (z) for which
dtjdz - 1 as z— oo, and the modulus of this transformation at the point ¢ on the aerofoil is
a | el + &'(9)] 17
EE — 9 [1 T {w'(@)}z:ll/z [Sinhz'lp + sin? 6]1/2 - 2F( ) . v i (20)
. . 1 , '
inwhich  [y] Zz_n'f W) —e@ @ Td .. .. . ... (2D
and :
‘ 1 ( ,
e (6) = —27![ vl (14 ()} cotd [t + eft) — 0 —e (8)] d. (22
Equation (22) is an integral to determine ¢ (6) from o (6).
" Thus from equation (20), we get
Jux = 3F(6) {2sin (8 + ¢ + «) + K[eM}
, . C
= F(6) <s1n(e+a+a)+8;_efﬁ] P 1)

since the point e¥*¥ on the circle corresponding to the point 6 on the aerofoil is related by
¢ =0 + e

2.2. Approximations are carried out, for thin aerofoils. a and y; take their asymptotic
values given by 4a¢ = ¢ and cosh y, = 1. If second and higher powers of the thickness are

* In contrast to the convention in section 1, the stream is in the direction —e—¢, x is measured positive from the
leading to the trailing edge.
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neglected, we can neglect occasionally second and higher powers and products of v, v, ¢, ¢

so that equations (19) to (23) become, taking the chord to be of unit length,

J 2 ’

% = %(1 — cosf), v = Ly sinf ]
1 n
W) =Co=gp [ vl
. e
) =—g; | v (0ot —0)d
B e (1 4 &) . i N Cy
qa,K—(an)a— (mz (Sm (0 4+ & + >+2’*‘—neco . ]

The last equation is the formula corresponding to Goldstein’s third approximation and is the
formula which is used to obtain the velocity distribution about an aerofoil of given shape.

It it is desired to find the aerofoil shape to have a specified velocity distribution, it is necessary
to make use of inferior approximations. These approximations will now be obtained for the
case of symmetrical aerofoils at zero incidence which is the case most applicable in practice
to aerofoils such as we are considering. It is perfectly simple to derive the approximations for
cambered aerofoils, and it is left to the reader to develop them if he requires them.

2.3. For a symmetrical aerofoil, ¥(8) and ¢(0) are odd functions and u(6) and e (8) are even
functions of §. Suffix s denotes values corresponding to a symmetrical aerofoil.
To continue the approximations y* is ignored in comparison with sin® 8, and products and

squares of ¢, &', Cy, Cy/2n in comparison with unity. The third approximation for g, given in
equation (24) then reduces to

O =1+¢" + Co + ¢ coth + (2"—L cosecd
JT

which is called the first approximation. This is clearly inaccurate near the leading edge where
6 is small, and this is due primarily to the neglect of %* in comparison with sin?6.

This can be remedied. With
g (8) = ¢ -+ Co + & coth

so that (@ = 1 + &(6) + -gécosece e )
A

and by approximating to F(0) in equation (20) by (1 4 &'(6) + C, -+ 3C3)/(v* - sin® 6)*72, it is
easy to obtain the formula

- | | |
(g)e = (wz(l;i;f;))m [ (1 + &) sing +§—;] T 0"

which is called the second dpproximation. The difficulty near 6 = 0 has now been avoided.

In practical work, g,(6) is never used explicitly in finding the velocity distribution about an
aerofoil. It is introduced because of its use in the design of aerofoils.

In Ref. 3, it is shown that g,(6) sin § is expansible in a Fourier sine series conjugate to that
of 2y*'(6). Hence from a knowledge of g,(6) the shape 3°(6) can be derived. The procedure
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in design to be adoptéd, therefore, follows closely that given in R. & M. 2166*. Briefly, it consists
of using the relation (26) to obtain g,(6) when (gx),, C; have been given, and C, and y guessed.
The shape is then immediately derivable from g(6) by the methods given in R. & M. 2166

2.4. Comparison between approximate and exact calculations is made on one of the aerofoils
designed in section 3. Fig. 2 demonstrates graphically the comparison between the exact
velocity distribution at certain C,’s with the third approximation. This approximation gives a
slight deviation from the flat distribution at C; = 1-033 and gives C;, = 0-96 as the top of the
C, range. However, the third approximation is clearly very good except very near the leading
and trailing edges, for values of C;, of about unity.

Also on Fig. 2 is shown Approximation II for the upper-surface velocity at C; = 1-033. This
also lies close to the exact velocity distributions and therefore, we may have confidence in the
reverse process of designing aerofoils to have specified velocity distributions as given in
R. & M. 21664, since this method uses Approximation II as a basis.

3. Three Symmetrical Aerofoils—3.1. In this section, details will be given of the design of
three aerofoils, designed to operate at zero incidence with a large low-drag range of C;. Some
remarks on the low-drag range are necessary first.

For conventional aerofoils whose lift is derived by incidence, the term low-drag is applied when
there are positive velocity gradients over the front part of the surface of the aerofoil within a
range of lift-coefficients. This definition implies first, adverse velocity gradients over this part
of the surface outside this range of C, and second, adverse gradients at all C,’s over at least
some part of the rest of the aerofoil’s surface.

Such a simple definition of low-drag range (there are, of course, many others possible) with
its implications cannot be applied to aerofoils whose incidence is independent of lift, and we do
not attempt to make any definition for the general case. However, we may justifiably restrict
ourselves to the case of zero incidence since this appears to be the case most important practically.
A perfectly good definition of low-drag range on such an aerofoil then is the range of C;’s within
which there are positive velocity gradients over the part of the surface over which porous suction
is not necessarily applied. This implies that within the C,-range there will be no danger of
separation from non-porous parts of the surface, that laminar flow will be possible over these
parts, and finally that the amount of suction required elsewhere will be kept as small as possible.
It does not follow that the velocity gradients over the porous parts will necessarily be always
adverse, although this is true for C,’s within the low-drag range as defined above. We may
expect in fact that outside the C;-range, there will be positive velocity gradients over some parts
of the porous surface.

3.9. We shall now consider the simplest possible case of a low-drag aerofoil, that for which
the velocity is constant over the upper surface of a symmetrical aerofoil at a certain C; and zero
incidence. It has already been remarked in section 1 that it is impossible for the velocity to
increase over the whole of the upper surface, and the case of constant velocity is, therefore, the
next most desirable distribution.

Suppose qx = €, 0 < 6 < =, for a circulation corresponding to f, as given in section 1.
The conjugate of log g is zero, and equation (15) gives in this case

20) =7 —F (t‘an f cot %) — F (cot £ cot %): — G(p, 6).
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Equation (16) immediately gives / in terms of g:
9 r# P
=2 1 £
> fo og cot 5 ap

and sind/g, is, from equation (14), given by sinf/ g, = e™ (sin f + siné).
The ordinates of the aerofoil are then easily computed by the formulae (11).  If ¢ is the length
of the chord of the aerofoil, the lift coefficient corresponding to § is

C, — 8z sin B

Such aerofoils are doubly-symmetrical. Within the C,-range the velocity increases over the
front half, and decreases over the rear half. Outside the C,-range, there will be a velocity
maximum near the leading-edge and also near the trailing-edge, and the velocity will be increasing
over some of the rear part. ' Porous suction will be required over the rear half of these aerofoils
for C;’s within the C;-range. ‘

Figs.. 1, 2, and 3 demonstrate three such aerofoils corresponding to g = 5, 8 and 20 deg.
Comments and comparisons will be given in section 5. -

4. Two Cambered Aerofoils—In this paragraph, aerofoils are described which do not use
porous suction, but suction at a slot. It has already been pointed out that, for aerofoils whose
lift does not depend only on the incidence, camber is hardly necessary. However, the analysis
is section 1 enables a particular type of cambered aerofoil to be designed, although it does not
come strictly in the class of lift-independent-of-incidence aerofoils.. The type has considerable
interest.

Suction at a slot has been applied to aerofoils which, by having a very sudden fall in velocity
at some point or, points on the surface at which the boundary layer is removed, can be designed
so that elsewhere on the surface there are only small negative velocity gradients. An obvious
extension to this idea is an aerofoil on whose surface the velocity takes two (different) constant
values over two parts of the surface. In this way, there are no adverse pressure gradients
except at one single point. '

‘Hughes® has worked out the potential flow for a particular case of such an aerofoil, and found
that the thickness of the aerofoil turned out to be negative. In his analysis, he assumed that
the two stagnation points on the circle into which the aerofoil is transformed correspond to
the two points separating the two regions of constant velocity on the aerofoil.

1f, however, the two separating points are taken to correspond to points other than the
. stagnation points on the circle a reasonable aerofoil shape can be derived. '

The analysis is very simple by the use of section 1.5.

Suppose gx =€, 0 < 0 < =
=l —mg <0 <0
The necessary conditions that f log gx 40 = 0 and f cosf log gx d0 = 0O are hereby auto-
matically satisfied. The remaining condition of equation (18) gives

[ ="2sinp

o9 b1 Q

and equation (17) gives immediately that



x (6) = sing log cotg—

and equation (14) that Sl; b~ (sin g +sinf)e?, 0 <6 <=
0
= (sinp + sinf) e, —a <6 <0
Hence there will be cusps at the points 8 = — g and 6 = — = - §, and spirals at the points

= 0 and =, where the discontinuities in velocity occur.

Figs. 4, 5 demonstrate two such aerofoils corresponding to # = 20 and 38 deg. -Remarks
on these aerofoils will be given in section 5.

5. General Properties of Such Aerofoils and Comments on the Aeroforls Designed —5.1. For an
aerofoil for which the relation C; = g, sin (& — «,) is approximately true, the centre of pressure
is well-known to be near the quarter-chord point. Further, if the moment on the aerofoil is
zero at zero Cy, then the position of the centre of pressure remains constant.

For aerofoils whose circulation is independent of incidence, the line of action of the resultant
force may pass through any point of the chord, and since this is an undesirable state of affairs
it is as well to be restricted to aerofoils with certain properties of symmetry of shape and also
constant incidence. It seems that such aerofoils will have little need to operate incidences
other than zero, although in exceptional cases is might be desirable to delay stalling by decreasing
the incidence as the lift increases (as was suggested in R. & M. 2611"). The moment coefficient
on such an aerofoil, following the method of R. & M. 2112?% may be easily evaluated.

_Choosing the axes in the aerofoil plane so that dwy/ 4z — 1 and z — {— 0 as 2 — oo, equation (7)
gives :
dw,

A, | ds :
IOgE:?+f§+ ....a8f >

But z — { — 0 as { — o0, hence

logd—dz?=flz-‘;+....asz—>oo.. .. . .. . .. .. (27)
and %:1-}—3—2—}— ......
S
=d_zg°<1¥rié£+ )
Hence, %5=6%’<1+%K-+.;..),asz—>oo.

Blasius’ theorem says that the moment about the origin is the real part of }pf(dwg/d2)? z dz,
the integral being taken round a contour enclosing the aerofoil.

9
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This integral’equals
f(l NN ) (1 n Zﬁ_{ + ....)zzdz — }o2mi (28, — K.

Hence, the moment is equal to — 2z pc,, where a, = b, -+ ic,.
But from equation (27), log ¢, — 4% = a, (cos 28p 7 sin 20) + ....

hence the moment coefficient is

T

f sin 20 log g,d8.

Cn = (Chord)®

The forces on the aerofoil having been resolved into a force through and a moment about the
origin in the z-plane, we can find the position of this point as follows.

hence, since 2 — ¢ — 0 as z — o0,

7T

fzd@:O. S ()

—7

It is simple therefore to find the origin of co-ordinates to satisfy equation (28), after the
aerofoils shape has been found.

The above analysis shows that:

(i) the moment coefficient does not vary with lift coefﬁment and
(i) the line of action of the lift force remains constant.

These two results would appear to have the greatest practical importance, since the problem
of control for different lift-coefficients is greatly simplified.

For a symmetrical aerofoil, log g, is an even function of 6, and hence C,, = 0, and equation (28)

gives
X, = f xd0

where %, 1s the position of the origin 0 with respect to the aerofoil co-ordinates:(x, y). This
origin will clearly lie near the half chord point. Since the centre of pressure of a supersonic
aerofoil lies near the half chord point the problems of control in supersonic aircraft may thus
- be considerably simplified by the use of aerofoils which in the subsonic range of speeds also have
the centre of pressure near this point.

5.2. A few brief comments will now be made on the aerofoils designed already.

The three symmetrical aerofoils all have a constant velocity at some C, over their upper
surfaces. The principal advantages of such aerofoils, used at zero incidence, are:

(i) A very large C,-range, which is approximately double that of ordinary aerofoils of
similar thickness.

(ii) The lowest possible magnitude of Veloclty at the top of the C L—range which implies a
high crltlcal Mach number.
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(iii) Constant centre of pressure at the mid-chord point.
(iv) Zero moment about mid-chord point for all C;’s.

Apart from those aerodynamic advantages, there is also a simplicity of construction.

Comment -upon the two aerofoils of Figs. 4, 5 is rather more difficult especially since they
are not aerofoils for which the lift is independent of the incidence. Since they have two cusps,
the physical flow will be close to the potential flow only when the latter gives a finite velocity
at each of those cusps. This can only occur for one value of the circulation and zero incidence.
At other incidences, potential flow must give an infinite velocity at one of the cusps, and will,
therefore, no longer represent at all closely the physical flow. However, at zero incidence, the
C,’s obtained are very large indeed for the thickness/chord ratio. Boundary-layer suction
must be applied at the single place at which the velocity decreases. Application of this type
of aerofoil to aircraft could only be considered after the stability characteristics had been
found—it may be that the aerofoil is unstable at zero incidence and it is certainly difficult to
visualise the real flow at other incidences. Also the fact that the aerofoils operate at one and
only one lift coefficient would demand a special flying technique and a particular type of aircraft.
It must be emphasised that these aerofoils have been included in this paper only for their
particular interest: they are not at all typical of the aerofoils which would use the Thwaites
Flap and whose design primarily is considered in this paper.

Conclusion.—Methods of designing aerofoils whose lift is independent of incidence have been
displayed. Some such aerofoils have been designed and the advantages to be gained are pointed
out.- In particular, aerofoils can be flown at zero incidence, under which condition the moment
coefficient is independent of lift coefficient, and the centre of pressure remains fixed.
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APPENDIX I

The even function which takes the value log | 1 + sinp cosecd | in the range 0 < 6 < =.

1. The conjugate G(8, 6) of this function is given by

G (8,0) = _sinf " log |1+ sing cosect |
J 7 f(, cos 8 — cost ’

If g = tan6/2, » = tang/2, p = cot8/2 tan ¢/2, this reduces tc

o=~ ()+4(2)-s0)

g 7q
in which  A(s) — fwk’_gp(f__Jlrs) ap.

dh 1 1. logs
NOW%——fO(Pz—I)P-I- ap = F

But #(0) = =?/4, hence A(s) = #*/4 — f (log s)/(s* — 1) ds.

s
0

. __= ? cot 5) + F (oot £ cot 2)
Therefore G(;?, ) = 5 + F (tan 5 cot 2) -+ B (cot 5 cot 5
2 r? logx
where F(p) == f e dx,

a function which has already been tabulated®

2. With the same substitutions

I, = f: log | 1 4 sin g cosec 8 | d0v[= 2 [7(7’) ‘1‘7(},):[ —x log (1 = 72)

7

and in which j(s) = wl—og—ﬁ(zi’j—ls) ip.

- dis) o 1 1 s =
Now e =, mEm e Y = e e

But j(0) = 0, therefore

2 o [° logs
jls) = Flog (1 + 9 f01+szds’

8 8
2 log s 2
s—%ds: 4 J log cot ¢ dt.

0 0

Therefore I, = — 4 J

3. It is obvious that j cos 8 log (1 + sin « cosec 6) d6 = O.
0
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APPENDIX II
The function log | 1 + sin g cosec 8 |

1. The conjugate of this function is given by

J©,8)=— 2—1n J: log | 1 + sin g cosec ¢ | cot 3(f — 6) d.
aj 1 cos .
Hencea? = — 2—7—'6 J‘-n m cot %‘(t — 6) at
_ 1= r (1 + #9)

% Lgp+ﬂu+pﬂ@—@@:”

all the terms being logarithmic and the substitutions of Appendix I having been used.

Also, through integration by parts,

sin i cot ¢ .
J 0. 8)=— nﬂf Sina+sintlogs1n%(l~0)dt

af sing (" cot ¢

~o el L (¢ —
and so +  Ena gt smd cot 3(¢ —0) dt

ob
_Snp ) () () 2
Zl, % GIN0Te B9 TTP)
=0

since, again, all the terms are logarithmic.

Hence J (8, B) is constant and zero, since its average value is zero. Thus
Jo, ) =o. |

23

2. ].,(ﬂ):f log | 1 + sin g cosec 0 | d6
dj, _(~  do
—dﬁ_f_nsinﬂ—i—sinﬂ

= 0.

But J, (0) = 0, and since J, is regular, J, = 0.

T

3. JiB) = f sin 6 log | 1 + sin g cosec 6 | d6

-

N - . S cos? @ sin B
= [ cos § log | 1 4 sin g cosec 0 I]_” f_ﬂ(sinﬁ s 0) S

13



o 1 1 o o s
- f_nl:sinﬁ.—l— sin 6 _sine] d0+smﬁf_nd6 ——smﬁf_n sin § + sin @

= 2x sin g.

4. J.(B) = r cos f log | 1 4 sin g cosec 6 | 4

= 0

which is obvious.

14



SI

185 |-

1.0

076

- T e e d—— —— — —— ——— _._._—-___——-—_—_—_——_———-_—_——.——-———.—.—.—_—_—__‘-——_——

- -y —— " — — s — ——
—— —— 7 ——
— ——

————— e . ~

i%-65% Ethick

C.. enge st o incidence —0-74< C <04

Fic. 1. T.F.A. V.




/.
R et bR Sur face e
R bbb T AR e :

CLad

CLe10B3  Lower surfice

——— - Approximabion IT

Exact
______ — Approxmation I
o5
‘o
20% thisk

G range st ©° incidence ~1-033 < Cp € 1033 |

Fic. 2.

16



e
o
1
t
|
|
|
|
!
|
1
!

b e o e s e i e 4Gk s e il A e o e s i Sy e A e v e i S it At e e o i

C. =88l Upper Surface

|
C =
at B

‘l /”’f ~§§\\\

! ad N
oy 7 N
Sy, C = 28! Lower Surface AN

/ T S T T T — -
o 34.@3 %P Lhick

CV‘_ rmnge st o° ncidence -2+81< C <&-8l

Fic. 3. T.F.A, IIL

9 = 14705 At C =843

[

%= 0587k C =243

Frc.f4. CV.A. I, 9-2 per cent thick, C; = 243, Cps = O.

-‘%: 263  gbC, 200

¥ =038 oLl =60

Fic. 5. C.V.A. II, 53-1 per cent thick, Cy = 66, Cpr = 0.

(21605) Wt. 15-680 K9 3/52 F,M.&S5S. 17 PRINTED IN GREAT BRITAIN



R. & M. No. 2612
(10,294)
- AR.C. Technical Report

~ Publications of the
Aeronautical Research Coun‘cil

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH '
COUNCIL (BOUND VOLUMES)—
1934-35 Vol. I. Aerodynamics. Out of ﬁrmt :
- Vol II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 84.)
1935-36 Vol. I. Aerodynamics. 30s. (30s. 7d.) S
Vol. 11. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.) ,
1936 Vol. 1. Aerodynamics General, Performance, Airscrews, Flutter and '
Spinning. 40s. (40s. 94.).

Vol. II. Stability and Control, Structures, Seaplanes, Engmes etc. 50s.
(50s. 10d.)

1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and
Spinning. * 40s. (40s. 104.)
Vol. II. Stability and Control, Structures Seaplanes, Engines, etc. 60s.
(61s.)
1938 Vol. 1. Aerodynamics General, Performance, Airscrews. 50s. (51s.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind
Tunnels, Materials. 30s. {30s. 94.) _
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s.
' {50s. 114.)
. Vol. II. Stability and Control, Flutter and Vibration, Instruments,
Structures, Seaplanes, etc. 63s. (64s. 24.) .
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing,
Stability and Control, Structures, and a miscellaneous
section. 50s. (51s.)

Ceriain other veports proper to the 1940 volume will subsequently be
included in a separate volume,

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL—

1033-34 Is. 6d. (1s. 84.)
1934-35 Is. 6d. (1s. 8d.)
April 1, 1935 to December 31, 1936. 4s. (4s. 44.)
1637 2s. (25.°2d.)
1938 1s. 6d. (Is. 84.)
193948 3s. (8s. 24.)

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL
TECHNICAL REPORTS, AND SEPARATELY—

April, 1950 R. & M. No, 2600. 2s. 6. (2s. 73d.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH
‘COUNCIL—
December 1, 1936 — June 30 1939. R. & M. Ne. 1850. ls. 34. (1s. 44d.)
July 1, 1939 — June 30, 1945. R. & M. No. 1950. 1s. (1s. 134d.)
July 1, 1945 — June 30,.1946. R. & M. No. 2050. 1s. {Is. 13d.)
July 1, 1946 — December 31, 1946.  R. & M. No. 2150. 1s. 3d. (Is. 4}d.)
januaryl 1947 — June 30, 1947. R. & M. No. 2250, 1s. 3d. (1s. 43d.)

Prices in brackeis include postage.

Obtainable from
HER MAJESTY’S STATIONERY OFFICE

York House, Kingsway, LONDON, W.C.2 423 Oxford Street, LONDON, wW.1
P.O. Box 5659, LONDON, S.E.1
13a Castle Street, EDINBURGH, 2 ~ 1 St. Andrew’s Crescent, CARDIFF
39 King Street, MANCHESTER, 2 Tower Lane, BRiSTOL, 1
2 Edmund Street, BIRMINGHAM, 3 80 Chichester Street, BELFAST

or through any bookseller,

8.0, Code No. 23-2612




