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Summary.--It has been shown in R. & M. 26111 how lift may be obtained on aerofoils independently of the incldeflce. .... , 
In this paper mathematical processes are set out of designing such aerofoils to have specified velocity distributions 
at certain incidences and lift-coefficients. Approximate and exact methods are given, corresponding to the methods 
employed in the design of ordinary aerofoils. Several shapes are worked out, some of them being the product of 
ideas not given in R. & 5I. 26111. A full discussion of the characteristics of such aerofoils is given. 

I n t r o d u c t i o n . - - I n  R. & M. 26111, a method was explained whereby lift could be obtained 
on aerofoils independently of incidence. An essential part  of the method is the prevention of 
separation of flow by continuous suction over the parts of the surface where large adverse 
velocity gradients occur. Such aerofoils can certainly be called low-drag aerofoils, expecially 
if tile amount of suction is sufficiently great not only to prevent separation but  also to keep 
the boundary layer everywhere very thin. This amount of suction depends on whether the 
boundary layer has remained laminar or become turbulent over the non-porous parts of the 
surface. 

Much economy, therefore, can be gained by designing such aerofoils to have suitable velocity 
distributions so tha t  the flow remains laminar on the non-porous parts and also so tha t  there 
is a large range of CL for which low drag can be obtained with a small amount of suction. The 
now well-known ideas for achieving low drag on ordinary aerofoils are just  as applicable to 
aerofoils which, for example, fly at zero incidence always. I t  is necessary, therefore, to extend 
the usual methods of aerofoil design to the case in which incidence and circulation are not 
related. 

1. Exact  Theory . - -1 .1 .  The general method given by LighthilP is followed and generalised. 

Let the region outside an aeroioil be transformed conformally into the region outside a circle. 
Then ,  if z and ~ are complex variables in the planes of the aerofoil and circle respectively, there 
is a unique analytic function z(~) of transformation such tha t  dz/d$ -+ 1 as [$1 ~ ~ .  If the 
radius of the circle is uni ty  and the velocity of fluid at infinity is also unity, the most general 
fl0w about the circle is given by the complex potential  w(~) for which 

1 
w(~) = Wo,K ---- ~e -~° + $e_~------ a + i K  log ~ . . . . . . . . . .  (1) 

is called the incidence of the stream, and 2aK the circulation. 

dwo,K _ e_4, 1 + i K  . . . . . . . . . . . . . .  (2) 
d$ ~ ~e -~ 
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The veloci ty  of fluid on the circle at  the point  ~ = d ° is easily found from equat ion (2) to 
be 

] dw~,K = 12 sin (0 c~) -¢- K L = 2 ]sin (0 - -  ~) + sin fl ] (3) 
, , d~  ¢=do 

in which K = 2 sin/3 for convenience. 

If q°,K, and q0 are the  velocities at the  surface of the  aerofoil for general values of incidence 
and circulation, and for zero values respectively,  the  following relations h o l d : - -  

Hence 

Fur ther ,  

t dw~,K de] and qo = [ dwo de 

q o =  2 s i n 0  d-z ¢=~i0 

qo ~ [ ~_jo = e  iO 

(4) 

or', using equat ion (3 ) ,  

q ° ' K -  I sin ( 0 q 0  --~)sl:n 0 + s i n / ? [  = i cos ~ - -  cot 0 sin ~ + cosec 0 sin ~'.  (s) 

B y  means of this formula, the  value of q0 in terms of qo,K, o~ and fi is obtained.  

Certain condit ions mus t  be imposed upon q0 which are now found. 

Since the aerofoil is a to ta l ly  enclosed region, the  integrals  [.dz or S(dz/d¢) d¢ t aken  round 
contours enclosing the aerofoil and circle mus t  be zero. 

F rom equat ion (2), 

dwo __ 1 -- 1 and so the closing-up condit ion becomes 

fd~o  (1 - -  @ ) d ~  = 0. 

Now dwo/dz --~ 1 as ',z i --~ oe, hence dz/dwo m a y  be wri t ten  as 

dwo T + P + 0 a s ~ - +  oo 

and equat ion (6) then gives the  result  at = 0. 

Hence log ~-0 = T  ~ + 0 ---- - -  log k-d~-) 

And so, on the  aerofoil, if dwo dz -- qo e -~z, ,," 

(7) 

log ~ = ~-~ -~- " . . . . .  :=o,0 (s) 
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Thus log qo m a y  be expanded  in a Fourier  series containing terms in cos n0 and sin nO only 
for n > /2 .  Therefore, 

log qo dO = 0 f 
~ 

f s i n 0 1 o g q o d 0  = 0  
- - J g  

f co s 0 1ogqod0  = 0 .  

These equations mus t  always be satisfied. 

(9) 

From equat ion (7), log dwo/dz = log qo - -  i z ,  and since w0 is an analytic funct ion in the region 
outside the circle, log q0 and z on the  circle are expansible as conjugate  Fourier  series in 0. 
Therefore, z is determinable  from qo by  Poisson's integral  

1 p f  log qo(t)cot  ½(t - -O)dt .  (10) z (0) = - -  2-~- _. " . . . . . . . . .  

P denot ing tha t  the  Cauchy principal value of the integral  is t aken  at t = 0. 

The ordinates and abscissae of the  aerofoil are given by the  two relations 

x = I ds cos z ,  y = S ds sin z 

which, using equat ion (4) can be wri t ten  

sin 0 = 2 f s i n  o cos  z dO, y = 2 s in  z dO . . . . . .  (11) 
J qo 

The theory  having been set out, methods  of design are now described. 

1.2. If q0 is given, z is obtainable  from equat ion (10), and the  shape i s  deriveable from 
equat ion (11). qo in its turn  can be obta ined in terms of q~, from equat ion (5), which gives 

log q0 = log q~K - -  log I cos ~ - -  sin ~ cot 0 + sin ~ cosec 0 i . . . .  (12) 

Thus in the general case it is necessary to derive the  conjugate  and  first three Fourier  
coefficients of the  last t e rm in equat ion (12), taken over any range of 0 in which q~K is specified. 
This, however,  is complicated,  and since it seems tha t  the  practical use of aerofoils for which 
lift is independent  of incidence will be confined to zero incidence, only the case ~ = 0 will be 
considered. 

1.3. For  ~ = 0, equat ion (12) becomes 

log q0 = log qK - -  log I1 + sin/~ cosec01 . . . . . . . . . .  (13) 

and  equat ion (5) becomes, qo,x = qg 

qK sin 0 
. . . . . . . . . . . . . . . .  (14) 

q0 - -  sin ~ + sin 0 

The coniugate  and first three Fourier  coefficients of the  last te rm in equat ion (13) are 
therefore required. Here again the work in the  general case is complicated, and the  following 
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simplifications are made which are justified at  any rate by practical requirements. 0n ly  the 
case of the specification of qK over the whole range of 0 for one K is considered. There are then 
two cases: symmetrical and cambered aerofoils, with which the paper deals separately. 

1.4. Symmetrical Aerofoils:--in which 0 = 0 and 0 = ~ correspond respectively to the trailing 
and leading-edges, log q0 is then an even function of 0, and for this case, equation (10) becomes 

g (0) --  sins 0 p f cosl°g0 --q°(t)cos t dt. 
0 

The conjugate of the even function which takes the value log ] 1 + sin/3 cosec 01 for 0 < 0 ~< ~, 
shown in Appendix I to be 

C(/3, o) - 2 E- F ( t a n i  cot 2 ) +  F (cot i cot 2),  

in which 
f log'x 

F(p) = 2 p x" i dx. 
o 

Thus 

z (o) = -- G(/3, O)--sin---20 P f log qK (l) dr. (15) 
2~  cos0 - - c o s t  . . . . . . . .  

0 

Also in Appendix I are calculated the first three Fourier coefficients of the function, and using 
these results, equation (9) becomes 

f _- 
0 0 

f log qK COS 0 dO = O. 
0 

. . . . . . . . . .  (16) 

In the case of symmetrical aerofoils the condition ~ sin 0 10g qo do = 0 is automatically 
L t  

satisfied. 

I t  is worthwhile to point out an interesting result from the second of equations (16). Integration 
by parts gives 

( K)" ( K L ~ ' s i n O d q K = O  sin 0 log q - -  - -  
0 ~ K ( o )  qK 

or [ sin0 dqK dO = O. 
J o qK dO 

Since sinO/q K >~ 0 for 0 ~< 0 ~< ~, dqK/dO must take both positive and negative values in this 
range, unless it is everywhere zero. Thus the interesting result is obtained tha t  tile velocity 
cannot be monotonically increasing on the whole of the upper surface. 

1.5. Cambered A erofoils.--If qK is specified over the whole surface for a certain K, the conjugate 
is required of log I 1 + sin/3 cosec 0 In Appendix II,  it is shown that  this is identically 
z e r o .  
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Thus, simply,  

1 pf fog qK(t) cot ½(t - -  O)dt . . . . . . . . . . .  (17) z (o) = - - 2 ~  _.  

Also in Appendix  I I  are found the necessary Fourier  coefficients of log [ 1 + sin/3 cosec 0 I , 
and  therefore, equat ion (9) becomes 

The design 

j log qK dO = 0 

j sin0 log qK dO 2~sin/3 . . . . . . . . . . . .  (18) 

f cos01ogqKd0 = 0 .  

of some aerofoils according to these methods  will be explained in sections 3 and 4. 

2. A p p r o x i m a t e  T h e o r y . - - 2 . 1 .  In  this pa ragraph  the general  process of Goldstein 's  a p p r o x i -  
mat ions  based on Theodorsen 's  method  of t ransformat ion  of an aerofoil into a circle is followed. 

The aerofoil shape is given by  

x = 2a (cosh ~ i  - -  cosh~0 cos0) ] 
(19) o . • • • • • . . . . .  

y = 2a s inh ~0 cos 0 

in which 0 = 0 is the  leading edge,* and  the chord, c, lies along y = 0. 

The  circle [ $ I = e~l is t ransformed into this  aerofoil b y  the relat ion ¢ ---- $ (z) for which 
d $ / d z - +  1 as z-+ o% and the  modulus of this  t ransformat ion  at  the  point  0 on the aerofoil is 

[ d~ eC~l[1 + ~(0)] = ½F(O) (20) 
' 0 }21/5 2 [1 + {~o ( ) ] [sinh~ ~o -}- sin s 0] 1/2 . . . . .  

I 

in which [~o] = ~--£, [~o(t) - -  s(t) ~ ' ( t )  ] dt  . . . . . . . . . . . .  (21) 

and  

s (0) = - -  N ~0(t) {1 + d(t)} cot ½ It + e(t) - -  0 - -  ~ (0)] dt  . . . .  (22) 

Equa t ion  (22) is an integral  to determine s (0) from ~o (0). 

Thus  from equatioli  (20), we get  

q~,K = ½F(O) {2 sin (0 + e + ~) + K / e  E~a} 

cC~ 
= r(0) {sin (0 + } . . . . . . . . . .  (23) 

since the point  e i*+M Oil the circle .corresponding to the point  0 on the aerofoil  is related by  
¢ = 0 + ~ .  

2.2. Approximat ions  are carried out, for th in  aerofoils, a and ~L take  their  a sympto t i c  
values given by  4a = c and cosh ~ = 1. If  second and higher powers of the  thickness are 

* In  contrast  to  the convention in section 1, the s tream is in the direction - - e  -ia, x is measured positive from the 
leading to the trailing edge. 

5 



neglected, we can neglect occasionally second and higher powers and products of ~0, ~0", e, ~', 
so tha t  equations (19) to (23) become, taking the chord to be of unit length, 

x =  1(1 - -cos0) ,  y = ½9sin0 

[,e] = Co = N ,e (t) dt 

1 S lo) = 2,, ,e ( t ) co t  ½(t - o ) d t  
--$,'1: 

= I e c°(1 + e) sin(0 -}- e + ~ ) +  
q~,K = (q~:)3 (~o~ + sin 2 g)5/~ 

(24) 

The last equation is the formula corresponding to Goldstein's third approximation and is the 
formula which is used to obtain the velocity distribution about an aerofoil of given shape. 

If it is desired to find the aerofoil shape to have a specified velocity distribution, it is necessary 
to make use of inferior approximations. These approximations will now be obtained for the 
case of symmetrical aerofoils at zero incidence which is the case most applicable in practice 
to aerofoils such as we are considering. I t  is perfectly simple to derive the approximations for 
cambered aerofoils, and it is left to the reader to develop them if he requires them. 

2.3. For a symmetricM aerofoil, y(O) and e(0) are odd functions and ~0(0) and e (0) are even 
functions of 0. Suffix s denotes vahies corresponding to a symmetrical aerofoil. 

To continue the approximations ~ is ignored in comparison with sin ~ O, and products and 
squares of e, e', Co, CL/2n in comparison with unity. The third approximation for q~,K given in 
equation (24) then reduces to 

CL (qK)l = 1 + ,,' + Co + ~, cotO + ~ cosec0 

which is called the first approximation. This is clearly inaccurate near the leading edge where 
0 is small, and this is due primarily to the neglect of ~02 in comparison with sin~0. 

This can be remedied. With  

g, (0) '= e,' + Co + e, cot0 

CL so tha t  (qK)l = 1 + g,(0) + ~ cosec0 . . . . . . . . . . . . .  (25) 

and byapprox ima t ing  to F(O) in equation (20) by  (1 + s'(O) + Co + ½Co2)/(~ 2 + sin ~ 0) 1/2, it is 
easy to obtain the formula 

= (1 Jr- ½Co 2) (1 + g,) sin0 + 
(qK)~ (W~ + sin2 0)1/2 . . . . . . . .  

which is called the second approximation. The difficulty near 0 = 0 has now been avoided. 

In practical work, g,(O) is never used explicitly in finding the velocity distribution about an 
aerofoil. I t  is introduced because of its use in the design of aerofoils. 

In Ref. 3, it is shown that  g,(O) sin 0 is expansible in a Fourier sine series conjugate to tha t  
of 2y'(0). Hence from a knowledge of g,(O) the shape y'(O) can be derived. The procedure 
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in design to be adopted, therefore, follows closely tha t  given in R. & M. 21664. Briefly, i t  consists 
of using the relation (26) to obtain g,(O) when (qK)~, CL have been given, and Co and ~0 guessed. 
The shape is then immediately derivable from g,(0) by  the methods given in R. & M. 21664. 

2.4. Comparison between approximate and exact calculations is made on one of the aerofoils 
designed in section 3. Fig. 2 demonstrates graphically the comparison between the exact 
velocity distribution at certain CL's with the third approximation. This approximation gives a 
slight deviation from the flat distribution at CL = 1.033 and gives C~. = 0" 96 as the top' of the 
CL range. However, the third approximation is clearly very good except very near the leading 
and trailing edges, for values of C~. of about unity. 

Also on Fig. 2 is shown Approximation II  for the upper-surface velocity at C~ = 1.033. This 
also lies close to the exact velocity distributions and therefore, we may have confidence in the 
reverse process of designing aerofoils to have specified velocity distributions as given in 
R. & M. 21664, since this method uses Approximation II  as a basis. 

3. Three Symmetl, ical Aerofoils.---3.1. In this section, details wiU be given of the design of 
three aerofoils, designed to operate at zero incidence with a large low-drag range of CL. Some 
remarks on the low-drag range are necessary first. 

For conventional aerofoils whose lift is derived by incidence, the term low-drag is applied when 
there are positive velocity gradients over the front part  of tile surface of the aerofoil within a 
range of lift-coefficients. This definition implies first, adverse velocity gradients over this par t  
of the surface outside this range of CL and second, adverse gradients at all C~'s over at least 
some part  of the rest of the aerofoil's surface. 

Such a simple definition of low-drag range (there are, of course, many  others possible) with 
its implications cannot be applied to aerofoils whose incidence is independent of lift, and we do 
not a t tempt  to make any definition for the general case. However, we may justifiably restrict 
ourselves to the case of zero incidence since this appears to be the case most important  practically. 
A perfectly good definition of low-drag range on such an aerofoil then is the range of CL's within 
which there are positive velocity gradients over the part  of the surface over which porous suction 
is not necessarily applied. This implies tha t  within the CL-range there will be no danger of 
separation from non-porous parts of the surface, tha t  laminar flow will be possible over these 
parts, and finally that  the amount of suction required elsewhere will be kept as small as possible. 
I t  does not follow that  the velocity gradients over the porous parts will necessarily be always 
adverse, although this is true for CL's within the low-drag range as defined above. We may 
expect in fact tha t  outside the Crsange,  there will be positive velocity gradients over some parts  
of the porous surface. 

3.2. We shall now consider the simplest possible case of a low-drag aerofoil, tha t  for which 
the velocity is constant over the upper surface of a symmetrical aerofoil at a certain C~ and zero 
incidence. I t  has already been remarked in section 1 tha t  it is impossible for the velocity to 
increase over the whole of the upper surface, and the case of constant velocity is, therefore, the 
next most desirable distribution. 

Suppose qK = d, 0 ~< 0 ~< a, for a circulation corresponding to ~, as given in section 1. 

The conjugate of log qK is zero, and equation (13) gives in this case 



Equation (16) immediately gives 1 in terms of fi: 

l = 2  _ f f  log cot ~ dp 
7 6  0 ' 

and sinO/qo is, from equation (14), given by  sin0/q0 = e -~ (sin/~ + sin0). 

The ordinates of the aerofoil are then easily computed by the formulae (11). 
of the chord of the aerofoil, the lift coefficient corresponding to fi is 

8= sin// 
C L - -  

C 

If c is the length 

Such aerofoils are doubly-symmetrical. Within the CL-range the velocity increases over the 
front half, and decreases over the rear half. Outside the CL-range, there will be a velocity 
maximum near the leading-edge and also near the trailing-edge, and the velocity will be increasing 
over some of the rear part. ' Porous suction will be required over the rear half of these aerofoils 
for CZs within the CL-range. 

Figs .  1, 2, and 3 demonstrate three such aerofoils corresponding to /~ = 5, 8 and 20 deg. 
Comments and comparisons will be given in section 5. 

4. Two Cambered A erofoils.--In this paragraph, aerofoils are described which do not use 
porous suction, but  suction at a slot. I t  has already been pointed out that,  for aerofoils whose 
lift does not depend only on the incidence, camber is hardly necessary. However, the analysis 
is section 1 enables a particular type of cambered aerofoil to be designed, although it does not 
come strictly in the class of lift-independent-of-incidence aerofoils.. The type has considerable 
interest. 

Suction at a slot has been applied to aerofoils which, by  having a very sudden fall in velocity 
at some point or points on the surface at which the boundary layer is removed, can be designed 
so tha t  elsewhere on" the surface there are only small negative velocity gradients. An obvious 
extension to this idea is an aerofoil on whose surface the velocity takes two (different) constant 
values over two parts of the surface. In this way, there are no adverse pressure gradients 
except at one Single point. 

I-Iughes 5 has worked out the potential flow for a particular case of such an aerofoil, and found 
tha t  the thickness of the aerofoil turned out to be negative. In his analysis, he assumed tha t  
the two stagnation points on the circle into which the aerofoil is transformed correspond to 
the two points separating the two regions of constant velocity on the aerofoil. 

If, however, the two separating points are taken to correspond to points other than the 
stagnation points on the circle a reasonable aerofoil shape can be derived. 

The analysis is very simple by  the use of section 1.5. 

Suppose qK = e% 0 < 0 < ~ ~[ 

; = e - Z , - - ~ < O  < 0 

y The necessary conditions tha t  log qK dO = 0 and cos 0 log qK dO = 0 are hereby auto- 

matically satisfied. The remaining condition of equation (18) gives 

l ~ sin/~ = ~  

and equation (17) gives immediately that 
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0 
x (0) = sin~ log c o t ~  

and  equat ion  ( 1 4 ) t h a t  sin 0 
q0 

--  ( s i n [ ? +  sin0) e - l , 0 <  0 < 

= (sin/3 q- sin0) e ~, - - ~  < 0  < 0 

Hence  there  will be cusps at  the points 0 = --/~ and 0 --  - -  ~ + {?, and spirals at the  points  
0 = 0 and  a, where  the  discontinuit ies  in veloci ty  occur. 

Figs. 4, 5 demons t ra te  two such aerofoils corresponding to /~ = 20 and 38 deg. R e m a r k s  
on these aerofoils will be given in section 5. 

5. Geneeal Properties of Such Aerofoils and Comments  o~ the Aerofoils Designed. - -5 .1 .  For  an 
aerofoil for which the relat ion CL = a0 sin (~ --  ~o) is approx imate ly  true, the centre  of pressure 
is wel l -known to be near  the  quar te r -chord  point.  Fur ther ,  if the  m o m e n t  on the aerofoil is 
zero at  zero CL, then  the  posit ion of the  centre  of pressure remains constant .  

For  aerofoils whose circulat ion is independen t  of incidence, the line of act ion of the resu l tan t  
force m a y  pass th rough  any  point  of the  chord, and  since this is an undesi rable  s ta te  of affairs 
it  is as well to be res t r ic ted to aerofoils wi th  certain propert ies  of s y m m e t r y  of shape and  also 
cons tan t  incidence. I t  seems t ha t  such aerofoils will have lit t le need to opera te  incidences 
o ther  thafl zero, a l though in except ional  cases is migh t  be desirable to delay stall ing by  decreasing 
the  incidence as the  lift increases (as was suggested in R. & Mi 26111). The m o m e n t  coefficient 
on such an aerofoil, following the  m e t h o d  of R. & M. 21122, m a y  be easily evaluated.  

Choosing the axes in the aerofoil plane so t ha t  dw, o/dz -+ 1 and  z - -  ~-+ 0 as z -+ oo, equa t ion  (7) 
gives 

log dwo _ a2 a~ 
dz ¢3 + - #  + . . . .  as ¢ - +  oo 

Bu t  z - -  ¢ -+ 0 as ¢ -+ oo, hence 

log dwo _ a,, 
dz z ~ + . . . .  as z -+ oo . .  (27) 

r ~2 and  d w , _  1 + + 
dz -~ . . . . . . .  

Also dZaK- 1 1 i K  
- P + T 

de " '"  

Hence,  dwK - -  dw° (1 + i K  + " " " )  ' as z--> °° dz --z 

Blasius' theorem says t ha t  the m o m e n t  about  the  origin is the  real par t  of ½p~(dWs/dz) 2 z dz, 
the  integral  being t aken  round  a con tour  enclosing the aerofoit. 

9 
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This integral:equals 

½p 1 + ~ +  .... 1 + ~ -  ....),. 
Hence, the moment is equal to -- 2~pc~, where a2 = b~ + @2. 

But from equation (27), log q0 -- ix = a~ (cos 200 i sin 20) + . . . .  

hence the moment coefficient is 

_ --4 ff  
Cm (Chord)~ sin 20 log qo dO. 

The forces on the aerofoil having been resolved into a force through and a moment about the 
origin in the z-plane, we can find the position of this point as follows. 

l i m ( z - - ¢ )  ---- ~ Z dO 
z - + o o  _ ~  

hence, since z -- ~ -+ 0 as z -+ co, 
~z 

f z dO = 0 (28) 

I t  is simple therefore to find the origin of co-ordinates to satisfy equation (28), after the 
aerofoils shape has been found. 

The above analysis shows that :  
(i) the moment coefficient does not vary  with lift coefficient, and 
(ii) the line of action of the lift force remains constant. 

These two results would appear to have the greatest practical importance, since the problem 
of control for different lift-coefficients is greatly simplified. 

For a symmetrical aerofoil, log q0 is an even function of 0, and hence C~ = 0, and equation (28) 
gives 

S Xo = x dO 

where x0 is the position of the origin 0 with respect to the aerofoil co-ordinates ,(x, y). This 
origin will clearly lie near the half chord point. Since the centre of pressure of a supersonic 
aerofoil lies near the half chord point the problems of control in supersonic aircraft may thus 
be considerably simplified by  the use of aerof0ils which in the subsonic range of speeds also have 
the centre of pressure near this point. 

5.2. A few brief comments will now be made on the aerofoils designed already. 

The three symmetrical aerofoils all have a constant velocity at some CL over their upper 
surfaces. The principal advantages of such aerofoils, used at zero incidence, are: 

(i) A very large CL-range, which is approximately double that  of ordinary aerofoils of 
similar thickness. 

(ii) The lowest possible magnitude of velocity at the top of the CL-range which implies a 
high critical Mach number. 
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(iii) Constant centre of pressure at the mid-chord point. 
(iv) Zero moment about mid-chord point for all CZs. 

Apart from those aerodynamic advantages, there is also a simplicity of construction. 

Comment  u p o n  the  two aerofoils of Figs. 4, 5 is r a ther  more  difficult especially since t hey  
are not  aerofoils, for which  the lift is independen t  of the  incidence. Since t hey  have  two cusps, 
the  physical  flow will be close to the potent ia l  flow only When the  la t te r  gives a finite veloci ty  
at  each of those cusps. This can only occur for one value of the  circulat ion and  zero incidence. 
At o ther  incidences, potent ia l  flow mus t  give an infinite veloci ty  at  one of the  cusps, and  will, 
therefore,  no longer represent  at  all closely the  physical  flow. However ,  at  zero incidence, the  
CL'S obta ined  are ve ry  large indeed for the  th ickness /chord  ratio. Boundary - l aye r  suct ion 
mus t  be applied at  the  single place at  which  the  veloci ty  decreases. Applicat io n of this type  
of aerofoil to aircraft  could only be considered after  the s tabi l i ty  character is t ics  had  been 
f o u n d - - i t  m a y  be t ha t  the  aerofoil is uns table  at  zero incidence and  it is cer ta in ly  difficult to 
visualise the real flow at o ther  incidences. Also the  fact t ha t  the  aerofoils opera te  at  one and  
only one lift coefficient would  d e m a n d  a special flying technique  and  a par t icu lar  type  of aircraft.  
I t  mus t  be emphasised tha t  these aerofoils have  been included in this paper  only for thei r  
par t icu lar  interest :  t hey  are not  at  all typica l  of the aerofoils which  would  use the Thwai tes  
Flap  and  whose design pr imar i ly  is considered in this paper.  

Conclusion.--Methods of designing aerofoils whose lift is independent of incidence have been 
displayed. Some such aerofoils have been designed and the advantages to be gained are pointed 
o u t .  In particular, aerofoils can be flown at zero incidence, under which condition the moment 
coefficient is independent of lift coefficient, and the centre of pressure remains fixed. 
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A P P E N D I X  I 

The even funct ion which takes the value log ] 1 + sin/~ cosec 0 ] in the range 0 ~ 0 ~ ~. 

1. The conjugate  G(/~, O) of this funct ion is given by  

G(p,O) = --sin---~Of ~ log]  1 -b s in/~cosect  ] dt. 
~z - .0  COS 0 - -  C O S  

If q = tanO/2, r = tant; /2,  p = cotO/2 tan  t/2, this reduces tc 

in which h(s) - -  f~o log (p + s) @. 
o p ~ - - I  

Now dh f ~  1 1 dp - -  
~ =  o(p ~ - 1 )  P + ~  

log s 
s ~ - -  1 

f 
s 

But  h(0) = n~/4, hence h(s) = ~ / 4  - -  ; (log s)/(s ~ - -  1) ds. 

There~oreG(fl, 0 ) - -  2 +  F ( t a n ~ c o t 2 ) + F  ( c o t ~ c o t 2 )  

where F(p)  2 fP log x dx, 

a funct ion which has a l ready been t abu la ted  ~. 

2. Wi th  the  same subst i tu t ions  

I0 = log I 1 -t- sin ~ cosec 0 [ dO 
0 

a n d i n  w h i c h j ( s ) =  f~  l°$11P'+ s) dp. 
. + 1  

N o w  dj(s) _ fo~ 1 
ds jo  {P~ + 2 ) ( p  + s) @ - 

But  j(0) = O, therefore 

log (1 + s ~) - -  /(s) = -~ 

r n ~ log s 
Therefore I0 = - -  4 s 2 + 1 

~ 0  

1 l o g  s + 
1 + s  ~ 

' log s ds 
o l + s ~  • 

f ~ log cat t tit. 
0 

- - d s  = 4 

S 

1 + s ~ 2  

f 
~ 

3. I t  is obvious tha t  cos 0 log (1 -F sin ~ cosec O) dO = O. 
0 
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A P P E N D I X  II 

The function log [ 1 + sin fl cosec 0 l 

1. The conjugate of this function is given by  

1 j log [ 1 + sinfl cosec t ] cot ½(t - -  0) J ( 0 ,  fl) - 2= -= dr. 

Hence aJ  _ 1 f~ cos fl cot ½(t - -  O) dt 
Off 2~.  -~ sin fl + sin t 

(1 - r ~) (o (1 + pq) @ = o 
2~ J_~ (p + r) (1 + pr) (q - -p )  

all the terms being logarithmic and the substitutions of Appendix I having been used. 

Also, through integration by parts, 

sin fl 
y (o, fl) - 

gg f log ½(~ --  0) cot  t 
sin dt 

-~ sin~ + s in t  

oj  __ sin fl 
and so 0-0 -- + 2~ f = cot  t 

-~ (sin £ ~ sin t) 
c o t  ~(t - o) dt 

sinfl(°° (1 --p2) (1 +p~)  (1 + r  ~) (1 - -qp)  
2~ 3_~ 2p 0 + r)(1 + pr) (p - q )  

= 0  

2 

(1 -I- _.@~) @ 

since, again, all the terms are logarithmic. 

Hence J (0, fl) is constant and zero, since its average value is zero. Thus 

j ( o ,  b) - - o .  

7~ 

2. J0(B) = f log] 1 + s inf lcosec0 [ dO 

d J o  f'~ dO 
dfl - -  -= sin0 + sinfl 

= 0 .  

But  Jo (0) = 0, and since Jo is regular, Jo = 0. 

. Jl(fl) = j sin 0 log[ 1 -¢- sin fl cosec 0 [ dO 

[ ] ~  F c°s= 0 sin fl 
---- _ - - c ° s 0 1 ° g ]  1 + s i n f l c o s e c 0  [ _ - -  _~(sinfl + sin0) sin0 

18 

do 



- -  -~ i n ~  + sin 

= 2a sin/~. 

~1 f f sin 6 dO -1- sin/~ dO - -  gin2/~ 
dO 

s in~  -+- sin O 

4. J2(fl) = f cosOlog  

= 0  

which  is obvious. 

1 -f- sin/~ cosec O dO 
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