NhEd

\t:x:c:f—l’m

R, & W, Ho. 2808
(5830)
ARC, Teshnical Reopori

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
- REPORTS AND MEMORANDA

An Approximation Simphfying Wing

Flutter Calculations
By

G. A. Navior, D.F.C., BSc.,, AF.R.A5S.

NATQ@?M_L AERORAUTICAL ESTABLISHMENT

LIBRARY

Crown Copyright Reserved

LONDON : HIS MAJESTY’S STATIONERY OFFICE
1951
THREE SHILLING’S" NET




i ESTABLISHIEELY
oo i\ Y

SP/ENEININI #

An Approximation Simplifying Wing Flutter
Calculations |
- By .
G. A. Navior, DF.C, B.Sc, AF.RAES.

CommunicaTep BY THE Principal Direcror oF ScientiFic ResearcH (AIR),
| MINISTRY OF SUPPLY '

Repartsg and Memoranda No. 26@ 5*
'14}57"21, 194-2 |

Summary.—This report shows that the application of classical flutter theory! to the determination of wing flexural-
torsional flutter speeds is considerably simplified by the omission of a term which is usually the very small difference
between two small quantities. With this simplification it is possible to derive a formula giving the critical
speed explicitly in terms of the dynamical coefficients. Numerical examples show that this approximation gives
practically the same flutter speeds as the complete classical theory, even when the coefficients are given values which do
not normally occur. A simpler approximate formula is obtained by a combination of the first approximation with
Pugsley’s simplified theory? ; this second approximation gives flutter speeds for normal wings which agree with those
from classical theory. : ' S

1. Introduction.—Several attempté have been made to ”simplify the classical theory of flexural-
torsional wing flutter, perhaps the most notable being Pugsley’s simplified theory.®? In the prac-
tical application of Pugsley’s theory, however, experience has indicated certain disadvantages :—

(1) the flutter speed is normally derived graphically from the intersection of two curves;
“direct solution for the speed requires the use of a calculating machine;

(2) it is troublesome to check whether or not the motion is stable at airspeeds below the
flutter speed ;- ' ' o

(3) although the theory gives good results for ‘ normal’ wings, it becomes inaccurate in

* certain cases, particularly when the separation between the flexural and inertia axes

is unusually small, and when the aerodynamic torsional damping coefficient, [, is
varied. ' '

The present report is concerned with an approximation to classical theory' which enables
wing-flutter speeds to be calculated more quickly than by either classical theory or-Pugsley’s
method, and more accurately than by the latter; moreover, for this approximation a slide rule
gives sufficient accuracy. The stability of the motion at any airspeed can be determined directly
from terms required for the evaluation of the flutter speed. The approximation is obtained by
assuming that one of the terms appearing in the classical theory—it is usually comparatively
small—vanishes. In section 2 below the theoretical justification for this assumption and the
resulting equation for the flutter speed are given. The corresponding formulae derived from
classical theory and Pugsley’s theory are also given in section 2. Numerical examples to illustrate
the accuracy of the approximation are given in section 3.
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The method of this report is considered to be an adequate substitute for the more elaborate
classical method in all practical cases, and can be used where computational difficulties might
preclude the use of the classical method.

2. Methods for Evaluating Wing Flulter Speeds.—2.1. Classical Theory'.—TFor the usual
co-ordinates, namely, displacement ¢/ of the flexural centre at some given reference section, and
wing twist 6 at this section, the equations* of motion are

Af+Bd+Ch+PI+TO+K0=0 .. .. . ()

"Pp+ B+ G+ JHKS T =0 .. .. . .. .. (2)
With the notation B, = B,V )
B, = By'V
]1 =J1'V
Jo=JV - 3)
K, =K/'V?
*K3 = m, + K,/ 7?
C, =1, -
and
a = A,G, — P? 3

b= Al]al + Blrcs - P(.]l" + B3,)
c= Ay + Gy, :
) d= Ale’ + _Bl’]:i, - B3,]1’ — PKl,

e 4)
e = B/m, + [l :
/= B/K,/ — B/K/
g =lgm, ' :
k=LK, -

then from classical theory the flutter speed V, is given by the follovﬁng equétion —
S — af) VI {flbe — 2a2) — BBk — ed)} VE 4 (bt — a — B =0 .. (5

The motion is stable up to the flutter speed V, given by equation (5), if all the quantities a, &,
(¢ + dV?), (e + f17), (¢ + £V? and (bce — ae® — b%) are positive for ¥V < V,. The solution of
equations (1) and (2) can also be obtained in the form of the following two simultaneous
equations :—

po_ Pt —ch g (4G — PY) pt— (Agn, + Gily) $* + Lom,

. dﬁz — , (A 1K3’ _l_ Blf]3/ - B3/]1/ - PK]_,) ]‘)2 ___ Ka’ lqs . .. (63)
Pt = e +fVE _ Bime+ ]l + (B/KY —- B/K/) V.2 (6b)
b Al]s, + Bll rg —- P(]ll __}_ B3,) . -, .« . . ‘

where the flutter frequency is equal to p/2x. ‘

_* The notation throughout this report is mainly that of R. & M’s 1155', 18392 and 17828, except that K is taken
as me + K,'V? whereas Pugsley? uses mp — K,' V2 ‘
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Unless the lengthier graphical method is adopted it is essential to use a calculating machine
for the direct solution of equations (5) or (6a) and (6b) for a normal wing without wing engines,
because of the small difterences involved. ‘

2.2. Pugsley’s Simplified Theory®.—-This theory ignores the indirect aerodynamical damping
derivatives B, and J;; its results can be obtained by putting B, = J; = 0 in equations (1) to (6).
Pugsley gives his results in the form of two simultaneous equations; the first is equation (6b)
with B; = J; = 0 and the second is obtained by eliminating K;' from the equations found
by putting B; = J; = 0 in equations (6a) and (6b) ; the resulting equations are

2 P ]3’ AIZ 1 ZqS z -
Vc :jjz[m[l+—lg—{-ﬁ<] ——EE }}’ .. - . . (73)
ﬂ m+mw+%h .
et (7)
Gs -+ B_lf Al

Equation (7) is» simpler than (6) but direct calculation of V, still requires the use of a calculating
machine. ‘ '

2.3. Proposed Approximation to Classical Theory'—2.8.1. Consideration of quantity f (defined
by equation (4)).—The values of the aerodynamic coefficients for a semi-rigid wing are given by
equation (7) of R. & M. 1782*; with these values. if the flexural centres everywhere are at the
same fraction of their respective wing chords behind the leading edge (¢.e., & constant) fis given by

[= e’y (— mq — Rl {[ (cfea) [ (n)* dn X [ (e[ea)* F(n)* dn
— [(cfed) f () F(n) dn X [(cfeo)* fin) F(n)dn} .. .. .. .. .. (8
where the integrals are from root to tip. ' '

Equation (8) shows that f = 0 when either

h = — mfl, =% .. . .. . .. .. {9a)
or o) =F@) .. .. .. .. .. .. .. .. (9b)
or ‘ f(n) = cles F(n) . . .. .. .. .. .- (90)

Equation (9a) is satisfied when the flexural centre coincides with the aerodynamic centre at each
section, and equation (9b) is satisfied when the flexural mode is the same as the torsional mode.
In general, none of these conditions is satisfied but for most wings (without wing engines) the
flexural axis is not far behind the aerodynamic centre and the flexural and torsional modes are
very similar. Thus the expression in the brackets { } of equation (8) will usually be the difference
of two nearly equal quantities and will be small. The quantity (— m, — kl,) will also be small.
Thus f will usually be very small. :

For example, for the wing of R. & M. 1782
f=1-5(0-4 — 0-48) (0-269 — 0-262) pl'c,’

Experience has shown that in the case of a normal wing, f is the only one of the quantities defined
by equation (4) which is the difference of two nearly equal quantities. - : ‘ o
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2.3.2. Approximation to classical theory by taking f == 0.—From ‘equaﬁon (8), when f = 0. the
flutter speed is given explicitly by the equation. L ‘

bece — ae® — b
bk — od) - . T .. (JO)

Ve =

Since normally there are no small differences involved, this expression can.be evaluated by-the
use of a slide rule; a calculating machine is unnecessary. Comparison of équations (5) and (10)
indicates that the approximation will probably fail when b(bk — ed) becomes small, since the
flutter speed will then be very high, a larger érror will often be permissible. ' :

The solution in terms of flutter speed and frequency is, from (6) -

. apt—cpr g (A6, _ Py pr— (Agmy 4 Gy p* 4 Lmy .. .. (1la)

Vc - d'ﬁz —k N (Ale, + BI,J3, - B3/]1, - PK1’) j)z"— Ksl ld, (Same as (68,))
e ¢ Tl 4 B my, N ‘ S
= Arfs + B/Gy — P (] + ByY) - S (11b)

The expression for V, directly in terms of the coefficients is from equations (4) and (10)
VE={By (A, — Gily) + PL (], + B} {J3' (Aym, — Gi,) | _,
— Py (Ji' + BJ)} + Pt (Bym, + JJ1,)°
(A:]s" + B/Gs — PJ," — PBy) [— B/K,' (Aym, — Gyly) + P {Kl"(Bl’m,l, | 4
o+ Jil) = K () 4 B B} — (BT = BJTY) (Bymo + J4 1)) (12)

It is better to use equation (10) for routine calculaﬁons\ a‘nd"'eq'uatio’n (12) for studying the

variation of the flutter speed with any one coefficient,

A further approximation is obtained by taking Pugsley s aSS.UmPtiOF'l of B, = J, == 0 with
equation (12), giving O PO G

By s (Asmy — Gol,)* + P*(Bymy, -+ J5'1,)0

2 _
V= A7 BIGY (— BIKY (Ao, — Gl T (PE, — BJy) (Bomy =700y (13)

This approximation consists essentially of first taking B,’K,’ = By'K,’ in classical theory and
then taking By’ = J," = 0.

A more consistent approximation is obtained by taking
B =], = B/Ky = 0.

This gives " ‘
- BT (Aumg — Gyl)? + P?(B)/m, 4 J/1)* . . . . (14
(AJJSI + Blle) (PKII . 31/]31) (311717,0 + ]3/Z¢) . .. . ." .. - . -: . L e e : .

* 3. Numcrical Accuracy.—3.1. Wing of R. & M. 18392 —Flutter speeds have been calculated”
. from equations (10) and (13) for the various conditions of the wing discussed in R. & M. 1839%: .
the results are given in Tables 1 to 4 below. In addition the éffect of the variation of the value
of Ji' on flutter speed has been calculated by classical theory; Pugsley’s theory and the approxi-
mation of this report. The results are plotted in Fig. 2, in which it is to be noted that the
differences between equation (10) and classical theory results are so small that they cannot be
shown on the graph. The data used for these calculations are given i the appendix to this report

and in Fig. 1. A considerable amount of laborious calculation was avoided by taking the wing .
of R. & M. 1839” for which flutter speeds by classical theory had already been calculated. -
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TABLE 1
Changes of Wing Mass Balance

Flutter Speed ft/sec

: Corresponding
PIEi‘;SaOf gap bgtween Equation (10) Equation (13) | Equation (14)
P flexural and Simplified Classical :
inertia axes Theory? Theory! Calculating Slidef Slide} Slide}
Machine rule rule rule
23-1 0-05¢ 1520 1530 1525 1530 1459 2664
46-2* 0-10c 1000 1010 1007 1008 1012 1208
€93 0-15¢ 870 870 870 880 881 978
TABLE 2
Changes of Wing Density
Flutter Speed ft/sec
DRelqtiveT Equation (10) Equation (13)
ensity of . . . ]
Wing Simplified Classical ‘
Theory? Theory* Calculating Slidef Slide}
Machine Rule Rule
0-5 1340 1470 1453 1462 1365
1-0% 1000 1010 1007 1008 1012
o0 840 820 817 816 838
TABLE 3
Changes of Wing Ilexuyal Stiffness
Flutter Speed ft/sec
Relativet
Stifiness Equation (10) Equation (13)
of Wing | Simplified Classical
in Flexure Theory? Theory? Calculating Slide} Slide}
Machine Rule Rule
0 1420 -1300 1299 1304 1330
1-9% 1000 1010 1007 1008 1012
2-0 775 800 799 804 789
3-0 680 667 667 666 674
4-0 658 608 608 608 664
50 739 614 614 611 738
6-0 795 666 666 669 858
7-0 880 745 744 750 997
10-0 1558 1031 1029 1039 1430

(96205)

* standard wing. -
ti.e. relative to standard wing given in the Appendix.

i An ordinary 20-in slide rule was used.

A%



TABLE 4
Changes of Wing Flexural Axis Pbsition'

(Inertia Axis is at O-4c)

Flexcural axis Flutter Spe?d ft/sec
(]%?z}clgg?e o o Equation (10) Equation (13)
from-wing Simplified Classical : : :
leading edge) Theory? Theory* Calculating Slide Slide
Machine |  Rule . Rule
0-25¢ 1000 1004 1004 1006 . 999
0-30ct 1000 1010 1007 1008 1012
0-35¢ 1130 1100 1099 1097 1069
0-40c No flutter 1379 1356 1363 1181
0-41c No flutter 1481 © 1445 1439 1200
0-43c No flutter 1807 1695 1692 1278
0-44c " No flutter 2055 1836° 1834 1328

+ standard wing.

It will be seen that the suggested approximation (equation (10)) gives practically the same flutter
speed as classical theory, except when the flexural axis is behind the inertia axis (see Table 4) ;
in this case the approximation gives a flutter speed less than that from classical theory. The
results show that a slide rule is sufficiently accurate for calculating flutter speeds by equation (10).

Only the flutter speeds for Table 1 were calculated from equation (14), this is a poor approxi-
mation which should not be used. Equation (18) does not rest on such a sound basis as equation
(10), nevertheless it gives very good results for the wing conditions which are likely to occur in
practice. « ) '

3.2. Ejfect of varying f—The value of f occurring in the calculation of the classical theory
flutter speeds of section 3.1 is small. To investigate the change of flutter speed with £, flutter
speeds have been calculated by classical theory but with f equal to B,/K, (instead of
ByK,' — By'K/'), thus increasing f approximately 40 times. The results are given in Table 5
below. ' :

TABLE 5
Flutter Speed ft/sec i
Classical . }?lassica_l Wing Condition
Theory eory’W1t1/1
f= By K,
1010 1040 Standard.
1470 1568 Standard except wing density 0-5 of Standard (Table 2)
1300 1422 Standard except flexural stiffness zero (Table 3).
1481 No flutter | Standard except flexural axis at 0-41c (Table 4).

These results show that a large change in the value of f has little effect on the flutter speed except
when the flexural axis is behind the inertia axis. : ‘
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3.3. Flutter Speeds for a Number of Aircraft.—The wing flutter speeds of a number of aircraft,
which had been estimated by classical theory, were calculated from equations (10) and (13).
Classical theory had entailed the use of a calculating machine, slide rule calculations only were
used for the approximations. The results (in Table 6) show little difference between the three

methods:

TABLE 6 ,
Wing Flutter Speeds for Particular Aircraft -
Flutter Speed m.p.h.
Aircraft o
Classical Equation (10) | Equation (13)
Theory Slide Rule Slide Rule .
1 1390 1386 1395
2 971 972 1000
3 1249 1250 X 1249
4 968 968 949
5 532 533 559
6 875 874 877
7 592 592 - 593

4. Conclusions.—The approximation (equation (10)) gives practically the same flutter speeds
as classical theory except when the flexural axis is appreciably behind the inertia axis. The
approximation leads to a linear equation for the flutter speed V, which can be evaluated by the
use of a slide rule, whereas classical theory leads to a quadratic equation in V,* and requires the
use of a calculating machine throughout if reasonable numerical accuracy is to be ensured.
It should be possible to use the approximation for simple investigations into the effects of changes
in various parameters upon wing flutter speeds, investigations which might be extremely laborious
if the full classical theory were used.

The approximation given by equation (18) is still more simple than the approximation given by
equation (10), but does not rest on such a sound basis. It is sufficiently accurate to be used for
calculating the flutter speed of a present day wing without wing engines (inertia axis about 0-4c
from leading edge, flexural axis appreciably ahead of the inertia axis.)

5. Further Developments—This approximation will apply. equally well to the flexure-torsion
flutter of tail planes and fins; it is suggested that a similar approximation may give good results
for other binary flutter cases and possibly for ternary flutter. ‘




APPENDIX

Data for the. wing used in numerical examples sections 3.1 and 3.2. — The standard wing used in
sections 3.1'and 3.2 is similar to the wing of R. & Ms. 1839% and 1782°. The plan of the wing and
the modes of deformaticn are shown in Fig. 1. The flutter coefficients {see equations (1), (2) and

(8)} for the standard wing are

A, = 1323 ' ‘Bg’ = — 0-904
Ay =G, =P = 46-2 Js =1-31

Gy = 15-1 Ky = — 0-0675
B, = 53-2 S Iy =17-27 x 10°
Ji = 11-46 o my = 0-87 X 10°
K/ =3:88

The standard wing has a density of 0-6 Ib/cu. ft with the flexural axis at 0-3¢ and inertia axis
at 0-4c from the leading edge.
The variations from the standard wing are
" Table 1—P varied '
Table Z—VVmg density varied ; this affects Al, P and G,
Table 83—/, varied
Table 4—Position of flexural axis varied; this affects P, J,', By, J and K.
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