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SUMMARY 

Experiments suggest that the theory widely used to predict the transverse 
resonance frequencies in slotted tunnels is in error in the Mach number range 
from 0 to 0.5. One reason for the error is that the theory is based on an 
unrepresentative wall boundary condition° Moreover, the theory implies that the 
plenum chamber surrounding the working section is large, whereas the plenum 
chamber depth is generally less than twice the tunnel height. 

An improved theory is developed, which shows that the resonance frequencies 
of ventilated tunnels are influenced by the depth of the plenum chamber for Mach 
numbers up to about M = 0°6° Although the theory is approximate, it agrees well 
with experiments for slotted and perforated walls (with both normal and 60o 
inclined holes). 

The results are consistent with other experiments which show that plenum 
chamber design can influence the flow unsteadiness within the working section of 
a ventilated tunnel° 

* Replaces RAE Technical Report 78038 - ARC 37974 
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| INTRODUCTION 

There is considerable current interest in the use of wind tunnels for 

dynamic experiments (such as the measurement of flutter boundaries, unsteady 

control surface characteristics or rigid-body derivatives) at subsonic and tran- 

sonic speeds° Such measurements may be in error if the test frequency coincides 

with a transverse resonance frequency in the tunnel working section, for then the 

aerodynamic force may be utterly inappropriate to unconfined flow ] , The results 

of such a coincidence in frequencies could vitiate the flutter testing of an 

aeroelastic model° In addition~ if any aerodynamic excitation coincides with a 

resonance frequency, excessive flow unsteadiness might develop in the working 

sectiono This unsteadiness could hinder all dynamic measurements at this 

frequency 2o Hence it is important that the tunnel transverse resonance frequen- 

cies should be correctly predicted° 

A recent experiment 3 in which resonances were excited by the vortices shed 

from circular cylinders in closed and slotted working sections suggested that AcumVs 

theory for slotted tunnel# was seriously in error in the Mach number range up to 

M = 0°5° We shall see in section 2 that this error arose from the use of an 

unrepresentative boundary condition for the slotted wallo New experiments confirm 

that there is an important influence of plenum chamber size~ Fig ]a shows some 

typical results for three depths of plenum chamber and a wide range of slot 

configurations, in comparison with the theoretical curve against slot parameter 

in the special case M = 0~ The first mode frequencies for a shallow plenum 

chamber are much lower than the predicted value from Ref 4, and fall still further 

as the plenum chamber depth increases, 

Therefore an approximate theory for ventilated tunnels has been developed, 

which predicts the resonance frequencies as a function of the free stream Mach 

number M , the plenum chamber depth, d , and either a slot geometry factor, 

F , or a wall porosity factor 2kT/H suitable for ventilated tunnels in general~ 

Fig Ib shows that the new theory does correctly predict the measured frequencies 

for the slotted working sections considered at M = 0o The new theory covers both 

slotted and perforated working sections, whereas the earlier theory was only 

valid for slotted working sections° 

The main predictions have been confirmed by experiments in a small pilot 

wind tunnel (100 mm × I00 mm) with slotted and perforated walls° Sections 2 and 

5 highlight the most interesting features of this paper° 
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2 OUTLINE OF THEORY 

The previous theory for the resonance frequencies 4 assumed that the 

oscillatory pressure difference across the equivalent homogeneous wall (which 

replaced the slotted wall) was independent of the plenum chamber size and pro- 

portional to the streamline curvature. Mathematically, this condition on ~x 

and ~xz was integrated to give (Ref 4, equation (22)) the following relation 

between the velocity potential, ~ , and its derivative normal to the wall, 
Z 

+ ~(FH#z) = 0 , (1) 

where the slot parameter F = (2a/~H) In [cosec (~b/2a)] , 

and a , b and H are respectively slot spacing, slot width and tunnel height. 

With this condition the solution for the resonance frequencies was given 

by the eigensolution 

tan p + Fp = 0 , (2) 

for p , a non-dimensional wave number normal to the wall (Appendix, 

equations (A-15) and (A-27)). Thus the resonance frequencies varied with the 

slot parameter from the closed (F = =, p = ~/2) to the open (F = 0, p = ~) organ- 

pipe values. 

For unsteady flow equation (I) should be replaced by the differential 

equation (Ref 5, equation (4-4)) 

~x + ~t/U -+ ~(FH~xz) = 0 . (3) 

With this condition equation (2) is replaced by 

tan p + M2Fp = o . ( 4 )  

(This may be seen by putting g = 0 in equation (A-29).) 

Equation (4) predicts that at M = 0 the resonance frequencies are equal to the 

open organ-pipe values, independent of the slot parameter F ; this prediction is 

unrealistic. In contrast, at M = I , equation (2) is recovered. 

Now the slot parameter, F , was derived by Davis and Moore6 from the 

potential flow through a grid, originally given by Lamb7o Lamb used this solution 

to investigate the diffraction of sound through a grid in air at rest. He found 

that when the Wavelength of the incident sound was long relative to the slot width, 
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a large proportion of sound was diffracted through the grid; for example for a 

rectangular grid with a slot width of only 10% open area ratio (typical of many 

slotted tunnels)~ 88% of the incident sound is transmitted and only 12% reflected. 

With such a large proportion of the incident sound passing through the grid it is 

surely unwise to neglect the finite size of the plenum chamber of a ventilated 

tunnel, at least at low speeds. 

The new theory includes a plenum chamber and uses the notation shown in 

Fig 2~ the full analysis is given in the Appendix° Let us first consider the steady 

flow~ The two-dimensional working section extends from x = - = to + ~ and 

has a uniform flow of velocity U at a Mach number M . It is surrounded by two 

plenum chambers, each of depth dH/2 ~ with zero mean flow. The working section 

is separated from the plenum chambers by homogeneous ventilated walls, which are 

thin, rigid and have no boundary layers. For simplicity, we assume that the mean 

pressure and static temperature are the same in the working section and the 

plenum chambers~ Hence the densities in the free stream and the plenum chambers 

are the same~ However, we know from the measurements of Smith and Shaw 8 that the 

static temperature within a cavity is close to the free-stream total temperature, 

not the free-stream static temperature; but the error in density is trivial at 

Math numbers up to M = Io0° 

For the oscillatory flow we seek compatible solutions for the velocity 

potentials # and ~ in the free-stream and plenum chambers° The boundary 

condition on the outer walls of the plenum chamber is a potential flow one - 

simply that the normal velocity should be zero~ Thus 

~z = 0 on y = ± H(I + d)/2 ° (5) 

The specification of boundary conditions on the inner walls of the plenum 

chamber is controversial. We will assume that there is continuity of mass flow 

from the working-section to the plenum chamber~ so that 

= ~ , on y = ± H/2 . (6) 
~z z 

In addition, different expressions are developed in the Appendix for the pressure 

drop across perforated and slotted walls. 

For perforated walls of thickness Z , we note that with a single normal 

hole of diameter D and air at rest, a phase lag of 90 ° between the applied 

pressure and the normal velocity is both predicted and measured 9° In accord with 



a recent theoretical study I0, we assume that the free -stream flow does not alter 

this relationship and that the hole resistance remains much smaller than the 

impedance. The pressure drop across a single hole is then generalised to predict 

the pressure drop across perforated walls at z = ± H/2 containing many holes 

to give equation (A-12), viz 

~x + (~t - ~t )/U ± (ik~T/U)~z = 0 , (7) 

where, as in equation (A-11), k = (I - o)/o is an empirical function of the 

open area ratio o , m is the circular frequency of the oscillations, and the 

effective hole diameter is 

T = 0.85D + Z . (8) 

For slotted walls we assume that the steady-flow value of F is still 

valid for the oscillatory flow and hence derive the wall condition in 

equation (A-13) viz: 

#x + (#t - ~t )/U + (FH/2)~xz = 0 ° (9) 

Although equations (7) and (9) look quite different, they predict similar 

trends for the influence of plenum chamber depth, wall porosity and Mach number 

on the resonance frequencies. Hence they may be regarded as different versions 

of Bernoulli's equation for the oscillatory flow through an orifice or a slot 

(Ref 11, equation I].3.37). 

With these boundary conditions, eigenvalues, p , can be calculated. At 

low speeds (0 < M < 0.5) the resonance frequencies in perforated and slotted 

tunnels are roughly constant and remain slightly below the closed/closed organ- 

pipe frequencies at M = 0 with a tunnel of height H(I + d) From M = 0.5 to 

0.7 the resonance frequencies increase rapidly and the influence of the plenum 

chamber becomes negligible. At the special Mach number, M = (/~ - I)/2 = 0.618 , 

from equations (A-25) and (A-26), the resonance frequencies of perforated and 

slotted tunnels are identical, independent of the plenum chamber depth and the 
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wall porosity~ and equal to the closed tunnel values (p = 0°57) and the form of 

the solution changeso From M = 0°7 to 1o0 the resonance frequencies fall mono- 

tonically and are virtually unaffected by the depth of the plenum chamber~ These 

predictions were unexpected (see sketch in Fig 2) but we shall see that they are 

broadly confirmed by the experiments~ 

Acoustic theory may be invoked to explain the surprising change in the 

character of the solutions at M = 0o618~ Fig 3 compares what would happen at 

the closed and open portions of the walls of a two-dimensional slotted tunnel 

with an oscillating model on the centre lineo (The notation follows Ref 11, 

Figs 11o2 to IIo5)~ Fig 3a identifies the single incident pressure wave which 

would be directly reflected onto the model from the closed portions of the bound- 

ary~ When the time taken for the journey to and from the model 

t = HM/U~I - M 2 , 

is the half period, 1/(2f) , the reflected wave will cancel the source wave 

and resonance will occuro Thus the first resonance frequency in a fully closed 

tunnel is 

f = U~1 M2/(2HM) , ~e p = 7/2 , (I0) 

as previously given by Acum 4o In contrast, Fig 3b shows that for the open por- 

tions of the boundary, acoustic theory would impose conditions analogous to 

SnellVs law of refraction in optics° The boundary between the free-stream flow 

and the static air in the plenum chamber is assumed to deflect as pressure waves 

from the model intersect it (see Ref II, p 705). From Fig 3a, the inclination of 

the wave front to the boundary, 41 , must increase with speed according to the 

relation 

cos 41 = - M ~ (ll) 

With our assumption of a uniform static temperature across the free stream and 

the plenum chamber the velocity of sound is uniform across the tunnel~ Hence the 

inclination of the refracted wave front in the plenum chamber must satisfy the 

condition 

cos 42 = (cos 41)/(l + M cos 41) , (12) 

based on Ref 11, equation (11oio17)o 



The limiting case 

~2  = 180 ° , c o s  ~1 = - 1 / ( 1  + M) , ( 1 3 )  

defines a value of $I above which sound waves would not enter the plenum chamber. 

Manifestly, at this condition the resonance frequencies would not be influenced 

by the open area ratio nor by the depth of the plenum chamber. The critical 

speed for this condition is given by equations (II) and (13) as 

or 

cos ¢I = - M = - 1 / ( 1  + M) 

M 2 + M - 1 = 0 . (14) 

Equation (14) has the solution 

M = (~- I)/2 = 0.618 , (15) 

precisely the critical speed found in the Appendix. 

This argument rests on the assumption of a travelling wave along the 

equivalent homogeneous wallo The concept of a continuously varying boundary 

displacement is easier to accept for a narrow slot than for a succession of 

individual perforations. Nevertheless, it provides an interesting physical 

explanation of what the theory predicts and the experiments confirm in both slotted 

and perforated working sections. 

It is important to note that the solutions for perforated and slotted 

tunnels differ appreciably in the limit at M = 0. Considering first only the odd 

eigenvalues, we find in equation (A-48) that for perforated walls: 

tan p - cot(dp) + (2kT/H)p = 0 , (16) 

so that the resonance frequencies are influenced by the wall parameter, as well as 

the plenum chamber depth. When the perforated walls are removed, k = 0 and the 

solution of equation (16) is then 

p = nw/2(l + d) , (17) 

where n = I, 3, 5, etc which we recognise as the odd eigenvalues for the closed 
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organ pipe of height (I + d)H ° In contrast, in equation (A-I) for slotted 

tunnels we find for all finite values of F 

tan p tan (dp) = ; ° (18) 

The solution of equation (18) is also equation'(;7)~ Hence equation (16) must 

be regarded as more realistic than equation (15), and as reflecting adversely on 

the boundary condition expressed by equation (9)° Now there is no a priori reason 

why the oscillatory flow through an orifice should differ in character from that 

through a slot at M = 0o Hence, when calculating resonance frequencies, it is 

considered better to replace a slotted wall by a perforated wall of the same open 

area ratio, and some equivalent hole size° Our experiments in relation to 

equation (8) suggest that the hole diameter D may be replaced by the slot width 

b so that 

T = 0~85b + Z , (19) 

where Z is now the depth of the slat, instead of the plate thickness of the 

perforated wallo Fig Ib shows that this approximation works well for slotted 

walls in the range of wall parameters of interest (2kT/H < 0.5). 

3 EXPERIMENTAL DETAILS 

3.1 Wind tunnel 

3 
The RAE 4in × 4in tunnel used for the previous resonance experiments was 

modified for these tests° The main modification was the provision of two plenum 

chamber boxes, which could increase d from the datum value (d = 0.67) to 2.0 

or 4°0~ These plenum chamber boxes were bolted directly to the top and bottom of 

the tunnel shell, as shown in Fig 4. The tunnel shell was provided with four 

circular access holes to connect the datum plenum chamber to the plenum chamber 

boxes (see sketch in Fig 5)° For comparison with the theory, which refers to a 

two-dimensional tunnel, large rectangular cut-outs would have been preferred, but 

this would have weakened the tunnel shell. The access holes leave an adequately 

strong structure and provide a flush location for the four acoustic tweeters. 

The lids of the plenum chamber boxes have corresponding access holes. 

Another modification was to provide three new pairs of top and bottom liners 

for the working section, which has closed sidewalls. Two perforated liners with 

normal holes were made from perforated zinc (meat-safe linings) and Vero-board 

(a plastic widely used as a base for bread-board circuits)° A pair of perforated 
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liners with 60 ° inclined holes was available from the previous tests 3. In addi- 

tion perforated plates with normal holes used for extensive wind-off tests (Fig 6) 

were made from hardboard and steel (Table I). A shallow pair of slotted liners 

was made to allow comparisons with the original deep slotted liners 3. 

For these tests a sidewall static pressure hole (at x/H = 1.5) upstream 

of the usual model position (at x/H = 2°5) was used to measure the reference 

Mach number. This reference pressure was preferred to a plenum chamber pressure 

because of the wide variations in plenum chamber geometry and the wish to avoid 

extensive calibrations of the new liners. The reference Mach number was varied 

from M = 0.3 to 0.9. The tunnel total temperature could not be controlled, but 

varied from about lO°C to 15°C during the tests. 

3.2 Instrumentation 

The acoustic resonances in the working section were excited by four high- 

frequency one-inch~diameter dome tweeters mounted in either the walls of the 

plenum chamber or the plenum chamber boxes and driven by an oscillator and a 

power amplifier. 

Each pair of tweeters was wired in phase, but could be switched to operate 

in phase or in anti-phase with the other pair. All the measurements presented 

here relate to operation with the top and bottom pairs in anti-phase, because the 

main interest was to measure the 'odd' resonance frequencies which would be 

excited by a model oscillating on the tunnel centre line 4. [Even with the anti- 

phase switch selected, weak symmetric resonances were excited during the wind-off 

tests, for no attempt was made to match the acoustic impedances of the tweeters.] 

During the wind-off tests the tweeters were operated at their maximum rating 

(8 watts) for several hours without failure. However, during the wind-on tests 

several tweeters failed after operating for a few minutes at Mach numbers above 

M = 0.7 at ratings of only 4 watts. These failures were attributed to over- 

heating because of the reduced air density at the higher speeds. Hence the power 

was reduced to 0.5 watts and no further failures occurred over the subsequent 

30 hours of testing. 

Seven semi-conductor straln-gauge pressure transducers, having a diaphragm 

of 3.2 mm diameter, were used to measure the pressure fluctuations across the side- 

wall of the tunnel at x/H = 2°0 , y/H = 0 , ±0°25, ±0.44 and ±0.63 (within 

the datum plenum chambers). With a pistonphone driven at a single frequency of 

50 Hz, the amplifier gains were adjusted to give every transducer the same 

sensitivity. The frequency response was estimated to be flat from zero up to 

about 6 kHzo 
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With the wind on there was initially some difficulty in determining the 

acoustic resonances against the tunnel noise, particularly at Mach numbers above 

M = 0°5 and for the deeper cavities° Therefore the amplifier output signals were 

fed into a tracking filter, locked to the oscillator voltage which excited the 

tweeCers~ The tracking filter was a Spectral Dynamics Analyser Type SD 101A, and 

was used with a | Hz bandwidth° This instrument achieved fair repeatability, even 

at the higher speeds, as indicated by the following table. 

Accuracy of frequency measurement (at about 15.0.0 Hz) 

Mach number range 

0 

0°3 to 0°5 

0°6 to 0°9 

Repeatability. ~(Hz~) 

about ±5 

about ±20 

about ±50 

Some of this variation might be attributed to variations in the velocity of 

sound due to changes in the tunnel total temperature, which cannot be controlled. 

4 RESULTS 

4.1 Duct 

When the ventilated liners are removed from the tunnel working section, a 

duct of height (! + d)H is formed. The resonance frequencies of this duct at 

M = 0 must be measured precisely before the frequencies in the presence of the 

ventilated walls can be correctly predicted° 

Fig 5 shows that for d = 0°67 the measured and calculated duct frequencies 

for the odd modes are almost identical° This is because the acoustic height is 

almost exactly equal to the geometric height, for the tweeters are flush with the 

walls of the datum plenum chamber° However~ for d = 2°0 and 400 the four access 

holes in the datum tunnel shell significantly increase the effective acoustic 

height, particularly for the first mode° Thus the measured duct frequencies are 

appreciably lower than those calculated~ The following table shows the acoustic 

heights which must be used to predict the measured resonance frequencies of the 

duct correctly. 
Acoustic Height of duct 

Geometric height of duct Ist mode 3rd, 5th, etc 
0°67 0°67 0°67 

2°00 2°87 2~04 

4°00 5o11 4o14 

The table shows that for the first mode and geometric heights of d = 2 and 4 

the access holes in the datum tunnel shell increase the acoustic height by about I° 
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The acoustic heights given in the table are used in the calculations without 

change for all the ventilated liners. These acoustic heights are assumed to be 

invariant with free-stream Mach number because the mean speed assumed in the 

plenum chamber is always zero and the assumed variation of plenum-chamber static 

temperature with Mach number is small. In fact, the true static temperature of 

air in the plenum chamber is close to the tunnel total temperature and therefore 

invariant with Mach number (section 2). 

4.2 Perforated walls 

Fig 6 compares the Ist and 3rd resonance frequencies measured at M = 0 for 

a wide range of perforated walls with results of the new theory. The theory 

predicts that, as the wall parameter increases, the resonance frequencies fall. 

Thus for d = 0.67, the limit 2kT/H * ~ for the 3rd mode becomes p = 0°5~, 

which is the first closed tunnel mode. For the Ist mode the corresponding limit 

is p = 0 . The mode shapes change progressively with the changes in frequency. 

Thus for d = 0°67 the Ist mode changes from the Ist closed/closed mode 

appropriate to a tunnel of height (I + d)H for 2 kT/H = 0 to a uniform, 

quiescent mode for 2 kT/H = ~ . Similarly the 3rd mode changes from the 3rd 

closed/closed mode appropriate to a tunnel of height (I + d)H for 2 kT/H = 0 

to a uniform quiescent mode in both plenum chambers combined with the Ist closed/ 

closed mode appropriate to a tunnel of height H for 2 kT/H = ~ . 

For normal holes, theory and experiment are only in excellent agreement for 

the range of wall parameters currently used in perforated wind tunnels 

(0 < 2 kT/H < 0.3). Thus for d = 0.67 the resonance frequencies fall signifi- 

cantly as the wall parameter increases, whereas for d = 2.00 the variation is 

smaller; both trends are as predicted by the theory. 

For wall parameters higher than 0.3 the measured resonance frequencies are 

generally higher than predicted. However~ in these tests high wall parameters are 

obtained at the expense of a loss of wall homogeneity, whereas a homogeneous 

wall is assumed in the theory. Thus for the steel plate the open area ratio was 

reduced from 40% by taping over streamwise lines of holes forming 'slats v but 

leaving open three 'slots'. These slots incorporated successively 1, 2 and 3 

streamwise rows of holes~ which gave open area ratios of 8, 16 and 24%. Despite 

some lack of homogeneity, the measurements for 24% open area ratio (2 kT/H = 0.30) 

are still upon the predicted curves. The hardboard walls have a rectangular grid 

spacing with only a few large holes and cannot fairly be considered as homogeneous, 

even with an open area ratio of 4% (2 kT/H = 3.2). The influence of the lack of 



i 13 

homogeneity becomes less important as the cavities become deeper, as we might 

have expected from the dispersion allowed by the increased acoustic height. In 

addition the deeper cavities allow the acoustic excitation to become more uniform. 

In contrast to the measurements for normal holes, Fig 6 shows that the 

measurements for the liners with 60 ° inclined holes are in excellent agreement with 

the predictions for both modes and all three plenum depths. This is because the 

liners with 60 ° inclined holes are homogeneous, having many small holes. The high 

wall parameter (2 kT/H = 0°86) is obtained primarily because the open area ratio 

is only 5% based on the hole area. The effective thickness of the plate to be 

used in equation (8) is twice the plate thickness because of the 60 ° inclination 

of the holes. The general formula suggested for the wall parameter for holes 

drilled at any angle 0 to the normal is 

2kT/H = 2(I - o)(0°85D + Z sec e)/oH , (20) 

The wind-on resonance frequency measurements were made either by acoustic 

excitation from the tweeters or by aerodynamic excitation from the circular 

cylinders of I0 and 18 mm diameter used in the previous tests 3. 

Figs 7, 8 and 9 show the variation of the Ist and 3rd resonance frequencies 

with Mach number for the three perforated liners. For d = 0.67 the acoustic 

measurements and the theory are in fair agreement. The measured resonance 

frequencies remain constant up to M = 0.5 and then increase to reach a maximum at 

about M = 0.7. For d = 2~0 it was more difficult to excite resonances with the 

tweeters and a comparison between theory and experiment was not generally possible 

above M = 0.7. For the 3rd mode there is some confusion because there are two 

closely spaced modes in the duct at M = 0 (Fig 5) which may be caused by small 

asymmetries. However) equation (16) has two singularities for d = 2, with p 

near odd multiples of ~/2 o With homogeneous perforated walls both modes persist 

at M = 0 and with the wind on. The lower frequency mode generally predominates, 

and agrees with the theory for d = 2.04, as it should. 

Figs 7, 8 and 9 also include the resonance frequencies excited by the cir- 

cular cylinders° Despite careful attempts to excite the Isf' mode, this was 

never detected, possibly because the tunnel was so difficult to control at the 

low speeds required (M ~ 0.2). However, the 3rd mode could be excited, although 

the measurements were still difficult at M = 0.24. For d = 0°67 the cylinder 

resonance frequencies are appreciably lower than the acoustic measurements, 

although the difference becomes progressively smaller as the wall parameter 
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increases from 0.ll to 0.86. We shall see when Fig 13 is discussed in section 4.3 

that this difference in frequency is associated with a difference in mode shape. 

Such a difference is not surprising, given the radical streamwise difference in 

the two types of excitation and the local Mach number variations about the 

cylinders. However, for d = 2.0 the third mode resonance frequencies are in 

excellent agreement with the acoustic measurements. This suggests that the 

difference between the two types of excitation is much less important for deep 

cavities. This appears reasonable, for the deeper cavities allow the acoustic 

excitation to become more uniform. 

4.3 Slotted walls 

Fig | shows measurements at M = 0 of the Ist mode acoustic frequency of a 

large number of slotted walls. Most of these were cut from cardboard ] mm thick. 

The measurements agree with the new theory for all depths of plenum chamber up to 

wall parameters of about 2 kT/H = 0.5. For wall parameters higher than 0.5 the 

measured resonance frequencies are higher than predicted. However, most of these 

high wall parameters relate to a single slot and do not provide the wall homo- 

geneity assumed in the theory. The same trend was noticed previously in the 

measurements for perforated liners (Fig 6). 

Fig I0 presents both the ]st and 3rd modes at M = 0 for the same slotted 

walls considered in Fig 1. The measurements for the 3rd mode are again in good 

agreement up to wall parameters of 0.5. Above this wall parameter the measure- 

ments are again higher than the theory predicts. This difference becomes pro- 

gressively smaller as the plenum chamber is deepened, just as for the perforated 

walls. 

Figs II and 12 show the variation of the Ist and 3rd resonance frequencies 

with Mach number for the shallow and deep slotted walls. For d = 0.67 the 

acoustic modes and the theory are in reasonable agreement. However, for d = 2.0 

it was more difficult to excite resonances with the tweeters. At Mach numbers 

above M = 0.5, the comparison of theory and experiment was less satisfactory. 

Although for the shallow walls (Fig llb) there are two closely spaced 3rd modes at 

M = 0, only one mode can be identified with the wind on. For the deep walls 

(Fig 12b) only one 3rd mode is found, whether the wind is on or off. 

For comparison with the deep hard liners, Fig 12 includes a few acoustic 

measurements of the resonance frequencies in the slotted working section with the 

deep laminate liners used in the previous tests 3. With the deep laminate liners 

the resonance frequencies are generally a little lower than with the deep hard 
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12 
liners~ The same trend was observed in comparative tests in the RAE 3ft tunnel 

and was attributed to a small increase in the effective acoustic height of the 

working section provided by the movement of air into the laminate° 

Figs 11 and 12 also include the 3rd and 5th resonance frequencies excited 

by circular cylinders; the Ist mode could not be excited° The cylinder and 

acoustic measurements agree for both depths of plenum chamber° The contrast with 

the differences between cylinder and acoustic measurements observed with the 

perforated walls for d = 0°67 was so marked that in Fig 13, shapes of the 3rd 

mode excited by the tweeters and the 10mm diameter cylinder were compared. (The 

smaller cylinder was selected for the comparison to reduce blockage interference°) 

Now exact comparisons cannot be expected for two reasons: 

(i) there is a large difference in the bandwidths of the pressure fluctua- 

tion measurements (only i Hz for the acoustic measurements compared 

to 6°5% of f for the cylinder measurements)~ 

(ii) there is a large difference in signal levels because the resonances 

excited by the tweeters are about two orders of magnitude smaller 

than those excited by the cylinders° 

To offset these anomalies~ both sets of root-mean-square pressure fluctuation 

measurements, p ~ are nondimensionalised by the appropriate reference pressure 

fluctuation, Pr ' at the point y/H = 0°44 (on the measuring station x/H = 2°0 

upstream of the cylinder at x/H = 2°5)° Thus, the pressure fluctuations measured 

at that point by the two radically different methods are forced to coincide and 

have the value Io The choice of this point is somewhat arbitrary~ but it does not 

prejudice the comparison° 

Fig 13a shows a typical example (for the deep slotted liners at M = 0o31) 

when the frequencies in Fig 12a were almost identical for d = 0°67. An almost 

exact match of mode shapes is obtained~ which suggests that the reference pro- 

cedure is reasonable° Fig 13b shows the worst example~ for the perforated liners 

with normal holes at M = 0°32 and a wall parameter of 0°30, when the frequencies 

in Fig 8a differ by 30%° The mode shapes have the same general character but the 

acoustic mode shows much larger relative variations across the tunnel. Fig 13c 

shows an intermediate example (for the perforated wall with 60 ° inclined holes at 

M = 0°38) when the frequencies differ by 11%~ the acoustic mode still shows the 

larger relative variation across the tunnel° 

Hence we must accept that for d = 0°67, and with perforated walls, the 

resonances excited by the tweeters and the cylinders differ significantly in 
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frequency and mode shape. These differences should tentatively be attributed to 

the three-dimensional nature of the experiment. The tunnel working section 

length is only four times the tunnel height. The tweeters are disposed along the 

working section, whereas the cylinder is located at x/H = 2.5 (Fig 5). These 

streamwise variations in the excitation would become less important with the 

deeper plenum chambers, and this hypothesis is thus consistent with the experiment. 

The dotted curves in Fig 13 show that the root-mean-square pressure fluctua- 

tions predicted from equations (A-3) and (A-4) have the same general character as 

the measurements, and are in good agreement with the cylinder measurements. 

4.4 Deep plenum chambers 

Ventilated wind tunnels with deep plenum chambers have a multiplicity of 

closely spaced resonance modes which are difficult to identify at low speeds. 

Tests with acoustic excitation for the deep plenum chamber (d = 4) proved 

even more difficult than for the intermediate plenum chamber (d = 2), particularly 

at Mach numbers above M = 0.5. Hence only a few typical resonance frequency 

measurements are presented, for one perforated and one slotted working section 

(Fig 14). 

The acoustic measurements agree with the theory up to M = 0.5. The cylinder 

excited the 5th mode for the perforated working section and the 5th and 7th 

modes for the slotted working section. The 3rd mode could not now be excited even 

by the larger (18mm diameter) cylinder because the resonance frequency had become 

too low (950 Hz), corresponding with a Mach number of only M = 0.25. 

5 DISCUSSION 

The measurements presented in section 4 confirm that the depth of the 

plenum chamber in a small ventilated tunnel has a strong influence on the trans- 

verse resonance frequencies up to a Mach number of about M = 0.5. The agreement 

between the measurements and the predictions is good for both perforated (with 

normal and 60 ° inclined holes) and slotted walls. In view of this good agreement, 

we may infer that the equivalent homogeneous wall boundary conditions in 

equations (7) and (9) are fairly realistic and might be applied (in conjunction 

with the appropriate plenum chamber field) to other calculations of dynamic inter- 

ference which do not involve resonances. However, equation (7) could be unreliable 

at low frequencies. 

Equation (7) assumes that the increase in stream velocity has virtually no 

influence on the orifice reactance so that the pressure drop lags 90 ° behind the 
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outflow velocity° The resonance frequencies predicted under this assumption 

agree well with the measurements, certainly up to M = 0°5 or U = 170 m/s° 

Although as previously noted, Rice predicted that the reactance of normal 

holes would be Unaffected by the stream velocity 10 and this has been confirmed by 

experiments 13, the measurements of Goldman and Panton 14 suggest that under a tur- 

hulent boundary layer the orifice reactance is halved as the stream velocity increases 

from U = 0 to only U = 30 m/s. Over the same speed range the orifice resistance 

(~c the pressure drop inphase with the outflowvelocity) increases by a factor of 10. 

These wind-on measurements of Goldman and Panton 14 thus appear inconsistent 

with the present tests, which cover a much wider speed range° 

However, the wind-off measurements of resistance and reactance given in 

Ref 14 look reasonable, because they agree exactly with the predictions of Hersh 
9 

and Rogers for thin orifices, despite the large change in plate thickness shown 

in the table° 

E_~periment Frequency Orifice diameter Plate thickness 

f (Hz) D (ram) Z (mm) 

Ref 14 ' 250 5°08 3°2 

Ref 9 150 7°0 0o1 

Hence, equations (7) and (8) are certainly valid for the perforations used in 

large transonic tunnels (Table 2) as well as for the small perforations used in 

the present tests (Table I)o 

Accurate estimation of resonance frequencies in large transonic tunnels can 

be difficult in practice° These tunnels, with height range from I m to 5 m, will 

have low transverse resonance frequencies and a multiplicity of closely spaced 

modes° The multiple modes may be attributed to small asymmetries, obstructions 

in the plenum chamber and three-dimensional effects° The three-dimensional 

effects are always important~ even in a nominally two-dimensional working section~ 

because most tunnels have working sections only about three times as long as the 

height and it is difficult to provide uniform excitation° As an example of these 

problems, Fig 15 shows two closely spaced fundamental modes (odd modes) excited 

in the perforated working section (0~91 m x 0~81 m) of the RAE 3ft × 3ft tunnel° 

(The modes were excited by a single 5 watt loud-speaker mounted in a baffle plate 

suspended in the middle of the side plenum chambero) The lowest mode, at 88 Hz, 

corresponds exactly to the frequency predicted from equation (A-48) o The closely 

spaced mode, at 120 Hz and not predicted by equation (A-48), had a similar mode 

shape° The large pressure fluctuations in the plenum chamber opposite the loud- 

speaker, and separated from it by two perforated walls, should be noted° The 



18 

amplitudes of both modes were constant across a vertical traverse (Z) at constant 

values of y , but naturally varied significantly in the streamwise direction. 

The important point to notice is that the lowest frequency (88 Hz) was correct 

and that both frequencies were much ~ower than the corresponding closed/closed 

mode at 183 Hz. Hitherto, guided by Ref 4, wind-tunnel engineers would have 

anticipated a higher fundamental frequency, of about 1.8 x 183 Hz, although the 

precise value could not have been predicted for perforated walls. Hence it is 

recommended that for large transonic tunnels the predictions of the theory for 

M = 0 according to equation (A-48) should always be compared with a set of 

measurements with a pair of loud-speakers. Then the symmetric and antisymmetric 

modes can be carefully separated, as for the present experiments in the small 

pilot tunnel. The frequencies thus measured should then be used to calculate the 

effective plenum chamber depth (d) and wall parameter (2 kT/H) to ensure the 

best match with equation (A-48). These effective values should then be inserted 

in equations (A-46) and (A-37), for M < 0.618 and M > 0.618 respectively, to pre- 

dict the wind-on resonance frequencies as a function of Mach number. 

The radical change in the solutions which occurs at M = 0.618 has wide 

implications for the excitation of resonances, both by oscillating models or by 

flow unsteadiness. For Mach numbers below M = 0.618 the plenum chamber influences 

the resonance frequencies and is able to dissipate some of the acoustic energy 

radiated from the working section. Hence we would expect that resonances in 

ventilated tunnels would be relatively difficult to excite at Mach numbers below 

M = 0.618. This hypothesis is confirmed by recent experiments with circular 

cylinders 3'12, which provide a powerful source of excitation up to about M = 0.4. 

However, for Mach numbers above M = 0.618 the plenum chamber has hardly any 

influence on the resonance frequencies, and therefore cannot provide much acoustic 

dissipation. Hence as a general rule we would expect that resonances would be 

relatively easily excited in ventilated wind tunnels at Mach numbers above 

M = 0.618, and this is consistent with Varner's observation 15, although he does not 

consider the influence of the plenum chamber. The pressure fluctuations in the 

working sections of continuous fan-driven ventilated tunnels generally start to 

increase rapidly above M = 0.6 (Fig 16). This increase may sometimes correspond 

to the excitation by the fan of both odd and even resonance modes within the 

working section. Such resonances could explain the spanwise and vertical varia- 

tions in pressure fluctuations across the tunnel walls sometimes observed in this 

speed range. 
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The flow unsteadiness generally starts to fall above M = 0.8 or 0.85 because 

the diffuser starts to choke, isolating the working section from the direct influ- 

ence of the diffuser separations and the fan noise field. Sound-absorbing slats 

could thus be expected to be particularly useful to reduce flow unsteadiness 3'12 

and to attenuate resonances in the Mach number range from M = 0.60 to 0.85. 

Now the flow unsteadiness in the plenum chamber of a ventilated tunnel can 

influence the flow unsteadiness in the working section, even when there are no 

transverse resonances (see section 5.4.3 in Ref 16) and at supersonic speeds. 

Hence it would be prudent to make provision for fitting sound-absorbing material 

in the plenum chambers of all new transonic tunnels, and to measure the pressure 

fluctuations in the plenum chambers of all transonic tunnels now in use. Follow- 

ing this suggestion, large pressure flunctuations have been measured in the plenum 

chambers of two blown-down tunnels (the HSA 27in × 27in and the BAC 4ft × 4ft 

tunnels). These pressure fluctuations correspond to various closed/closed longi- 

tudinal organ pipe modes excited by random mixing in the tunnel diffuser, just as 
16 

in earlier tests in the RAE 3ft tunnel For the HSA tunnel the plenum chamber 

unsteadiness has already been reduced by the installation of some sound-absorbing 

foam. The reduction in plenum chamber pressure fluctuations was accompanied by a 

reduction of the pressure fluctuations on the centre line and on the walls of the 

tunnel. For the BAC tunnel a more elaborate configuration of sound-absorbing 

foam has been installed in the plenum chamber. This has greatly reduced the level 

of flow unsteadiness in the plenum chamber but comparative measurements are not 

yet available in the working section. 

These resonances excited by the I0 and 18mm diameter cylinders in the 

present or previous tests 3'12, illustrate interesting examples of a fairly well- 

known aerodynamic/acoustic interaction. A less well-known interaction of this 

type occurred during tests of the perforated liners with large normal holes 

(1.27 n~n diameter) o When the frequency of the self-induced sound due to the flow 

over the top and bottom liners coincided with tunnel resonance frequencies, strong 

resonances were observed in the empty tunnel, independent of the excitation 

provided by the tweeters. The amplitude of these resonances was intermediate 

between those excited by the I0 and 18mm diameter cylinders mounted on the tunnel 

centre line, and those excited by the tweeters in the bottom of the plenum 

chambers° The Strouhal number based on the hole diameter was very low, only 

mbout 0.006 at M = 0.4 and 0°7, possibly because of the outflow induced by the 

diffuser suction° The normal value 17 without outflow is about 0°20 but may vary 
18 

with hole diameter ° 
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6 CONCLUSIONS 

A deficiency in the existing theory to predict resonance frequencies in 

slotted tunnels has been investigated and attributed to two errors. The first is 

the neglect of the plenum chamber, the second is the use of an inappropriate 

boundary condition for the oscillatory flow at the equivalent homogeneous wall. 

To remedy these errors, an improved theory was developed, which includes the 

plenum chamber and a better, though still approximate, boundary condition for the 

equivalent homogeneous wall. The improved boundary condition could be applied 

in other dynamic interference problems which do not involve resonances but may be 

unsuitable for low frequencies. 

The new theory suggests five main conclusions, which are broadly supported 

by experiments. 

(1) For Mach numbers up to M = 0.5 the resonance frequencies depend on the 

plenum chamber size, as well as upon a wall porosity parameter representing 

the wall geometry. 

(2) For Mach numbers above M = 0.6 the resonance frequencies are virtually 

independent of the plenum chamber size, but still vary with the wall 

porosity parameter. 

(3) The resonance frequencies peak at around M = 0.70 in a typical ventilated 

tunnel. 

(4) For all Mach numbers, any flow unsteadiness within the plenum chamber can 

influence the flow unsteadiness on the tunnel centre llne, even when no 

resonances are excited. Hence the measurement of the pressure fluctuations 

in the plenum chambers of all ventilated tunnels is strongly recommended. 

(5) If large plenum chamber pressure fluctuations are discovered, they may often 

be attenuated by acoustic treatment, with resulting improvements in the 

working section. 

These conclusions are of particular interest to engineers who use ventilated 

wind tunnels for any kind of dynamic test, such as the measurement of flutter 

speeds, unsteady control-surface characteristics, rigld-body aerodynamic deriva- 

tives or the severity of buffeting. If the test frequency happens to coincide 

with a tunnel resonance frequency the results should always be evaluated with 

caution° 
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Appendi__~x 

CALCULATION OF THE RESONANCE FREQUENCIES OF VENTILATED TUNNELS 

The two-dimensional ventilated tunnel is idealised as shown in Fig 2° The 

mean velocity~ U ~ is uniform in the free-stream flow and zero in the plenum 

chamber. The mean static pressure and density are assumed to be uniform across 

the working section and plenum chamber. Solutions of the appropriate disturbance 

potential equations in the free-stream flow (~) and the plenum chamber flow (~) 

are matched along the boundaries of the working section (at z = ± H/2)° On this 

thin wall discontinuities in streamwise velocity are allowed. However, on both 

sides of the wall the normal velocity must be identical to satisfy the equation 

of continuity of mass flow~ so that: 

~z = Cz ° ( A - l )  

At the outer boundaries of the plenum chamber {at z = ± H(! + d)/2} we must 

apply the condition of no normal velocity. 

~z = 0 ° (A-2) 

Following Acum (equation (4.4, Chapter IV of Ref 5) we may write the linearised 

e~ression for the pressure in the free stream as: 

p - p~ = _ 0[U~x + Ct ] o (A-3) 

Similarly the plenum chamber pressure is: 

P - P~ = - 0[~t ] • (A-4) 

Hence the pressure drop across the homogeneous walls at z = ± H/2 is: 

Pw = - p[U+x + ~t - ~t ] " (A-5) 

Different expressions for equation (A-5) are now developed for perforated and 

slotted walls~ before we find the appropriate solutions of the disturbance poten- 

tial equations. 
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Perforated walls 

For small oscillatory flows through a single orifice normal to the surface 
• 9 

into air at rest, we know from both theory and experlment that the oscillatory 

velocity lags nearly 90 ° behind the applied oscillatory pressure for high 

frequencies. For a single orifice of diameter D and depth Z we may write 

Pw = ipm(0°85D + Z)V 0 , (A-6) 

where V 0 = oscillatory flow through the orifice. We will assume that 

equation (A-6) applies when there is flow across the orifice. For a number of 

identical small orifices in a plate of open area ratio, ~ , we may write an 

equivalent homogeneous boundary condition on the normal velocities as 

Vn = oV 0 o (A-7) 

Hence, if we assume that there are no interactions between the flow around neigh- 

bouring perforations, we find from equations (A-6) and (A-7) that 

Pw = ip~(0o85D + Z)Vn/a o (A-8) 

More generally we may write 

Pw 

where T = (0.85D + Z) 

= ipmTkV , (A-9) 
n 

= effective hole diameter , (A-IO) 

and k is a dimensionless function of the open area ratio ~ , which should be 

found from experiment. A simple empirical function for k which would satisfy 

the correct limits for ~ = 0 and ~ = I is 

k = (1  - o r ) l e t  , ( A - 1 1 )  

and this should suffice to indicate the variation with open area ratio in the range 

normally utilized (say o < 0.25). 

Thus from equations (A-5) and (A-9) we find for z = ± H/2 

~x + (~t - ~t )/U ± (ik~T/U)#z = 0 . (A-12) 
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Slotted walls 

We assume that the expression for Pw given in equation (A-5) may be equa- 

ted with the pressure drop required to cause the streamline curvature ~xz/U , in 

accord with thehomogeneous boundary condition developed previously for steady 

flow in equation (I)° Hence we find that for z = ± H/2 , 

~x + (~t - ~t )/U ± (FH/2)~xz = 0 o (A-13) 

Solutions of equations for the~elocit_~y potential 

For the mainstream flow we follow Acum and write 

(I - M2)~XX + ~zz - 2~xtM2/U ' M2~tt/U2 

We choose 

= 0 ° (A-14) 

= A sin XzeieXe imt (A-15) 

thus ensuring that at a resonance condition, excited by a model oscillating on the 

tunnel centre line, 

~z ~ 0 o (A-16) 

The wind-tunnel configuration is symmetric and therefore we consider only anti- 

symmetric solutions of ~ and ~ , valid for 0 < z < H(I + d)/2 ° 

From equations (A-14), (A-15) and AcumVs equation (7) we find that the 

% ~ satisfy 

= M2~/U82 

eigenvalues, 

where 8 

= M28UX/UB2M = MXI8 

= (I - M2) ½ . 

, (A-I 7) 

M = U = 0 , 

Now for the plenum flow, 

and the disturbance potential is given by the acoustic wave equation (see 

J°W. Miles, Ref 19, section 2.5)° Thus 

2 
~xx + ~zz = ~tt a0 

(A-18) 

(A-19) 
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where a 0 = velocity of sound in the plenum chamber. 

The acoustic wave equation must be used because the limit M ÷ 0 in equation (A-14) 

does not necessarily imply incompressible flow when U ÷ 0 . 

Solutions of equation (A-19) compatible with equation (A-15) must be of the 

form 

i~x i~t 
= g(z)e e , (A-20) 

so that from equations (A-19) and (A-20) 

2 2 
gzz - ~ g = 0 . (A-2!) 

If we write 

E 2 2 ".Ja 2 
= ~ - ~ 0 ' (A-22) 

equation (A-21) becomes 

gzz - E2g = 0 , (A-23) 

and the character of the solution of the plenum chamber flow will be determined by 

the sign of E 2 , which is influenced by the free-stream Mach number, M , and the 

speed of sound in the plenum chamber, a 0 . By our assumption of constant pressure 

and density across the tunnel, the static temperature of the air in the free stream 

and the plenum chamber are identical. Hence 

a 0 = U/M . (A-24) 

Then from equations (A-17), (A-22) and (A-24), 

or 

E 2 = M2%2/B 2 _ B2% 2 , 

l 

Q = E/% = [M2/(l - M 2) - (l - M2)] 2. (A-25) 

The form of solution to equation (A-23) will depend on whether Q is real or 

complex. 

First we treat the special case Q = 0 , when from equation (A-25) 

M = 0.618 . (A-26) 
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Then we deal separately with the speed ranges M > 0o618 (Q real) and M < 0o618 

(Q pure imaginary). 

Before doing this, it is convenient to note that the boundary conditions 

on the ventilated walls at z = ± H/2 may now be specified, using equations 

(A-15), (A-17) and (A-20). 

For perforated walls, we find from equation (A-12) 9 writing 

p = %H/2 . (A-27) 

0] A sin p - B2g(H/2) + (2AB2kT/H)p cos p = (A-28) 

For slotted walls, we find from equation (A-13) 

[A sin p - ~2g(H/2) + (M2AF)p cos p = . (A-29) 

M = 0o618 (Q = O) 

When Q = O, equation (A-23) becomes 

(for H/2 ~ z Z H(I + d)/2) , 

gzz 0) which has the simple solution 

g = G I + G2z ; (A-30) 

where G 1 and G 2 are constantso Now on the outer wall of the plenum chamber 

we must have from equation (A-2) 

gz 0 , 

so that from equation (A-30) 

G 2 = 0 , (A-31) 

and there is no normal velocity across the plenum chamber. For the ventilated, 

inner wall of the plenum chamber we must also satisfy equation (A-|) so that from 

equation (A-15) 

A% cos (%H/2) = A% cos p ~ 0 o (A-32) 

Hence p = 7/2 , 37/2 etc, the same values as found previously for the closed 

tunnel by Acumo It is surprising that the eigenvalues at this speed should be 

independent of the wall geometry or the size of the plenum chamber. In particular, 
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at this speed the resonance frequencies of perforated and slotted tunnels are 

identical and equations (A-28) and (A-29) assume the same degenerate form 

independent of the wall parameters: 

A sin p - 82g(H/2) = 0 , or G I = (A sin p)/B 2 . (A-33) 

(M > 0o618, Q real) 

From equation (A-2) we have gz ~ 0 when z = H(| + d)/2 

equation (A-23) 

g = B cosh [ E{H(I + d)/2 - z}] . 

so that from 

(A-34) 

Different solutions are now obtained by satisfying the boundary condition at the 

perforated or slotted walls° 

At both perforated and slotted walls, we find from equation (A-l) and 

(A-34) 

A% cos p + BE sinh (EdH/2) = 0 . (A-35) 

At a perforated wall we find from equations (A-34) and (A-28) 

A sin p - B~ 2 cosh (EdH/2) + A(2B2kT/H)p cos p = 0 . (A-36) 

Hence we find from equations (A-25), (A-35) and (A-36) 

tan p + (~2/Q) coth (Qdp) + (2~2kT/H)p = (A-37) 

The limiting solutions of equation (A-37) are of interest. 

wall becomes fully closed 

k÷~ 

When the perforated 

so that 

tan p = - ~ . (A-38) 

Hence, p = ~/2 , 3~/2 etc the odd eigenvalues appropriate to the closed tunnel. 

When the perforated wall is removed we have an open jet surrounded by a plenum 

chamber and 

k÷0 
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so that 

tan p tanh (Qdp) = - B2/Q . 

For an infinitely small plenum chamber, d ÷ 0 and equation (A-39) becomes 

(A-39) 

tan p = - ~ (A-38) 

again giving the equation appropriate to a closed tunnel, as required by the 

boundary condition on the outer wall of the plenum chamber. In contrast~ for an 

open jet with an infinitely large plenum chamber we find that 

tan p = _ ~2/Q ° (A-40) 

At a slotted wall we find from equations (A-34) and (A-29) 

tan p + (B2/Q) coth (Qdp) + M2Fp = j . (A-41 ) 

Equation (A-41) has identical limiting solutions to equation (A-37). 

Low s ~  (M < 0.618, Q pure imaginary) 

It is convenient to write E 2 = _ j2 

where J is a positive real number. 

Equation (A-23) then becomes= 

gzz + j2g = 0 , 

which has the solution 

g = L cos [J{H(I + d)/2 - z}~ , (A-42) 

to satisfy the boundary condition on the outer wall of the plenum chamber (A-2). 

At both perforated and slotted walls we find from equations (A-42) and 

(A-I) 

AX cos p - LJ sin (JdH/2) = 0 . (A-43) 

At a perforated wall we find from equations (A-42) and (A-28) 

A sin p - L~ 2 cos (JdH/2) + (2AB2kT/H)p cos p = 0 . (A-44) 
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For brevity we may write 

! 

J/% = ] - M 2) - M2/(I - M 2) = R , (A-45) 

so that equations (A-43) and (A-44) give 

= 01 " (A-46) 

The limiting solutions of equation (A-46) are of interest. When the wall is 

fully closed k ÷ ~ so that equation (A-46) reduces to equation (A-38). When 

the perforated wall is removed we have an open jet with k = 0 so that equation 

(A-46) becomes 

tan p tan (Rdp) = ~2/R . (A-47) 

With an infinitely small plenum chamber round the open jet d ÷ 0 so that 

equation (A-47) reduces to equation (A-38), as required by the boundary condition 

on the outer wall of the plenum chamber° 

When the speed of the tunnel is reduced to zero, R = I and equation (A-46) 

becomes 

~an p- cot (dp) + (2kT/H)p =i ~i " (A-48) 

When the perforated wall is removed~ k = 0 and we find that the solution of 

equation (A-48) is then p = n~/2(| + d) , 

where n is an odd integer which we recognise as the odd eigenvalues for the 

closed organ pipe of height (I + d)H , as required by the boundary conditions on 

the outer wall of the plenum chamber~ 

At a 81otted wall we find from equations (A-42) and (A-29) 

A sin p - LB 2 cos (JdH/2) + M2AFp cos p = 0 . (A-49) 

Hence from equations (A-43) and (A-49) 

E q u a t i o n  (A-50) has  t h e  same l i m i t i n g  s o l u t i o n s  f o r  a c l o s e d  t u n n e l  (F ÷ ~) o r  an 

open  t u n n e l  (F = 0) as  e q u a t i o n  ( A - 4 6 ) .  However ,  when t h e  t u n n e l  speed  i s  r e d u c e d  

t o  z e r o  e q u a t i o n  (A-50) g i v e s  a d i f f e r e n t  l i m i t i n g  s o l u t i o n :  
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tan p tan (dp) = | o (A-51) 

We find by inspection that this has the solution 

p = n~/2(1 + d) (n = |, 3, 5 etc) 

independent of the value of F (F = ~ being excluded)° 

The previous solutions all relate to resonance modes excited by a model 

oscillating on the tunnel centre line, and therefore subject to equation (A-16) o 

However, in an empty, ventilated tunnel additional resonance modes might be excited 

by flow unsteadiness° These modes may be found by replacing the free-stream 

velocity potential (A-15) by 

i~x i~t 
= A cos % ze e o (A-52) 

With this potential the boundary conditions on the homogeneous walls are 

altered° For perforated walls equation (A-28) is replaced by: 

I A cos p - B2h(H/2) - (2A~2kT/H)p sin p = 0~ o 

For slotted walls equation (A-29) is replaced by: 

[A cos p - B2g(H/2) - (AMmF)p sin P = 0 1 • 

Then for high speed flows equation (A-37) for perforated walls is replaced by 

[cot p- (B2/Q)coth (Qdp)- (2~2kT/H)p = 0] " 

For slotted walls equation (A-41) is replaced by 

cot p - (~2/Q) coth (Qdp) - (M2F)p = 0] , 

when either k or F ÷ ~ , or d ÷ 0 equations (A-55) and (A-56) become: 

cot p = 

so that p = ~ , 27 , etc the even eigenvalues for a closed tunnel° 

For low speed flows equation (A-46) for a perforated wall is replaced by: 

~otp + (~2/R) cot(Rdp) - (2~2kT/H)p = "0"] 
h 

Q 

(A-53) 

(A-55) 

(A-56) 

(A-57) 

(A-58) 

(A-54) 
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When the wall is fully closed k ÷ ~ and equation (A-58) reduces to equation 

(A-57). When the free-stream flow is reduced to zero, R ÷ I and equation (A-58) 

becomes: 

cot p + cot (dp) - (2kT/H)p = 0 . (A-59) 

When the perforated wall is removed k ÷ 0 and equation (A-59) becomes: 

cot p + cot (dp) = 0 . (A-60) 

This has the solution 

p = m~/(l + d) , (A-61) 

where 

organ pipe of height (I + d)H . 

Similarly equation (A-50)for a slotted wall is replaced by: 

rC . . . . . .  1 I ot p + (~2/R) cot (Rdp) - M2Fp = 0 . 

m is any integer which we recognise as the even eigenvalues of a closed 

(A-62) 

Equation (A-62) has the same limiting solutions for a closed tunnel (F = ~) or an 

open tunnel (F = 0) as equation (A-58). However, when the free-stream flow is 

reduced to zero R ÷ 1 and equation (A-62) reduces to equation (A-60) for all 

finite values of F o 

It is reasonable that the characteristics of the perforated wall should 

influence the tunnel resonance at zero stream velocity through equations (A-48) 

and (A-59). However, the contrasting result that the corresponding resonance 

condition in a slotted tunnel should be independent of slot geometry through 

equations (A-51) and (A-60) is one that challenges intuition. It casts some doubt 

on the general validity of the boundary condition (A-13) for unsteady flow at a 

slotted wall. 
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Perforated 
(see Fig 6) 

Normal holes: 

VVero-boardV 
Zinc 
Hardboard 
Steel 

60 ° inclined: 

Perspex 

Slotted 
(see Fig I) 

I slot 
3 slots 
5 slots 

Table I 

DETAILS OF LINERS FOR SMALL TUNNEL (H = 102 mm) 

,_pen Area Hole diameter Thickness Grid 
(Z) (ram) (ram) 

2kT/H 

13 ] ,05 I ,5 
26 1,27 0.9 

2,4 and 4,0 4,5 3,5 
8 to 40 4,5 Io0 

5 0.79 0,79 

Ope___ n area Slot width Depth 
(Z) (m-n) (ram) 

]2 to 100 12 to 102 1 
;2~ 24~ 36 4~ 8~ 12 1 
I 0 and 20 2 ~ 4 ! 

18 3.4 3 
18 3.4 16 

Rectangular 
Staggered 
Rectangular 
Staggered 

0,30 
0, II 

5,2 and 3,2 
I,I to 0°;5 

Staggered 

2kT/H 

1.63 to 0 
0.64 to 0.40 
0.49 and 0.35 

0.53 
1.72 

0,86 

Perforation 

Table 2 

REFERENCE VALUES FOR LARGE PERFORATED TUNNELS IN UK 

O~en area Hole diameter Depth 
(z) (ram) 

Normal holes : 

HS 27 x 27 in 22 9.5 

BAC 4 x 4 ft 19 1508 

ARA 9 x 8 ft 22.5 12,7 

60 ° inclined: 

RAE3x 3 ft 6 9°5 

Grid 

6.4 Staggered 

905 Staggered 

48 Staggered 

9°5 Staggered 

2kT/H 

0,15 

0,16 

0.04 

0,95 
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a 

a 
t 

b 

d 

D 

F 

f 

H 

LIST OF SYMBOLS 

slot spacing 

velocity of sound in settling chamber at total temperature 

slot width 

ratio of total plenum chamber depth to tunnel height 

cylinder or hole diameter 

wall factor for slotted tunnels in equation (I) 

frequency (Hz) 

tunnel height 

k = (I - o)/a 

M 

n 

P 
m 

P 

Pr 
R 

S* 

empirical porosity factor 

Mach number 

resonance mode number 

eigenvalues of solutions for resonance frequencies 

rms pressure fluctuation 

rms reference pressure fluctuation 

Reynolds number per unit length 

Strouhal number - equation (17) 

T = 0.8D + Z 

t 

U 

x~y~z 

Z 

~1,~2 

equivalent hole diameter 

time 

free stream velocity 

coordinates centred on tunnel centre line (Fig 2) 

plate thickness 

open area ratio 

velocity potential of free stream flow 

angles of incident and refracted waves (Fig 3) 

velocity potential of plenum chamber flow 

circular frequency = 2~f rad/s 
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