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SUMMARY

Experiments suggest that the theory widely used to predict the transverse
resonance frequencies in slotted tunnels is in error in the Mach number range
from 0 to 0.5. One reason for the error is that the theory is based on an
unrepresentative wall boundary condition. Moreover, the theory implies that the
plenum chamber surrounding the working section is large, whereas the plenum
chamber depth is generally less than twice the tunnel height.

An improved theory is developed, which shows that the resonance frequencies
of ventilated tunnels are influenced by the depth of the plenum chamber for Mach
numbers up to about M = 0.6, Although the theory is approximate, it agrees well
with experiments for slotted and perforated walls (with both normal and 600
inclined holes).

The results are consistent with other experiments which show that plenum
chamber design can influence the flow unsteadiness within the working section of
a ventilated tunnel. :

* Replaces RAE Technical Report 78038 - ARC 37974
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I INTRODUCTION

There is considerable current interest in the use of wind tunnels for
dynamic experiments (such as the measurement of flutter boundaries, unsteady
control surface characteristics or rigid-body derivatives) at subsonic and tran-
sonic speeds. Such measurements may be in error if the test frequency coincides
with a transverse resonance frequency in the tunnel working section, for then the
aerodynamic force may be utterly inappropriate to unconfined flow], The results
of such a coincidence in frequencies could vitiate the flutter testing of an
aeroelastic model. In addition, if any aerodynamic excitation coincides with a
resonance frequency, excessive flow unsteadiness might develop in the working
section. This unsteadiness could hinder all dynamic measurements at this
frequencyzo Hence it is important that the tunnel transverse resonance frequen-

cies should be correctly predicted.,

A recent experiment3 in which resonances were excited by the vortices shed
from circular cylinders in closed and slotted working sections suggested that Acum's
theory for slotted tunnelé‘was seriously in error in the Mach number range up to
M = 0.5. We shall see in section 2 that this error arose from the use of an
unrepresentative boundary condition for the slotted wall. New experiments confirm
that there is an important influence of plenum chamber size. Fig la shows some
typical results for three depths of plenum chamber and a wide range of slot
configurations, in comparison with the theoretical curve against slot parameter
in the special case M = O, The first mode frequencies for a shallow plenum
chamber are much lower than the predicted value from Ref 4, and fall still further

as the plenum chamber depth increases,

Therefore an approximate theory for ventilated tunnels has been developed,
which predicts the resonance frequencies as a function of the free stream Mach
number M , the plenum chamber depth, d , and either a slot geometry factor,

F , or a wall porosity factor 2kT/H suitable for ventilated tunnels .in general.
Fig 1b shows that the new theory does correctly predict the measured frequencies
for the slotted working sections considered at M = 0. The new theory covers both
slotted and perforated working sections, whereas the earlier theory was only

valid for slotted working sections.,

The main predictions have been confirmed by experiments in a small pilot
wind tunnel (100 mm x 100 mm) with slotted and perforated walls. Sections 2 and

5 highlight the most interesting features of this paper.



2 OUTLINE OF THEORY

The previous theory for the resonance frequencies4 assumed that the
oscillatory pressure difference across the equivalent homogeneous wall (which
replaced the slotted wall) was independent of the plenum chamber size and pro-
portional to the streamline curvature., Mathematically, this condition on ¢x
and ¢xz was integrated to give (Ref 4, equation (22)) the following relation

between the velocity potential, ¢ , and its derivative normal to the wall, ¢z :

¢ £ J(FHY ) = O, ()

where the slot parameter F = (2a/wH) 1ln [cosec (wb/2a)] ,

and a , b and H are respectively slot spacing, slot width and tunnel height,

With this condition the solution for the resonance frequencies was given
by the eigensolution

tanp + Fp = 0, (2)

for p , a non-dimensional wave number normal to the wall (Appendix,
equations (A-15) and (A~27)). Thus the resonance frequencies varied with the
slot parameter from the closed (F = w, p = 7/2) to the open (F =0, p = 1) organ

pipe values,

For unsteady flow equation (1) should be replaced by the differential
equation (Ref 5, equation (4-4))

b+ O JUE f(THY ) = O . 3

With this condition equation (2) is replaced by
2
tan p+ MFp = 0 . (4)
(This may be seen by putting g = 0 in equation (A-29).)

Equation (4) predicts that at M = 0 the resonance frequencies are equal to the
open organ-pipe values, independent of the slot parameter F ; this prediction is

unrealistic. In contrast, at M = 1, equation (2) is recovered.

Now the slot parameter, F , was derived by Davis and Moore6'from the
potential flow through a grid, originally given by Lamb7. Lamb used this solution
~ to investigate the diffraction of sound through a grid in air at rest. He found

that when the wavelength of the incident sound was long relative to the slot width,



a large proportion of sound was diffracted through the grid; for example for a
rectangular grid with a slot width of only 10% open area ratio (typical of many
slotted tunnels), 887 of the incident sound is transmitted and only 127 reflected.
With such a large proportion of the incident sound passing through the grid it is
surely unwise to neglect the finite size of the plenum chamber of a ventilated

tunnel, at least at low speeds.

The new theory includes a plenum chamber and uses the notation shown in
Fig 2; the full analysis is given in the Appendix. Let us first consider the steady
flow. The two-dimensional working section extends from x = - » to +« and
has a uniform flow of velocity U at a Mach number M ., It is surrounded by two
plenum chambers, each of depth dH/2 , with zero mean flow. The working section
is separated from the plenum chambers by homogeneous ventilated walls, which are
thin, rigid and have no boundary layers. For simplicity, we assume that the mean
pressure and static temperature are the same in the working section and the
plenum chambers. Hence the densities in the free stream and the plenum chambers
are the same, However, we know from the measurements of Smith and Shaw8 that the
static temperature within a cavity is close to the free-stream total temperature,
not the free-stream static temperature; but the error in density is trivial at

Mach numbers up to M = 1,0,

For the oscillatory flow we seek compatible solutions for the velocity
potentials ¢ and ¢ 1in the free-stream and plenum chambers, The boundary
condition on the outer walls of the plenum chamber is a potential flow omne -

simply that the normal velocity should be zero., Thus

wz = 0 on y = * H( +4d)/2 . (5)
The specification of boundary conditions on the inner walls of the plenum
chamber is controversial., We will assume that there is continuity of mass flow

from the working-section to the plenum chamber, so that
¢ =¢Z’ on y = *H/2 . (6)

In addition, different expressions are developed inthe Appendix for the pressure

drop across perforated and slotted walls.

For perforated walls of thickness Z , we note that with a single normal
hole of diameter D and air at rest, a phase lag of 90° between the applied

pressure and the normal velocity is both predicted and measuredgn In accord with



a recent theoretical studylo, we assume that the free - stream flow does not alter
this relationship and that the hole resistance remains much smaller than the
impedance. The pressure drop across a single hole is then generalised to predict
the pressure drop across perforated walls at z = + H/2 containing many holes

to give equation (A-12), viz

by * (0, = WI/U £ (ikeT/U)6_ = O )

where, as in equation (A-11), k = (I - ¢)/c is an empirical function of the
open area ratio ¢ , w 1is the circular frequency of the oscillations, and the

effective hole diameter is

T = 0.85D + 2z |, (8)

For slotted walls we assume that the steady-flow value of F 1is still
valid for the oscillatory flow and hence derive the wall condition in

equation (A-13) wviz:

by + (b, = /U £ (FH/2)S_ = O . )

Although equations (7) and (9) look quite different, they predict similar
trends for the influence of plenum chamber depth, wall porosity and Mach number
on the resonance frequencies. Hence they may be regarded as different versions
of Bernoulli's equation for the oscillatory flow through an orifice or a slot

(Ref 11, equation 11.3.37).

With these boundary conditions, eigenvalues, p , can be calculated. At
low speeds (0 < M < 0.5) the resonance frequencies in perforated and slotted
tunnels are roughly constant and remain slightly below the closed/closed organ-—
pipe frequencies at M = 0 with a tunnel of height H(1 +d) . From M = 0.5 to
0.7 the resonance frequencies increase rapidly and the influence of the plenum
chamber becomes negligible. At the special Mach number, M = (/§ - 1)/2 = 0.618 ,
from equations (A-25) and (A-26), the resonance frequencies of perforated and

slotted tunnels are identical, independent of the plenum chamber depth and the



wall porosity, and equal to the closed tunnel values (p = 0.57) and the form of
the solution changes., From M = 0.7 to 1,0 the resonance frequencies fall mono-
tonically and are virtually unaffected by the depth of the plenum chamber. These
predictions were unexpected (see sketch in Fig 2) but we shall see that they are

broadly confirmed by the experiments.

Acoustic theory may be invoked to explain the surprising change in the
character of the solutions at M = 0.618, Fig 3 compares what would happen at
the closed and open portions of the walls of a two-dimensional slotted tunnel
with an oscillating model on the centre line, (The notation follows Ref 11,
Figs 11.2 to 11,5). Fig 3a identifies the single incident pressure wave which
would be directly reflected onto the model from the closed portions of the bound-

ary. When the time taken for the journey to and from the model

t = HM/UVI] - M2 9

is the half period, 1/(2f) , the reflected wave will cancel the source wave
and resonance will occur. Thus the first resonance frequency in a fully closed

tunnel is
£ o= U/l - M/ Qm) , ie p=rT/2 , (10)

as previously given by Acum4, In contrast, Fig 3b shows that for the open por-
tions of the boundary, acoustic theory would impose conditions analogous to
Snell’s law of refraction in optics. The boundary between the free-stream flow
and the static air in the plenum chamber is assumed to deflect as pressure waves
from the model intersect it (see Ref 11, p 705). From Fig 3a, the inclination of
the wave front to the boundary, ¢1 , must increase with speed according to the
relation

cos ¢1 = -M , (1)

With our assumption of a uniform static temperature across the free stream and
the plenum chamber the velocity of sound is uniform across the tunnel. Hence the
inclination of the refracted wave front in the plenum chamber must satisfy the
condition

cos ¢2 = (cos ¢])/(l + M cos ¢1) ) (12)

based on Ref 11, equation (11,1.17).



The limiting case

4, = 180°, cos 9 = = 1/(1+MW) (13)

defines a value of ¢1 above which sound waves would not enter the plenum chamber.
Manifestly, at this condition the resonance frequencies would not be influenced
by the open area ratio nor by the depth of the plenum chamber, The critical

speed for this condition is given by equations (11) and (13) as

cos ¢, = -M = - /(1 +M) ,
or
2
M+M-1 = 0 . (l4)
Equation (14) has the solution
M = (/5-1)/2 = 0.618 , (15)

precisely the critical speed found in the Appendix.

This argument rests on the assumption of a travelling wave along the
equivalent homogeneous wall. The concept of a continuously varying boundary
displacement is easier to accept for a narrow slot than for a succession of
individual perforations. Nevertheless, it provides an interesting physical
explanation of what the theory predicts and the experiments confirm in both slotted

and perforated working sections,

It is important to note that the solutions for perforated and slotted
tunnels differ appreciably in the limit at M = 0, Considering first only the odd
eigenvalues, we find in equation (A-48) that for perforated walls:

tan p - cot(dp) + (2kT/H)p = 0 |, (16)
so that the resonance frequencies are influenced by the wall parameter, as well as

the plenum chamber depth. When the perforated walls are removed, k = 0 and the

solution of equation (16) is then

p = or/2(1 +d) , | (17)

where n = 1, 3, 5, etc which we recognise as the odd eigenvalues for the closed



organ pipe of height (1 + d)H . In contrast, in equation (A-1) for slotted

tunnels we find for all finite values of F

tan p tan (dp) = 1 . (18)

The solution of equation (18) is also equation (17). Hence equation (16) must
be regarded as more realistic than equation (15), and as reflecting adversely on
the boundary condition expressed by equation (9). Now there is no a priori reason
why the oscillatory flow through an orifice should differ in character from that
through a slot at M = 0. Hence, when calculating resonance frequencies, it is
considered better to replace a slotted wall by a perforated wall of the same open
area ratio, and some equivalent hole size. Our experiments in relation to
equation (8) suggest that the hole diameter D may be replaced by the slot width
b so that

T = 0.8 +2 , (19)

where Z is now the depth of the slat, instead of the plate thickness of the
perforated wall. Fig 1b shows that this approximation works well for slotted

walls in the range of wall parameters of interest (2kT/H < 0.5).

3 EXPERIMENTAL DETATILS

3.1 Wind tunnel

The RAE 4in x 4in tunnel used for the previous resonance experiments3 was
modified for these tests. The main modification was the provision of two plenum
chamber boxes, which could increase d from the datum value (d = 0.67) to 2.0
or 4.0, These plenum chamber boxes were bolted directly to the top and bottom of
the tunnel shell, as shown in Fig 4. The tunnel shell was provided with four
circular access holes to connect the datum plenum chamber to the plenum chamber
boxes (see sketch in Fig 5). For comparison with the theory, which refers to a
two—-dimensional tunnel, large rectangular cut-outs would have been preferred, but
this would have weakened the tunnel shell. The access holes leave an adequately
strong structure and provide a flush location for the four acoustic tweeters,

The 1ids of the plenum chamber boxes have corresponding access holes.

Another modification was to provide three new pairs of top and bottom liners
for the working section, which has closed sidewalls. Two perforated liners with
normal holes were made from perforated zinc (meat-safe linings) and Vero-board

(a plastic widely used as a base for bread-board circuits). A pair of perforated
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liners with 60° inclined holes was available from the previous testsB. In addi-
tion perforated plates with normal holes used for extensive wind-off tests (Fig 6)
were made from hardboard and steel (Table 1). A shallow pair of slotted liners

. . . . , 3
was made to allow comparisons with the original deep slotted liners™,

For these tests a sidewall static pressure hole (at x/H = 1.5) upstream
of the usual model position (at x/H = 2,5) was used to measure the reference
Mach number. This reference pressure was preferred to a plenum chamber pressure
because of the wide variations in plenum chamber geometry and the wish to avoid
extensive calibrations of the new liners. The reference Mach number was varied
fromM = 0.3 to 0.9, The tunnel total temperature could not be controlled, but

varied from about 10°C to 15°C during the tests,

3.2 Instrumentation

The acoustic resonances in the working section were excited by four high-
frequency one~inch—diameter dome tweeters mounted in either the walls of the
plenum chamber or the plenum chamber boxes and driven by an oscillator and a

power amplifier,

Each pair of tweeters was wired in phase, but could be switched to operate
in phase or in anti~-phase with the other pair. All the measurements presented
here relate to operation with the top and bottom pairs in anti-phase, because the
main interest was to measure the 'odd' resonance frequencies which would be
excited by a model oscillating on the tunnel centre 1ine4. [Even with the anti-
phase switch selected, weak symmetric resonances were excited during the wind-off
tests, for no attempt was made to match the acoustic impedances of the tweeters.]
During the wind-off tests the tweeters were operated at their maximum rating
(8 watts) for several hours without failure. However, during the wind-on tests
several tweeters failed after operating for a few minutes at Mach numbers above
M = 0.7 at ratings of only 4 watts. These failures were attributed to over-
heating because of the reduced air density at the higher speeds. Hence the power
was reduced to 0.5 watts and no further failures occurred over the subsequent

30 hours of testing.

Seven semi-conductor strain—-gauge pressure transducers, having a diaphragm
of 3.2 mm diameter, were used to measure the pressure fluctuations across the side-
wall of the tunnel at x/H = 2.0, y/H=0, 20,25, £0.44 and #0.63 (within
the datum plenum chambers). With a pistonphone driven at a single frequency of
50 Hz, the amplifier gains were adjusted to give every transducer the same
sensitivity. The frequency response was estimated to be flat from zero up to

about 6 kHz,
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With the wind on there was initially some difficulty in determining the
acoustic resonances against the tunnel noise, particularly at Mach numbers above
M = 0.5 and for the deeper cavities. Therefore the amplifier output signals were
fed into a tracking filter, locked to the oscillator voltage which excited the
tweeters, The tracking filter was a Spectral Dynamics Analyser Type SD 101A, and
was used with a | Hz bandwidth, This instrument achieved fair repeatability, even

at the higher speeds, as indicated by the following table.

Accuracy of frequency measurement (at about 1500 Hz)

Mach numbex range Repeatability (Hz)
0 about 5
0.3 to 0.5 about *20
0.6 to 0,9 about 50

Some of this variation might be attributed to variations in the velocity of

sound due to changes in the tunnel total temperature, which cannot be controlled.

4 RESULTS
4.1 Duct

When the ventilated liners are removed from the tunnel working section, a
duct of height (1 + d)H is formed. The resonance frequencies of this duct at
M = 0 must be measured precisely before the frequencies in the presence of the

ventilated walls can be correctly predicted.

Fig 5 shows that for d = 0.67 the measured and calculated duct frequencies
for the odd modes are almost identical. This is because the acoustic height is
almost exactly equal to the geometric height, for the tweeters are flush with the
walls of the datum plenum chamber. However, for d = 2.0 and 4.0 the four access
holes in the datum tunnel shell significantly increase the effective acoustic
height, particularly for the first mode. Thus the measured duct frequencies are
appreciably lower than those calculated. The following table shows the acoustic
heights which must be used to predict the measured resonance frequencies of the

duct correctly.

. \ Acoustic Height of duct
Geometric height of duct Tt mode Jrd, 5th, etc
0.67 0.67 0.67
2.00 2,87 2,04
4,00 5.11 4,14

The table shows that for the first mode and geometric heights of d = 2 and 4

the access holes in the datum tunnel shell increase the acoustic height by about 1.
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The acoustic heights given in the table are used in the calculations without
change for all the ventilated liners. These acoustic heights are assumed to be
invariant with free-stream Mach number because the mean speed assumed in the
plenum chamber is always zero and the assumed variation of plenum-chamber static
temperature with Mach number is small, In fact, the true static temperature of
air in the plenum chamber is close to the tunnel total temperature and therefore

invariant with Mach number (section 2),

4,2 Perforated walls

Fig 6 compares the Ist and 3rd resonance frequencies measured at M = 0 for
a wide range of perforated walls with results of the new theory. The theory
predicts that, as the wall parameter increases, the resonance frequencies fall,
Thus for d = 0.67, the limit 2kT/H > » for the 3rd mode becomes p = 0.5,
which is the first closed tunnel mode. For the lst mode the corresponding limit
is p = 0 . The mode shapes change progressively with the changes in frequency.
Thus for d = 0.67 the Ist mode changes from the lst closed/closed mode
appropriate to a tunnel of height (1 + d)H for 2kT/H =0 to a uniform,
quiescent mode for 2 kT/H = «» . Similarly the 3rd mode changes from the 3rd
closed/closed mode appropriate to a tunnel of height (1 + d)H for 2 kT/H = 0
to a uniform quiescent mode in both plenum chambers combined with the lst closed/

closed mode appropriate to a tunnel of height H for 2 kT/H = « ,

For normal holes, theory and experiment are only in excellent agreement for
the range of wall parameters currently used in perforated wind tunnels
(0 < 2 kT/H < 0,3). Thus for d = 0.67 the resonance frequencies fall signifi-
cantly as the wall parameter increases, whereas for d = 2,00 the variation is

smaller; both trends are as predicted by the theory.

For wall parameters higher than 0.3 the measured resonance frequencies are
generally higher than predicted. However, in these tests high wall parameters are
obtained at the expense of a loss of wall homogeneity, whereas a homogeneous
wall is assumed in the theory. Thus for the steel plate the open area ratio was
reduced from 407 by taping over streamwise lines of holes forming 'slats’ but
leaving open three 'slots'. These slots incorporated successively 1, 2 and 3
streamwise rows of holes, which gave open area ratios of 8, 16 and 24%. Despite
some lack of homogeneity, the measurements for 247 open area ratio (2 kT/H = 0.30)
are still upon the predicted curves. The hardboard walls have a rectangular grid
spacing with only a few large holes and cannot fairly be considered as homogeneous,

even with an open area ratio of 4% (2 kT/H = 3.2). The influence of the lack of
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homogeneity becomes less important as the cavities become deeper, as we might
have expected from the dispersion allowed by the increased acoustic height. In

addition the deeper cavities allow the acoustic excitation to become more uniform.

In contrast to the measurements for normal holes, Fig 6 shows that the
measurements for the liners with 60° inclined holes are in excellent agreement with
the predictions for both modes and all three plenum depths. This is because the
liners with 60° inclined holes are homogeneous, having many small holes. The high
wall parameter (2 kT/H = 0.86) is obtained primarily because the open area ratio
is only 5% based on the hole area. The effective thickness of the plate to be
used in equation (8) is twice the plate thickness because of the 60° inclination
of the holes. The general formula suggested for the wall parameter for holes

drilled at any angle 6 to the normal is
2KT/H = 2{(1 - 0){(0.85D + Z sec 9)/cH . (20)

The wind-on resonance frequency measurements were made either by acoustic
excitation from the tweeters or by aerodynamic excitation from the circular

cylinders of 10 and 18 mm diameter used in the previous test530

Figs 7, 8 and 9 show the variation of the lst and 3rd resonance frequencies
with Mach number for the three perforated liners. For d = 0.67 the acoustic
measurements and the theory are in fair agreement., The measured resonance
frequencies remain constant up to M = 0.5 and then increase to reach a maximum at
about M = 0,7. For d = 2,0 it was more difficult to excite resonances with the
tweeters and a comparison between theory and experiment was not generally possible
above M = 0.7. For the 3rd mode there is some confusion because there are two
closely spaced modes in the duct at M = 0 (Fig 5) which may be caused by small
asymmetries. However, equation (16) has two singularities for d = 2, with »p
near odd multiples of /2 . With homogeneous perforated walls both modes persist
at M = 0 and with the wind on. The lower frequency mode generally predominates,

and agrees with the theory for d4 = 2.04, as it should.

Figs 7, 8 and 9 also include the resonance frequencies excited by the cir-
cular cylinders. Despite careful attempts to excite the Ist mode, this was
never detected, possibly because the tunnel was so difficult to control at the
low speeds required (M = 0.2). However, the 3rd mode could be excited, although
the measurements were still difficult at M = 0.24. For d = 0.67 the cylinder
resonance frequencies are appreciably lower than the acoustic measurements,

although the difference becomes progressively smaller as the wall parameter
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increases from 0.11 to 0.86. We shall see when Fig 13 is discussed in section 4.3
that this difference in frequency is associated with a difference in mode shape.
Such a difference is not surprising, given the radical streamwise difference in
the two types of excitation and the local Mach number variations about the
cylinders. However, for d = 2,0 the third mode resonance frequencies are in
excellent agreement with the acoustic measurements. This suggests that the
difference between the two types of excitation is much less important for deep
cavities. This appears reasonable, for the deeper cavities allow the acoustic

excitation to become more uniform.

4.3 Slotted walls

Fig | shows measurements at M = 0 of the Ist mode acoustic frequency of a
large number of slotted walls, Most of these were cut from cardboard 1 mm thick,
The measurements agree with the new theory for all depths of plenum chamber up to
wall parameters of about 2 kT/H = 0.5. For wall parameters higher than 0.5 the
measured resonance frequencies are higher than predicted. However, most of these
high wall parameters relate to a single slot and do not provide the wall homo-
geneity assumed in the theory. The same trend was noticed previously in the

measurements for perforated liners (Fig 6).

Fig 10 presents both the Ist and 3rd modes at M = O for the same slotted
walls considered in Fig 1. The measurements for the 3rd mode are again in good
agreement up to wall parameters of 0.5, Above this wall parameter the measure-
ments are again higher than the theory predicts. This difference becomes pro-
gressively smaller as the plenum chamber is deepened, just as for the perforated

walls.

Figs 11 and 12 show the variation of the Ist and 3rd resonance frequencies
with Mach number for the shallow and deep slotted walls. For d = 0.67 the
acoustic modes and the theory are in reasonable agreement., However, for d = 2.0
it was more difficult to excite resonances with the tweeters. At Mach numbers
above M = 0.5, the comparison of theory and experiment was less satisfactory..
Although for the shallow walls (Fig 11b) there are two closely spaced 3rd modes at
M = 0, only one mode can be identified with the wind on. For the deep walls

(Fig 12b) only one 3rd mode is found, whether the wind is on or off..

For comparison with the deep hard liners, Fig 12 includes a few acoustic
measurements of the resonance frequencies in the slotted working section with the
. . . . 3 . . .
deep laminate liners used in the previous tests ., With the deep laminate liners

the resonance frequencies are generally a little lower than with the deep hard
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. . . . 12
liners. The same trend was observed in comparative tests in the RAE 3ft tunnel
and was attributed to a small increase in the effective acoustic height of the

working section provided by the movement of air into the laminate.

Figs 11 and 12 also include the 3rd and 5th resonance frequencies excited
by circular cylinders; the lst mode could not be excited., The cylinder and
acoustic measurements agree for both depths of plenum chamber. The contrast with
the differences between cylinder and acoustic measurements observed with the
perforated walls for d = 0,67 was so marked that in Fig 13, shapes of the 3rd
mode excited by the tweeters and the 10mm diameter cylinder were compared. (The
smaller cylinder was selected for the comparison to reduce blockage interference.)

Now exact comparisons cannot be expected for two reasons:

(i) there is a large difference in the bandwidths of the pressure fluctua-
tion measurements (only ! Hz for the acoustic measurements compared

to 6.5%2 of f for the cylinder measurements),

(ii) there is a large difference in signal levels because the resonances
excited by the tweeters are about two orders of magnitude smaller

than those excited by the cylinders.

To offset these anomalies, both sets of root-mean—square pressure fluctuation
measurements, 5 , are nondimensionalised by the appropriate reference pressure
fluctuation, Er , at the point y/H = 0.44 (on the measuring station x/H = 2,0
upstream of the cylinder at x/H = 2.5). Thus, the pressure fluctuations measured
at that point by the two radically different methods are forced to coincide and
have the value 1. The choice of this point is somewhat arbitrary, but it does not

prejudice the comparison.

Fig 13a shows a typical example (for the deep slotted liners at M = 0.31)
when the frequencies in Fig 12a were almost identical for d = 0.67. An almost
exact match of mode shapes is obtained, which suggests that the reference pro-—
cedure is reasonable. Fig 13b shows the worst example, for the perforated liners
with normal holes at M = 0,32 and a wall parameter of 0,30, when the frequencies
in Fig 8a differ by 30%Z. The mode shapes have the same general character but the
acoustic mode shows much larger relative variations across the tumnel. Fig 13c
shows an intermediate example (for the perforated wall with 60° inclined holes at
M = 0.38) when the frequencies differ by 11%; the acoustic mode still shows the

larger relative variation across the tunnel.

Hence we must accept that for d = 0.67, and with perforated walls, the

resonances excited by the tweeters and the cylinders differ significantly in
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frequency and mode shape. These differences should tentatively be attributed to
the three-dimensional nature of the experiment. The tunnel working section
length is only four times the tunnel height. The tweeters are disposed along the
working section, whereas the cylinder is located at x/H = 2.5 (Fig 5). These
streamwise variations in the excitation would become less important with the

deeper plenum chambers, and this hypothesis is thus consistent with the experiment.

The dotted curves in Fig 13 show that the root—-mean~-square pressure fluctua-
tions predicted from equations (A-3) and (A-4) have the same general character as

the measurements, and are in good agreement with the cylinder measurements,

4.4 Deep plenum chambers

Ventilated wind tunnels with deep plenum chambers have a multiplicity of

closely spaced resonance modes which are difficult to identify at low speeds.

Tests with acoustic excitation for the deep plenum chamber (d = 4) proved
even more difficult than for the intermediate plenum chamber (d = 2), particularly
at Mach numbers above M = 0,5. Hence only a few typical resonance frequency
measurements are presented, for one perforated and one slotted working section

(Fig 14),

The acoustic measurements agree with the theory up to M = 0.5. The cylinder
excited the 5th mode for the perforated working section and the 5th and 7th
modes for the slotted working section. The 3rd mode could not now be excited even
by the larger (18mm diameter) cylinder because the resonance frequency had become

too low (950 Hz), corresponding with a Mach number of only M = 0.25,
5 DISCUSSION

The measurements presented in section 4 confirm that the depth of the
plenum chamber in a small ventilated tunnel has a strong influence on the trans-
verse resonance frequencies up to a Mach number of about M = 0.5. The agreement
between the measurements and the predictions is good for both perforated (with
normal and 60° inclined holes) and slotted walls. In view of this good agreement,
we may infer that the equivalent homogeneous wall boundary conditions in
equations (7) and (9) are fairly realistic and might be applied (in conjunction
with the appropriate plenum chamber field) to other calculations of dynamic inter-
ference which do not involve resonances. However, equation (7) could be unreliable

at low frequencies.

Equation (7) assumes that the increase in stream velocity has virtually no

influence on the orifice reactance so that the pressure drop lags 90° behind the
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outflow velocity. The resonance frequencies predicted under this assumption

agree well with the measurements, certainly up to M = 0.5 or U = 170 m/s.

Although as previously noted, Rice predicted that the reactance of normal
holes would be unaffected by the stream velocity]O and this has been confirmed by
experimentsl3, the measurements of Goldman and Panton14 suggest that under a tur-
bulent boundary layer the orifice reactance is halved as the stream velocity increases
from U = 0 to only U = 30 m/s. Over the same speed range the orifice resistance

({e the pressure drop inphase with the outflow velocity) increases bya factorof 10.

. 14 . .
These wind—on measurements of Goldman and Panton = thus appear inconsistent

with the present tests, which cover a much wider speed range.

However, the wind-off measurements of resistance and reactance given in
Ref 14 look reasonable, because they agree exactly with the predictions of Hersh
and Roger39 for thin orifices, despite the large change in plate thickness shown

in the table.

Experiment Frequency Orifice diameter Plate thickness
£ (Hz) D (mm) Z (mm)
Ref 14 250 5,08 3.2
Ref 9 150 7.0 0.1

Hence, equations (7) and (8) are certainly valid for the perforations used in
large transonic tunnels (Table 2) as well as for the small perforations used in

the present tests (Table 1),

Accurate estimation of resonance frequencies in large transonic tunnels can
be difficult in practice, These tunnels, with height range from 1 m to 5 m, will
have low transverse resonance frequencies and a multiplicity of closely spaced
modes. The multiple modes may be attributed to small asymmetries, obstructions
in the plenum chamber and three-dimensional effects. The three~dimensional
effects are always important, even in a nominally two-dimensional working section,
because most tunnels have working sections only about three times as long as the
height and it is difficult to provide uniform excitation. As an example of these
problems, Fig 15 shows two closely spaced fundamental modes (odd modes) excited
in the perforated working section (0.91 m x 0.81 m) of the RAE 3ft x 3ft tunnel.
(The modes were excited by a single 5 watt loud-speaker mounted in a baffle plate
suspended in the middle of the side plenum chamber.) The lowest mode, at 88 Hz,
corresponds exactly to the frequency predicted from equation (A-48). The closely
spaced mode, at 120 Hz and not predicted by equation (A~48), had a similar mode
shape. The large pressure fluctuations in the plenum chamber opposite the loud-

speaker, and separated from it by two perforated walls, should be noted. The
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amplitudes of both modes were constant across a vertical traverse (Z) at constant
values of y , but naturally varied significantly in the streamwise direction.
The important point to notice is that the lowest frequency (88 Hz) was correct
and that both frequencies were much lZower than the corresponding closed/closed
mode at 183 Hz. Hitherto, guided by Ref 4, wind-tunnel engineers would have
anticipated a higher fundamental frequency, of about 1.8 x 183 Hz, although the
precise value could not have been predicted for perforated walls, Hence it is
recommended that for large transonic tunnels the predictions of the theory for

M = 0 according to equation (A=-48) should always be compared with a set of
measurements with a pair of loud-gpeakers. Then the symmetric and antisymmetric
modes can be carefully separated, as for the present experiments in the small
pilot tunnel. The frequencies thus measured should then be used to calculate the
effective plenum chamber depth (d) and wall parameter (2 kT/H) to ensure the

best match with equation (A-48). These effective values should then be inserted
in equations (A-46) and (A-37), for M < 0.618 and M > 0.618 respectively, to pre-

dict the wind-on resonance frequencies as a function of Mach number,

The radical change in the solutions which occurs at M = 0.618 has wide
implications for the excitation of resonances, both by oscillating models or by
flow unsteadiness. For Mach numbers below M = 0.618 the plenum chamber influences
the resonance frequencies and is able to dissipate some of the acoustic energy
radiated from the working section. Hence we would expect that resonances in
ventilated tunnels would be relatively difficult to excite at Mach numbers below
M = 0.618, This hypothesis is confirmed by recent experiments with circular

cylindersB’12

, which provide a powerful source of excitation up to about M = 0.4,
However, for Mach numbers above M = 0.618 the plenum chamber has hardly any
influence on the resonance frequencies, and therefore cannot provide much acoustic
dissipation. Hence as a general rule we would expect that resonances would be
relatively easily excited in ventilated wind tunnels at Mach numbers above

M = 0.618, and this is consistent with Varner%;observationls, although he does not
consider the influence of the plenum chamber. The pressure fluctuations in the
working sections of continuous fan-driven ventilated tunnels generally start to
increase rapidly above M = 0.6 (Fig 16). This increase may sometimes correspond
to the excitation by the fan of both odd and even resonance modes within the
working section. Such resonances could explain the spanwisé and vertical varia-
tions in pressure fluctuations across the tunnel walls sometimes observed in this

speed range,
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The flow unsteadiness generally starts to fall above M = 0.8 or 0.85 because
the diffuser starts to choke, isolating the working section from the direct influ-
ence of the diffuser separations and the fan noise field. Sound-absorbing slats

1
H]

could thus be expected to be particularly useful to reduce flow unsteadiness

and to attenuate resonances in the Mach number range from M = 0,60 to 0.85.

Now the flow unsteadiness in the plenum chamber of a ventilated tunnel can
influence the flow unsteadiness in the working section, even when there are no
transverse resonances (see section 5.4.3 in Ref 16) and at supersonic speeds.
Hence it would be prudent to make provision for fitting sound—-absorbing material
in the plenum chambers of all new transonic tunnels, and to measure the pressure
fluctuations in the plenum chambers of all transonic tunnels now in use. Follow-
ing this suggestion, large pressure flunctuations have been measured in the plenum
chambers of two blown—down tunnels (the HSA 27in x 27in and the BAC 4ft x 4ft
tunnels). These pressure fluctuations correspond to various closed/closed longi-
tudinal organ pipe modes excited by random mixing in the tunnel diffuser, just as
in earlier tests in the RAE 3ft tunne116, For the HSA tunnel the plenum chamber
unsteadiness has already been reduced by the installation of some sound-absorbing
foam. The reduction in plenum chamber pressure fluctuations was accompanied by a
reduction of the pressure fluctuations on the centre line and on the walls of the
tunnel. For the BAC tunnel a more elaborate configuration of sound-absorbing
foam has been installed in the plenum chamber. This has greatly reduced the level
of flow unsteadiness in the plenum chamber but comparative measurements are not

yet available in the working section.

These resonances excited by the 10 and 18mm diameter cylinders in the

3’12, illustrate interesting examples of a fairly well-

present or previous tests
known aerodynamic/acoustic interaction. A less well-known interaction of this
type occurred during tests of the perforated liners with large normal holes

(1.27 mm diameter). When the frequency of the self-induced sound due to the flow
over the top and bottom liners coincided with tunnel resonance frequencies, strong
resonances were observed in the empty tunnel, independent of the excitation
provided by the tweeters. The amplitude of these resonances was intermediate
between those excited by the 10 and 18mm diameter cylinders mounted on the tunnel
centre line, and those excited by the tweeters in the bottom of the plenum
chambers. The Strouhal number based on the hole diameter was very low, only

about 0.006 at M = 0.4 and 0.7, possibly because of the outflow induced by the

diffuser suction. The normal Va\.luel7 without outflow is about 0.20 but may vary

with hole diameterlg.



6 CONCLUSIONS

A deficiency in the existing theory to predict resonance frequencies in
slotted tunnels has been investigated and attributed to two errors, The first is
the neglect of the plenum chamber, the second is the use of an inappropriate
boundary condition for the oscillatory flow at the equivalent homogeneous wall,
To remedy these errors, an improved theory was developed, which includes the
plenum chamber and a better, though still approximate, boundary condition for the
equivalent homogeneous wall. The improved boundary condition could be applied
in other dynamic interference problems which do not involve resonances but may be

unsuitable for low frequencies.

The new theory suggests five main conclusions, which are broadly supported

by experiments.

(1) For Mach numbers up to M = 0.5 the resonance frequencies depend on the
plenum chamber size, as well as upon a wall porosity parameter representing

the wall geometry. -~

(2) For Mach numbers above M = 0.6 the resonance frequencies are virtually
independent of the plenum chamber size, but still vary with the wall

porosity parameter.

(3) The resonance frequencies peak at around M = 0.70 in a typical ventilated

tunnel.

(4) For all Mach numbers, any flow unsteadiness within the plenum chamber can
influence the flow unsteadiness on the tunnel centre line, even when no
resonances are excited. Hence the measurement of the pressure fluctuations

in the plenum chambers of all ventilated tunnels is strongly recommended.

(5) 1If large plenum chamber pressure fluctuations are discovered, they may often
be attenuated by acoustic treatment, with resulting improvements in the

working section,

These conclusions are of particular interest to engineers who use ventilated
wind tunnels for any kind of dynamic test, such as the measurement of flutter
speeds, unsteady control—surface characteristics, rigid—~body aerodynamic deriva-
tives or the severity of buffeting. If the test frequency happens to coincide
with a tunnel resonance frequency the results should alwayé be evaluated with

caution.
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Appendix

CALCULATION OF THE RESONANCE FREQUENCIES OF VENTILATED TUNNELS

The two-dimensional ventilated tunnel is idealised as shown in Fig 2. The
mean velocity, U , is uniform in the free-stream flow and zero in the plenum
chamber. The mean static pressure and density are assumed to be uniform across
the working section and plenum chamber. Solutions of the appropriate disturbance
potential equations in the free-stream flow (¢) and the plenum chamber flow (y)
are matched along the boundaries of the working section (at =z = + H/2). On this
thin wall discontinuities in streamwise velocity are allowed. However, on both
sides of the wall the normal velocity must be identical to satisfy the equation

of continuity of mass flow, so that:

db = Y_ . (A1)

At the outer boundaries of the plenum chamber {at z = * H(1 + d)/2} we must

apply the condition of no normal velocity.

o= 0 . (A-2)

Following Acum (equation (4.4), Chapter IV of Ref 5) we may write the linearised

expression for the pressure in the free stream as:

p-p, = -oells_ +9l . : (4-3)

Similarly the plenum chamber pressure is:

p-p, = —elvl. (A=4)

=]

Hence the pressure drop across the homogeneous walls at =z = * H/2 is:

P, = ~ D[U¢X o, wt] . (A-5)
Different expressions for equation (A-5) are now developed for perforated and
slotted walls, before we find the appropriate solutions of the disturbance poten-

tial equations.
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Perforated walls

For small oscillatory flows through a single orifice normal to the surface
into air at rest, we know from both theory and experiment9 that the oscillatory
velocity lags nearly 90° behind the applied oscillatory pressure for high

frequencies. For a single orifice of diameter D and depth Z we may write
P, = ipw(0.85D + Z)V0 ’ (A=-6)

where V0 = oscillatory flow through the orifice. We will assume that
equation (A-6) applies when there is flow across the orifice., For a number of
identical small orifices in a plate of open area ratio, ¢ , we may write an

equivalent homogeneous boundary condition on the normal velocities as

V = oV. . (A~7)

Hence, if we assume that there are no interactions between the flow around neigh-

bouring perforations, we find from equations (A-6) and (A-7) that

P, = ipw(0.85D + Z)Vn/c . (A-8)

More generally we may write
P, = 1prkVn ’ (A-9)
where T = (0.85D + Z) = effective hole diameter , (A~10)

and k 1is a dimensionless function of the open area ratio o , which should be
found from experiment., A simple empirical function for k which would satisfy

1 is

the correct limits for o =0 and o

=
i

(1 =-a)fe , (A-11)

and this should suffice to indicate the variation with open area ratio in the range

normally utilized (say ¢ < 0.25).

Thus from equations (A-5) and (A-9) we find for =z = t H/2

o, * (¢, - wt)/U = (ikI/W¢, = 0 . (A-12)



Appendix 23

Slotted walls

We assume that the expression for P, given in equation (A-5) may be equa-
ted with the pressure drop required to cause the streamline curvature ¢XZ/U s in
dccord with the homogeneous boundary condition developed previously for steady

flow in equation (1). Hence we find that for =z = + H/2 ,

o+ (¢t - wt)/U * (FH/2)¢xz = 0 , (A-13)

Solutions of equations for the velocity potential

For the mainstream flow we follow Acum and write
2 _ 2/ C2 / 2 _
(1 -u )¢xx * ¢zz 2(l)xtM u-H ¢tt v =290. (a-14)

We choose
¢ = A sin rze %% MOF | (A-15)
thus ensuring that at a resonance condition, excited by a model oscillating on the
tunnel centre line,
6 F 0 . (A-16)

The wind-tunnel configuration is symmetric and therefore we consider only anti-

symmetric solutions of ¢ and ¢ , valid for O < z < H(1 + d)/2 .

From equations (A-14), (A~15) and Acum's equation (7) we find that the

eigenvalues, A , satisfy

o = Mzw/UBZ = MZBUA/UBZM = MA/B (A-17)
2,4
where B = (1 -M) o (A~18)
Now for the plenum flow,
M = U = 0 ,

and the disturbance potential is given by the acoustic wave equation (see
J.W, Miles, Ref 19, section 2.5). Thus

= 2 -
b * ¥z T Veef% (a-19)

XX ZZ
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where a, = velocity of sound in the plenum chamber.

The acoustic wave equation must be used because the limit M - 0O in equation (A-14)

does not necessarily imply incompressible flow when U ~ O .

Solutions of equation (A-19) compatible with equation (A~15) must be of the

form

lox iwt
g(z)e e

1() = » (A"ZO)

so that from equations (A-19) and (A-20)

_ (2 %/ 2 ~ _
g, (a w ao)g = 0 . (A-21)

If we write

E2 = az - w%/;Z s (A-22)

equation (A~21) becomes

g ~Eg =0, (A-23)

and the character of the solution of the plenum chamber flow will be determined by
the sign of E2 » which is influenced by the free-stream Mach number, M , and the
speed of sound in the plenum chamber, ag By our assumption of constant pressure
and density across the tunnel, the static temperature of the air in the free stream

and the plenum chamber are identical. Hence

a, = u/M ., (A~-24)

Then from equations (A-17), (A-22) and (A-24),

2.2,2 2
M}\/B“BZA H

=
Il

or \

Q = B = MG -wd - -D] . (4-25)

The form of solution to equation (A-23) will depend on whether Q is real or

complex,

First we treat the special case Q = 0 , when from equation (A-25)

M = 0.618 , (A-26)
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Then we deal separately with the speed ranges M > 0.618 (Q real) and M < 0.618

(Q pure imaginary).

Before doing this, it is convenient to note that the boundary conditions
on the ventilated walls at z = * H/2 may now be specified, using equations
(A=15), (A-17) and (A-20).

For perforated walls, we find from equation (A-12), writing

p = AH/2 . (A~27)

A ginp - Bzg(H/Z) + (ZABZkT/H)p cosp = 0 . (A-28)

For slotted walls, we find from equation (A-13)

A sinp - Bzg(H/Z) + (MzAF)p cosp = 0 . (A-29)

M = 0,618 (Q = 0)

When Q = 0, equation (A-23) becomes 8, = 0 , which has the simple solution
(for H/2 ¢ z s H(1 +d)/2) ,

g = G1 + GZZ : (A-30)

where G1 and G2 are constants. Now on the outer wall of the plenum chamber

we must have from equation (A-2)

so that from equation (A-30)
G, = 0 , (A-31)

and there is no normal velocity across the plenum chamber. For the ventilated,
inner wall of the plenum chamber we must also satisfy equation (A-1) so that from
equation (A-15)

A) cos (MH/2) = Al cosp = 0 . (A~32)

Hence p = w/2 , 3m/2 etc, the same values as found previously for the closed
tunnel by Acum, It is surprising that the eigenvalues at this speed should be

independent of the wall geometry or the size of the plenum chamber. In particular,
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at this speed the resonance frequencies of perforated and slotted tunnels are

identical and equations (A-28) and (A-29) assume the same degenerate form
independent of the wall parameters:

A sin p - Bzg(H/Z) = 0 , or G] = (A sin p)/B2 . (A-33)

High speeds M > 0.618, Q real)

From equation (A-2) we have g, =0 when z = H(l + d)/2 so that from
equation (A-23)
g = B cosh [ E{H(1 + d)/2 - z}] . (A-34)

Different solutions are now obtained by satisfying the boundary condition at the

perforated or slotted walls,

At both perforated and slotted walls, we find from equation (A-1) and
(A-34)
A)X cos p + BE sinh (EdH/2) = 0 . (A~35)
At a perforated wall we find from equations (Af34) and (A-28)

A sinp - BBZ cosh (EdH/2) + A(ZBZkT/H)p cosp = 0 . (A~36)

Hence we find from equations (A-25), (A-35) and (A~36)

tan p + (82/Q) coth (Qdp) + (28%kT/H)p = O . (A=37)

The limiting solutions of equation (A-37) are of interest. When the perforated
wall becomes fully closed

k>

so that

tanp = = o . (A~-38)

Hence, p = 7/2 , 3n/2 etc the odd eigenvalues appropriate to the closed tunnel.
When the perforated wall is removed we have an open jet surrounded. by a plenum

chamber and

k>0
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so that
tan p tanh (Qdp) = - BZ/Q o (A=39)

For an infinitely small plenum chamber, d - 0 and equation (A-39) becomes
tan p = = ® (A=-38)
again giving the equation appropriate to a closed tunnel, as required by the

boundary condition on the outer wall of the plenum chamber. In contrast, for an

open jet with an infinitely large plenum chamber we find that
2
tanp = =-87/Q . (A=-40)

At a slotted wall we find from equations (A~34) and (A-29)

tan p + (BZ/Q) coth (Qdp) + Msz = 0 o (A=41)

Equation (A~41) has identical limiting solutions to equation (A~37).

Low speeds (M < 0,618, Q pure imaginary)

It is convenient to write E2 = - J2
where J 1s a positive real number,
Equation (A-23) then becomes:
2
g,, ¥48 = 0,
which has the solution
g = L cos [J{H(1 +a)/2 - z}] , (A=42)

to satisfy the boundary condition on the outer wall of the plenum chamber (A-2).
At both perforated and slotted walls we find from equations (A~42) and
(A-1)
AX\ cos p = LJ sin (JdH/2) = 0 ., (A=43)

At a perforated wall we find from equations (A-42) and (A-28)

A sin p - LB2 cos (JdH/2) + (ZABZkT/H)p cosp = 0 , (A=44)
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For brevity we may write
}
ino= [a-vhy -va-wd) - v, (a-45)

so that equations (A-43) and (A-44) give

gan p - (8°/R) cot (Rdp) + (28%kT/H)p = 0| . (A=46)

The limiting solutions of equation (A-46) are of interest. When the wall is
fully closed k + < so that equation (A-46) reduces to equation (A-38). When
the perforated wall is removed we have an open jet with k = 0 so that equation

(A-46) becomes
tan p tan (Rdp) = B%/R . (A=47)

With an infinitely small plenum chamber round the open jet d -~ 0 so that

equation (A-47) reduces to equation (A-38), as required by the boundary condition

on the outer wall of the plenum chamber,

When the speed of the tunnel is reduced to zero, R = 1 and equation (A-46)

becomes

tan p = cot (dp) + (2kT/H)p = O] . (A-48)

When the perforated wall is removed, k = 0 and we find that the solution of
equation (A-48) is then p = nn/2(1 + d) ,
where n 1is an odd integer which we recognise as the odd eigenvalues for the

closed organ pipe of height (1 + d)H , as required by the boundary conditions on

the outer wall of the plenum chamber.

At a slotted wall we find from equations (A~42) and (A~29)
. 2 2
A sin p - LB” cos (JdH/2) + MAFp cos p = 0O . (A-49)

Hence from equations (A-43) and (A~49)

tan p - (BZ/R) cot (Rdp) + MZFp = 0 o . {A-50)

Equation (A~50) has the same limiting solutions for a closed tunnel (F + %) or an
open tunnel (F = 0) as equation (A-46)., However, when the tunnel speed is reduced

to zero equation (A-50) gives a different limiting solution:
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tan p tan (dp) = 1 . (A-51)
We find by inspection that this has the solution

nn/2(1 + d) (n=1, 3, 5 etc)

el
il

independent of the value of F (F = » being excluded).

The previous solutions all relate to resonance modes excited by a model
oscillating on the tumnel centre line, and therefore subject to equation (A~16).
However, in an empty, ventilated tunnel additional resonance modes might be excited
by flow unsteadiness., These modes may be found by replacing the free-stream
velocity potential (A—-15) by

¢ = A cos )xzelmxelwt . (A-52)

With this potential the boundary conditions on the homogeneous walls are

altered. For perforated walls equation (A-28) is replaced by:

A cos p - Bzh(H/Z) - (ZABZkT/H)p sinp = 0| . (A=-53)

For slotted walls equation (A-29) is replaced by:

A cos p - Bg(H/2) - (AM’F)p sinp = O] . (A=54)

Then for high speed flows equation (A-37) for perforated walls is replaced by

cot p = (82/Q) coth (Qdp) - (28°kT/W)p = 0| . (4-55)

For slotted walls equation (A-41) is replaced by

cot p - (82/Q) coth (Qdp) - M°F)p = 0| , (A=56)

when either k or F >, or d + 0 equations (A-55) and (A-56) become:
cotp = o (A-57)

so that p =7 , 21 , etc the even eigenvalues for a closed tunnel.
For low speed flows equation (A-46) for a perforated wall is replaced by:

cotp + (BZ/R) cot(Rdp) - (ZszT/H)p = 0 . (A-58)
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When the wall is fully closed k - «» and equation (A-58) reduces to equation
(A-57). When the free-stream flow is reduced to zero, R -+ 1 and equation (A-58)

becomes:

cot p + cot (dp) - (2kT/H)p = O . (A-59)
When the perforated wall is removed k -+ 0 and equation (A-59) becomes:

cot p +cot (dp) = 0 . (A-60)

This has the solution

p = mr/(1 +d) , ' (A~61)

where m 1is any integer which we recognise as the even eigenvalues of a-closed

organ pipe of height (1 + d)H .

Similarly equation (A-50) for a slotted wall is replaced by:

cot p + (BZ/R) cot (Rdp) - Msz = 0 . (A-62)

Equation (A-62) has the same limiting solutions for a closed tunnel (F = «) or an
open tunnel (F = 0) as equation (A-58). However, when the free-stream flow is
reduced to zero R - 1 and equation (A-62) reduces to equation (A-60) for all

finite values of F ,

It is reasonable that the characteristics of the perforated wall should
influence the tunnel resonance at zero stream velocity through equations (A—-48)
and (A-59). However, the contrasting result that the corresponding resonance
condition in a slotted tunnel should be independent of slot geometry through
equations (A-51) and (A-60) is one that challenges intuition. It casts some doubt

on the general validity of the boundary condition (A~13) for unsteady flow at a
slotted wall,



Table 1

DETAILS OF LINERS FOR SMALL TUNNEL (H = 102 mm)

31

Perforated Open Area Hole diameter Thickness Grid 2kT/H
(see Fig 6) (Z) (mm) (mm)
Normal holes:
"Vero~board' 13 1,05 1.5 Rectangular 0.30
Zinc 26 1.27 0.9 Staggered 0,11
Hardboard 2.4 and 4.0 4,5 3.5 Rectangular 5.2 and 3.2
Steel 8 to 40 4,5 1.0 Staggered .1 to 0.15
60° inclined:
Perspex 5 0.79 0.79 Staggered 0.86
Slotted Open area Slot width Depth 2kT/H
(see Fig 1) (%) (rom) (mm)
! slot 12 to 100 12 to 102 1 1.63 to 0O
3 slots 12, 24, 36 by 8, 12 1 0.64 to 0,40
5 slots 10 and 20 2, 4 1 0.49 and 0.35
18 3.4 3 0.53
18 3.4 6 1.72
Table 2
REFERENCE VALUES FOR LARGE PERFORATED TUNNELS IN UK
Perforation Open area Hole diameter Depth Grid 2kT/H
(%) (mm) (rm)
Normal holes:
HS 27 x 27 in 22 9.5 6.4 Staggered 0.15
BAC 4 x 4 ft 19 15,8 9.5 Staggered 0,16
ARA 9 x 8 ft 22,5 12,7 48 Staggered 0.04
60° inclined:
RAE 3x 3 ft 6 9.5 9.5 Staggered 0.95
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LIST OF SYMBOLS

slot spacing

o o

velocity of sound in settling chamber at total temperature
slot width

ct

ratio of total plenum chamber depth to tunnel height
cylinder or hole diameter
wall factor for slotted tunnels in equation (1)
frequency (Hz)
tunnel height
= (1 - 0)/o empirical porosity factor
Mach number
resonance mode number

eigenvalues of solutions for resonance frequencies

witg BB RO @ oM H OO e o

rms pressure fluctuation

rms reference pressure fluctuation

ot

Reynolds number per unit length
S* Strouhal number - equation (17)

T = 0.8D + Z equivalent hole diameter

t time

U free stream velocity i
KyYs2 coordinates centred on tunnel centre line (Fig 2)
Z plate thickness

o open area ratio

¢ velocity potential of free stream flow

¢],¢2 angles of incident and refracted waves (Fig 3)

P velocity potential of plenum chamber flow

W circular frequency = 2wf rad/s



10

Author

H.L. Runyan

D.S. Woolston

A.G. Rainey

J.P. Hartzuiker

P.G., Pugh

W. Lorenz-Meyer

G.E. Fasso

D.G. Mabey

W.E., Acum

W.E. Acum

D.D. Davis

D. Moore

H, Lamb

D.L. Smith
L.L. Shaw

A.S, Hersh
T. Rogers

E.J. Rice

33

REFERENCES
Title, etc

Theoretical and experimental investigation of the
effect of tunnel walls on the forces acting on an
oscillating airfoil in two—dimensional compressible flow.

NACA Report 1262 (1956)

On the flow quality necessary for the large European
high Reynolds number transonic wind tunnel LEHRT.
AGARD Report R644, March 1976

The use of sound absorbing walls to reduce dynamic inter=-
ference in wind tunnels,
ARC R & M No.3831 (1976)

A simplified approach o the phenon.cnon of wind tunnel
resonance,
ARC R & M No.3371 (1962)

Subsonic wind tunnel wall corrections - Chapter IV,
Interference effects in unsteady experiments,

AGARDograph 109 (1966)

Analytical study of blockage and lift interference
corrections to slotted tunnels obtained by the substitu-
tion of an equivalent homogeneous boundary for the
discrete slots,

NACA RM L53E07b (1953)

Hydrodynamics.

Chapter X, Article 306, Cambridge University Press (1932)

Prediction of the pressure oscillations in cavities
exposed to aerodynamic flow.

AFFDL~TR~75-34, October 1975

Fluid mechanical model of the acoustic impedance of
small orifices,

NASA CR-2682, May 1976

A theoretical study of the acoustic impedance of
orifices in the presence of a steady grazing flow.

NASA TMX 71903, April 1976



34

12

14

15

16

17

18

19

Author
P.M. Morse

K.U, Ingard

D.G. Mabey

A.S. Hersh
B. Walker

A.L. Goldman
R.I.. Panton

M.0O. Varner

D.G. Mabey

A.B. Bauer

R.C. Chapkis

C.Y. Tsui

J.W. Miles

REFERENCES (concluded)
Title, etc

Theoretical acoustics, Chapter 11 - Acoustics in moving
media.

McGraw Hill (1968)

The reduction of dynamic interference by sound-
absorbing walls in the RAE 3ft tunnel.
ARC R & M No.3837 (1977)

Effects of grazing flow on the steady state resistance
and acoustic impedance of thin porous liners.
NASA CR-2951, January 1978

Measurements of the acoustic impedance of an orifice
under a turbulent boundary layer.

J. Acoust, Soc. Am., Vol 60, No.6, pp 1397-1404 (1976)

Noise generation in transonic wind tunnels.

AEDC TR 74-126 (1975)

Some remarks on the design of transonic tunnels with
low levels of flow unsteadiness.

NASA CR-2722, August 1976

Noise generated by boundary layer interaction with
perforated acoustic liners.

ATAA Paper 76-41 (1976)

Experimental observations of self induced sound genera-
tion due to flow over perforated liners in a duct.

ISVR Technical Report No.70 (1974)

The potential theory of unsteady supersonic flow.

Cambridge University Press (1959)



H=102mm
1.0 = p/nz=0.5=s 1.65kHz
Theory
p/w Experiment = ———
0.8 ~
0.6
Ist mode
0.4 -
o . o
R Gese _O_ _ _ d
===-©0.67
0.2 ~ |
PPomr-bppr - -0~ - - - - B-& 2.87
§- -5-8- Ob— —0- - — - - - ®5.11
i i 9
0 0.5 i.0 1.5

F
a Old theory

0 0.5

s [ 7™ | e Joeon] G
e 12 1.28 ] 1.63
© 24 0.76 | 1.35
i 6 136 0.46 | 1.14
® 50 0.28 | 0.87
® 175 0.09 | 0.43
d 100 0 0 1
A 12 0.54 | 0.64
3 4 24 0.29 | 0.49
A 36 0.18 | 0.40
B 10 0.46 | 0.49
5 20 0.25 1 0.35
E, 18 0.55] 0.53 3
E 18 2.04 ) 1.72 16

F%‘A_— 0= =06--0--—0 2.47
e O = O 5. 11
i 1 1 .

1.0 gy 142 2.0

b New theory

Fig 1a&b Slotted tunnels — resonance frequenciesat M =0

qwige|, Biy



Fig 2

Outer

wall of Plenum chamber
Plenum chamber
dR/2 UsMz0
! Homogeneous wall Potential
4
z 4 U
M Freestream
H i
0 X Potential ¢
\
Y
Homogeneous wall
dH/2 Plenum chamber
Outer wall of Plenum chamber
2 H=102mm
f Closed tunnel 2kT/H = 0.11
kH '
(kHz) d=0.67
1
d=4.14
]
0 0.2 0.4 0.6

Fig2 Notation for calculation of resonance frequencies and typical
dependence on Mach number



H/2

Resultant

Uv1-M2/M

b Open— refraction

cos ¢,

cos & - (1+ Mcos ¢,)

Fig 3a&b Acoustic ray theory

Fig 3a&b



=4)

=
©
c
c
3
-
=
<
x
i
<
w
<
oc
o
B
=
T
=]
=
<
g
[T




{kHz)

p
T=0.5s1.65

H{102mm)

dH/2

Cylinder
position
x/H 2.5 0.75

Ry AR \!le
X :
\ Plenum | \
\ box \ £
X N £
N \ wn
\ ‘I

4 -5
Mode number

R NE k"
\ N
i~
h N £
N \ £
\ Plenum \ -
N box G
N
I\
N . ]
N 2
:\Q 1 e S % S Wi T ;%‘Lid

Figb Duct resonance frequencies — M = 0 (antiphase mode)

f

Access holes
S84mm dia
for tweeters

G bBiy



1.0

p/x

0.8F

0.6

0.4

0.2

Fig6 Perforated walls — resonance frequencies at M =0

P Open area 2k T/H Depth
late o/O (mm)
_ 1.0 - Hard | § 2.4 | 5.2 3.5
H=102mm : Theory — Board | B 4.0 | 3.2 )
p/n=0.5%1.65kHz o/m Experiment — ==~ Vero A 13 0.30] 1.5
Zinc v 26 0.11 1 0.9
6 8 1.10
e 16 0.50
Steel o 2% 0.30 1.0
@ 40 0.15
Normal holes
d= 2.04 Perspex|] x 5 (10)| 0.86} 0.8
~
o) A X . o . .
3rd mode {=} —t— 60 inclined holes
— 0.4+ 0.44
d=4.14
I\Q-’é—‘\\\m p/n %_.
- - L
X ~-n ]
= \ 0.2 0.2 -
fst mode %\x\_‘;: —g-—— - §~ -0
A J’P‘x‘%‘m—_—v‘;“_@;ﬁ]
d=2.87 FEYT
] ] N ] ] ] ] ]
2 L oakmn 800 2 a8 2T 0 2 “ oktm 8
- d= 0.87 d=2.00 d= 4.00

9 b1y



Fig7

Theory B
f Experiment = = —

ist mode

4 2k T/H = 0.11
f © Acoustic
(kHz) x Cylinders
3~
®»
Y
by,
1 b3
3rd mode
1 L
(-
1st mode
l
0 0.2

Fig7 Perforated walls (26% open) — resonance frequencies v Mach number



Fig 8

L
Theory e
(k:iz) Experiment = — — — o
T Q
—-""‘—o—-_ e (<]
 S— ¥
3rd mode
2
S -, N - 4
| v,
1st mode
|
0 0.2
4 2kT/H = 0.30
f ©® Acoustic
(kHz) X Cylinders
)
—————— ~0—-%-0-— -0
2
_______ On - O O
Y 10]
% 3rd mode
ik
ist mode
]
0 0.2

Fig8 Perforated walls (13% open) -- resonance frequencies v Mach number



Fig 9

‘r L N
; Theory ~
(kHz) Experiment = — —— [ N
3 - AN
o 24 N
——ET@TT SN
dr P A VN
2
3rd mode
Y AN
1 - m‘_@/’ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
| — \
1st mede N
] | 1 i ]
0 0.2 0.4 0.6 0.8 1.0
4
2kT/H = 0.86
¢ @ Acoustic [\
{kHz) X Cylinders | N\
] S N
2 e e e 09 S
| P AT =
3d mode  f L
N
Pp=—— == S o BN
Ist mode
| | 1 | [
0 0.2 0.4 0.6 0.8 M 1.0

Fig9 Perforated walls (60° inclined, 6%) — resonance frequencies v Mach number



1.0

1 OF 1.0¢
p/m Theory — P/m
Experiment - - - -
0.8 0.8
0.6 F 0.6

Fig 10 Slotted walls M = 0. Variation of resonance frequency with
wall parameter (2 kT/H)

ot b4



-
¢ Theory e N
(kHz) Experiment ———— /N
sk N\
o =——o==a—
2 -3rd mode H
| Qo o e = = == 0==2” O\
Ist mode
I | | ] ]
0 0.2 0.4 0.6 0.8 M 1.0
4 —
2kT/H = 0.55
§ ® Acoustic
{kHz) % Cylinders

Fig 11

a&b Shallow slotted walls — resonance frequencies v Mach number

Fig 11a&b



Fig 12a&b

4~
f Theory —_—
{ kHz) Experiment — — — ~
3
m—- —_ _
2 ¢ =
3rd mode
I — — — — — B— —-8-—-§
Ist mode
] | ]l ) J
0 0.2 0.4 0.6 0.8 M 1.0

b 2kT/H = 1.72

B Hard - acoustic
(kHz) X Hard — cylinders X
® Laminate — acoustic

d=2.04

3rd mode

st molde

0 0.2 0.4 0.6 0.8 1.0

Fig 12a&b Deep slotted walls — resonance frequencies v Mach number



Fig 13a-c

2070 Hz

Experiment :

Excitation
Cylinder X
Acoustic
d= 0.67

Theory —-———

1
SNONNNNNNNNNNN

a Deep slotted
M=0.31,2kT/H=1.72

\\\\\\\\\]\\ 2200
. Hz
y/H - - o
0.5 o ‘2/820 Hz
i 0
|
4
- 0.5
\\
AN NN NNNNNN

b Perforated normal holes
M =0.32, 2kT/H = 0.30

N NN NN
/' 2400Hz

\
TTITTRRRRR

¢ Perforated 60° inclined holes
M =0.38, 2kT/H = 0.86

Fig 13a-c Typical third resonance modes



Fig 14

br  Perforated R
Open area ratio 26 /o
{kHz) 2kT/H = 0.11

——— — W
o

9th mode

7th mode

3rd mode

1st mode , | ; |
0 0.2 0.4 0.6 0.8 M 1.0
4r  Slotted
f Open area ratio 1870
{kHz) 2kT/H =1.72

3rd mode

Ist molde

0 0.2 0.4 0.6 0.8 10

Fig 14 Typical resonance frequencies for a deep plenum chamber



1520mm

D N N W N . . WO . Y

Pienum
chamber

/,

5W loud

*H’= 910 mm

speaker

4 walls
perforated
60° inclined
holes (6% open)
D=9.55mm
Z=9.55mm
2kT/H =0.95
d=0.67

L L LN L LSS

X 120Hz
© 88H=z

I
I
I
I
I
]

Z////
810 mm
! N
A
T T Pl Sl P27
1520 mm

\ chamber

~ 400 -200

Fig 15 Fundamental modes in perforated working section of RAE 3ft tunnel -M =0

o]
o

S S S

/S

wall

““““““““““““““““““““““““““““ ATTRTRUTIRRIRKN
Perforated Quter
wall of Plenum

Fig 1b



Fig 16

L
‘= — =~ Perforated
e SloOtted
Cp
(%)
3 AEDC 16ft (60° inclined holes)
2L AMES 11ft
(corrugations in slots)
Langley 16ft
] -
NLR{I.L x 1.8ft — pilot
| | ! ] | | 1
0 - 0.2 " 0.4 0.6 0.8 1.0 1.2 M 1.4

Fig 16 Centre line pressure fluctuations v Mach number for typical
transonic tunnels

Printed in England for Her Majesty s Stationery Office by the Royal
Aircraft Establishment, Farnborough. Dd.596060 K411/79.



© Crown copyright 1979
First published 1979

HER MAJESTY'S STATIONERY OFFICE

Government Bookshops
49 High Holborn, London WC1V 6HB
13a Castle Street, Edinburgh EH2 3AR
41 The Hayes, Cardiff CF1 1JW
Brazennose Street, Manchester M60 8AS
Southey House, Wine Street, Bristol BS1 2BQ

258 Broad Street, Birmingham B1 2HE
80 Chichester Street, Belfast BT1 4JY

Government Publications are also available
through booksellers

R &M No. 3841
ISBN 0 114711747

I78¢€ 'ON W% ¥

OSIH



