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SUMMARY 

A procedure is described for obtaining expansions in series of Chebyshev 

polynomials of the function e ~ for all real ~ and all integer 
0 (u2 + 1)n+~ 

n ~ 0 . Numerical values are given of the coefficients of the series of Chebyshev 

polynomials obtained from a FORTRAN program. The leading coefficients are given 

to twelve significant decimal digits. 

* Replaces RAE Technical Report 77110 - ARC 37998 
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1 INTRODUCTION 

In linearised unsteady aerodynamics the function Sn(a) , defined by 

formula (2-I) for n ~ l , has to be evaluated for many values of a . Expansions 

of functions in terms of series of Chebyshev polynomials may be used for rapid 

evaluation of the functions. It is the purpose of this paper to use the procedure 

introduced by Clenshaw ! to obtain such expansions of S (a) . The form of these 
n 

expansions are given in formulae (9-I), (9-2), (9-3) and (9-4). Numerical values 

of the coefficients of the series of Chebyshev polynomials were obtained from a 

FORTRAN program with double precision arithmetic. 

2 DISCUSSION OF THE NATURE OF THE FUNCTION UNDER CONSIDERATION 

In unsteady linearised aerodynamics we need to evaluate, for any real a , 

the complex function Sn(a ) , n = 1,2 , which is defined for positive integral 

values of n by means of the integral 

f -iau Sn(a ) = e 
0 (u2 + l)n+½ du . (2-I) 

For real a ~ 0 we shall write 

Sn(a) = Fn(a) + iGn(a) (2-2) 

where Fn(a ) and Gn(a) are real functions of a . 

For real a < 0 we get, from (2-I) and (2-2), 

Sn(a) = Fn(- a) - iGn(- a) . (2-3) 

The function S0(a ) may also be defined, but since the integrand in (2-I) 

is not absolutely integrable over (0, ~) for n = 0 the formula 

J -iau 
S0(a) -- lim _ e du (2-4) 

~->~ (u 2 + I ) ½ 

can be used instead. 



Even though Sn(~) is used in unsteady aerodynamics only for n = 1 

2 we shall here describe a process for obtaining numerical values of Sn(~) 

all the integer values n = 0, I, 2, 3, ... 

We could, of course, use the reduction formula 

and 

at 

2 
2n Sn(~ ) + ~ (~) + i~ ) n ~ 1 

Sn+l(~) = 2n + 1 4n 2 - I Sn-I 4n 2 - 1 
(2-5) 

to obtain numerical values of ~ Sn(~) at all the integer values n = 2, 3, ... 

from the numerical values S0(s) and $I(~) but values so obtained would not 

be as accurate as those obtained directly when ~ is large. 

The definition (2-I) of S (~) is, in fact, valid for complex values of 
n 

with Im(~) $ 0 , and even for n = 0 it is valid for complex values of 

with Im(~) < 0 . The functions Sn(~) so defined are regular functions of 

in the complex half-plane Im(~) < 0 . The domain of validity of the functions 

Sn(~) can be extended into the complex half-plane Im(~) > 0 , but we must 

expect a singularity on the line Im(~) = 0 because the definition (2-I) of 

S (~) is not valid for Im(~) > 0 ° 
n 

We can show directly from the definition (2-I) of Sn(~) that Sn(~) 

satisfies the differential equation 

I d2Sn(~) )I dSn(~) 
~- -~ Sn(= - (2n- I) d~ - i (2-6) 

I 
d~ 

This differential equation is shown, in the first place, to be satisfied only 

for Im(~) < 0 , but by using analytic continuation we may show that it is 

satisfied for all ~ # 0 . At ~ = 0 the differential equation has a regular 

singularity° If we confine ourselves to real ~ then we can show directly from 

the definition (2-I) of Sn(~) that for n ~ 0 the differential equation (2-6) 

is satisfied. For n = 0 we must first of allow ~ to have a small negative 

imaginary part and then, having shown that the differential equation (2-6) is 

satisfied we proceed to the limit of taking the negative imaginary part to be 

zero. 

If we put 



Sn (~) = anQn (a) ' (2-7) 

substitute for S (a) from (2-7) into the differential equation (2-6) and divide n 
the  r e s u l t i n g  e q u a t i o n  by c~ n+l we get  the d i f f e r e n t i a l  equa t i on  

Qn(a ) + ! Qn(a ) _ + a Qn (a) n+l (2-8) 

for Qn(a) . We recognise the differential equation (2-8) as a modified form of 

Bessel's differential equation with a non-zero right-hand side. This differential 

equation has the general solution (see eg Ref 2) 

2n-ln! { (a) + C I (a)+ DnKn(a)} (2-9) 
Qn(a) = (2n) ! w iLn n n 

where C and D are integration constants, The functions I (a) and K (a) 
n n n n 

are modified Bessel functions of order n and of the first and second kinds 

respectively and Ln(a) is a modified Struve function which is related to the 

Struve function IHl_n(ia) by means of the formula (see Ref 2) 

Ln(a) = (- l)ni n-I ]H]_n(ia) (2-10) 

For small values of l al we may write (see Ref 2) 

In(a) n! in(a) n >. 0 , (2-II) 

K (a) 
n 

n-I 

= ( - 1 )  

r=O 

+ (-l)n+l (~)nll (~)X] 
n! og + in(a ) 

+ ( - 1 ) n ( a )  "a 
n ! ~ kn(a) n>.. 1 (2-12) 
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K0(~) = - [log (~I+ Y]i0(~) + k0(~) (2-13) 

and 

Ln (~) = (-l)n(~11-1£n (~) n >~ I , (2-14) 

where in(~), kn(~) and En(~) are even integral functions of ~ which have 

the power series expansions 

in(~) = r!(n + r)! n >- 0 , (2-15) 

r=0 

I ~ r!(nn!+ r)! (~)2r kn(~) = (~r + @n+r ) n >~ 0 , (2-16) 
r=0 

and 

~ (~) = ~ (2)r n >. 0 (2-17) 
n F(r + 3/2)F(r + 3/2 - n) ' 

r=0 

where ~s - 

s+l 

(s+l) + -p ' 
p=l 

s = 0, I, 2, °.., (2-18) 

and 

y = 0.57721566490153286... (2-19) 

is Euler's constant. 

If we put the expression (2-9) for Qn(~) into (2-7) we get 



= 2n-ln! {iL n(a) + Cnl n(a) + DnK n(a)} (2-20) Sn(a) (2n) ! ~an 

The constants C and D still have to be determined and their values n n 
depend on the branch of the function log I~ ) used in (2-12). We shall take the 

branch of log (~) to be one which is real for real positive a . The branch 

line of log (2) from a = 0 must not enter the complex half plane Im(a) < 0 

because S (a) is regular for Im(a) < 0 . 
n 

If we use the expressions (2-11), (2-|2), (2-13) and (2-14) for In(a), 

Kn(a) , K0(a) and Ln(a) in (2-20) we get 

+o0 0 o0Co < ) i 01 
and 

s (o0 
n 

( 22n-I t C 
n. (ia)%n(a) + n---n---- 2n. 

½7 - l)n (2n)! (2n)! a in(a) 

D D 
+ (_ l)n n a2nk (a) + (_ l)n+l n 

(2n) ! n (2n) ! 
- -  a2nIl°g (~) + Ylin(a) 

+ n l J 22°In Z ~2o~ (~)2 Dn (_ 1)r (n- r- I)! 
• r! 

r=0 

Directly from the integral representation (2-4) for 

Sn(a) , we can show that, for small real positive a , 
s o (~) 

(2-22) 

and (2-|) for 

(2-23) 

and 

~E ~ (~) ~ 1 Sl(a) = I - ia + 2~ og + y + - ½ + O(a 3) (2-24) 



By comparing (2-21) and (2-23) we get immediately 

C 0 = - i (2-25) 

and 

2 
D O = _ (2-26) 

By comparing (2-22) for n = 1 and (2-24) we get immediately 

C 1 = i (2-27) 

and 

D I = 'IT 
(2-28) 

If we use the expansions (2-21) and (2-22) for S (a), n >~ 0 in the 
n 2n+2 ~ ~ I 

reduction formula (2-5) and compare the coefficients of ~ ~og ~ ana 

~2n+2 he ~ ~ respectively on t two sides of the formula, we get the equalities 

= - + (n + I)D n ~ 1 Dn+l nDn n-I (2-29) 

and 

C 
n+l + ½(-l)n+IDn+I/~0 + On+l-  2T t 

= nCn + ~(- l)nnDnIOl + 0 n + l -  2y} 

+ (n + l)Cn_ 1 + ½(- l)n-l(n + l)Dn_l{@; + Cn- 2y} n>~ 1 

..... (2-30) 

By using the starting values (2-25), (2-26), (2-27) and (2-28) for 

D 1 in (2-29) and (2-30) we get 

C O , D O , C l , 

C = (- l)n+li (2-31) 
n 



and 

2 
D -- w • (2-32) n 

The formula (2-20) for Sn(~ ) therefore takes the final form 

S (~) = 2n-ln! =an{2 Kn(e)+ i(  L (~)+ (_ l)n+lln(~))} (2-33) 
n (2n) ! ~ n 

The functions Fn(~ ) and Gn(~) of formula (2-2), which are real for real 

positive ~ are obtained from (2-33), by using the formulae (2-11) , (2-12), (2-13) 

and (2-14) for In(~), Kn(=), K0(=) and Ln(~ ) , in the forms 

Fn(=) 

n-I 
22n-ln[ Z ( 2 n )  r (n r l)W (2)2r (- 1) r - _ . 

• r ]  
r=0 

+ (- I) n+l 2n 

(2n)! [l°g (2) + Y]in(~) 

+ (- I) n 2n k (~) 
(2n)! ~ n n ~ l  (2-34) 

and 

FO( ) = - log + YliO(~) + ko(~) (2-35) 

Gn(~) 
22n-2 

= (- 1)n (2n)! ~n(~) + 
(- I) n+l ~ 2n. 
(2n) ! 2 = Zn(~) n>~0 (2-36) 

For later use we note that 

in(0) = 1 n ~ 0 (2-37) 
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and 

k (0) = 

n 

2(n + I) 

n+l 

p=l 

n >~ 0 (2-38) 

We may deduce from the definitions (2-I) and (2-4) of S (~) for 
n 

n = 0, I, 2, 3, ..° the following asymptotic expansions for F (~) and G (~) n n 
of formula (2-2) for large real positive ~ . With the integer p ~ 0 arbitrary 

we get 

2nn----!--n-a~{ (~) + l ~n~p(~)l 
Fn(~) = (2n)! ~ e Fn, p -~ n >~ 0 (2-39) 

and 

G (~) = n  - ~l IGn,p(e) +-- ~ ~n,p(~)l n >I 0 , (2-40) 

where Fn,0(e) = l , (2-41) 

Fn~p(~) = I + r~= ~ I [] 4n 2 - (2s- I) p >~ l (2-42) 
r! (8~) r 

s=l 

and 

P 
= ~ (2r)! n!(2n + 2r)! 1 

Gn,p (~) 22rr! (2n)!(n + r)! 2----r P ~ 0 (2-43) 

The remainder functions ~n,p(~), Sn,p(~), for any p >~ 0 have the behaviour 

~n,p(~) = o(I) (2-44) 
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and 

en,p(~) = o(I) for e ÷ + ~ . (2-45) 

The asymptotic expansions (2-39) and (2-40) for Fn(~) and Gn(~) 

respectively may be deduced also quite easily from the differential equation (2-6) 

provided that we use the knowledge that Fn(~) ÷ 0 and Gn(~) + 0 as real 

÷ + ~ . This latter knowledge is obtained from the integral representations 

(2-I) and (2-4). 

The power series (2-15), (2-16) and (2-17) for in (~) , kn(~) and ~n(~) 

respectively have to be truncated at finite values of r in order to be able to 

evaluate from them numerical values of the functions in(S) , kn(~) and ~n(e) , 

and these finite values of r will depend upon the accuracy to which the 

numerical values of these functions are required and on the value of e under con- 

sideration. If we work numerically to a given number of significant figures, the 

accuracy with which we can evaluate the sums of the truncated series will decrease 

as real e increases. Thus, although these power series expansions are conver- 

gent for any finite value of I~I , they cannot be used to give accurate numerical 

values of the functions in(e) , kn(~) and ~n(e) when real ~ becomes 

indefinitely large if we are limited in the n,lmher of significant figures used in 

the arithmetical operations. When working with a given number of significant 

figures there is a maximum value of real e , for each n , for which formulae 

(2-34) and (2-35), with in(S) and kn(e) obtained from the power series 

expansions (2-15) and (2-16) respectively, can be used to obtain Fn(e) to within 

some prescribed e > 0 . Similarly there is a maximum value of real ~ , for 

each n , for which formula (2-36), with in(e) and Zn(~) obtained from the 

power series expansions (2-15) and (2-17) respectively, can be used to obtain 

Gn(e) to within the accuracy ~ . The smaller real e is, the fewer terms, in 

general, will be needed in the truncations of the power series expansions (2-]5), 

(2-16) and (2-]7) for in(e) , kn(~) and Zn(~) to obtain Fn(e) and Gn(e) 

from formulae (2-34), (2-35) and (2-36) to within the accuracy e . 

For very large values of real e we can use the asymptotic formulae (2-39) 

and (2-40) to evaluate the numerical values of Fn(~) and Gn(~) Because of 

formula (2-39) we can, for given e > 0 , and given n and p , find 

~l(n,p,~) > 0 such that 
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whenever 

Fn(~) - (2n)! ~ e Fn, p < ~ (2-46) 

> ~i (n,p,e) • (2-47) 

If we take el(n'P'e) for fixed n, p and c to be the minimum quantity for 

which (2-46) is true under the condition (2-47), then el(n'P'e) for fixed n 

and ~ decreases, in general, as p is increased from zero up to a certain 

value of p and then increases as p is increased beyond this certain value. 

The minimum value of el(n,p,e) for fixed n and e , and all values of p , is 

then the minimum value of ~ for which Fn(~) may be obtained to within accuracy 

c from formula (2-39)° This accuracy may be somewhat reduced if we work 

numerically to a given number of significant figures. The higher ~ is, beyond 

the minimum value, the smaller will the value of p need to be, in general, for 

(2-46) to be true. 

Likewise, because of formula (2-40) we can, for given e > 0 , and given n 

and p , find e2(n,p,e) > 0 such that 

[ Gn(a) + I G (~)] < 
n,p e (2-48) 

whenever 

> ~2(n,p,e) o (2-49) 

Again, there is a minimum value of ~ for which G (~) , for each n may be 
n 

obtained to within accuracy e from formula (2-40). 

The maximum values of real ~ for which F (~) and G (~) can be 
n n 

evaluated to the given accuracy from formulae (2-34), (2-35) and (2-36) with 

in(a) , kn(~) and ~n(~) obtained from the power series expansions (2-15), 

(2-16) and (2-17) respectively, depend strongly on the number of significant 

figures used in the arithmetic, whereas the minimum values of ~ for which 

Fn(~) and Gn(C~) can be evaluated to the given accuracy from formulae (2-39) 

and (2-40) are hardly dependent on the number of significant figures used in the 
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arithmetic, provided that this number is greater than the number of significant 

figures required in the numerical values of the functions. The functions Fn(~ ) 

and G (a) cannot be evaluated to the given accuracy e , for all e in (0,=) n 

using formulae (2-34), (2-35), (2-36), (2-39) and (2-40) as described above, if 

the number of significant figures used in the arithmetic is not sufficiently 

high. In other words, if we work to a given number of significant figures, then 

¢ must be greater than a certain lower bound in order that Fn(e ) and G (e) 
n 

may be evaluated in the above manner to the given accuracy e for all e in 

(0,~). If e is less than this lower bound then some other means of evaluating 

the functions F (e) and G (~) must be used, at least over the ranges of 
n n 

for which the above method does not yield the required accuracy e . 

We shall expand the functions Fn(~) and Gn(a) for real ~ > 0 in 

series of Chebyshev polynomials rather than in power series. Although e will 

still have to be greater than a certain lower bound in order that Fn(e) and 

Gn(~) may be evaluated to the given accuracy e , this lower bound should be 

less than the former lower bound, thus rendering the procedure involving expan- 

sion of functions in series of Chebyshev polynomials of wider application than 

that involving expansion of functions in power series. It may be true that with 

the number of significant figures available on a particular computing machine, 

functions may be evaluated to a sufficient accuracy for some applications from 

power series, but it would seem to be good practice to use another procedure 

which is capable of giving superior accuracy and is no more difficult to apply. 

The power series (2-15), (2-16) and (2-17) for in(S) , kn(e) and ~n(~) 

are valid for all complex values of ~ and the asymptotic expansions (2-39) and 

(2-40) are also valid for complex values of e . On the other hand, the series 

of Chebyshev polynomials are valid only for real a . Accordingly we consider 

the differential equation (2-6) only for real e and split it up into its 

separate real and imaginary parts using (2-2) for real ~ ~ 0 to get the two 

real differential equations 

d2Fn (c~) 

Fn(~) ' - (2n - l) 
dF (~) 

n 
d~ = 0 (2-50) 

and 
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Id2Gn(~) ) dG (~) 
~I ~ G (e)I - (2n - I) n = d~  n d~  1 . ( 2 - 5 1 )  

We wish to evaluate F (~) and Gn(e) for real ~ in the range 
n 

0 < ~ < ~ o We split the range ~ at e -- A and use different methods of 

evaluations for 0 < ~ .< A and for A.< ~ < = . 

3 THE CHEBYSHEV POLYNOMIALS 

The Chebyshev polynomials T (z) are polynomials in z of degree p 
P 

defined by the formula 

-Iz) p >. 0 Tp(z) = cos (p cos ( 3 - I )  

The properties of T (z) which we need for our development are easily 
P 

deduced from the definition (3-|) and are as follows: 

Tp(+ 1) : 1 p >. 0 (3-2) 

Tp(- I) = (- I) p p >.0 (3-3) 

T2p(Z) = Tp(2Z 2 - I) p >. 0 (3-4) 

T0(z) : I (3-5) 

zT0(z) : T 1(z) (3-6) 

ZTp(Z) = ½Tp_l(Z) + ½Tp+](z) (3-7) 

'(z) 0 = T O (3-8) 

'(z) To(Z ) = T I (3-9) 

T I (z) = ¼T~(z) (3-10) 
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and 

T' (z) T' (z) 
= p + l  _ p - I  

Tp(Z) 2(p $ I) 2(p - I) P ~ I (3-~1) 

The dash on the function T'(z) indicates differentiation of T (z) 
P P 

respect to z . 

4 EXPANSION OF A FUNCTION IN A SERIES OF CHEBYSHEV POLYNOMIALS 

with 

If f(z) is an even function of z defined for z real in the range 

-I ~ z ~ I then we can express f(z) as a convergent series of Chebyshev 

polynomials 

oo ! 

f(z) = ~ frT2r(Z) 

r=O 

(4-I) 

provided f(z) satisfies some simple conditions, such as that it is continuous 

and of bounded variation for z in (-I,I). The dash on the summation sign in 

(4-I) indicates that the r = 0 term must be multiplied by ½ before being 

inserted into the series. 

By using the properties (3-6) and (3-7) of the Chebyshev polynomials Tr(Z ) 

we can easily show that 

_ I (f + 2f + )T2r(Z ) (4-2) z2f(z) 4 (r-l) r fr+l " 

r=0 

By using the properties (3-6), (3-7), (3-8), (3-9), (3-10) and (3-11) of 

the Chebyshev polynomials T (z) we can easily show that 
r 

f'(z) 

co 

~' )T2r( 
z f(1 z) 

r 
r=O 

(4-3) 

where the coefficients f (I) 
r 

t he  f o r m u l a e  

are related to the coefficients f by means of 
r 
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f(1) ~(I) 
r - I  - ~r+l f = r >~1 

r 8r 
(4-4) 

By differentiating formula (4-3) with respect to z we get 
-% 

~' l)T2r(Z)( + z d ~' -(1)T2r(Z ) f"(z) = fr d-z Zr 

r=0 r=0 

r=0 

~ T f(l z 2 f(r2)T2r(Z) r ) T2r(Z) + 
r=0 

(4-5) 

where the coefficients 

the formulae 

f(2) 
r 

are related to the coefficients f(1) 
r 

by means of 

f(2) ~(2) 
r-I - Zr+1 f(1) =. 

r 8r 
r > ~ l  (4-6) 

Then, on using formulation (4-2) for the second term on the right-hand side of 

(4-5) we get 

f"(z) = f I) + 

r=O 

+ f (2)~ ¼(f(2) + 2f(2) T2r(Z) 
 lr-11 r r+l/  

(4-7) 

The infinite series on the right-hand side of formula (4-I) must be 

truncated to a finite series in order to carry out a numerical evaluation of the 

function f(z) There will then be a small error in the evaluated numerical 

value, but by taking the number of terms retained in the truncated series to be 

sufficiently high this error can be made as small as we like. The numerical 

evaluation of the truncated series is easily and conveniently carried out by 

using the scheme described by Clenshaw2. Let 
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f(z,p) 

P 

-- frT2r(Z) 

r=0 

P ! 

r~= frTr (x) (4-8) 

where 2 
x = 2z - I . (4-9) 

Then Clenshaw's scheme is to put 

bp+ 2 = 0 1 

J bp+ 1 = 0 

(4-10) 

bp-r = 2Xbp-r+l -bp-r+2 + fp-r' r = 0,1,2,...,p (4-11) 

Then 

f(z,p) -- ~(b 0 - b2) (4-12) 

as may be shown by application of properties (3-5), (3-6) and (3-7) of the 

Chebyshev polynomials T (z) . 
r 

If g(z) is a function of 

-I ~< z ~< I then we can express 

polynomials 

z defined for z real in the range 

g(z) as a convergent series of Chebyshev 

t 
T 

g(z) = grTr(Z) 

r--O 

(4-13) 

provided g(z) satisfies some simple conditions, such as, that it is continuous 

and of bounded variation for z in (-1,1). 

By using the properties (3-6) and (3-7) of the Chebyshev polynomials Tr(Z) 

we can easily show that 
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zg(z) 
(glr-11 + gr+1)Tr(Z) 

r=0 

(4-14) 

and 

z2g(z) 
V 

1 (z) 
= ~ (glr-2[ + 2g r + gr+2)Tr 

r=O 

(4-15) 

By using the properties (3-6), (3-7), (3-8), (3-9), (3-10) and (3-11) of 

the Chebyshev polynomials Tr(Z) we can easily show that 

~ '  )Tr( (1 z) g' (z) = gr 
r=O 

(4-16) 

and 

~T 
g" (z) ffi (2)~.i.r ,z x gr k ¢ 

r=O 
(4-17) 

where the coefficients 

the formulae 

g 1) are related to the coefficients gr by means of 

(I) (I) 
gr-I - gr+1 

gr = 2r r>l (4-I 8) 

and the coefficients 

the formulae 

g(2) 
are related to the coefficients 

(1) 
gr by means of 

g ( 2 )  (2) r-I - gr+l (I) 
gr = 2r 

r> .  1 (4-19) 
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The numerical evaluation of a truncated series of Chebyshev polynomials for 

g(z) is carried out by the method of Clenshaw in exactly the same way as des- 

cribed earlier for f(z,p). 

5 EXPANSION OF Fn(~) for 0 < ~ .< A 

We introduce the variable z by means of the formula 

z = ~ • (5-I) 

for 

The range 0 < = < A of = corresponds to the range 0 < z ~< 1 of z . 

In conformity with the expressions (2-34) for Fn(e) , n >. 1 and (2-35) 

F0(=) we put 

22n_in ! n-I 
Fn(~) - (2n)'. ~ (- l)r (n- r - l)'r! (2) 2r 

r=0 

+ (- I) n+l 2n~j } 
• (2n) ! ~ n(Z) log (z) - pn(Z) n > ~ l  (5-2) 

and 

F0(~) = -{j0(z)log (z)- p0(z)} (5-3) 

where the jn(Z) and pn(Z) , n > 0 are even functions of z. 

If we substitute for Fn(e) from (5-2) or (5-3) into the differential 

equation (2-50) we get, after simplification, the equation 

21in z (z) + (2nz + 1) Jn (z) - A2jn (z)} log z 

2{ (2n + I) A2pn(Z)} 
- z Pn (z) + z Pn (z) - 

+ 2ZJn(Z) + 2nJn(z) - 2n = 0 . (5-4) 

Since equation (5-4) is valid for all z in (0,I) we must have 
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/n(Z ) + (2n + 1) "' z = "" 3n( ) - A2j (z) 0 
z n 

(5-5) 

and 

2{ n( 2n + I z p z) + 
Z 

pn(Z) - A2pn(Z)}- 2ZJn(Z) - 2nJn(z) + 2n = 0 (5-6) 

We know, from (2-34), (2-35), (5-2) and (5-3) that 

Jn(0) = 1 (5-7) 

and 

n+l 

Pn(0) = -y- log 2(n + I) + ~ ~ (5-8) 

p=l 

The conditions (5-7) and (5-8) are sufficient to ensure that the even functions 

jn(Z) and pn(Z) that satisfy the pair of differential equations (5-5) and (5-6) 

are unique. We shall seek approximations to the functions jn(Z) and pn(Z) 

which are also even functions of z 

We denote the approximation to in(Z) by ~n](a)(z) and express it as the 

series of Chebyshev polynomials 

~v 
j(a) (z) = CrT2r(Z ) (5-9) 

r=0 

where C r = 0 r ~ M I + 3 (5-10) 

and M 1 is some positive integer. This approximation will be taken to satisfy 

a differential equation which is a slight modification of the differential 

equation (5-5), The precise form of this modified differential equation will 

appear later, equation (5-30). 

. (a) (z) with respect to We can write the first and second derivatives of Jn 

z in the forms 
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• t 

j(a) (z) 

oo 
! 

rffi0 

(5-11) 

and 

j (a)"(z) n 

oo 

f f i  1) 

rffiO 

fC (2) 2C (2) (2))I T2r(Z) + ¼4(r-I) + r + cr+1 
(5-12) 

where 

C "I'( ~ = 0 r ~ M I + 2 r 
(5-13) 

C'2"r( ~ ffi 0 r ~ M I + 1 (5-14) 

c(1) ~(i) 
r - I  - Ur+l 

c = r > 1 (5-15) 
r 8r 

and 

C(2) ~(2) 
c ( l )  r - I  - ~ r + l  

r = 8 r  r ~ 1 (5-16) 

and 

• (a) (z) By using the expansions (5-9), (5-11) and (5-12) for 3n 

j(a)"(z) respectively we get n 

. (a)'. , 
3 n Iz) 

! 

• (a)"(z ) + (2n + 1) .(a) (z) "2"(a)(z) 
Jn z 3n  - A 3 n 

~'{ (C (2) 2C (2) C(2)h 1)C (1) }T2r(Z) ¼~ [r-l[ + r + r+l] + 2(n + r - A2Cr 
r=0 

. . . . . .  ( 5 -~  7) 



22 

Let us put 

[~(2) + 2Cr(2) + C(2)~ + I)C(I) ¼~[r-I l r+lJ 2(n + r - Amcr -- 0 0~< r ~ < M  1 - i 

. . . . . .  (5-18) 

Then the differential equation (5-17) becomes 

.(a) (z) + (2n + I) .(a) (z) "2"(a)(z) 
"ln z Jn  - A Jn  

c 2 )  

+ { ¼c(2) 
M 1 . 

+ 2 ( n  + 1)C (1)MI+ 1 - A2CMI+ltT2MI+2 (z )  

- A2CMI+2T2MI+4(z ) (5-19) 

r>~ 1 

If we use (5-16) to express C (2) in terms of C (I) 
r-I r 

in relations (5-18) we get the equivalent relations 

and C (2) for 
r+l 

I(Cr(2) ~ )C (I) - A2C = 0 + C~2+I] + 2(r + n + 1 r r 0 ~< r .< M 1 - I (5-20) 

which are a little more convenient to use than are the relations (5-18) o The 

relation (5-20) for r = 0 is exactly the same as relation (5-18) for r = 0 . 
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We now proceed as follows: 

Put C (2) = 0 
MI+I 

from (5-15) determine C(1) = 8(MI + 2)c l~M MI+I +2 

from (5-16) determine 

from (5-15) determine 

) 
) 

| 

| 

! 

O 
! 

n 

D 

| 

) 

p = I(I)M I 

from (5-16) determine 

from (5-15) determine 

! from (5-20) determine 

, ) 
! 

C (2) 
M I 8(M I 1 ~(I) 

= + )UMl+l 

C (I) = 8(M] ! 
M1 + )CMI+I 

C (2) 
Ml-P 

8(M l - p + l)C (I) + C (2) 
Ml-P+l Mi-P+2 

C (I) = 8(M l - p + I)CMI + C (I) 
MI-P -p+l M|-p+2 

l 

CM 1 -p 2A 2 
C 2) + C (2) 
MI-P Ml-P+l 

+ 4(M I + n - p + l)C (1) 
Ml-P ) 

...... (5-21 ) 

In this way we obtain in turn 

C (2) C (I) C~ 2) CII) 
M I -2 '  M I - 2 '  CM I-2 ,  " ' ' '  

of CMI, CMI+I , CMl+2 • 

C(1) C(2) C(1) .,(2) C(1) 
MI+I' M I ' M l ' UMI- I, MI- I ,  CMI- I '  

, C , CO, as linear combinations 

"(a)(z) of the differential equation (5-19) is therefore A solution 3n 

known in terms of CMI, CM]+I, CMI+2 . The function j~a)(z) so obtained is 

arbitrary insofar as the coefficients CMI, CMI+I, CMI+2 are arbitrary. 
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Because of the condition (5-7) we shall impose the condition 

By using the formula (5-9) for 

"(a)(0) = I 3 n 

3 n'(a)(z) we get 

(5-22) 

MI+2 

I = ~ CrT2r (0) 

r=0 

MI+2 

Z 
r=O 

CrTr (- I) 

MI+2 

(_ l)rCr 

r=0 

(5-23) 

Formula (5-23) is a linear relation connecting CM1 , CMI+I , CMI+2 

which can express in terms of and we CMI CMI+I CMI+ 2 

from 

The coefficients CMI+I , CMI+2 are still arbitrary. We can choose them as 
• (a)"" 

we wish and we could choose them so that j~a)"(0) and Jn (0) have imposed 

values. However, we prefer to choose these coefficients so that the right-hand 

side of the differential equation (5-19) reduces as much as possible. This is 

achieved by taking 

and 

CMI+I = 0 (5-24) 

CMI+2 = 0 

It then follows (5-15) and (5-16) that 

(5-25) 

C (I) = 0 (5-26) 
M I 

C (I) = 0 (5-27) 
'MI+ 1 
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C (2) = 0 (5-28) 
M 1 -I 

~ 2) = 0 . (5-29) 
1 

The conditions (5-24), (5-25), (5-26), (5-27), (5-28) and (5-29) extend the 

conditions (5-10), (5-13) and (5-14). 

We can now determine uniquely all the coefficients C in the definition 
r 

"(a)(z) The differential equation (5-19) satisfied by (5-9) of the function Jn 

• (a) (z) reduces to 
Jn 

,, ) ]T2M I 
j a)(z) + (2nz + I) Jn'(a) (z) - A'2"(a)(z)jn = -A2CM (z) (5-30) 

The differential equation (5-30) is a slight modification of the differential 

equation (5-5) if A2CMI is a very small number compared with unity and if this 

"(a)(z) can be expected to be a good approximation to is so then the function 3n 

jn(Z) . The quality of the approximation depends on the smallness of the n,~her 

A2CMI . It is found, in practice, that this number rapidly decreases as the 

positive integer M] is increased. 

(a) (z) to p(z) to be given by the We shall take the approximation Pn 

formula 

where -(a)(z) 
qn 

equation 

(a)(z) = (a)(z) + %J(a)(z) (5-31) Pn qn 

is any even function of z that satisfies the differential 

2 ~ (a)" 2n + 
z ~qn (z) + 

z 

I (a)'(z) .2 (a)(z)I 
qn - A qn 

- 2zj(a)'(z) - 2nJn(a)(z) + 2n = 0 (5-32) 

and the number % is chosen to satisfy 
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(a)(o) + %j(a)(o) = Pn(O) qn n 

= - y - log 

n+l 

(~) 1 1 E  1 
- 2(n + ]) + ~  

p=l 

(5-33) 

(a)(z) as the series of Chebyshev polynomials We may express qn 

~ v 

~a) (z) = qrT2;(z) 

r=O 

(5-34) 

where qr = 0 

We can write the first and second derivatives of 

z in the forms 

r ~ M 1 . (5-35) 

q(a)(z) with respect to 
n 

co ? 

(a)' E (1)T2r(Z) (z) = z qr qn 
r=O 

(5-36) 

and 
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Then 

2 (a)(z) z qn = 

r=0 
qlr-l[ + 2q r + qr+l)T2r(Z) (5-42) 

zq ( a ) '  (z) = 

r=O 

[ (1) 2a(1) (1)'~ 
T2r (z) ~kq[r-l[ + - r  + qr+l / (5-43) 

and 

2 (a)" 
z q (z) 

n 4 
r=O 

q(1) + 2q(1) (1))T 
] r - l [  r + qr+l 2r (z) 

r=0 

(2) . (2) 
qlr-21 +  qlr-ll + + ~qr+ I 

...... (5-44) 

From (5-11) we get 

' _ 1 ~ '(C(I) 2C(1) (I))T z zj (a) (z) 4 ~' [ r - l [  + + C r r+l 2r ( ) " (5-45) 
r=0 

2 (a) (z) By using the expansions (5-42), (5-43) and (5-44) for z qn 
' 2 (a)" 

Zqn(a) (z) and z qn (z) respectively and the expansions (5-9) and (5-45) for 

(a) 
(z) and Zjn(a)'- (z) respectively we get 

g 

-In 
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2{ (a)" (2n + I) z q (z) + 
g ' .2 (a) 1 2ZJn(a) (z) 2nJn(a) (a) (z) A qn (z) - ' (z) + 2n qn - 

co 

l ' I A - ~ q ( 2 )  , (2) + 6 (2) 4q(2~ (2 )~  
= 16~ [ r -2 ]  + " q [ r - l [  q r  + + q r + 2 )  

~-o~ 

(q(1) + 2q(l)+ q(1)) _ ¼A2(q ) 
+ ~(n + I) [r-l[ r r+l [r-l[ + 2qr + qr+l 

- ![C (I) + 2C (I) 
2\ Ir-l) r + C(1)h _ ~T2r(Z ) r+l] 2nCr ) 

+ 2nTo(Z) ° (5-46) 

Let us put 

and 

I 3q 2) + 4q 2) + q + ½(n + I) 
16 

- ½ ( C ( I ) +  c ~ l ) )  - me0 + 2n = 0 

+ qll)) - ¼A2(q0 + ql ) 

(5-47) 

1 (q (2 )  . (2) ( 2 ) .  ( 2 ) ( 2 ) )  
-- ~qr- 1 ~qr+ 1 qr+2 16 Jr-2] + + 6q + + 

/ (I) 2a(1) (I)~ (q ]) 
+ ½(n + 1)~qr_i  - r  + + q r + l ]  ¼A2 r - I  + 2qr + qr+ 

fC (I) + 2C (I) - ~ -  ~ - l  + C ( 1 ) |  \ = 0 1 ~ r r+l  - 2nCr M 1 ] (5-48) 

Then the differential equation (5-46) reduces to the differential equation (5-32). 

If we multiply the rth equation in (5-48) by (- I) r+l and sum the result- 

ing M] equations we get 

° 1-6 q + 4q + q + ½(n + !) q + q - + ql ) 

M 1 

r=l 

? 
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Now, according to (5-23), together with the equalities (5-24) and (5-25), 

we have 

M 1 

E (_ l)rC r 

r = 1 

= i - ½c 0 . (5-50) 

M 1 

we substitute for $ (- l)rC from (5-50) into (5-49) we recover the If 
L.~ r 
r=l 

relation (5-47). The relation (5-47) is thus shown to be linearly dependent on 

the relations (5-48) and consequently is redundant. The reason for this linear 

dependence is connected with the fact that the differential equation (5-32) may 
2 

be divided through by z and the limit z ÷ 0 taken without any infinities 

occurring. 

(i) and q~2) for r ~ 2 If we use (5-41) to express qr-2(2) in terms of qr-! 

(I) (2) (2) in terms of qr+l and to express qr+2 and qr for r ~ 1 in relations 

(5-48) we get the equivalent relations 

/ (2) 2q(r 2) _(2)~ r)_(1) )q(1) (I) ¼~qr-1 + + (n + 1 + ½ ( n -  r )  + qr+l f l  + ½(n + q r - I  r q r+ l  

- ¼A2 qr-1 + 2qr + qr+l - ~r-I r r+l/- 2nCr = 0 

l ~ < r ~ < M  1 (5-51) 

which are a little more convenient to use than are the relations (5-48). 

We now proceed as follows: 
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Put (2) = 0 
qMl+l 

put 
q ( l )  . 

MI+I = 0 

put qM]+l = 0 

put q ( 2 )  = 0 
M 1 

put q(1 )  = 0 
M I 

put qM] = 0 

p = I(1)M 1 

from (5-41) determine _(2) = 8(MI _ P + l)q(1) 
qM 1 -p M 1 -p + 1 

_(2 )  
+ qMl_P+ 2 

from (5-40) determine (I) 
qMl- p = 8(M 1 - p + l)qMl_P+ 1 

I from (5-51) determine qMI-P = - 2qMl-P+l - qM 1-p+2 

+ q ( l )  
M 1 -p+2 

1 ~ (2) + 2_(2) _(2) 
+ ~ lqMl-p qM 1 -p+ I + qM l -p+2 

t 

t 
6 

I 
I 

I ) 

+ 2(MI+ n-p +1)qM(11) - +4(n+ 1)q (I) 
p n 1 -p+ 1 

- 2 ( M l - n - p +  1),~ (1)  _2C (1)  
"~M 1 -p+2 M 1 - p  

,> 1 - 4CM( 1 _p+ 1 

...... (5-52) 
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In this way we obtain in turn _(2) q(l~l _(2) _(2) _(2) 
qM1-]' M 1 ' qM1-1' qMi-2' qM]-2' qMi-2' 

..... ' q ' q ' ql" q ' q ' ql " Thus all the coefficients qr in the 

definition (5-34) of the function -(a)(z) have been obtained and the resulting 
qn 

qn(a)(z) satisfies the differential equation (5-32) 

(a)(z) defined by formula (5-31) then satisfies the The function Pn 

differential equation 

21 (a) 2n+ ] z p "(z) + 
z 

(a)'(z) .2 (a)(z)I Pn - A Pn 

- 2zj(a)'(z) - 2nJn(a)(z) + 2n = - %A2CMlZ2T2MI(Z) (5-53) 

which is obtained by combining the differential equations (5-32) and (5-30). 

The differential equation (5-53) is a slight modification of the differen- 

tial equation (5-6) if A2CMI and ~A2CMI are very small numbers compared with 

unity and if this is so then the function D(a) (z) can be expected to be a good 
-n 

approximation to pn(Z) . It is found, in practice, that these n,lmhers rapidly 

decrease as the positive integer M] is increased. 

We may write 

(a) 
(z) = PrT2r(Z) (5-54) Pn 

r=0 

where, according to (5-31), (5-9) and (5-34) 

Let us now put 

and for n ~ 1 , put 

Pr qr + lCr r ffi O, I, 2, ... M] 

Pr = 0 r > M] + 1 . (5-55) 

p(O) (z) (5-56) n = Pn (z) 
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A2z 2 
(k) (z) = Zk - _ (k-l) (z) 

Pn 1 (2n - 2k + 2)(2n - 2k + l) Pn k = I, 2, ..°~ n 

...... (5-57) 

1 
where Z0 = (2n I ) (5-58) 

and 

2k 
Zk = (2n - 2k - I) Zk-| k = I, 2, .... (5-59) 

Then we may replace the expressions (5-2) and (5-3) for Fn(e) by the 

expression 

n+] 
F (~) = (n)(z) + (- I) 2n. log(z) n ~ 0 
n Pn (2n)! ~ 3n(Z) ° (5-60) 

We can use the recurrence relations (5-57) and (5-59) to obtain an 

(n,a) (n)(z) from the approximation ~(a)(z) to approximation Pn (z) to Pn -n Pn (z) " 
(n,a) 

We use the formula (4-2) successively to get finally the expression Pn (z) 

in the form 

~V (n,a) 
(z) = drT2r (z) (5-61) Pn 

r=0 

where d r = 0 r > M! + n . (5-62) 

form 

(a) (~) to Fn(~) We may therefore finally write an approximation F n 

F(a)(~) n 

Ml+n M I 

drT2r(_~) + (_ l)n+ 1 ~2n ~,CrT2r(A) log (A) 

r=O r=O 

for 0 < e ~< A 

in the 

(5-63) 

The function Fn(~) may be written in the form 
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F (~) 
n 

D (n) (A)T ~ + (_ 1)n+I e2n ,C (n) (A)T2r log 
r 2r ~ r 

r=0 r=O 

for 0 < = Z A . (5-64) 

The coefficients d r for low values of r are approximations to the 

coefficients D(n)(A) and the coefficients C for low values of r are r r 
approximations to the coefficients c(n)(A)r " The value of the integer M I must 

be taken large enough for these approximations to be so good that Fn(a) can be 

evaluated to the desired accuracy from formula (5-63). Values of D(~(A) and 
n) A r 

C ( obtained by this means are given for A = 2, 4 and 8, r and n = 0, I, 2 

in the results section 9. 

6 EXPANSION OF Gn(~ ) FOR 0 .< e ~< A 

Again we introduce the variable z by means of the formula 

(~ 

z = ~ . (6-I) 

Then the range 0 ~< ~ ~< A of ~ corresponds to the range 

In conformity with the expression (2-36) for Gn(e) 

0,< z~< I 

we put 

of z • 

%(e) __ ~hn(z) + (- I) n+1 ~ 2n. 
(2n) ! ~ ~ Jn (z) (6-2) 

where the hn(Z) and in(Z), n >~ 0, are even functions of z . The functions 

in(Z), n >. 0, are the same functions that occur in formulae (5-2) and (5-3). 

If we substitute for Gn(e) from (6-2) into the differential equation (2-5 I) 

we get, after simplification, the equation 

z2h'n(Z) - (2n- 3)Zhn(Z ) - {(2n- I) + A2z2}hn(z ) 

+ (_ i) n+l A2n-I 2n+l I (2n + I) A2jn 1 z Jn (z) + jn(Z) - (z) = 1 (6-3) 
(2n) ! ~ z " 

On separating even and odd functions of z in the differential equation 

(6-3) we find that hn(Z ) and in(Z) satisfy the separate differential equations 
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z2h"(z)- ( 2 n n  - 3)Zhn(Z) - {(2n- I)+ A2z2}hn(Z) = 1 (6-4) 

and 

jn(Z ) + (2n z + I) jn(Z ) _ A2jn(Z) = 0 (6-5) 

Equation (6-5) is exactly the same as equation (5-5) and has the same 

solution. 

We shall seek an approximation h(a)(z) to h (z) in the form of a n n 
series of Chebyshev polynomials 

~V 
h(a)n (z) = erT2r(Z ) 

r=0 

(6-6) 

where e r = 0 r > M 2 + 6 (6-7) 

and M 2 is some positive integer. This approximation will be taken to satisfy 

a differential equation which is a slight modification of the differential 

equation (6-4). The precise form of this modified differential equation will 

appear later, equation (6-36)° 

We can write the first and second derivatives of h(a)(z) with respect to 
n 

z in the forms 

h(a)'(Z)n = z ~'e(1)T2r(Z)r (6-8) 

r=0 

and 

where 

(a)" ' I) ~e(2) + 2e(2) + er+l] 2r h n (z) = + ¼\~ [r-l[ r 
r=0 

e(1)r = 0 r >. M 2 + 5 (6-10) 

e(2)r = 0 r ~ M 2 + 4 (6-I I) 
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e(1) (1) 
r-I - er+1 

e = 
r 8r r > ~ l  

and 

e(2) (2) 
r-I - er+l e ( I )  = 

r 8r r > .  1 

By using the expansions (6-6), (6-8) and (6-9) for 

h(a)"(z) respectively we get n 

h (a)(z) , (a ) ' ( z )  n ' nn 

z 2 h ( a ) " ( z )  - n  (2n  - 3 )Zhn(a )~z)  - { ( 2 n  - 1) + A2z2}hn  ( a ) ( z )  - 1 

,6 Ir-2] + 4e 11 + 6er(2) + /,e (2) r+ l  + r+2J 
r=0  

e I )  + 2er(1) e(1)~ 
- ½(n- 2) Ir-11 + r+l/- (2n- I)% 

- 4A [r_1 I + 2er + er+ T2r(Z) -T0(z) " 

Let us put 

*6 e + 4e + e - ½(n - 2) + e - ½(2n - 1)e 0 

I 2 
- 4A (e  0 + e l )  - 1 = 0 

(6-]2) 

(6-13) 

and 

(6-1 4) 

(6-15) 

and 

16 ] r - 2 [  + 4e _ + 6e  r , (2) e(2)~ (e(1) 2e(1) + ~er+l + r+2/- ½(n - 2) + K r - I  r 

- - A 2 (e r + 0 - (2n l)e r ¼ -I + 2er er+l) = l ~ < r ~ < M  2 . 

(,)h 
+ er+lJ 

(6-16) 

Then the differential equation (6-14) becomes 
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2h(a)"(z)-(2n-3)Zhn (a)'(z)- {(2n-1)+ A2z2}hn (a)(z)-I z n 

I /e(2)+4e(2 ) + 6e(22) + 4e(~)+2 
= ~ ~ M 2-1 M 2 I , 

- (2n- l)eM2+l - ¼A2<eM2+ 2eM2+i 

e (2) h /e (I) 
+ M2+3 / - ~(n- 2)~ M2 

+ eM2+2) IT2M2+2 (z) 

e (') h + 2e(])'M2+l + M2+2 j 

I [e(1) 2_(:) _(I) + IA6 (e(2)+ 4-(2)~M2 eM2+l + 6e(2)M2+2 + 4e~2)+3~- ½(n- 2) [ M2 + 1 2  l + 
e-M2+2 + eM2+3 ~ 

M2+! + 2eM2+2+ eM2+ 3 T2M2+4(z) 

+ A/e(2) + 4e(22)+2 +6e(M22)+3 _~(n_2 )~eM2+2  +2eM(;)+3+e (1) M2+I M2+4 ] 

/ 

+ ~1_ifl (2) _ 2)/e(1) +2=(I) h_ 
~eM2+2 + 4eM2+3 ](2)̂ h ½(n- \ M2+3 -q~2+4} (2n- 1 )eM2+4 

- 4A 2+ 3 + 2eM2+4 + eM2 + T2M2+8(z) 

• I eM2+3 ½ (n - 2) M2+4 l)eM2+5 M2+4 T2M2+I0 

i 2 
- ~A eM2+5T2M2+I2(Z) (6-17) 

(2) in terms of e (I) and If we use (6-13) to express er_ 2 r-I 

(I) and e (2) for r ~ 1 (2) in terms of er+ 1 r and to express er+ 2 
(6-15) and (6-16) we get the equivalent relations 

e "2"( ~ for r >~ 2 
r 

in relations 

¼(e0(2) + e l 2 ) ) -  ½ ( n - 2 ) e 0 ( l ) - a l ( n - 1 ) e ~ l ) - ½ ( 2 n  - l ) e  0 -  ¼A2(e0-e l  ) -1  = 0 (6-I 8) 

and 

,/ (2) +2er(2) (2)h e(1) _(n_2)e(1) ~[er_ I +er+l} + ½(r-n+1) r-I r 

- - - A2(er  1 +e r+  l) = 0 (2n l ) e  r ~ _ + 2e r 

- ½ ( r + n -  l )e , l ,r  ~ 
r+ 1 

l.<r.<M 2 (6-19) 
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We now proceed as follows 

from (6-12) determlne 

from (6-13) determlne 

from (6-12) determzne 

from (6-13) determlne 

from (6-12) determzne 

from (6-13) determlne 

from (6-I 2) determine 

from (6-13) determine 

from (6-12) determine 

I 
i P = 1 ( 1)M 2 

! 

I i 

ifrom (6-13) determine 
i 

! 

efrom (6-12) determine 
! 

) 
from (6-19) determine 

( i )  
eM2+4 = 

(2) 
eM2+3 = 

(1) 
eM2+3 = 

(2) 
eM2+2 = 

e (I) = 
M2+2 

(2) 
eM2+l = 

(i) 
eM2+ 1 = 

(2) 
eM 2 

(I) 
eM2 = 

(2) 
eM2_ p = 

(i) 
e M = 

2-p 

eM2_ p - 

8(M 2 + 5)eM2+5 

8(M2 + 4)e(12) 4 

8(M 2 + 4)eM2+4 

8(M 2 3)e (I) . 
+ M2+ ~ 

8(M 2 + 3)eM2+3 

8(M2 + 2)~12)+2 

8(M 2 + 2)eM2+2 

8(M2 + l)eM(12)+l 

8(M 2 + 1)eM2+l 

8(M 2 - p + l)e (I) e (2) 
M 2-p+I + M 2-p+2 

(I) 
8(M 2 - p + 1)eM2_P +I + eM2-P+2 

2eM2_P+l - eM2_P+ 2 

1 ((2) + 2e(2) e (2) 
+ 7~M2-P M2-P +I + M2-P+2 

2(M2 p n 2)e~p 4(n - 2)e (I) + - _ + - M2_P+ I 

2 (M 2 P + n) e(1) - 4(2n - l)eM2_P+11 _ - M2_P+ 2 

....... (6-20) 
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(1) , e (2) e (|) e (2) e(1~2 e (2) In this way we obtain in turn eM2+4 M2+3 , M2+3 , M2+2 , M2 , M2+I' 

~I) e(2) e(1) e(2) e(]) e(2) e(1) el2) (]), 
2+ I , M2 , M2 , M2_ }, M2_ l, eM2_ ] , M2_2, M2_2, eM2_2, .... , , e| 

el0), e~ 2), e~ I), e~ 0), as linear combinations of 
eM 2' eM2+1' eM2+2' eM2+3 , 

eM2+4' eM2+5" 

When we substitute for e , e , e , e , e 0 and e| so obtained 

from the above procedure (6-20) into the relation (6-18) we get a linear relation 

connecting eM2, eM2+], eM2+2, eM2+3, eM2+4, eM2+5 from which we can express 

in terms of eM2+l, eM2+2, eM2+3, eM2+4, eM2+5 A solution h(a)(z) of eM 2 n 

the differential equation (6-17) is therefore known in terms of eM2+l , eM2+2 , 

eM2+3, eM2+4, eM2+5 . The function h(a)(z)n so obtained is arbitrary insofar 

as the coefficients eM2+l, eM2+2, eM2+3, eM2+4, eM2+5 are arbitrary. We can 

choose these coefficients as we wish and we shall choose them so that the right- 

hand side of the differential equation (6-17) reduces as much as possible. This 

is achieved by taking 

eM2+l = 0 (6-21)  

eM2+2 = 0 (6-22) 

eM2+3 = 0 (6-23) 

eM2+4 = 0 (6-24) 

eM2+5 = 

It then follows from (6-12) and (6-13) that 

(1) 
eM2 = 0 

0 (6-25) 

(6-26) 

(i) 
eM2+l 

2+2 

0 (6-27) 

0 (6-28) 
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(i) 
eM2+3 : 0 (6-29) 

( i )  
eM2+4 = 0 (6-30) 

e (2) = 0 
M2-I 

(6-31) 

(2) 
eM2 ffi 0 (6-32) 

e (2) = 0 
M2+I 

(6-33) 

~ 2) 
2+ 2 = 0 

(6-34) 

e (2) = 0 
M2+3 

(6-35) 

The conditions (6-21) to (6-35) extend the conditions (6-7), (6-10) and (6-11). 

We can now determine uniquely all the coefficients e in the definition 
r 

(6-6) of the function h(a)(z) • The differential equation (6-17) satisfied by 
n 

h (a) (z) reduces to 

" t(a)' { In ( z2h (a) (z) - (2n - 3)zn n (z) - (2n - I) + A2z 2 h a)(z) - l 
n 

= - ¼A2eM2T2M2+2(z) . (6-36) 

The differential equation (6-36) is a slight modification of the differen- 

tial equation (6-4) if A 2 is a small number compared with unity and if this eM 2 

(a) (z) can be expected to be a good approximation to is so then the function h n 

hn(Z) . It is found, in practice, that this number rapidly decreases as the 

positive integer M 2 is increased. 

We may therefore finally write an approximation G(a)(~) to G (~) in 
n n 

the form 
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M 2 M 1 

@ r (- l ) n + l ~  2n 
G(a)(~)n = ~ erT2r + 2(2n) t. ~ CrT2r 

r=0 r=0 

The function Gn(e) may be written in the form 

for 0 ~< e ~< A . (6-37) 

co oo 

z @ z '_(n) (- l ) n+ l ' n  • a2n c(n)(A)T2r 
Gn (~) = ~ ~:r (A)T2r + 2(2n).' r 

r=0 r=0 

for 0 ~< e < A . (6-38) 

The coefficients e r for low values of r are approximations to the 

coefficients E(n)(A)r " The value of the integer M 2 must be taken large enough 

for these approximations to be so good and the value of the integer M! , 

discussed in section 5, must be taken large enough for the approximation C to 
r 

_(n) (A) to be so good that G (e) can be evaluated to the desired accuracy from ~r n 
formula (6-37). 

Values of E(n)(A) and ~(n)(A) obtained by this means are given for r Cr 

A = 2, 4 and 8 , and n = 0, I, 2 in the results section 9. 

7 EXPANSION OF Fn(~) for A Z ~ < 

We introduce the variable z by means of the formula 

2A 
z - | • ( 7 - I )  

The range A Z ~ < = of ~ corresponds to the range - | < z 6 I of 

Since we know the form of Fn(e ) for large real positive ~ from the 

asymptotic expansion (2-39) we can put 

Z o 

Fn(e) = e -~ en-½ fn (z) (7-2) 

where f (z) is a function of bounded variation. 
n 

If we substitute for F (~) from (7-2) into the differential equation 
n 

(2-50), we get, after simplification, the equation 
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Fn(=) 

4(z + l)2f~(z) + 8(z + l + 2A)f~(z) - (4n 2 - l)fn(Z) = 0 . (7-3) 

From the asymptotic expansion (2-39) and the form (7-2) of the function 

we get immediately 

2nn! 
fn (- I) = 7rffYr.,q~ 

We shall seek an approximation f(a) (z) to 
n 

of Chebyshev polynomials 

(7-4) 

in(Z) in the form of a series 

f(a) n (z) = frTr (z) 

r=0 

(7-5) 

where fr = 0 r ~ M 3 + 4 (7-6) 

and M 3 is some positive integer. This approximation will be taken to satisfy 

a differential equation which is a slight modification of the differential 

equation (7-3). The precise form of this modified differential equation will 

appear later, equation (7-29). 

We can write the first and second derivatives of f(a)(z) with respect to 
n 

z in the forms 

and 

f(a) (z) = f(l)Tr(Z ) (7-7) 
n r 

r=0 

f (a)"(z) = f(2)T (z) (7-8) 
n r r 

r=0 

where f(1)r = 0 r ~ M 3 + 3 (7-9) 

f(2)r = 0 r ~ M 3 + 2 (7-10) 

f(1) ~(i) 
r-1 - rr+l 

f = r ~ 1 (7-11) 
r 2r 



42. 

and 
f(2) _ f(2) 

f ( 1 )  r - I  r+l  
r = 2r r ~ 1 . 

By using the expansions (7-5)~ (7-7) and (7-8) for 
f(a)"(z) respectively we get n 

f(a)(z), f(a)'(z) n n 

( 7 - ] 2 )  

and 

4(z + l)2f(a)"Cz) + 8(z + 1 + 2A)fn(a)' n ( n (z) - (4n 2 - l)f a)(z) 

E ' (2) (2) .f(2) 4f(2) ~(2) 
u r r+ I ~r+2 Jr -2  + 4 f l r - I  I + + + 

r=O 

+ 4 i i + (2 + 4A)f(1)r + r+l] (4n 2 - l)fr Tr(Z) 

Let us put 

(f(2) + 4f12r) l + 6f(2) + 4f(2! + f(2)~ k Ir-21 - I r r+l r+2] 
(f(1),, 4A)f(1)f(1)) + 4 Ir_l i + (2 + + - (4n 2 - l)f r r+l r = 0 

• ( 7 - ] 3 )  

0 < r 4 M 3 - l . ( 7 - 1 4 )  

Then the differential equation (7-15) becomes 

2-(a)"(z) + 8(z + l + 2A)fn(a)'(z) - (4n 2 l)fn(a)(z) 4(z + 1) t n 

I f(2) ) = (f(2) + 4f(2)i +M3_ 6f(2)+ 4 
~k M3-2 M3 M3+I 

(f(1) ( l )  
+ 4~M3_ l + 2(I + ZA)fM3 

~M 3-1 6fM3+ 1 

I:f (2) + 4f(2) ) M 3 m3+ I 

If (2) M3+ 

+ M3+I - (4n 2 - l)fM3 TM3(Z) 

+ 4/f (1) + 2(I + 2A)f (1) + f(1) 
M 3 M3+1 M3+2 ] 

(4n 2 - l)fM3+iITM3+l(Z) 

+ 41~(I)M3+I + 2(I + 2A)f.(I)̂ ~M3+E J - (4n 2 - I)fM3+2'ITM3+2(z) 
) 

+ ~f(1) 1 1 ~ M3+2 - (4n2 - l)fM3+3 TM3+3(z) , (7-15) 
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If we use (7-12) to express f~2,r l in terms of f~l j r  '~ and f~2j( ~ for 
r-2 r-I r 

~(2) in terms of r >~ 2 , f(2)r_l in terms of f(1)r and f(2)r+l for r >~ 1 and ir+ 2 

f(1) (2) r+l and f for r >. 0 and use (7-11) to express f(1) in terms of f 
r r-I r 

and f(1)" " for r >~ l in the relations (7-14) we get the equivalent relations r+1 

8f r(2) + 8f(2)_r+l + 8(r + I + 2A)f (1)r + 4f(1)-r+l + {4r(r + l) - (4n 2 - l)Ifr = 0 

0 ~ r ~ M 3 - 1 . (7-16) 

We now proceed as follows: 

From (7-11) determine f(1)M3+2 = 2(M 3 + 3)fM3+3 

from (7-12) determine f(2) = 2(M3 + 2)f(1) 
M3+I M3+2 

(I) = 2(M3 + 2)f(I)^ from ( 7 - 1 1 )  determine fM3+1 m3+z 

from (7-12) determine f(2) = 2(M3 + l)f(1)lM3+ 
M 3 

from (7-I I) determine 

! 
T 

' p = 1 (I)M 3 

1 t 

I f r o m  ( 7 - 1 2 )  d e t e r m i n e  

| 

f rom ( 7 - 1 1 )  d e t e r m i n e  
I 

! 

! 

s f r o m  ( 7 - 1 6 )  d e t e r m i n e  
! i 

! t 

I 1 

f(1) = 2(M3 (l) 
M3 + 1)fM3 +I + fM3+2 

f(2) = 
M3-P 

f(1) = 

M3-P 

fM3_ p = 

2(M3 _ p + l)f(l 3) + f(2) 
p+ I M3-P+2 

+ f(1) 
2(M 3 - p + l)fM3_P +I M3-P+2 

P M3-p+ ! M3- p 

M3_P+~ - 1) - 4(M 3 - p)(M 3 - p + 1 . 

. . . . . .  ( 7 - 1 7 )  
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In this way we obtain in turn f(]) f(2) f(1) f(2) f(]) f(2) 
M3+2' M3+I' M3+]' M 3 ' M 3 ' M3- l, 

f(l) ~(2) f(1) f12) f~1) f] f~2) f~l) f0 linear 
M3_ ], fM3_ 1, ~M3_ 2, M3_ 2, fM3_ 2, -.., , , , , , as 

combinations of fM3 , fM3+| , fM3+2, fM3+3 . 

A solution f(a)(z) of the differential equation (7-]5) is therefore known 
n 

in terms of fM3 , fM3+], fM3+2, fM3+3 The function f(a)(z)n so obtained is 

arbitrary insofar as the coefficients fM3 , fM3+l, fM3+2, fM3+3 are arbitrary. 

Because of the condition (7-4) we shall impose the condition 

2nn !. 
f(a)(_ ]) _ (7-18) n (2n)! ' 

By using the formula (7-5) for f(a) (z) we get 
n 

M3+3 

2nn! ~ E = 

r=O 
frTr (- 1) 

M3+3 

= E (- l)rfr 
r=O 

(7-19) 

Formula (7-19) is a linear relation connecting 

from which we can express fM3 in terms of 

The coefficients fM3+] , fM3+2 , fM3+3 

fM 3' fM3+l' fM3+2' fM3+3 

fM3+l, fM3+2 and fM3+3 . 

are still arbitrary. We can choose 

these coefficients as we wish and we shall choose them so that the right-hand 

side of the differential equation (7-15) reduces as much as possible. This is 

achieved by taking 

fM3+l = 0 (7-20) 

fM3+2 = 0 (7-21) 

fM3+3 = 0 . (7-22) 
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It then follows from (7-]I) and (7-13) that 

f(]) = 0 
M 3 

(7-23) 

f(1) 
M3+ I 

= 0 (7-24) 

f(1) = 0 
M3+2 

(7-25) 

f(2) 
M3_I = 0 (7-26) 

(2) = 0 
fM 3 (7-27) 

f (2) = 0 
M3+ ] 

(7-28) 

The conditions (7-20) to (7-28) extend the conditions (7-6), (7-9) and (7-]0). 

We can now determine uniquely all the coefficients f in the definition 
r 

~(a)(z) The differential equation (7-15) satisfied by (7-5) of the function I n 

f(a)(z) reduces to 
n 

<n n < (a) (z) + 8(z + ] + 2A)f a)' 4(z + l)2fn (z) - (4n 2 - ])f a)(z) 

= {4M3(M 3 + 2) - (4n 2 - ])}fM3TM3(Z) (7-29) 

The differential equation (7-29) is a slight modification of the differen- 

tial equation (7-3) if {4MB(M 3 ÷ 2) - (4n 2 - I) IfM3 is a small number compared 

with unity and if this is so then the function f(a)(z) can be expected to be a 
n 

good approximation to fn(Z) . It is found, in practice, that this number rapidly 

decreases as the positive integer M 3 is increased. 

We may therefore finally write an approximation F(a)(~) to F (~) in 
n n 

the form 
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M 3 

F(a)(e)n = e-e n-½ ~ f T {2A ) ~  r r~ -- | 

r=0 

for A ~ ~ < (7-30) 

The function Fn(e) may be written in the form 

F (e) = n  e-~n-½ ~' F(n)(A)Tr(~ - r  11 for A ~< ~ < oo . (7-3]) 

r=0 

The coefficients fr for low values of r are approximations to the 

c o e f f i c i e n t s  F(n)(A)r ° The v a l u e  o f  the  i n t e g e r  M 3 must  be  t a k e n  l a r g e  enough 

for these approximations to be so good that Fn(~) can be evaluated to the 

d e s i r e d  a c c u r a c y  f rom f o r m u l a  ( 7 - 3 0 ) .  V a l u e s  of  F (n) (A) o b t a i n e d  by t h i s  means 
r 

are given for A = 2, 4 and 8 and n = 0, I, 2 in the results section 9. 

8 EXPANSION OF G (e) FOR A ~< ~ < 
n 

We introduce the variable z by means of the formula 

A 
z = - . ~s-1~ 

o~ % v  - S 

The range A < ~ < ~ of ~ corresponds to the range 0 < z ~ ] of z . 

Since we know the form of Gn(~) for large real positive ~ from the 

asymptotic expansion (2-40) we can put 

I 
Gn(~) -- -- gn(Z) (8-2) c~ 

where gn(Z) is an even function of z which is of bounded variation. 

If we substitute for G (~) from (8-2) into the differential equation 
n 

(2-51)~ we get, after simplification, the equation 

3, {( _ } A 2 Z4gn(Z) + (2n + 3)z gn(Z) + 2n + l)z 2 A 2 gn(Z) = . (8-3) 



47 

(a)(z) to gn(Z) in the form of a series We shall seek an approximation gn 

of Chebyshev polynomials 

OO 

Z (a) (z) = grTzr (z) (8-4) gn 
rffiO 

where gr = 0 r ~ M 4 + 6 (8-5) 

and M 4 is some positive integer. This approximation will be taken to satisfy a 

differential equation which is a slight modification of the differential equation 

(8-3). The precise form of this modified differential equation will appear 

later, equation (8-33). 

(a) (z) with respect to We can write the first and second derivatives of gn 

z in the forms 

Z' g(1)T2r(Z ) ~(a)' (z) = z (8-6) 
-n r 

r=0 

and 

(a) 
+ 4! Ir_l I + 2g gr+l gn (z) = + r2r(Z) (8-7) 

r=0 

(I) = 0 r > M 4 + 5 (8-8) where gr 

g ( 2 )  = 0 r >. M 4 + 4 (8-9) r 

(I) _(I) 
gr-I - gr+1 

gr = 8r r ~ I (8-10) 

and 

(2) (2) 
(I) gr-I - gr+l 

gr = 8r r ~ I . (8-11) 
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By using the expansions (8-4), (8-6) and (8-7) for 

(a)"(z) respectively we get gn 

! 

(a) (z) gn (a) (z) and gn ~ 

4 (a)" z) + {(2n + l)z 2 I (a) A 2 z gn (z) + (2n + 3) 3 (a)"( z gn A 2 g (z) - 

¢O 

(2) . (2) ) 
Ir_3[ + Oglr_2 1 + 1DE _11 

r=O 
20 (2) 15gr(2+~ ~ (2) _(2)~ 

+ gr + + + °gr+2 gr+3/ 

/ (1) . ( I )  ( I )  (1) (1)~ 
+ ~(n + 2)~g[r_21 + ~glr_l I + 6g r + 4gr+l + gr+2~ 

+ ~(2n + l)(g]r_l I + 2g r + gr+l) - A2grlT2r(Z) 
/ 

- A2T0(z) . (8-12) 

Let us put 

+ ~(n + 2) g + 4g + g 

+ ¼(2n + l)(g0 + gl ) - ½A2g0 = A2 (8-13) 

and 

(2) . (2) 
~g[r-3[ + °glr-21 

/ (1) . ( l )  + 6g~l) + 4_(1) ( l ) ~  
+ ~(n + 2)~glr-21 + ~gr-I gr+l + gr+2J 

+ ~(2n + l)(gr_ l + 2g r + gr+l) - A2g r = 0 

,~ (2) + 20 (2) l ~ (2) + 6_(2) (2)~ 
+ l~gr-1 gr + ~gr+l gr+2 + gr+3~ 

l~<r~<M 4 

Then the differential equation (8-12) becomes 

(8-~4) 
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" ^. 3 (a)'(z) + {(2n + l)z2- A 2} ~a) A 2 4 (a) (z) + (2n + J)z gn g (z) - z gn 

/ (2)^ 6 (2) 5g (2) 20 (2) 15g(2)o . (2) 
= ~gM4_z gM4_l 1 M4 gM4+l M4~= + + + + + DgM4+3 ) 

/ (1) 4=(1) 6_(1) . (1) _(1) 
+ ~(n + 2)~gM4_l + °M 4 + gM4+l + ~gM4+2 + gM4+3 ) 

+ 

g + 2gM4 + + + ¼(2n + I) M4 1 

gM4_i + 6g + l~gM4+l 

- A2gM4+I T2M4+2 gM4+ 2) 1 

+ 20 (2) + 15g(2)o) 
gM4+2 M4-~o / 

(z) 

+ ~(n + 2)(g(1) + . (I) + 6_(I) + 4g(1) 3 g(1) ) 
M 4 '+gM4+l gM4+2 4 + M 4 4 

+ 

+ ¼(2n + l)(gM4+l + 2gM4+2 

{~ I (2) + 6 (2) ,. (2) 
~gM 4 gM4+l + l~gM4+2 

+ gM4+3 ) - A2gM4+2}T2M4+4 

+ 20 (2) 
gM4+3 ) 

(z) 

+ 

(I) + 4g(I)4) + ~(n + 2)(g (I) + 4~(I) 2 + 6gM4+3 ~' M 4 1 °M 4 4 / 

+ A2gM4+3}T2M4+6 + ¼(2n + I)(gM4+2 + 2gM4+3 gM4+4 ) - 

~kgM4 + 1 + t~gM4+2 

(z) 

si(n 2)&(I) 2 , (1) , - (1)  
+ + ~ M 4 + ~gM4+3 + ~gM4+4 / 

¼(2n i)(gM4+3 2gM4+4 gM4+5) 2 } + + + - A gM4+4 T2M4+ 8 

+ { ~ 1  (2) + 6_(2) '~ / (1) -[- 4Q(I)+4 ) , ~gM4+2 gM4+3 ) + 8i(n + 2)~gM4+3 °M 4 

+ ¼(2n + 1) M4+4 2gM4+5 gM4 + T2M4+I0 

(z) 

(8-~5) 
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If we use (8-II) to express (2) 
gr-3 

(I) and g(2)r (2) in terms of gr-I gr-2 
for 

an" (2) g$2) for r ~ 0 a .gr+3 in terms of 
( i )  . (8-10) to express gr-2 in terms of gr- l  

(i) for r ~ 0 in terms of gr+l and gr 

get the equivalent relations 

in terms of (I) and _(2) for r ~ 3 
gr-2 gr-I ' 

(I) and r ~ 2 , gr+2.(2) in terms of gr+l 

(I) and (2) for r ~ 0 and use 
gr+2 gr+l 

(I) (I) for r ~ 0 and gr+2 and gr 

in the relations (8-13) and (8-14) we 

~(go(2) + g~2)) + ¼(2n + 3 ) g ~ l ) +  ¼(2n + l )g~l)  

+ ¼(2n + I - 2A2)g0 - ¼(2n - l)g I = A 2 (8-16) 

and 

f (2) (2) 
] + ¼(2n  + 3 r  + 1)gr_ 1 ~kgr_ 1 + 2g r + g(2)r+lj (I) + l(2n + 3)g (1)r 

(I) + {(r- l)(n + r) + ¼(2n + l)}gr_ 1 + ½(2n + 1 - 2A2)gr + ¼(2n - 3r + l)gr+l 

+ {(r + l)(r - n) + ¼(2n + l)}gr+ l = 0 I ~< r ~< M 4 (8-17) 

We now proceed as follows: 

(1) 
From (8-10) determine gM4+4 = 8(M 4 + 5)gM4+5 

from (8-11) determine _(2) = 8(M4 +4)g~l~, 
gM4+3 4 ~ 

from (8-10) determine (I) = 8(M4 
gM4+3 + 4)gM4+4 

( 2 )  . (i) 
from (8-II) determine gM4+2 = 8(M 4 + 3)gH4+3 

(i) = 8(M4 (I) from (8-10) determine gM4+2 +3)gM4+3+ gM4+4 
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(I) (2) (i) 
from (8-10) determine gM4+l = 8(M 4+ 2)gM4+2 +gM4+3 

from (8-II) determine 
_(I) + _(2) 

6M4"(2). ffi 8(M4 + 1)gM4+l gM4+2 

from (8-10) determine 

! 

p p ffi 1 (1)M~ 

, 1 
I 

I from (8-II) determine 
! 

! 

I from (8-10) determine 
! 

! 

I 

J from (8-17) determine 
t ! 

! 
I I 
' 

I i 

t ' 
I I 

I 
! 

I 

I 
! 
! 

I 

g(1) = 8(M4 +I) _(I) 
M 4 gM4+l +gM4+2 

~ 2) 
4-P 

(i) 

~4-p 

gM3-P 

8(M4 P l)g(1) + I _(2) 
- + + gM4_P+ 2 4 ~ 

+ (i) 
8(M 4 -p + l)gM4_P+ 1 gM4-P+2 

- 1 

{4(M 3- p) (M3+ n- p+ I) + (2n+ I)~ 

{ (2) +2_(2) (2) _(1) 
x IgM3_P gM3_P+ I + gM3_P+ 2 + (3M 3 + 2n - 3p + 4) gM3_P 

( (I) 
+ 2(2n+3)gl~l) +l- (3M 3-2n -3p+2)gM3_p+2 

3-P 

+ 2(2n +I -2A2)gM3_P+l 

+ [4(M 3- p +2)(M 3 -n- p +I) + (2n+ l)]gM3_P+2 I . 

. . . . . . .  (8-18) 

_(I) _(2) (1) ,.,(2) g(1) 2 _(2) 
In this way we obtain, in turn, gM4+4, gM4+3 gM4+3 e~i4+2, M4 , , , gM4+ I ' 

g(1) _(2) (I) _(2) (1) ,..(2) _(I) (2) gll) 
4 +I' gM4 ' gM4 ' gM4-1' gM4-1' gM4-1' °M4-2' gM4-2' gM4-2' "''' gl ' ' gl' 

g~2) go (l) " gl as linear combinations of gM4, gM4+l, gM4+2, gM4+3, %+4, 

gM4+5 . 

Equation (8-16) has not been used in the procedure (8-18). When we 

substitute for g ' g ' g ' g ' go and gl , as obtained from the 
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procedure (8-18), into the equation (8-|6) we get a linear equation connecting 

gM 4' gM4+l' gM4+ 2' gM4+3' gM4+4' gM4+ 5 o 

By putting z = 0 in equation (8-3) we get 

gn (0) = - | • (8-19) 

However, a solution of (8-3), satisfying the condition (8-19), and which is 

finite for 0 Z z Z 1 , is not unique. We can get a unique solution by pre- 

(a)(1) to scribing the value gn(1) • Correspondingly we prescribe the value gn 

be 

g(a)(1) = AG(a)(A - 0) (8-20) 
n n 

where G(a)(A - 0) is obtained from the approximation G(a)(~) to G (e) in 
n n n 

0 ~ ~ ~ A which was derived in section 6. This prescription leads to a second 

linear equation connecting We can use 
gM 4' gM4+l' gM4+2' gM4+3' gM4+4' gM4+5 

these two linear equations to express gM4 and gM4+l in terms of gM4+2, gM4+3, 

(a)(z) of the differential equation (8-15) satisfy- gM4+4, gM4+5 . A solution gn 

ing the prescribed value (8-20) is therefore known in terms of gM4+2 , gM4+3 , 

(a)(z) so obtained is arbitrary insofar as the gM4+4, gM4+5 o The function gn 

coefficients gM4+2, gM4+3, gM4+4, gM4+5 are arbitrary. We can choose these 

coefficients as we wish and we shall choose them so that the right-hand side of 

the differential equation (8-15) reduces as much as possible. This is achieved 

by taking 

gM4+2 = 0 (8-21) 

gM4+3 = 0 (8-22) 

gM4+4 -- 0 (8-23) 

gM4+5 = 0 

It then follows from (8-10) and (8-11) that 

(8-24) 
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g ( 1 )  = 0 
M4+ 1 (8-25) 

(i) 
gM4+2 = 0 (8-26) 

g ( 1 )  = 0 
M4+3 (8-27) 

g ( • )  
= 0 

M4+4 
(8-28) 

g ( 2 )  = 0 
4 

(8-29) 

g ( 2 )  = 0 
M4+I 

(8-30) 

g ( 2 )  = 0 
M4+2 (8-31) 

(2) = 0 
gM4+3 (8-32) 

The conditions (8-21) to (8-32) extend the conditions (8-5), (8-8) and (8-9). 

We can now determine uniquely all the coefficients gr in the definition 

(a) (z) The differential equation (8- 15) satisfied by (8-4) of the function gn 
(a) (z) reduces to gn 

" 3 (a)'(z) + {(2n+l)z 2 A 2~ (a)(z) -A 2 4_(a) (z) + (2n+3)z gn z gn - ~gn 

~gM4-2+~gM 4-I + ~a(n+ + \ 4 ' °M4 

+ l(2n+l)(gM4+ 2gM4+l) - A2 1 gM4+l T2M4+2 (z) 

+{~ gM4-1-(2) + ~(n +2)gM4(1)+ ¼(2n+ I)gM4+IIT2M4+4(z) 

= {IM4(M4+n+I)+¼(2n+I)IgM4+ [(M4+I)(3M4+2n+4)+ ¼(2n+l) 

+{(M 4 * I)(M 4 + n +2) + ¼(2n * I)} gM4T2M4+4(z ) . (8-33) 
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The differential equation (8-33) is a slight modification of the differen- 

tial equation (8-3) if the numbers 

[M4(M4+n+I) + ¼(2n+l)]gM4 + [(M4+])(3M4+2n+4)+ ¼(2n+l)- ~A2]gM4+! 

and 

~M4 + I)(M4 + n + 2)+ ¼(2n + l)]gM4 

(a) (z) can are small compared with unity and if this is so then the function gn 

be expected to be a good approximation to gn(Z) It is found, in practice, 

that these numbers rapidly decrease as the positive integer M 4 is increased. 

We may therefore finally write an approximation G(a)(e)n to Gn(e) in 

the form 

M4+ 1 

o 12 n ~ grT2r for A ~< ~ < ~ . (8-34) 
rffi0 

The function Gn(~) may be written in the form 

- ~'G(n) T <~) 1 (A) for A ~< ~ < Gn(~) ~ r 2r 
r=0 

(8-35) 

The coefficients gr for low values of r 

c o e f f i c i e n t s  G(n) (A)  ° The v a l u e  o f  t h e  i n t e g e r  
r 

for these approximations to be so good that G (~) 
n 

d e s i r e d  a c c u r a c y  f rom f o r m u l a  ( 8 - 3 4 ) .  V a l u e s  of  

are given for 

are approximations to the 

M 4 must be taken large enough 

can be evaluated to the 

G(n)(A)- obtained by this means 
r 

A = 2, 4 and 8, and n = 0, ], 2 in the results section 9. 

9 RESULTS 

For real ~ ~ 0 the real functions Fn(e) and Gn(~) of e of formula 

(2-2) are obtained from formula (2-33) in the forms 

and 

2nn! ~nKn(e) (9-I) 
Fn(e) = (2n)| 

G (~) 2nn! ~ ~L )n+lln(~) ) n = ~ ~ an n (~) + (- 1 (9-2) 
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where In(~) and Kn(~) are modified Bessel functions of order n and of the 

first and second kinds respectively and Ln(~) is a modified Struve function 2. 

The functions Fn(~) and Gn(~) have the following expansions in terms 

of Chebyshev polynomials. 

~' (A) 2n ~' (n) (A) (--~) F (~) = D(n)(A)T2r + (- I) n+l ~ C (A)T2r log 
n r (2n) ! r 

r=0 r=0 

for 0 ,< ~ ,< A , (9-3) 

Gn(~) E(n)(A)T2r + (- i) n+1 
r (2n) ! 

r=0 

~ 2n ~ 'C(n) (A) 2 ~ (A) T r 2r 
r=0 

for 0 ~< ~ ~< A , (9-4) 

F (cO = e-C~c~n-½ F(n)(A)Tr - 1 for A 4 ~ ~< ~ (9-5) 
n r 

r=0 

and 

% Gn(~ ) _ ~I G(n)r (A)T2r for A~< ~ ~< = , (9-6) 

r=0 

where A is any positive quantity which we call the demarcation value of ~ , 

and the dash ' on the summation sign ~i indicates that the quantity under 

the summation sign for r=0 is to be multiplied by ½ The coefficients D(n)(A) 
r 

C (n) (A) _(n) (A) _(n) (A) and G (n) (A) for r = 0 I 2, for a given 
r ' mr ' ~r r ' ' "''' 

value of A may be obtained by means of the procedures describes in sections 5, 

6, 7 and 8, for any integer value n . Values of these coefficients when 

A = 2, 4 and 8 , and n = 0, ] and 2 have been obtained by these procedures 

and are given in the following tables. The FORTRAN program with double precision 

arithmetic gave values of the coefficients accurate to at least four more decimal 

places than are recorded in these tables. 
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C(0)(2) 
r 

3.20584561362 
0.63880962565 
0.03685485969 
0.00098287813 
0.00001498365 
0.00000014738 
0.00000000101 
0.00000000001 
0.00000000000 

C(1) (2) 
r 

2.56703598796 
0.29507864030 
0.01179748536 
0.00023976274 
0.00000294783 
0.00000002428 
0.00000000014 
0.00000000000 

C(2) (2) 
r 

2.36638439931 
0.18885410329 
0.00575527693 
0.00009433753 
0.00000097108 
0.00000000687 
0.00000000004 
0.00000000000 

r 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

D(0)(2) 
r 

-0.535327393234 
0.344289899925 
0.035979936515 
0.001264615411 
0.000022862121 
0.000000253479 
0.000000001905 
0.000000000010 
0.000000000000 

D(I) (2) 
r 

1.52530022734 
-0.35315596078 
-0.12261118082 
-0.00697572386 
-0.00017302890 
-0.00000243341 
-0.00000002213 
-0.00000000014 
-0o00000000000 

D (2) (2) 
r 

0,889508489353 
-0.172359859474 
0.057430675574 
0,008193527247 
0.000321511780 
0.000006168057 
0.000000071010 
0.000000000548 
0.000000000003 
0.000000000000 

r 

0 
1 
2 
3 
4 
5 
6 
7 
8 

E(0)(2) 
r 

2.50156743335 
0.26062825773 
0.01004230874 
0.00020018002 
0.00000243208 
0.00000001987 
0.00000000012 
0.00000000000 

E(1) (2 )  
r 

-3.62686040785 
-0.86466471676 
-0.05265301734 

E(2)(2) 
r 

0.090223522158 
0.434512274677 
0.058535673516 

-0.00144057353 
-0.00002228887 
-0.00000022136 
-0.00000000153 
-0.00000000001 
-0.00000000000 

0.002521317931 
0.000053495433 
0.000000676401 
0.000000005681 
0.000000000034 
0.000000000000 
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r 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
I0 
11 
12 
13 
14 

F(O) (2) 

2.44030308207 
-0.03144810131 
0.00156988389 

-0.00012849550 
0.00001394981 

-0.00000183176 
0.00000027668 

F (I) (2) 
r 

2.72062619048 
0.10392373658 

-0.00285781686 
0.00019521552 

-0.00001936198 
0.00000240648 

-0.00000035020 

F(2)(2) 
r 

1.28419268187 
0.23331862013 
0.00872357116 

-0.00025006082 
0.00001789144 

-0.00000185219 
0.00000023919 

-0.00000004660 
0.00000000857 

-0.00000000170 
0.00000000036 

-0.00000000008 
0.00000000002 

-0.00000000000 

0.00000005741 
-0.00000001035 
0.00000000202 

-0.00000000042 
0.00000000009 

-0.00000000002 
0.00000000001 

-0.00000000000 

-0.00000003601 
0.00000000609 

-0.00000000113 
0.00000000023 

-0.00000000005 
0.00000000001 

-0.00000000000 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 
I0 

20 
21 
22 
23 
24 
25 
26 
27 
28 

G (0) (2) 
r 

-2.13217869983 
-0.03217700555 
0.02984899218 

-0.00705161897 
-0.00010761971 
0.00129508722 

-0.00097613324 
0.00051428094 

-0.00020387361 
0.00004311030 

G(1)(2) 
r 

-2.09643364580 
0.06792205958 
0.07490609971 
-0.03908076633 
0.01103390443 
0.00034669686 

-0.00316179696 
0.00284228294 

-0.00181382702 
0.00091914922 

G(2)(2) 
r 

-1.91194596134 
0.20712837099 
0.06895623846 

-0.06674389453 
0.03210856375 

-0.00915804519 
-0.00117500739 
0.00421227330 

-0.00403407960 
0.00285774540 

0.00002305925 
-0.00004040266 
0.00003686071 

-0.00002691184 
0.00001698007 

-0.00000928372 
0.00000411161 

-0.00000102277 
-0.00000058649 
0.00000125217 

-0.00000137570 
0.00000122726 

-0.000000973]3 
0.00000070620 

-0.00000047169 
0.00000028623 

-0.00000015078 
0.00000005886 

-0.00000000137 

-0.00033807218 
0.00002613941 
0.00010760420 

-0.00014111748 
0.00012704050 

-0.00009615367 
0.00006418149 

-0.00003775024 
0.00001857381 

-0.00000605656 
-0.00000123882 
0.00000484729 

-0.00000608037 
0.00000593157 

-0.00000509017 
0.00000399734 

-0.00000291057 
0.00000196133 

-0.00000120062 

-0.00166055679 
0.00076578034 

-0.00020527751 
-0.00009181465 
0.00021365013 

-0.00023371869 
0.00020355054 

-0.00015514772 
0.00010612667 

-0.00006467299 
0.00003337879 

-0.00001187962 
-0.00000149056 
0.00000874946 

-0.00001178025 
0.00001212772 

-0.00001095266 
0.00000906510 

-0.00000698931 
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29 
30 
31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
5O 
51 
52 
53 
54 
55 
56 
57 
58 
59 
6O 
61 
62 
63 
64 
65 
66 
67 
68 
69 
7O 
71 
72 
73 
74 
75 
76 
77 
78 
79 
8O 

G(O)(2) 
r 

-0.00000003078 
0°00000004547 

-0.00000004895 
0.00000004585 

-0.00000003941 
0.00000003175 

-0.00000002419 
0.00000001743 

-0 .00000001178  
0.00000000733 

-0 .00000000398  
0.00000000159 
0.00000000002 

-0.00000000101 
0.00000000155 

-0 .00000000177 
0.00000000177 

-0 .00000000164 
0.00000000144 

-0.00000000121 
0.00000000097 

-0 .00000000075 
0.00000000056 

-0.00000000039 
0.00000000026 

-0 .00000000015 
0.00000000008 

-0 .00000000002 
-0 .00000000002 

0.00000000005 
-0 .00000000006 

0.00000000007 
-0 .00000000007 

0.00000000006 
-0 .00000000006 

0.00000000005 
-0.00000000004 
0.00000000003 

-0.00000000003 
0,00000000002 

-0.00000000002 
0.00000000001 

-0.00000000001 
0.00000000000 

G(1) (2) 
r 

0.00000063210 
-0 .00000023477 
-0 .00000002259 

0.00000017285 
-0 .00000024595 

0.00000026685 
-0 .00000025507 

0.00000022507 
-0 .00000018696 

0.00000014741 
-0 .00000011046 

0.00000007828 
-0 .00000005172 

0.00000003083 
-0 .00000001512 

0.00000000391 
0.00000000362 

-0 .00000000825 
0.00000001069 

-0 .00000001155 
0.00000001133 

-0.00000001044 
0.00000000917 

-0.00000000773 
0.00000000628 

-0.00000000492 
0.00000000370 

-0.00000000266 
0.00000000179 

-0 .00000000110 
0.00000000056 

-0 .00000000016 
-0.00000000013 

0.00000000032 
-0 .00000000043 

0.00000000049 
-0 .00000000050 
0.00000000049 

-0.00000000045 
0.00000000040 

-0.00000000035 
0.00000000029 

-0.00000000024 
0.00000000019 

-0 .00000000015 
0.00000000011 

-0 .00000000008 
0.00000000005 

-0 .00000000003 
0.00000000001 

-0 .00000000000 
-0.00000000001 

G(2) (2) 
r 

0.00000503433 
-0.00000335766 
0.00000201682 

-0.00000100847 
0.00000029610 
0.00000017129 

-0.00000044754 
0.00000058262 

-0.00000061936 
0.00000059228 

-0.00000052787 
0.00000044543 

-0.00000035827 
0.00000027498 

-0.00000020055 
0.00000013739 

-0.00000008614 
0.00000004629 

-0.00000001667 
-0.00000000422 
0.00000001795 

-0.00000002606 
0.00000002990 

-0.00000003067 
0.00000002934 

-0.00000002669 
0.00000002331 

-0.00000001964 
0.00000001599 

-0.00000001257 
0.00000000951 

-0.00000000685 
0.00000000464 

-0.00000000284 
0.00000000143 

-0.00000000036 
-0.00000000042 
0.00000000094 

-0.00000000127 
0.00000000144 

-0 .00000000150 
0.00000000147 

-0 .00000000138 
0.00000000125 

-0 .00000000110 
0.00000000094 

-0.00000000079 
0.00000000064 

-0.00000000051 
0.00000000039 

-0 .00000000028 
0.00000000020 
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81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 

G (0) (2) 
r 

G(1)(2) 
r 

0.00000000002 
-0.00000000002 
0.00000000002 

-0.00000000002 
0.00000000002 

-0.00000000002 
0.00000000002 
-0.00000000002 

O.O0000000001 
-O.O0000000001 

0 .00000000001 
-0 .00000000001  

0 .00000000001 
- 0 .00000000001  

0 .00000000000  

G(2)(2) 
r 

-0.00000000012 
0.00000000007 

-0.00000000002 
-0 .00000000001  
0.00000000004 
-0.00000000006 
0.00000000007 

-0.00000000007 
0.00000000007 

-0.00000000007 
0.00000000007 

-0.00000000006 
0.00000000005 
-0.00000000005 
0.00000000004 

-0.00000000003 
0.00000000003 

-0.00000000002 
0.00000000002 

-0.00000000001 
0 .00000000001  

-0 .00000000001  
0 .00000000000  

r C (0) (4) C (I) (4) C (2) (4) 
r r r 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10.3930183013 
5 .0602512067  
0 .9492999272  
0 .0905165805  
0 .0051467756  
0 .0001930879  
0 .0000051211  
0 .0000001009  
0 .0000000015  
0 .0000000000  

5.33276709459 
1.91921769578 
0.27251588793 
0.02061784143 
0.00096614639 
0.00003073894 
0.00000070665 
0.00000001228 
0.00000000017 
0 .00000000000  

3.96245000143 
1.09780120523 
0.12401460987 
0.00773765351 
0.00030756128 
0.00000848241 
0.00000017192 
0.00000000267 
0.00000000003 
0.00000000000 
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4 
5 
6 
7 
8 
9 

10 
11 

D(0) (4) 
r 

-2 .07010521536 
0.57925185014 
0.40087333324 
0.06130342160 
0.00457144436 
0.00020585246 
0.00000624313 
0.00000013654 
0.00000000226 
0.00000000003 
0.00000000000 

D(I)(4) 
r 

4.05596928486 
-0 .11829410946 
-1.46724835571 
-0 .35471783977 
-0 .03569556020 
-0 .00201916844 
-0 .00007369308 
-0 .00000188403 
-0 .00000003566 
-0 .00000000052 
-O.O0000000001 
-0 .00000000000 

D(2) (4) 
r 

-1 .27162945068 
-0 .75983364876 

0.94490368050 
0.46759026789 
0°07040584357 
0.00530641092 
0.00024217164 
0.00000743529 
0.00000016435 
0.00000000274 
0.00000000004 
0.00000000000 

r 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

E(O)(4) 
r 

4.90866345562 
1.66839475339 
0.23044870859 
0.01715670552 

E(1) (4) 
r 

-13.6449585986 
-7 .0679003896 
-103713700036 
-0.1333429331 

E(2)(4) 
r 

9.10884949164 
6.58926863493 
1.94768516568 
0.26518165143 

0.00079558551 
0.00002512773 
0.00000057454 
0.00000000994 
0.00000000013 
0.00000000000 

-0 .0076768959 
-0,0002904768 
-0 .0000077518 
-0 .0000001535 
-0 .0000000023 
-0 .0000000000 

0.01991274171 
0.00093490279 
0.00002988114 
0.00000069043 
0.00000001205 
0.00000000016 
0.00000000000 

r 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

F (°) (4) r 

2.47090781345 
-0 .01733468653 

0.00049916079 
-0 .00002457275 

0.00000165659 
-0 .00000013857 

0.00000001362 
-0 .00000000152 

0.00000000019 
-0.00000000003 

0.00000000000 

F(I)(4) 
r 

2.61822093104 
0.05488260137 

-0.00087520483 
0.00003609633 

-0.00000222984 
0.00000017697 

-0.00000001679 
0.00000000183 

-0°00000000022 
0.00000000003 

-0 .00000000000 

F(2)(4) 
r 

1.04639456552 
0.10785139320 
0.00238173226 

-0.00004174267 
0.00000187777 

-0 .00000012505 
0.00000001059 

-0.00000000106 
0.00000000012 

-0 .00000000002 
0.00000000000 
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0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5l 

G (°) (4) 
r 

- 2 . 0 7 7 0 4 6 3 8 6 7 7  
- 0 . 0 3 8 t  1891413 

O. O02057356 60 
0 .00133583904  

- 0 . 0 0 0 4 0 2 4 2 1 5 3  
0 .00000135756  
0 . 0 0 0 0 5 2 7 1 8 7 0  

- 0 . 0 0 0 0 2 9 4 3 6 8 9  
0 .00000887895  

- 0 . 0 0 0 0 0 0 0 9 2 0 8  
- 0 . 0 0 0 0 0 1 9 6 9 0 6  

0 . 0 0 0 0 0 1 6 2 2 5 4  
- 0 . 0 0 0 0 0 0 8 6 6 8 3  

0 .00000031946  
- 0 . 0 0 0 0 0 0 0 3 9 9 9  
- 0 . 0 0 0 0 0 0 0 6 1 2 5  

0 .00000007429  
- 0 . 0 0 0 0 0 0 0 5 5 5 8  

0 . 0 0 0 0 0 0 0 3 2 4 8  
-0.00000001487 

0.00000000425 
0,00000000093 

-0,00000000273 
0,00000000278 

-0,00000000215 
0.00000000140 

-0,00000000077 
0.00000000033 

-0,00000000007 
-0,00000000006 

0 .00000000011  
-O.O0000000011 

0 .00000000009  
- 0 . 0 0 0 0 0 0 0 0 0 0 6  
0.00000000004 

-0.00000000002 

G(1)(4) 
r 

- 2 . 2 0 2 7 5 8 6 7 1 5 9  
- 0 . 0 8 7 5 9 3 3 7 0 6 9  

0 .02059130191 
0 .00362532371 

- 0 . 0 0 2 9 0 8 5 9 8 9 0  
0 .00070097680  
0 .00010613794  

- 0 . 0 0 0 1 9 6 5 2 5 5 0  
0 .00011184366  

- 0 . 0 0 0 0 3 7 5 3 3 0 9  
0 .00000162860  
0 .00000890557  

- 0 . 0 0 0 0 0 8 4 7 5 6 5  
0 .00000520869  

- 0 . 0 0 0 0 0 2 3 3 6 9 2  
0 .00000059911  
0 . 0 0 0 0 0 0 1 9 4 9 5  

- 0 . 0 0 0 0 0 0 4 2 2 5 3  
0 .00000038583  

G(2)(4) 
r 

- 2 . 2 6 1 1 4 5 1 8 4 2 0  
-0.08758430284 

0 .05154088100  
- 0 . 0 0 0 1 3 0 8 1 3 8 4  
- 0 . 0 0 6 1 5 9 1 2 0 1 3  

0 .00287012995  
- 0 . 0 0 0 4 8 5 8 5 0 0 2  
- 0 . 0 0 0 2 9 5 9 4 6 2 2  

0 .00033304245  
- 0 . 0 0 0 1 8 7 6 3 5 2 5  

0 .00006586766  
- 0 . 0 0 0 0 0 3 0 2 0 2 2  
- 0 . 0 0 0 0 1 7 9 0 3 7 2  

0 .00001844388  
-0 .00001243241  

0 .00000632377  
- 0 . 0 0 0 0 0 2 1 5 0 9 9  
- 0 . 0 0 0 0 0 0 0 5 9 2 9  

0 .00000090772  
- 0 . 0 0 0 0 0 0 2 6 5 7 5  

0 .00000014856  
- 0 . 0 0 0 0 0 0 0 6 3 8 0  

0 .00000001341 
0 . 0 0 0 0 0 0 0 1 0 8 8  

- 0 . 0 0 0 0 0 0 0 1 8 7 9  
0 .00000001810  

- 0 . 0 0 0 0 0 0 0 1 3 9 4  
0 .00000000919  

- 0 . 0 0 0 0 0 0 0 0 5 1 8  
0 .00000000231 

- 0 . 0 0 0 0 0 0 0 0 0 5 3  
-0 .00000000041  

0 .00000000080  
-0.00000000084 

0.00000000072 
-0,00000000054 

-0.00000100762 
0.00000079217 

-0.00000050773 
0.00000026606 

-0.00000009996 
0.00000000415 
0.00000004003 

-0.00000005206 
0.00000004726 

-0.00000003583 
0.00000002361 

-0.00000001336 
0.00000000595 

- 0 . 0 0 0 0 0 0 0 0 1 2 5  
- 0 . 0 0 0 0 0 0 0 0 1 3 2  

0 .00000000241 
- 0 . 0 0 0 0 0 0 0 0 2 5 7  

0 .00000000001 
- 0 . 0 0 0 0 0 0 0 0 0 0 0  

0.00000000036 
-0.00000000022 
0.00000000011 

-0.00000000003 
-0 .00000000001  

0 .00000000003  
-0.00000000004 
0.00000000004 

-0.00000000003 
0.00000000002 

-0.00000000002 
0.00000000001 

-O.O0000000001 
0 .00000000000  

0 .00000000225  
- 0 . 0 0 0 0 0 0 0 0 1 7 4  

0 .00000000121  
-0.00000000075 
0.00000000040 

- 0 . 0 0 0 0 0 0 0 0 0 1 5  
- 0 . 0 0 0 0 0 0 0 0 0 0 0  

0 .00000000009  
- 0 . 0 0 0 0 0 0 0 0 0 1 2  

0 .00000000013  
-0 .00000000011  

0 .00000000009  
- 0 . 0 0 0 0 0 0 0 0 0 0 7  

0.00000000004 
-0.00000000003 

0 .00000000001  
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52 
53 
54 
55 
56 
57 
58 

G(0)(4) 
r 

G(1)(4) 
r 

G(2)(4) 
r 

-0 .00000000000 
-0 .00000000000 

0.00000000000 
-0.00000000001 

0.00000000001 
-0.00000000001 

0.00000000000 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

!0 
II  
12 

c (°) (8) 
r 

255.466879624 
190.494320173 
82.489032744 
22.274819242 

4.011673760 
0.509493365 
0.047718749 
0.003416332 
0°000192469 
0.000008738 
0.000000326 
0.000000010 
0.000000000 

C(I) (8) C(2) (8) 
r r 

.9725594516 28.9707969754 

.3281540101 18.6527830678 
64 
45 
17.3489794084 
4,0836376381 
0.6428649766 
0.0719638780 
0.0059982698 
0°0003857548 
000000196892 
0,0000008160 
0.0000000280 
0 .0000000008 
0,0000000000 

6.3067199703 
1.3038036594 
0.1812635131 
0.0180737062 
0.0013538182 
0,0000788968 
0.0000036766 
0,0000001401 
0.0000000044 
0,0000000001 
0,0000000000 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

D(0)8 
r 

-21.0576601774 
-4.5634335864 
8.0053688687 
5°2836328669 
1.5115356760 
0.2590844324 
0,0300807224 
0.0025363082 
0.0001627084 
0.0000082160 
0.0000003352 
0.0000000113 
0.0000000003 
0.0000000000 

116 
42 

-43 
-39 
-14 

-2 
-0 
-0 
-0 
-0 
-0 
-0 
-0 
-0 

D(1) (8) 
r 

.109338821 -195 .  

.009912196 - 9 0 ,  

.100766931 60,  

D(2) (8) 
r 

885440934 
282237104 
497819474 

.591707756 

.060770629 

.879821291 
,389782914 
,O37608348 
,002720562 
,000153070 
,000006890 
,000000254 
,000000008 
o000000000 

80.721102981 
36.310359055 
9.065640544 
1.456316380 
0.163280020 
0.013492644 
0.000855157 
0.000042861 
0.000001741 
0 .000000058 
0.000000002 
0.000000000 



63 

3 
4 
5 
6 
7 
8 
9 
I0 
11 
12 

E(0) (8) 
r 

55.0474921501 
38.0449554282 
14.4133068178 

E(]) (8) 
r 

-372.619706447 
-279.527258869 
-122.152472131 

E (2) (8) 
r 

745.239636537 
589 . 9189 46483 
293. 155739975 

3.3641911979 
0.5261166156 
0.0585897829 
0.0048633953 
0.0003117276 
0.0000158673 
0.0000006561 
0.0000000225 
0.0000000006 
0.0000000000 

-33.264982053 
-6.032827358 
-0.770469771 
-0.072484811 
-0.005208214 
-0.000294292 
-0.000013394 
-0.000000501 
- 0 . 0 0 0 0 0 0 0 1 6  
- 0 . 0 0 0 0 0 0 0 0 0  

93.384976387 
19. 844857559 
2.943204561 
0.317694398 
0.025875685 
0.001639103 
0.000082815 
O. 00000340 8 
0.000000] 16 
0.000000003 
0.000000000 

r F (°) (8) 
r 

2.48798130174 
-0.00917485269 
0.00014445509 

-0.00000401361 
0.00000015678 

-0.00000000777 
0.00000000046 

-0.00000000003 
0.00000000000 

F (1) (8) 
r 

2.56379308344 
0.02832887813 

-0.0002475370 7 
0.00000577197 

-0.00000020689 
0.00000000974 

-0.00000000056 
0.00000000004 
0.00000000000 

F(2) (8) 
r 

0.937332182311 
0.051529284574 
0.000628142864 

-0.000006258705 
0.000000]64093 

-0.000000006506 
0.000000000334 

-0.000000000021 
0.000000000001 

- 0 . 0 0 0 0 0 0 0 0 0 0 0 0  

r G(O) (8) 
r 

-2.018012610]3 
-0.00944907144 
-0.00045461284 
0.00000198940 
0.00001488859 

-0.00000010130 
-0.00000102711 
0.00000022192 
0.00000004427 

-0.00000004312 
0.00000001216 
0.00000000076 

G(]) (8) 
r 

-2. 05920385453 
-0.03174217296 
-0.002031 ] 2013 
0.00023199704 
0.00011385109 

-0. 00001923454 
-0. 00000682205 
O. 00000364533 

-0.00000034764 
-0. 00000036733 
O. 00000022076 

-0. 00000005064 

G(2) (8) 
r 

-2.10556259049 
-0.05693946028 
-0.00335879864 
0.00114848463 
0.00026274169 

-0.00010983172 
-0.00000601590 
0.00001472816 

-0.00000442224 
-0.00000038387 
0.00000093643 

-0.00000043536 
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12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

G (0) (8) 
r 

-0.000000002~4 
0 .00000000127  

-0 .00000000031  
- 0 . 0 0 0 0 0 0 0 0 0 0 6  

0 .00000000011  
- 0 . 0 0 0 0 0 0 0 0 0 0 6  

0 .00000000002  
0 . 0 0 0 0 0 0 0 0 0 0 0  

G(I)(8) 
r 

- 0 . 0 0 0 0 0 0 0 1 2 0 3  
0 .00000001722  

-0 .00000000861  
0.00000000208 
0.00000000050 
-0.00000000088 
0.00000000056 
-0.00000000022 
0.00000000003 
0.00000000004 
-0.00000000004 
0.00000000003 

-0 .00000000001  
0 .00000000000  

G(2)(8) 
r 

0.00000007086 
0.00000004713 

-0°00000004756 
0.00000002266 
-0.00000000512 
- 0 . 0 0 0 0 0 0 0 0 1 8 6  

0 .00000000286  
- 0 . 0 0 0 0 0 0 0 0 1 8 6  

0 .00000000077  
- 0 . 0 0 0 0 0 0 0 0 0 1 3  
- 0 . 0 0 0 0 0 0 0 0 0 1 2  

0 .00000000015  
- 0 . 0 0 0 0 0 0 0 0 0 1 0  
0.00000000005 

-0.00000000001 
-0.00000000000 

0.00000000001 
-O.O0000000001 

0 .00000000000  

Values 

are as 

of F (~) 
n 

follows : 

and Gn(~) for n = 0, l, 2 , for a selection of values of 

O~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
l l  
12 
13 
14 
15 
16 
17 
18 
19 
20 

F0(e) G0(s) 

0.42]02443824 
0.11389387275 
0.03473950439 
0.01115967609 
0.00369109833 
0.00124399433 
0.00042479574 
0.0001464707] 
0.00005088131 
0.00001778006 
0.00000624302 
0.00000220083 
0.00000077845 
0.00000027614 
0.00000009820 
0.00000003499 
0.00000001249 
0.00000000447 
0 .00000000160  
0.00000000057 

-1.57079632679 
-0.87308424265 
-0.53745038906 
-0.36459259386 
-0.26840471551 
-0.21041554608 
-0.17271246880 
-0°14653670418 
-0.12736175065 
-0.11270609629 
-0.10112644070 
-0.09173512472 
-0.08395815487 
-0.07740790423 
-0.07181280030 
-0.06697661204 
-0.06275381750 
-0.05903409849 
-0.05573223363 
-0.05278130611 
-0.05012801666 
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c~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

F 1 (a) G 1 (cO 

1.00000000000 
0 .60190723020  
0 , 2 7 9 7 3 1 7 6 3 6 3  
0 .12046929338  
0 .04993399555  
0 .02022306723  
0 .00806351831 
0 .00317927741  
0 .00124295369  
0 ,00048273315  
0 .00018648773  
0 .00007172947  
0 .00002748909  
0 ,00001050216  
0 . 0 0 0 0 0 4 0 0 1 6 8  
0 .00000152126  
0 .00000057715  
0 .00000021857  
0 ,00000008264  
0 ,00000003120  
0 ,00000001177  

0 .00000000000  
- 0 . 4 6 8 4 5 0 8 1 2 2 0  
-0 .46728898961  
- 0 . 3 7 6 3 4 3 1 7 6 4 4  
- 0 . 2 9 1 7 4 3 5 6 4 4 8  
- 0 . 2 2 9 2 8 4 5 0 8 5 3  
- 0 . 1 8 5 6 0 9 0 6 8 4 9  
-0 .15496532001  
-0 ,13288154121  
- 0 . 1 1 6 4 0 8 0 2 1 1 7  
-0 ,10369265741  
- 0 . 0 9 3 5 7 7 3 7 7 4 2  
- 0 . 0 8 5 3 2 4 7 6 9 6 3  
- 0 , 0 7 8 4 5 1 3 2 0 4 5  
- 0 , 0 7 2 6 2 9 2 1 2 6 8  
- 0 , 0 6 7 6 2 8 6 8 7 3 2  
- 0 , 0 6 3 2 8 3 7 2 0 5 4  
-0 .05947107581  
- 0 . 0 5 6 0 9 7 1 3 4 6 4  
- 0 . 0 5 3 0 8 9 3 5 6 1 6  
-0 .05039056921  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

F2(c~) G2(~) 

0.66666666667 
0.54161296621 
0.33834633942 
0.18453137542 
0.09280760282 
0.04424119760 
0.02030361081 
0.00905784872 
0.00395334417 
0.00169561755 
0.00071699390 
0.00029962147 
0.00012396568 
0.00005085437 
0.00002070874 
0.00000837883 
0.00000337093 
0.00000134937 
0.00000053772 
0.00000021342 
0.00000008439 

0.00000000000 
-0.26999528902 
-0.36145984516 
-0,34467323255 
-0.29265419235 
-0.23965255633 
-0.19628900465 
-0.16340971491 
-0.13897170808 
-0.12066994738 
-0.10667646165 
-0.09570161546 
-0.08687461347 
-0.07961281856 
-0.07352242786 
-0.06833169487 
-0.06384823994 
-0.05993220510 
-0.05647932206 
-0.05341007312 
-0.05066260063 
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I0 CLOSING REMARKS 

Expansions in terms of Chebyshev polynomials have been obtained in the 

forms (9-3), (9-4), (9-5) and (9-6) for the real functions Fn(~ ) and G (~) of 
n 

the real variable ~ ~ 0 . E~licit expressions for Fn(~) and Gn(~ ) in terms 

of known functions are given in formulae (9-I) and (9-2). 

Three values of the demarcation parameter A have been considered, namely 

. C (n) (8)  D (n) (n) A = 2, 4 and 8 The coefficients , (8) and E (8) are quite 
r r r 

large for low values of r compared with the values of the functions F (~) and 
n 

Gn (~) except for those of F0(~) near ~ = 0 . There is consequently a loss of 

accuracy in the values obtained for Fn(~ ) and G (~) for 0 ~ ~ ~ 8 when 
n 

calculations are carried out from formulae (9-3) and (9-4) using only a small 

number of significant figures° The values obtained, however, are more accurate 

than the corresponding values obtained by using formulae (2-34), (2-35) and (2-36) 

and the power series expansions (2-15), (2-16) and (2-17) unless ~ is much 

smaller than 8. The coefficients F(n)(8) and G(n)(8) are not nearly as large 
r r 

for low values of r as are c(n)(8)r , u r~(n)(8) and E(n)(8)r and there is there- 

fore only a slight loss in accuracy in the values obtained for Fn(~ ) and G (~) 
n 

for 8 ~ ~ $ ~ when calculations are carried out from formulae (9-5) and (9-6). 

The coefficients c(n)(A) D(n)(A) and E(n)(A) are much smaller for 
r ' r r 

A = 2 and 4 than they are for A = 8 for corresponding values of r and fewer 

of them need to be retained than for A = 8 to get a given accuracy in F (~) and 

n G(n) Gn(~) for 0 ~ ~ ~ A . On the other hand the coefficients F (n) (A) and (A) 
r r 

are comparable for A = 2~ 4 and 8 when r = 0 but their values decrease much 

more slowly as r increases when A = 2 and 4 than they do when A = 8 thus 

necessitating the retention of more of them than for A = 8 to get a given 

accuracy in Fn(~ ) and Gn(~ ) for A < ~ < = . The choice of demarcation para- 

meter A is a matter of compromise. Of course, it is possible to introduce 

series for an intermediate range of ~ not extending either to ~ = 0 or 

= ~ , so that expansions in Chebyshev polynomials may be obtained which give 

Fn(~) and Gn(~ ) to a given accuracy without the need for retaining an exces- 

sive number of terms in any expansion. 

From formula (9-I) for n = 0 and 1 we get 

Fo( ) = K0(c0 (10-1) 
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and 

FI(~) = ~K1(a) (10-2) 

Clenshaw 3 has obtained expansions of K0(a) and Kl(a) in terms of Chebyshev 

polynomials with demarcation parameter A = 8 . His expansion for K0(a) for 

0 ~ a ~ A is the same as our expansion (9-3) for F0(a) and his coefficients 

agree with our coefficients C~0)(8 ) r  and D(0)(8) but he gives more significant 
• r r 
decimal figures. His expansion for K0(a) for A ~ a < ~ is different from our 

expansion for F0(a) and his coefficients do not reduce to zero as rapidly as 

our coefficients F~0)(8) do as r increases. His expansion for K1(a) for 

0 ~ ~ ~ A can be used in conjunction with the properties (3-6) and (3-7) of 

Chebyshev polynomials to give our expansion (9-3) for FI(~) . His expansion 

for KI(~) for A ~ ~ < ~ when multiplied by ~ is different from our expan- 

sion for FI(~) and his coefficients do not reduce to zero as rapidly as our 

coefficients F(1)(8) do as r increases. 
r 

Since in(a) kn(a) and % (~) given by the power series expansions (2-15) 
' n 

(2-16) and (2-17) are integral functions of ~ it is possible to express them 
T(~) 2r for -A $ ~ ~ A as series of Chebyshev polynomials 2r A by expressing 

in the above mentioned power series expansions as a series of Chebyshev poly- 

nomials. For practical numerical evaluation of the coefficients in these series 

of Chebyshev polynomials the power series need to be truncated to a finite 

number of terms, so again, only approximations to the coefficients in the series 

of Chebyshev polynomials are obtained, although these approximations become very 

good as the number of terms retained in the power series becomes very large. The 

resulting series of Chebyshev polynomials for the functions in(a), kn(a ) and 

%n(~) may then be inserted into formulae (2-34), (2-35) and (2-36). The series 

(9-3) and (9-4) for Fn(~) and Gn(~) are then obtained. The process is, how- 

ever, no easier to apply than the process described in this paper. 

For the range A ~ ~ < ~ it is not possible to obtain the series (9-5) 

and (9-6) for Fn(~) and Gn(~) by applying a similar procedure to the 

asymptotic expansion (2-39) and (2-40) because these asymptotic expansions are 

divergent. However, the series (9-5) and (9-6) are obtained quite easily by 

applying the procedure described in this paper. 

The series (9-3), (9-4), (9-5) and (9-6) are effectively finite series 

because the coefficients are known to only a finite number of decimal places. 

The evaluations of Fn(~) and Gn(~) from these series are very rapid. Unless 
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~ A the evaluations of F (~) and G (~) to a given accuracy are more rapid n n 
from the series (9-3) and (9-4) than from (2-34), (2-35) and (2-36) where the 

power series (2-15), (2-16) and (2-17) are used to evaluate in(S), kn(~) and 

~n(~) respectively. 
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