

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

Aeronautical Research Council Reports and Memoranda

THE APPLICATION OF A PARAMETRIC METHOD OF FATIGUE LOAD MEASUREMENT TO WINGS – BASED ON FLIGHT MEASUREMENTS ON A LIGHTNING Mk T5

BEDFORD.

Anne Burns, BA

J.P. Thompson, MSc

G.E. King

Structures Department, RAE Farnborough, Hants

London: Her Majesty's Stationery Office

£10 NET

UDC 519.233 : 629.13.012.6 : 539.431 : 533.6.048.5

THE APPLICATION OF A PARAMETRIC METHOD OF FATIGUE LOAD MEASUREMENT TO WINGS -BASED ON FLIGHT MEASUREMENTS ON A LIGHTNING Mk T5

by Anne Burns, BA, J. P. Thompson, MSc, and G. E. King

Structures Department, RAE Farnborough, Hants

REPORTS AND MEMORANDA No.3836*

November 1977

SUMMARY

A study is made of the application to wings of fighter-type aircraft of a parametric method of deriving fatigue loads, similar to that developed previously for fins. In this method load is not measured directly but is deduced from a statistical correlation with an appropriate combination of aircraft motion variables and control surface angles. New problems arise in the application to wings associated with the variation in load levels upon which the manoeuvre loads are superimposed. The combined effect of symmetric and asymmetric loading is considered and the method can be regarded as extending current operational methods based on CG normal acceleration to include asymmetric and pitching effects.

The study is again centred on Lightning flight measurements; its scope is limited however by the lack of ground load calibrations for the wing strain gauges which has necessitated the development of parametric formulae for local rather than overall loads.

^{*} Replaces RAE Technical Report 77178 - ARC 37708

LIST OF CONTENTS

			Page
1	INTRO	DDUCTION	3
2	PROBI TO W	LEMS PECULIAR TO THE APPLICATION OF PARAMETRIC METHODS INGS	3
	2.1	Choice of datum levels	4
	2.2	Treatment of steady state loads	5
3	APPL	ICATION OF PARAMETRIC METHOD TO WING LOADS	5
	3.1	Interpretation of the strain gauge bridge outputs	6
	3.2	Choice of parameters and filters for regression analysis	7
4	RESU	LTS OF FIRST STAGE OF REGRESSION ANALYSIS	8
	4.1	Importance of asymmetric effects	9
	4.2	Consistency of results from port and starboard wings	9
	4.3	Need for parametric representation of steady state loads	10
5	RESU	LTS OF SECOND STAGE OF REGRESSION ANALYSIS	10
	5.1	Feasibility of representing wing loads parametrically	11
	5.2	Choice of parameters in formulae	12
	5.3	Improvements on the current use of CG normal acceleration for deriving wing loads	13
6	CONC	LUSIONS	13
Append	lix A	Method of deriving parametric formulae as developed for fin	15
Append	lix B	Strain gauge installation and flight calibration	17
Append	lix C	Standardization of parameters appearing in the 7-parameter formulae for wing loads	19
Tables	s 1-5		20
List o	of sym	bols	31
Refere	ences		32
Illust	tratio	ns Figure	s 1-5
Detach	nable .	Abstract Cards	-

.

.

1 INTRODUCTION

The commonly adopted practice of using normal acceleration at the CG of fixed-wing aircraft to obtain data on fatigue loads in wings can be regarded as a limiting case of the parametric method which occurs when the parametric combination reduces to a single parameter. With the development of multi-parametric methods for determining fatigue loads in parts of the structure other than the wing, it is logical to consider whether the accuracy with which wing loads are determined can be improved by the use of additional parameters. In particular, the inclusion of parameters representing the asymmetric effects, at present neglected, might be expected to produce improved estimates of wing fatigue loads for aircraft subjected to rapid rolling manoeuvres.

At the close of the fin loads flight trials on the Lightning, the opportunity was taken to fit in a short series of further trials to obtain measurements relating to the wing. Because of the short time available only a limited number of strain gauges could be fitted and there was no opportunity for their calibration under applied ground loads. This resulted in attention being focused on local bending moment loads in the spars rather than on overall bending moment, torque and shear loads at wing sections as envisaged in the present concept of the parametric method. Despite this limitation and the limited amount of flight data available, it was thought worthwhile to carry out a preliminary study of the application of the parametric method to wings, the results of which are presented in this Report.

The procedures adopted are mostly similar to those developed for the fin and are not described here in detail unless differing significantly from those for the fin. A summary of the latter is, however, reproduced for convenience in Appendix A. For a full discussion of the underlying concepts, reference should be made to the earlier report on the fin¹, and, for a more general discussion of the potentialities of the parametric method, to reports by Hovell² and by Hovell and Sturgeon³.

2 PROBLEMS PECULIAR TO THE APPLICATION OF PARAMETRIC METHODS TO WINGS

The procedures developed previously for deriving statistically a combination of parameters from flight data to give loads in the fin, can, in general, be equally well applied to the wing. Only in a few respects, discussed below, do these procedures require modification.

3

2.1 Choice of datum levels

In the case of the fin the choice of datum levels from which to measure the strain-derived loads and parameters for use in the regression analysis presents little difficulty since all loads and parameters tend to approximate to zero in straight and level flight, as can be checked by comparison with the no-load ground condition, thus providing easily determinable datum levels from which to derive absolute loads. In the case of the wing the choice is not so obvious since not only do the straight and level flight loads vary with flight conditions but the ground no-load condition is not readily producible because of the ever-present effects of gravity.

Two choices present themselves; it may be possible to establish strain datum levels at zero load* by setting up a no-load condition on the ground - to achieve this the aircraft has to be supported at the fuselage and the wing weight counteracted by up-loads. Using these datum levels, loads can be derived in absolute terms. The corresponding choice of true zero datum levels for the parameters is in most cases straightforward but care has to be taken in defining zero aileron angle on account of float**. Care has also to be taken in the choice of normal acceleration datum level.

In general, the constraint of parameters to zero values at zero load may result in the linearisation inherent in the regression analysis being less accurate than if this constraint were not imposed. The constraint can be removed very simply by allowing the regression to choose its own constant for inclusion in the parametric formula. This allows more flexibility in linearising non-linear aerodynamic and elastic effects.

An alternative choice is to use an arbitrary steady flight condition to provide datum levels for all loads and parameters. This leads to the derivation of incremental loads which can only be converted to absolute values if these are known at the arbitrary condition. This method is likely, however, to provide a well matched set of datum levels for both strains and parameters. Moreover, if the arbitrary steady flight condition is in the range where the manoeuvres, causing fatigue damage, commonly occur, the need to introduce a constant into the regression because of non-linearities is not so great. In particular a realistic datum level can readily be obtained for aileron angle which takes proper account of aileron float.

^{*} The output of the strain gauge bridge is not necessarily zero at zero strain because of initial imbalance in the gauges.

^{**} Float is defined as a tendency of an aileron to rotate under load owing to flexibility and backlash in the system.

In the Lightning study, because it had not been possible to establish the no-load ground condition, the choice fell inevitably on the use of non-zero datum levels. The arbitrary flight condition chosen consisted of straight and level flight at an altitude of 10000 ft, indicated air speed of 400 knots, and average flight all-up weight. (The datum levels were averages of the almost identical levels measured at 350 and 450 knots.) The datum level for the normal acceleration measurements is also taken in this condition.

2.2 Treatment of steady state loads

Wing loads can, broadly speaking, be regarded as of two sorts: those associated with steady flight and those associated with manoeuvres and gusts superimposed on the steady flight loads. Whereas, in the case of the fin, the former approximate to zero and so can be neglected, in the case of a wing the steady flight loads vary with flight conditions such as Mach number and fuel load and are by no means negligible. The appropriate steady flight loads can vary significantly during the course of a single manoeuvre due to speed, height and Mach number changes. One way of tackling this problem is not to attempt to derive the steady state loads from the parametric formula but to confine its use to providing incremental loads, determined by calculation or separate measurement, can then be added at a later stage. This procedure would fit in well with the use of different coefficients in the parametric formula for different regimes of flight, *eg* for subsonic and supersonic flight.

Alternatively parameters can be introduced into the regression to provide estimates of the steady state loads. This introduces a new class of parameters into the analysis, namely those defining the flight conditions. The decision whether or not to include such parameters depends on the degree of complexity acceptable in the interest of accuracy. The regression analysis on the Lightning was carried out both with and without parameters defining flight conditions.

3 APPLICATION OF PARAMETRIC METHOD TO WING LOADS

The main procedures for applying the parametric method to the wing loads in the Lightning follow closely those proposed in the earlier report on the fin, an outline of which is given in Appendix A. Special flight tests were made in which wing loads were measured by means of strain gauges and at the same time measurements were made of parameters defining those motions of the aircraft and movements of the control surfaces thought relevant to the determination of the wing loads. Details of the strain gauge installation which was confined to the measurement of bending moment in individual spars are given in Appendix B. The recording instrumentation is described in the earlier report¹. Measurements were made during general aerobatics and simulated combat manoeuvres; they included aileron, barrel, slow and hesitation (8-point) rolls, loops, wing-overs, rolling pull-outs and vertical step runs. Only a few supersonic manoeuvres were performed because supersonic flying proved so expensive in flight time. Some measurements were also made during low and medium level atmospheric turbulence of light intensity. Cases selected for inclusion in the regression analysis are listed in Table 1.

Maximum and minimum values of each strain gauge bridge output were extracted for the chosen flight cases, together with simultaneous values of the parameters. A number of maxima and minima were usually extracted for each manoeuvre in order to cover fatigue load cycles of various magnitudes. The maxima and minima for the different bridges did not necessarily occur simultaneously, major differences in timing occurring, as might be expected, between port and starboard wings. The data relating to each station are listed in Tables 2a to g.

3.1 Interpretation of the strain gauge bridge outputs

Because neither time nor funds were available for calibrating the strain gauges by the application of point loads as advocated in the Skopinski⁴ method, the outputs from the strain gauge bridges could not be combined to give overall loads at the cross-sections gauged, as in the original concept of the parametric method. The only alternative appeared to be to treat the outputs of the strain gauge bridges separately and to determine parametric formulae for each output. The question then arose as to whether the bridge output should be kept in the form of strain or converted to local load. For convenience in discussing the parametric formulae it was considered preferable to express the bridge output in terms of local load. (Analytically the choice is trivial since it is only a matter of scaling each parametric formula by the appropriate conversion factor.) Generality is improved if the bridge output is expressed as a multiple of a local load which occurs in a simple flight condition related to a design case. The effects of stress concentrations on the bridge output due to, eg the proximity of rivets can then be partially eliminated, and the magnitude of the bridge output, particularly if expressed as a multiple of a l g load, rendered more meaningful.

The output from each strain gauge bridge was accordingly converted to load expressed as a multiple of the corresponding local spar bending moment per g experienced in a sustained 3 g turn at the same arbitrary flight conditions as were chosen for the datum levels, *ie* 400 knots at 10000 ft. Further details of this conversion are given in Appendix B. It should be emphasised that the magnitudes of the bridge outputs when expressed in this way depend on the arbitrary choice of flight conditions at which the calibration turn is made. The only guiding criterion used in this choice was that the set of conditions should be one at which fatigue damage commonly occurred.

It now remains to consider the implications of confining this Report to the study of parametric formulae for deriving local rather than overall loads. As it turns out, these are not as serious as might at first appear. For fatigue load measurements in general, it is probably preferable to develop separate parametric formulae for overall bending moment, torque and shear loads at a crosssection, since by combining their time histories in appropriate proportions the time histories of stress at all points in the cross-section are available for estimating fatigue damage*. The direct production of parametric formulae giving local loads simply cuts out the intermediate steps of combining the parametric formulae for overall loads. Since much of the qualitative study of this Report, eg that relating to the relative importance of symmetric and asymmetric effects, can only be made in terms of local stresses or loads, the restriction to directly derived formulae is not too serious, particularly since these formulae relate to key stations chosen for studying general effects rather than on account of their high stresses. The scope of the investigation is, however, somewhat hampered by the inability to consider separately the parametric formulae for overall bending moment, shear and torque.

3.2 Choice of parameters and filters for regression analysis

Two sets of parameters were used as initial data in the regression analysis which was conducted in two stages. The first and more simple set consisted of normal acceleration at a position 355 cm forward of the CG (\ddot{z}_s) , pitch rate $(\dot{\theta})$, pitch acceleration $(\ddot{\theta})$, roll rate $(\dot{\phi})$, roll acceleration $(\ddot{\phi})$ and aileron angle (ξ) . Pitch and roll acceleration were determined by differentiating pitch and roll rates. Pitch and roll rates were conditioned by multiplying them by dynamic pressure and by the inverse of true airspeed, and aileron angle by multiplying it by dynamic pressure. The second set contained the additional parameters dynamic pressure, Mach number and Mach number squared. Normal acceleration \ddot{z}_s was replaced by normal acceleration at the CG derived by combining \ddot{z}_s

7

^{*} Either by applying Palmgren-Miner's Law or by comparison with ground fatigue test results.

with an appropriate proportion of $\ddot{\theta}$. Two further independent variables were then introduced by multiplying the parameter \ddot{z}_{CC} by M and by M².

The most notable omission in these lists of parameters is probably the angle of incidence. Sensors for measuring this parameter had not been fitted to the Lightning during the original installation and time did not allow installation at a later date. Other parameters such as angle of sideslip and yaw acceleration, which might otherwise have been included, could not be recorded owing to the shortage of channels on the main recorder. (Data for deriving additional slowly varying parameters such as dynamic pressure and Mach number, could be accommodated on a supplementary photographic paper recorder but this recorder was unsuitable for the faster-varying parameters.)

The loads and all parameters, other than dynamic pressure and Mach number, were subjected after digitising to a low-pass filter with a cut-off frequency of 5 Hz. This was designed to retain as much of the high frequency content of the loads as possible without running into structural oscillations (the fundamental wing frequency occurred at approximately 6 Hz). Even so it appeared that high speed aileron movement and the resulting wing loads in certain aileron manoeuvres were being reduced by the digitising rate of 20 samples a second and the application of the above filter. The two hesitation rolls, in which this reduction appeared particularly pronounced, were therefore re-digitised at 100 samples a second and subjected to a low-pass filter to remove information at frequencies greater than 20 Hz. A further 8-point hesitation roll included in a sequence of general aerobatics has not been subjected to this special treatment.

4 RESULTS OF FIRST STAGE OF REGRESSION ANALYSIS

The first stage of the regression analysis was an exploratory one in which an abbreviated list of parameters and somewhat crude conditioning factors, based on average values for each, or parts of each, manoeuvre were used to obtain parametric formulae for the local bending loads at the seven serviceable strain gauge stations. The eighth strain gauge bridge at station 1 remained unserviceable throughout the trials. The objective was to get an indication of the importance of the asymmetric effects and of the possibilities of improving the accuracy with which loads could be derived from normal acceleration, by the addition of one, or at most two, parametric measurements representing asymmetric effects. A secondary objective was to study the consistency of results obtained from the port and starboard wings with a view to confining further analysis in this Report to one wing only.

8

4.1 Importance of asymmetric effects

Information for achieving the above objectives stems from the last three parametric formulae for each station, containing 3, 2 and 1 parameters respectively (see Table 3). All parametric formulae when reduced to a single parameter retained the parameter normal acceleration (z) confirming the present use of normal acceleration, albeit at the CG and the fact that wing fatigue loads tend to be primarily symmetric. When allowed a second parameter all formulae retained aileron angle (ξ) conditioned by multiplying it by dynamic pressure (q) as the additional parameter. The contribution from this parameter is indicated by its partial regression coefficient expressed as a percentage of the total of the partial coefficients; it is guite large, averaging 30% for the inboard section loads and as much as 45% for the outboard sections. Contributions of this magnitude suggest that worthwhile improvements can be made, particularly for outer wings, by the introduction of asymmetric parameters. With the simple approach adopted at this stage, the standard deviation of the error is reduced by the inclusion of the parameter ξ from 34% to 23% of the rms load at the inner sections and from 55% to 24% at the outer sections.

When a third parameter was included in the parametric formulae, the regression programme chose different additional parameters for the inboard and outboard wing sections. A further parameter representing symmetric effects, namely pitch rate ($\dot{\theta}$), was chosen for the inboard sections while a further parameter representing asymmetric effects, namely roll acceleration ($\ddot{\phi}$) was chosen for the outboard. The contribution from $\dot{\theta}$ is relatively small, averaging 7%; that for $\ddot{\phi}$ is larger, averaging 15%. The increase in accuracy is still significant but is starting to diminish, the reduction in the standard deviation of the error averaging only 2% for the inboard sections and 4% for the outboard. $\ddot{\theta}$ was also investigated and discarded.

4.2 Consistency of results from port and starboard wings

Results for the port and starboard wings were reasonably consistent provided comparison was confined to relative contributions and changes in accuracy, and was not made in terms of absolute magnitudes. Despite bridge outputs being expressed as multiples of the local loads per g at the corresponding stations in an attempt to reduce the effects of stress concentrations (and possible misalignment of gauges) on bridge sensitivity, the consistency considered in absolute terms between the two wings was not good. While it would have been of interest to pursue this matter further by a more detailed treatment of both wings, the need to cut down computational effort, and the fact that the two wings showed consistent trends, led to a decision to consider one wing only in the second stage of analysis. The starboard wing was chosen because all of its four strain gauge bridges were serviceable and because the starboard aileron deflections were measured more accurately than the port. Deflections of the starboard aileron were recorded on the main recorder whereas those of the port were recorded only on the subsidiary slow-running recorder. It was possible by means of a special ground calibration to convert starboard deflections to port but the conversion was complicated by aileron float.

4.3 <u>Need for parametric representation of steady state loads</u>

Comparison of the time histories of the strain-derived and parametricallyderived loads obtained in the first stage of the regression analysis indicated that considerable discrepancies were occurring due to the changes with flight conditions, both of the steady state loads and of the relation between wing load and normal acceleration. The discrepancies were so marked in the case of the high Mach number manoeuvre of Flight 159 that it was thought better to remove this case from the input data for stage 1 rather than to allow it to distort the parametric formulae.

In view of these discrepancies the new parameters listed in sub-section 3.2 were added in stage 2 for the starboard wing only. Their evaluation necessitated the matching of recordings from the supplementary and main recorders to the near-est 1/20 second. At the same time the conditioning data, which were also based on recordings from the supplementary recorder, were up-dated to take account of their variation during the manoeuvres and turbulence.

5 RESULTS OF SECOND STAGE OF REGRESSION ANALYSIS

The main concern of the second stage of the analysis was the development of parametric formulae to demonstrate the feasibility of estimating wing loads by the parametric method. In the light of stage 1 results attention was confined to one wing only and the accuracy of the conditioning data improved. Particular matters of concern in stage 2 were the choice of parameters for representing the wing loads and the improvement effected by using parameters additional to CG normal acceleration.

The regression programme produced a series of parametric formulae for each of the four starboard stations 5-8, the accuracy of which, as indicated by the total correlation coefficient and standard deviation of the error, remained constant or even increased slightly as the first two or three of the ten parameters were discarded in turn. The accuracy then decreased ever more rapidly as the

remaining parameters were discarded. Thus for all practical purposes the choice for greatest accuracy fell on the 7-parameter formulae. In general, better accuracies were obtained for the rear than for the front spar stations and for the inboard than for the outboard stations (see Table 4). At best, ie station 5, the accuracy was comparable with that attained for the fin, the standard deviation of the error being 12.5%. The accuracy at the worst station, station 8, where the standard deviation of the error was never less than 21.9%, was somewhat disappointing but still compared well with that obtained from normal acceleration alone which was as low as 58%. Typical examples of the fit attained in the regression between the strain derived and parametrically derived loads are given in Fig 2. It has to be emphasised that the accuracy of fit achieved in the regression is not the final criterion of accuracy as regards the estimation of fatigue damage under operational conditions. Two further factors which have to be borne in mind are the degree to which the sample represents the operational population of loading cases, and the tendency of positive and negative errors to cancel each other out in the final assessment of fatigue damage. These matters are discussed in more detail in the earlier report. Because of misgivings with regard to the first, a parametric formula is sought which gives a good fit in time history for a wide range of loading cases. The second factor, on the other hand, is both a favourable and a powerful one, and one which can justify the use of an extremely abbreviated parametric formula if the sample can be relied upon to represent the operational population. It cannot, however, be relied upon to overcome systematic errors due to changes in pilot or automatic control practices or the introduction of new operational roles for the aircraft.

5.1 <u>Feasibility of representing wing loads parametrically</u>

In order to keep the number of parametric formulae under consideration to a reasonable size, two sets were selected from these series for further study. The first contained seven parameters and a constant and typified a choice for operational usage where acouracy was the prime consideration. (The 7-parameter formulae were less complex than appeared since two of the parameters were compounds of others.) Some adjustment was made to the formula for station 5 so that it contained the same parameters as the other stations. The justification for this is discussed in Appendix C. The second set of parametric formulae selected contained three parameters and a constant - a choice typical of the operational situation where some accuracy has to be sacrificed in the interests of simplicity. Consideration was also given to the single parametric formulae. The selected formulae are listed in Table 4.

Complete time histories of loads derived from the parametric formulae selected above are compared in Fig 3a to d with strain derived loads for four manoeuvres selected from the sample used in the regression. Fig 3e shows a similar comparison for two 3 g turns not included in the sample. Typical contributions from the individual parameters making up the formulae are shown in Fig 4a to e for the same manoeuvres.

The time history comparisons for the 7-parameter formulae show that the incremental loads associated with the manoeuvres can be well represented parametrically but that the accuracy with which the steady state loads are represented needs to be improved if a really close fit is to be attained. It is probable that a better parametric representation of the steady state loads could be found if a separate regression was performed on a sample composed of steady state loads only using parameters relating to steady state conditions. The list of parameters might need to be widened - a preliminary survey indicated dynamic pressure to be a relevant parameter despite its rejection in the early stages of stage 2. If this procedure were adopted the steady state component could then be removed from the maximum and minimum loads of the main sample prior to performing a separate regression on the incremental loads associated with manoeuvres and other loading cases.

5.2 Choice of parameters in formulae

The parameters for representing the incremental component of the loads associated with manoeuvres and gusts were in order of importance: \ddot{z}_{CG} , ξ conditioned by multiplying it by q, $M_{\ddot{z}}$ ($M_{\ddot{z}}^2$ for the inboard rear station), $\ddot{\phi}$ and $\ddot{\theta}$ ($\dot{\phi}$ and $\dot{\theta}$ for the inboard rear station conditioned by multiplying them by dynamic pressure and inverse true airspeed). The contribution of $\ddot{\phi}$ to the inboard root bending moment was extremely small.

For representing the steady state components of load the most important parameters were M and M^2 in that order, except for the inboard rear station where the order was reversed. The contribution from q tended to be extremely small. A constant was needed to help represent the steady loads but this was to be expected in view of the arbitrary datum levels from which the loads were measured. As discussed earlier the representation of the steady state loads was not altogether satisfactory.

5.3 <u>Improvements on the current use of CG normal acceleration for deriving</u> wing loads

The improvement to be made by the addition of aileron angle has already been discussed under stage 1 results (sub-section 4.1). The more accurate and comprehensive analysis of stage 2 confirms the results given there although small changes are apparent in the values of the percentage errors and contributions. The errors inherent in using $\ddot{z}_{CG}^{}$ alone are further illustrated in stage 2 by the time history plots of Fig 3a to e and are particularly apparent in the hesitation rolls of Fig 3c and d. One further point needs to be made with regard to the use of \ddot{z}_{CG} alone. The regression programme produces optimised coefficients for relating \ddot{z}_{CG} to wing loads. Compared with coefficients based on the acceleration/strain relations of the flight calibration turns and pull-outs, the optimised coefficients are larger by as much as 30% for the outboard stations and 20% for the inboard front spar station. For the inboard rear spar the increase is only 2.5%. Since the coefficients based on the flight calibration turns and pull-outs are probably representative of those used in current fatigue life estimates, it appears that improvements could be made without even introducing additional parameters if a statistical approach was adopted for optimising the relation between \ddot{z}_{CC} and wing loads. Furthermore, the improvement over current methods attainable by the addition of a second parameter ξ , conditioned by multiplying it by dynamic pressure, is likely to be greater than indicated earlier since the previous comparisons were based on the assumption of an optimised empirical coefficient for \ddot{z}_{CC} .

6 CONCLUSIONS

A study has been made of the application to the wing loads in a Lightning of a parametric method in which load is not measured directly but is deduced from a statistical correlation with an appropriate combination of motion variables and control surface angles. Because of the lack of opportunity to calibrate the strain gauges under applied ground loads, parametric formulae have had to be developed for local bending moments at a number of wing spar stations rather than for overall loads at a cross section. Since the former are, to a first approximation, combinations of the latter this restriction does not have too severe implications in the present context.

In order to attain a good match between strain-derived and parametricallyderived loads it is necessary to introduce into the parametric formulae certain parameters and possibly a constant to represent the steady state wing loads upon which the manoeuvre and other incremental loads are superimposed. The need to introduce a constant depends on the datum levels used in the flight test measurements on which the parametric formulae are based. The best results were obtained with a quadratic in Mach number but better accuracy might have been achieved had the selection been from a wider range of parameters, and a regression on steady state loads performed separately from that on manoeuvre loads.

A fair representation of local wing bending moment loads can be obtained with the parameters CG normal acceleration, (\ddot{z}_{CG}) , aileron angle conditioned by multiplying it by dynamic pressure, (ξq) , and Mach number squared although representation is rather poor at high Mach number. With the introduction of further parameters, $\ddot{\phi}$, $M\ddot{z}_{CG}$, $\ddot{\theta}$ and M, the matching of time histories of the parametrically and strain derived loads is improved, particularly in the case of rapid aileron usage, although the standard deviation of the error in matching the sample loads of the regression is only reduced from 21.9% to 18.2% (average errors for the starboard wing - which was studied in detail - expressed as a percentage of the rms loads). The parametric representation is some 5% less accurate at the outboard section of the starboard wing than at the inboard.

The parameter, angle of incidence, was not considered since no sensor was fitted for its measurement. No conclusions can therefore be drawn as to its suitability for representing wing loads. There were some indications that pitch rate ($\dot{\theta}$) could play a small part in representing loads at the inboard section, particularly if the steady state loads were not represented.

The study indicated that considerable improvement could be made to the current method of deriving operational wing fatigue loads from measurements of CG normal acceleration by the addition of measurements of aileron angle conditioned by multiplying it by dynamic pressure (standard deviation of error decreased from 34% to 23% and from 55% to 24% for the inboard and outboard wing sections respectively. Alternatively some improvement could be made in the use of normal acceleration alone by adopting a statistical approach to optimise the coefficients defining its relation to wing loads*.

The evidence of the Lightning study is that coefficients based on simple flight measurements in symmetric manoeuvres could lead to underestimation of loads especially in the outer wing.

14

^{*} The improvements quoted are relative to an optimised empirical \ddot{z}_{CG} coefficient cient, not relative to the current method which was a coefficient derived from loads produced by steady symmetric manoeuvres.

Appendix A METHOD OF DERIVING PARAMETRIC FORMULA AS DEVELOPED FOR FIN

A.1 Outline of method

The method previously developed^l for determining a combination of parameters to give information on the overall loads, *ie* bending moment, shear and torque at a structural cross-section is now outlined briefly.

Starting from the point where flight measurements covering a comprehensive set of flight loading conditions are available in the form of time histories of the relevant parameters and strain gauges the procedure is as follows:

(i) Combine the strain gauge signals in the appropriate proportions according to Skopinski's method⁴ to give the time histories of the required overall load; the variation of Skopinski's method developed by Hovell, Webber and Roberts⁵ may be useful here. Apply a constant correction if necessary such that the combination produces zero load in straight and level flight. (Lateral trimming loads on the fin and rudder are assumed to be insignificant throughout the flight range.)

(ii) Filter out all structural frequencies from the parameters and from the overall load by application of a low pass filter.

(iii) Perform any differentiation required (signals from rate gyros may have to be differentiated as a substitute for rotational accelerations).

(iv) Select maxima and minima values of the overall load together with simultaneous values of the parameters.

(v) Adjust these values of the parameters as required according to dynamic pressure, true air speed, Mach number and aircraft mass.

(vi) Run special regression analysis programme on above data to select parameters and optimise their linear combination to give overall load⁶.

(vii) Make final choice of parametric combination, re-running programme if necessary to include subjectively chosen parameters.

(viii) Check final choice to ensure close correlation between time histories of overall load and parametric combination outside matched points.

A.2 Choice of parameters

The choice under (vii) is guided by the following considerations: (i) The advantages of trading off accuracy for simplicity by reducing the number of parameters. (ii) The preference for parameters requiring little or no adjustment for flight conditions.

(iii) The preference for parameters which can be measured easily and with a high degree of reliability. Consistency of sensor performance, freedom from noise, and linearity of calibration are among the factors to be looked for here.

(iv) The preference for parameters which provide data useful for other purposes.

Appendix B STRAIN GAUGE INSTALLATION AND FLIGHT CALIBRATION

B.1 Strain gauge installation

Micro-measurement EA350 gauges were attached with an epoxy adhesive to the exposed spar flanges of spars one and five at ribs six and fourteen (see Fig 1). One longitudinal gauge and one cross gauge were fitted between rivets on the top and bottom spar booms at each station. The gauges were connected to form a conventional bending moment bridge compensated for end load and temperature effects. The bridge outputs were conditioned using the fin load equipment and were recorded as FM analogue signals. One bridge, namely that at station 1, became unserviceable at the beginning of the flight tests and remained so throughout.

B.2 Calibration of strain gauges

The flying was carried out in two main sections, namely calibration and manoeuvres. The calibration flying consisted of steady turns and pull-ups at different heights and speeds to cover the range used in the manoeuvres.

The original intention was to evaluate the bridge response to applied normal acceleration at a variety of heights and speeds so that suitable calibration values in terms of μ -strain/g could be found, and zero strain datum levels established by extrapolation to zero g, dynamic pressure and Mach number. With a range of calibrations available, it was intended that the calibration values could be varied, if necessary, according to the flight conditions of a particular manoeuvre. In the event, however, the scatter between responses for repeated similar turns and pull-ups was larger than expected. In view of the small number of examples obtained it was difficult to establish any definite trends in response and so it was decided to use a mean of all the cases obtained for 350 knots and 450 knots at 10000 ft around which most of the flying was done. The scatter in results (see Table 5) is thought to be due to dynamic effects which could possibly be eliminated by a more careful analysis in which only the more sustained parts of the turns and pull-outs were used.

The overall sensitivity of recording for each bridge was determined by applying a known resistance across one arm and hence, using the gauge factor, a figure of microstrain per volt was obtained for each bridge as follows:

SG	2	3	4	5	6	7	8	
μS/V	721.5	1025.4	595.2	596.9	965.4	765.4	490.5	

The data for the turns and pull-ups were digitised and for each bridge a relation between microstrain and acceleration found by means of a least squares fit. Similar gauges on each wing should, of course, show a similar μ -strain/g relation, but this was not the case, the port values being 15%, 22% and 40% larger than the starboard. It is thought that the proximity of the spar rivets was the cause rather than poorly attached gauges, as the ground zero levels were repeatable. The results are listed in Table 5.

Appendix C STANDARDIZATION OF PARAMETERS APPEARING IN THE 7-PARAMETER FORMULAE FOR WING LOADS

The 7-parameter formula for the bending moment load at station 5, the inboard rear spar station, contained parameters that were different from those in the 7-parameter formulae for the other three starboard stations. The latter all contained the parameters \ddot{z}_{CC} , ξ , $\ddot{\theta}$, $\ddot{\phi}$, M, M² and M \ddot{z}_{CC} whereas in the formula for station 5, $\dot{\theta}$, $\dot{\phi}$ and $M^2\ddot{z}_{CG}$ replaced $\ddot{\theta}$, $\ddot{\phi}$ and $M\ddot{z}_{CG}$. To see if the different choice for station 5 was significant, a revised 7-parameter formula was obtained for this station containing the same parameters as those selected for the other stations. Although this revised formula showed some loss of accuracy, the standard deviation of the error increasing from 12.5% to 14.0%, the time history of a typical rolling, pitching manoeuvre showed little detectable reduction in fit (see Fig 5). Since the adoption of a common set of parameters for local loads at any one cross-section was justified by the fact that, under standard procedures, parametric formulae for the local loads would all be derived from combinations of the same parametric formulae, namely formulae for overall bending, torque and shear loads at the relevant cross-section, and so could be expected to contain the same parameters, the decision was made to use the revised formula. The equally logical alternative of changing the parametric formula for station 7, the other inboard station to match station 5 was less attractive since it did not provide a common set of parameters for comparing contributions from different parameters at the inboard and outboard sections. However, the preference shown in the stage I analysis for $\dot{\theta}$ rather than $\ddot{\phi}$ at all three inboard stations (the fourth bridge was unserviceable) suggests that $\hat{\theta}$ should not be discarded too lightly.

19

			Tab:	<u>le 1</u>			
MANOEUVRES	AND	LOADING	CASES	USED	IN	PARAMETRIC	COMBINATIONS

Flight No.	Altitude (ft)	IAS (kn)	Manoeuvre, etc						
159	36000	570	Supersonic manoeuvres						
163	25000	480	Supersonic manoeuvres						
	300	525	Turbulence over sea						
	24000	400	Turbulence						
164	2000	500	Port and starboard aileron rolls						
	2000	550	Port and starboard aileron rolls						
	12500	350	Wing-overs, general aerobatics including hesi- tation roll, and combat type manoeuvres						
165	9000	250	180 ⁰ port and starboard aileron rolls						
	9000	300	360 ⁰ " " " "						
	9000	350	360 ⁰ " " " "						
	9000	400	360 ⁰ " " " " "						
	9000	450	360 ⁰ " " " " "						
	6700	375	Vertical step runs						
	7000	325	Barrel rolls with moderate buffet						
166	5000	350	Hesitation (8-point) roll						
	5000	420	Hesitation (8-point) roll						
167	37000	300	Transonic pull-outs						
	10000	400	Hesitation (8-point) roll - not completed by pilot						
	10000	350	Slow roll						

ī

Table 2a

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 2 AND SIMULTANEOUS VALUES OF PARAMETERS

FLIGHT AND RUN NO.	B M 2 Multiple Of 16 LOAD	VERT. Accel: G	AILERÓN ANGLE DEG	PITCH Rate Deg/S	PITCH ACCEL. DEG/SZ	ROLL RATE DEG/S	ROLL ACCEL, Deg/\$2	TRUE AIRSPEED M/S	DYNAMIC PRESSURE Kn/M2
163.1	5.6906 5.2264 3.7845	3.2857 3.4982 1.6252	3.1315 3.4821 7.4915	-4.7181 -3.5296 -3.4596	-2.0393 9.5850 -1.9217	5.032 0.808 51.321	-5.675 5.489 -5.466	340.47 340.47 340.47	42.649 42.649 42.649
	4.3335 5.4730	3.2899	2.1216 2.3695	-4.9250 -7.5087	5,6475 12,0167	0.551 4.603	7.350	340,47	42.649
163.2	0.7202	0,7416	-0.1052	0.1359	4,5781	-9.597	11.427	278,72	55.608
	-0.6596	0.0637	-1.1309	-0.6991	-32,3807	-4.242	-73.065	278.72	55,608
	-0.6648	0.0633	-1.3598	0.3434	-13,8719	-2.432	-16.194	278.72	55,608
163.3	0.4168	0.4635	1.1343	0.8631	2.5297	1.408	19.260	406.02	42.649
164 2	-0.4409	-0.0702	0.6610	0.1214	-1.6472	1.058	-16,096	406.02	42.649
	-3.1572	0.4192	-7.6032	-0.1254	2.2148	-23.718	-400.194	271.19	49.747
	3.4645	0.0429	5.1335	0.3258	-2.1951	26.248	379.804	299.48	62.663
	2.4058	0.4758	1.0552	-0.1981	3.7800	-62.838	420.360	299.48	62.663
	2 8155	1 7759	0.5533	-2,6185	-0.4331	2,630	50,817	299.48	62,663
164.3	1.3705	0.9801	-0.1012	-5.4900	-1.7423	-0.540	12.445	299.48	62,663
	3.0848	2.4584	0.8020	-5.9836	-4.0626	4.376	-8.643	219.66	22.599
	2.4867	2,3328	0.6050	-3.8166	7.7981	0.680	4,948	219.66	22,599
164.4	3.5217	3,9253	-1.4767	-7.3704	14.3887	-28,844	66.238	219,66	22.599
164.5	3.7799	3,8527	0.6876	-8.2804	8.7913	3,784	78.407	219.66	22.599
	-0,7166 4,3302	-0.3869 4.1793	-0.4988	1,9078	2,2796	-6,302	13,359	219.66	22.599
164.6	4.2503 3.0684	4,4078	2.4548	-8,7843	8.7687	14.652	-55.154	219.66	22.599
	3.0877 -5.5131	0.5369	5.9103 -7.3433	-0.2908	9.6294	-43.481	481.523	267.10	39.107
	2.7256	0.4089 4.4558	5.0587 1.8549	0.0201	-12.5929	-39.582 1.948	334.490	267.10 219.66	39.107
164.7	3.1698	3,5904 3,2188	1.5076	-11.4478 -11.9895	-16.0537	6.419 4.919	13.149 31.833	219.66	22.599 22.599
	-1.0648	3,3316	1.5479	-7.7892	11.3977	6.668 -37.741	71.365	219.66 219.66	22.599
164.8	-0.7254	1.0930	-0.5437	-3.1758	-1.2418	2.347	-20.328 9.348	219.66	22.599
145 1	0.1538	0.3740	0.0000	-1.3926	2.5242	0.196	-3.947	219.66	22.599
	-0.5820	-0.2350	-2.2846	1.5068	2.7363	-18.702	35.465	149.83	11.051
	-1.3147	-0.4419	-7.0555	-5.3526	-3.7050	-82.887	45.144	180.13	16.340
	-1.4288	0.0553	-6.6697	-0.1248	-2.0658	-30.758	-162.618	209.62	22.701
165.2	1.9283	1.3449 0,2388	1.6457 7.0588	-6.4157 -0.6970	18.6838	-40.047 34,797	215.086 245.861	209.62	22.701
	-2.1241 2.6203	0.0835	-7.5724 6.1700	0.7401 -3.7080	7.0310 1.6651	-29.123	-285.363	238,86	30,332
	2.4090	0,0000	-7.2630	-3.2247	2.0276	-121.632 -3.257	-154,303 131,138	267.10 267.10	39.107 39.107
102.3	3.0566	0.5080	9.2628	-2.3321	0.8213	-3.021 61.551	134.199 262.531	267.10 217.20	39.107 26.317
	-7.3957	-0.7331	-7.5669	-2.3308	1.8093	-39.693	29.025	217.20	26.317
165.4	-2.2201	-1,1122	-7.6221	3.5984	-7.5564	-90.973	-20.175	217.20	26.317
165.5	3 7936	3 6993	1,7757	-8.1700	13,7332	-22.779	5.690	217.20	26.317
165 6	3,2017	3,5274	2.9540	-14.3626	-69.4967	28.148	186,659	189.29	19.325
	3.8267	3.9290	-0.1451	-14.0078	19.7781	2.419	-18.876	189.29	19.325
165.7	4.6806	4.3967	3.2497	-11.3981	2.5862	24.381	135.602	189.29	19.325
	1.8149 -0.6493	1.9223	-2.2263	-5 7266 0.3413	2 2076	0.585	-62.670	189 29	19.325
166,1	-1.0968	-0.8322	-2.0882	-1.8121	5 8905	-11.711	67 254	198.00	22.609
	0.7711	-0.7269	3.9621	-6.0015	-9,4968 -1,6248	-62,996	342.201	198.00	22,609
	-1.2000 -0.4635	-2.3010	2.2634	-3,7430	25.1069 21.7042	-75.147	267.793	198.00	22.609
	-2.2085	-2.0054	1.8706 -8.5282	3.1592	-0.7316 -15.7105	-25.699 -33.596	140.011 -151.582	198.00 198.00	22.609
	-4.0990	-1.8529	4.0045	-4.0537	19.1119	-81.254	473.509 -215.861	198.00 198.00	22.609 22.609
	0.5532	-1,2193	4.1001	-3.0022	-8.9860 3.0492	-80.474	410.401	198.00	22.609
166.2	1.5055	-0.2005	3.2415	-3.1903	-24.2738	-48.158	421.180 351.199	198.00	22.609 33.569
	-2.9425	-2.0440	-3.9699	2.4553	-3.6529	-25.734	-331.871	236.91	33.569
	-1.1065	-2,2439	1,5689	2 4631	52,4119	-40.056	273 823	236.91	33.569
	0.3168	-2.5057	3.5987	-3.1680	-3.0831	-86.083	396.149	236.91	33,569
	0.6784	-1, 6701	3,6825	-4.3191	7.4706	-86.350	470.874	236.91	33,569
	1.4265	-0.8460	3,9197	-5.8624	2.8290	-53,008	357.019	236.91	33,569
	1.5390	-0.0887	2.3836 -8.3155	-5.1999	10.0865	-52.071	376,549	236.91	33,569
167.1	1.8780	-0.3624	3.5937	-3.0273	-2.7444	-62.926 14.212	483.654 7.073	236.91 280.78	33.569
	-0.8142 0.8248	-0.8100	1.2817 2.0830	-0.7707 0.1947	-2.9263 2.4739	62.362 39.548	-3.229 29.083	212.28 265.59	8.503 14.594
	1.8903	2.0541	2.4542 0.4059	-7.0100 -1.1115	-18.2195 4.4697	46.662 41.540	20.746	278.24 258.92	16.701
167.2	1.1145	-0.5755	4.3715 -8.1965	-2.2749	3,7256	-2.707	298.243	241.97 241 97	30.294
	1.1267	-0.6884	4.9517 -8.2844	-3.1372	2.7580	1.205	340.698	241.97 241.97	30.294 30.294
	1.1602	-0.8962	4.9530 -8.3585	-4.4876	-3.4163 11.0637	-24.293 41.883	344.395	241.97	30.294
	1.1498	-0.6703	4.5612	-5.0807	>.1026 -0.6416	60.226	367.241	241.97	30.294
	-1.9897	-0.3057	-6.2178	-5.7611	5.0795	37.323	-429.242	241.97	30.294
167 3	1.0158	0.7120	-1.0448	-4.7694	14.6162	-2.699	102.300	241.97	30.294
	-3.3475	-3.0241	-1 2268	-1 4690	-3.1449	11,439	23 575	212,43	22 671

Table 2b

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 3 AND SIMULTANEOUS VALUES OF PARAMETERS

FLIGHT	A H 3	VER7.	AILERON	PITCH	PITCH	ROLL	ROLL	TRUE	DYNAHTC
A 4 D	HHI TIPIE	ACCEL.	ANGLE	RATE	ACCEL.	RATE	ACCEL.	AIRSPEED	PRESSURE
RUN NO.	05 10 1040	a	DEG	DEGIS	DEG/S2	DEC/S	DE9/82	H/S	KN/M2
143.1	n. 4274	0 1092	5,4512	0.5722	-1,6864	24,459	45.880	340.45	42.649
	5,0936	3 4961	2.5219	-4.9750	-3,1297	6.189	-6,932	\$40.45	42.649
	. 0525	3.4465	1.1868	-4.5257	-6,4083	-6.531	16,782	340.45	42.649
	6 44/4	4 4029	2.3166	*4.4817	0.0902	1,970	0.721	340.45	42.649
163.2	0.4793	0 5451	-0.2552	0.4298	8.7447	=4 626	26.517	278 72	42.049
	-1.40R4	0 0013	-0.4092	-0.0395	-5.5291	-7 974	13,490	278.72	55.608
	0.9078	0 7350	0.0214	0,9709	13,0189	-13,230	-57,510	278.72	55,608
	-0.6765	-0 2685	+0.6497	1.4106	13.8127	-7.336	51,520	278 72	55,608
	1.0979	0 6139	0.7296	0.8831	23.2145	-15.006	-28,028	278.72	55,608
163 3	-0.0644	-0 0370	-1.0517	1 2028	-3,7743	-25.710	-24.010	278.72	55,608
	n. 6084	0,4967	0.7859	0.9535	4.3651	9.422	25.516	296 86	31,182
	n. 2098	-0 0746	0.8895	0.5391	-4.8317	-0.141	-27.540	296.86	31.182
	+0.0772	-0.1285	0.9092	0.6107	-6.0396	3.009	-14.282	296.86	31,182
164.2	-1.2931	-0.4967	-7,1994	-1.9366	-5.7388	-120.550	-21,087	271.19	49.747
	0 1637	-0 7453	5 8097	-0 8479	4 9641	1 1 4 1 2 3 /	4/3.480	271.19	49.747
	-1,6137	-0 4383	-7.2700	-1, 3955	-4.9218	112 812	-24,083	200.48	62.663
	2.2292	1,7750	0.5533	-2,6185	-0.4331	2.630	\$0,817	299.48	62.663
144.3	2.8991	2 5628	1.1709	-5.8183	6.7429	4.338	-36.022	219.66	22,599
	-0.53R0	-0 1990	0.2458	1.2388	-5.3097	9.226	-12,601	219.66	22,599
	-0 3630	-0 0490	0.1405	0 6202	-1 2163	1 694	-7.670	219.00	22,599
	2.6628	2 3495	0.5892	-3.7587	1.1568	1 071	7 917	210 66	22,397
	2,5079	2.3240	-0.3103	-4.8594	2,8721	-7,004	18,209	219.66	22.599
	1,2613	3 7488	0.3988	-10,4095	-42.8957	12,768	192.774	219.66	22,599
166.4	1,4607	3 4968	-0.5187	-9.0018	-2.9681	-15,992	-2.573	219.66	22,599
	4, 4400	4 1970	0.3881	-0.6236	-13.3504	~0.073	25.598	219.66	22,599
144 5	1 9497	2 9908	0 7011	-0.7700	0 2708	5 540	12 647	219.00	22.599
	-0.77R4	-0.3834	-0.3941	1,8753	3,2615	-5 762	-18.044	219.66	22.599
	4.5376	4 1307	1.5752	-8.8320	-5.4734	4 151	30.711	219.66	22,599
	1.8737	4 2337	3.1141	-8.4746	3.4307	9.282	48.128	219.66	22.599
144.4	2.8081	3 0502	0.9653	-8.1049	3.5178	-4 082	+54.035	219.66	22.599
	-/ 7336	-7 /204	-7 3688	4.5557	-0.0296	1 368	32.827	219.66	22,599
	1 2786	0 8227	3.4948	0 1217	-0.4804	- 14 568	273 449	267 10	37.107
	4.4109	4 9310	1.2619	-12.4300	-11.3291	-3.984	4.104	219.66	22.509
144 7	3.16A1	3.4066	1.5907	-10.8709	+13.2012	-1 400	22.491	219.66	22,599
	2.5047	3 2188	2,9571	-11.9895	14.1034	4.919	31.833	219.66	22,599
	2.6480	2 9200	0.0030	-7 7900	-2.3081	-1 185	-28.545	219.66	22,599
	-0.7766	-0 3525	-0.3139	1.5845	1.9513	1 099	-16 349	219.00	22.599
144 8	-0.3014	-0.0962	0.0000	0.9914	0.8352	3 075	-7.477	219.66	22.599
	-0.4390	-0 1120	0.0000	0.7904	4.8599	0 169	-9.407	219.66	22,599
	1.5659	1 3578	0.0000	-4.1473	-0.4509	0 286	9.218	219.66	22.599
	1.5586	1 5044	0.0000	-4.2172	0.0036	1,415	1,562	219.66	22,599
145 1	2.0212	1 7581	1.7646	~3.5716	3.6600	29 611	79.430	150 99	22,599
	-n.4815	-0 3463	-2.2275	-0.3067	-16.2366	-20 631	-25,564	150.99	11.051
	1.4717	0 8360	7.3617	-6.6100	-14.8100	54.555	-45,587	150.99	11.051
	-0.2074	-0 1120	-2.0940	1.2202	-0.7539	-5 708	-40.267	180.13	16.340
	1.57/2	-0 2945	-7.2635	-6 A816	-2.9043	-90.243	-1.700	209.62	22.701
	1.0341	1.4488	0,7059	-2.0682	8.4237	-18 292	-33.766	209.62	22.701
145 2	-1.6322	-0 2988	-7,2643	-6.0377	-4.5734	-90,285	-29.375	209.62	22.701
	1.0304	1 4526	0.7067	-2.1197	7.2732	-18.158	-27.084	209.62	22.701
	-0.4216	-0 3158	-0.3252	1.1666	2.1239	0.440	\$7.789	209.62	22.701
	4 0578	1 1008	2 1849	- 8104	26 6846	-104 890	-130,330	230.70	50.354
	2.6267	2 1723	0.0349	-5.5259	1.9171	5.045	-4.139	238.70	30.332
	-0 8819	0 1532	-7.1735	0.2721	-6.0540	-36 154	-293.012	267.10	39,107
	2,4115	1 8406	-1.0783	-4.6866	15,0967	-57 546	243.722	267.10	39,107
102 1	7.0779	2 1004	-7 +949	*4,7025	2.7413	-7.559	4,674	267.10	39.107
	2. 1298	1 8391	-1.0826	-4 6926	15.2125	-57 771	239 017	267.10	39.107
	1.4423	0 4214	6.0489	-0.7579	9,6659	61.714	215,032	267,10	39.107
	-1 9606	-0 7289	-7.7464	-3,9181	-1.6200	-101 570	-32,091	217,20	26.317
	2 1587	1 8587	1.0509	-9.1345	5.2098	7.836	29.025	217.20	26.317
	3 7541	3 3209	2 5537	-2,3306	0.8886	- 19 344	-79 848	217,20	20,317
	3,3101	3 0946	0.8644	-7.9731	1.6073	13 550	-5.321	217.20	26.317
165 6	2.1547	1 8366	1,0487	-9.1071	5.4996	7 758	25.495	217,20	26.317
	-1 3050	-0 6542	-7.3465	-2.3641	-2.9744	-49 993	-74.639	217.20	26.317
	3,7557	3 1181	2.5429	-8.1129	0.3144	-19,465	-80,406	217.20	26.317
	3,8701	3 5948	1.6728	-10.4914	+11.4358	-10 393	-21.948	217 20	26.317
145 5	-1 7496	-1 3526	-7,1117	3,4612	-1.4600	-85 683	-15,755	217.20	26.317
145 6	3,0770	3 3957	2.5940	-14.6225	-5.1404	28 885	14.961	189.12	19,308
	1,8677	1 9220	-0,3357	14,9961	-36,1534	3 357	52.990	189.12	19,308
145 7	1512 6 A524	3 7864	1.0224	-0.0019	9 7609	-10.801	34.520	189.12	19.308
	2.6716	3 3018	0.2293	-10 4502	-19 4028	-1 751	0 487	180 20	10 125
	1 7844	1 9437	0.4061	-4.6430	-4.2419	-0 342	47,210	189 29	19.325
166 1	-0.6451	-1 6746	5.6380	-5.9956	3.6781	-54 418	437.371	197.27	22.609
	-7,5775	-2 5010	2 2034	0.8427	23,1069	+r4,869	267,793	197.27	22,609
	-4 6998	-3 1187	-5.087A	-4,0081	-3,1300	-77 014	-32 186	197 27	22.609
	-5.8781	-3 4356	-7.2081	-2.7512	-24.2240	-19 527	126,844	197 27	22.609
	-1 88R1	-1 8529	4.0045	-4.0387	19.1119	+80 953	473.509	197.27	22.609
	-4.1400	-2 1117	-0,2391	-Z.5001	-21.6060	18 790	-291.431	197.27	22.609
144 2	-0 4022	- 2330	3.107*	-2.8774	0.345	-44 230	10.495	234 04	22.609
	-0.5762	-0 4800	3.6493	-3, 1985	32.0752	-67 410	356.407	236.91	33.549
	-4.6079	-2 3127	-8.9111	0.2317	-23.8027	-37,776	-237.886	236.91	33,569
	-> 7774	-2 2862	1.4975	1.9395	65.0912	-59 354	385.121	236.91	33,569
	-4.5085	-3 8884	-0.4195	-0.2737	-22.3059	-24 614	*123.310	236.91	33,569
	-4. 1700	-2 8562	7.8574	+2.9449	-20.1A**	-27 982	-195, RAQ	256 91	33.540
	-1,4520	-1 6132	3,7414	-4.0419	13.5031	-72 037	\$92.127	236.91	33,549
	-4.0037	-1 9100	-7.1819	-3.6147	-12.7127	-19.769	+200,802	236.91	33,569
	-0.685B	-0 8460	3,9197	-5.8624	2.8290	-53 008	357.019	236.91	33.569
	-2.4279	-0 6824	-7 7168	-4.5282	0.9909	-29.254	-251.534	236.91	33.569
	-2 0100	-0 4027	-8.1810	-1 7694	-7.7404	-96 074	-41 447	234 04	33,367
	-0 2270	-0 3624	3.5917	-3.0273	-2.7444	-62 926	483.654	236.91	35.549
147.1	1.6416	2 2762	1.2876	-6.0887	+14.1438	19,882	-44.211	258,92	14,077
	-1,2118	-0 8034	0.8453	-0.4247	-2.2011	46 869	-11,086	258.92	14.077
	0,5696	1) 5447 -0 ALR/	1.4242	10.1847	2.4803	11 621	-11.478	258.92	14.077
	1 7905	2 1804	2 0304	-4 2144	10.3004	2.320	21 344	278.24	16,707
	-1 3136	-0 9877	1.6174	-1.8187	-3,8953	44.532	-5.329	229 84	8,503
147 2	-1.1229	-0 4715	1.6847	-2.2703	9.4172	-9.507	149.838	241,97	30.294
	-2.9108	-1 1957	-8.0476	2.0266	-16.3283	46.400	-461.652	241.97	30,294
	-0.5000	-0 6886	-8,2517	-5.1372	2.7580	1,205	340.698	241.97	30,294
	-0.7247	-0 9041	4 6743	-4,4529	+10.5696	-27 749	222.254	241.97	30,294
	-2,7811	-1 0509	-8.3585	-5 9766	11,0637	61 883	-454,770	241.97	30,294
	-0.5573	-0 6703	4.5612	-5.9631	5.1026	5.724	367.241	241.97	30,294
	-2.5009	-1 0077	-7.5501	-4.8081	19.8777	52.128	- 399 . 233	241.97	30,294
	-1.6483	-0 1191	6.1355	-5.6677	9.5151	34 001	-329 401	241 07	30.204
	0.7066	1 0790	-1.5826	-5.5492	5.2528	0.708	14.203	241.97	30,204
147.3	-0.9371	-0 3402	-0.7723	-3.3880	5,0833	-5.896	-65.390	212,43	22,671
	-4.8070	-3 1919	-0.3782	-1.3965	-9.1166	21.997	38.844	212.43	22.671
	=1.1767	+v 0/V2	4704	-3.1154	10,1453	1.457	ers.830	212,43	22,671

.

Table 2c

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 4 AND SIMULTANEOUS VALUES OF PARAMETERS

FLIGHT	8 M 4	VERT.	AILERON	PITCH	PITCH	ROLL	80.1	TRUE	
AND	HULTIPLE	ACCEL.	ANGLE	RATE	ACCEL.	RATE	ACCEL.	AIRSPEED	PRESSURE
KUN NU.	OF 16 LOAD	G	DEG	DEG/S	0EG/52	DEG/S	DEG/S2	H/ S	KN/H2
163.1	-0.5124	0.1403	0.9236	0.8081	6.9888	1.489	23,958	340.45	42.649
	4.9500	3.2931	3.0452	-4.9578	-3.8356	5.359	5.245	340.45	42.649
	6 5307	1.5501	7.2435	-3.7049	-3.9218	51.649	5.280	340.45	42.649
163.2	1.0135	0.7495	-0.0711	-0.0445	0.9706	-10.047	29.020	278 74	42.049
	1.6555	0.4673	0.9613	2,4617	-2.5489	-9.977	64,837	278.74	55.612
	-0.0503	0.0637	-1.1309	-0.6991	-32.3807	-4.242	-73.065	278.74	55,612
	-0.2101	0.0633	-1.3597	0.9078	-13.8719	-13.347	-2.995	278.74	55.612
	1.8566	0.3472	0.8737	2.0294	29.1059	-13,988	25.846	278.74	55.612
15.5	0.2012	0.1704	0.9757	-0.2995	-0.5060	-1.332	3,931	296.86	31.182
164.2	-1,9817	0.4192	-7.6032	-0 1214	-1.6472	1.058	-16,096	296.86	31.182
	4.3626	1.7257	0.6779	-3.3678	38.9909	-61.237	473.486	271.19	49.747
	-2.573>	0,2135	-7.3652	0.5848	-0.9647	-31.937	-447.330	299.48	62.663
	3.2382	1.7759	0.5533	-2 6185	-17.2355	31.508	418.864	299.48	62.663
	-1.5511	-0.2165	-3.7814	0.9397	0.7974	-43.428	-64,991	299.48	62.663
104.5	2.7575	2.4986	1.0207	-5,8508	-2.3248	5.758	24.674	219.66	22,599
	0.6573	0.7482	0.3022	0.9028	0.1750	-1,684	-0.333	219.66	22.599
	-0.3841	-0.0652	0 1073	0.6013	-0.4909	-0,217	-7.917	219.66	22.599
	2.4786	2,2951	0.6223	-4.2083	5.9869	0.417	-0.330	219.66	22.599
164.4	3,2560	4.0077	-1 4074	-7.1807	3.8144	-24.859	5.740	219.66	22,599
	-0.0990	0.2657	-2 1366	-2.3873	-1.4896	-31,441	-27.841	219.66	22.599
	4.8951	3.9302	1 7724	-6.9702	12.3574	3.662	69.867	219.66	22.599
	3,7813	3,6802	2 1152	-8.0276	28.5514	-7.484	-11,710	219.66	22.599
164.5	-0.7797	-0.3869	-0.4988	1,9078	2.2796	-6.302	13,359	219.66	22,599
	4.5305	4,1795	1.6253	-9.0190	-5.0106	6.112	39.386	219.66	22.599
	3.8280	4.2337	3,1141	-8.4746	3,4307	9,262	25.157	219.00	22.599
164.6	2.8468	3.0909	0.8661	-8.7426	-12.1864	-5,273	-24,189	219.66	22.599
	3.2986	0.5369	5.9103	-0.2908	9.6294	-43.481	481,523	267.10	39,107
	2,6658	0,8227	3.4948	0 1217	-0 4804	-17,752	-278.341	267.10	39.107
	4.2898	3.8949	1.3362	-9.3620	-7.8706	5.775	17.062	219.66	22.599
164.7	2,8986	3.7464	1.2564	-11.3674	22.2925	7.376	41,521	219.66	22,599
	2.6271	2.9432	-0.0000	-1.3985	-4.1540	-51.551	-31.573	219.66	22.599
	0.4746	1.2532	-5.0405	-0.1706	-1.5818	-45.961	8.304	219.66	22.599
	3.3896	3,2453	1.4611	-8.6596	18.4200	1.215	37,715	219.66	22.599
	-1.0055	-0.2226	-4,5041	-0.2493	-4.8488	-38.860	-14.706	219.66	22.599
164.8	-0.5542	-0.0752	0.0000	0.3553	-1.2410	2.347	-20.328	219.66	22.599
	1,3910	1,4877	0.0000	-4.3892	-2,2544	1.054	-4,698	219.66	22,599
165 1	-0.3903	-0.1012	0.0000	0.3296	3.8767	-0.049	-8.731	219.66	22.599
	-1.0852	-0.2588	-2.9223	0 1471	15 8493	12,236	-70,858	149.83	11.051
	-1.5688	-0.4419	-7.0555	-5.3524	-3.7050	-82.887	45.144	169.03	11.051
	1.5098	0.9150	2.6352	-1.5813	0,8982	-0.156	2,586	180.13	16.340
	-1.5100	1 3407	-6.0697	-0.1248	-2.0658	-30.758	-162.618	209.62	22.701
165.2	1.4574	0,2388	7.0588	-0.6970	-0 0529	34.797	200.870	209.62	22,701
	-0.9782	0.4207	-5.2300	-2,7689	1,1550	40,368	-330,592	209,62	22,701
	-2.1052	0.0835	-7.5724	0.7401	7.0310	-29.123	-285.363	238.86	30.332
	-7.4008	0.1532	-7.1735	0 2721	-6 0540	-43.668	-293 013	238.86	30.332
	2.7402	1.5630	1.1125	-2.3242	0.3578	-2.034	24.350	267.10	39.107
105.3	-1.9354	0.2370	-4.5946	-2.0803	-22.8753	65,131	-519.661	267.10	39.107
	3.3337	3,2815	1,9623	-2.3308	1.8093	-39.693	-229.974	217.20	26.317
	3.0110	3,0211	0,7892	-7 0542	-0.1106	3,228	299 979	217 20	26 317
165.4	2.2709	2.3518	0.7291	-13.6624	15.5207	4,793	-133.540	217.20	26.317
	-2.5340	-1.2496	-2.1142	2 0392	-1.9412	-11,114	-41,236	217,20	26,317
	2.0180	2,1022	2.4644	-3,2424	50,8290	-23.865	65 475	217 20	26 317
165 5	3.4389	3.7008	1.7261	-7.9032	5.1404	-16.950	111,220	217.20	26.317
165.6	7.9464	2.9453	0.7842	-10.6295	-1.4000	-85,083	-15.755	217,20	26.317
	3,1468	3,9212	0.3857	-9,4242	21,0393	-7.086	+94.697	189.29	19.325
	-1.7434	-0,7021	-1.1440	-0.0615	-1.9349	-10,801	34,520	189 29	19.325
103.7	-0 7996	0 9316	1.9226	-8,5529	9,7608	27.804	8,218	189.29	19,325
	1.4320	1.9591	0.1948	-3.7962	-8.7341	1.256	~41.400	189.29	19.325
	-0.8538	-0.1106	-2.1953	0.7172	-8.0218	-16,704	-16,909	189.29	19.325
166.1	-1.4899	-0.5195	-7 6748	-2 1122	-10.3448	6.073	73.031	189.29	19.325
	1,1545	-0.5462	3 8578	-3,3921	-4.1349	-54 083	318,905	198 00	22 609
	-2.1054	-0.5877	-8.9721	-3.0231	1.4323	- 50.043	-175,599	198.00	22.609
	-3.7272	-2.2040	-8.5504	-0.0015	-9.4900	-82,998	342,201	198.00	22,609
	-1.6144	-2,7778	2,2276	0.9849	13,8880	-72,511	264,104	198.00	22.609
	-1.3610	-5.4590	-7.8666	1.1471	-24.2859	-27.741	-191.487	198.00	22.609
	-5.5157	-3.4147	-8.0375	-3.2484	-2.2998	-26.570	140,011	198.00	22,009
	-0.6135	-1.8529	4.0045	-4.0537	19.1119	-81,254	473,509	198,00	22,609
	-4.3007	-2,1127	-8.1571	-1.6793	-25,7826	-11,110	-185.636	198.00	22.609
	-1,1181	-1,2739	-8.5171	-4.0356	3.0492	-43.168	-202.538	198.00	22.609
144 7	1.3662	-0.6885	4.0982	-3,1903	-24.2738	-79.774	421.189	198.00	22.609
100.2	1.5115	-0.6994	3.7979	-4.0199	1.2195	-51,691	393,878	236.91	33,569
	-2.6139	-0.5110	-8.9650	-2.7308	-5.6529	-25,734	-331.871	236.91	33,569
	-1.6858	-2.2839	1.5689	2.4631	52.4119	-56.646	273.823	236,91	33.569
	-5.8699	-3.8983	-6.5585	-0.5609	+23.3073	-35.350	-294.401	236.91	33,569
	-1.1424	-2.5057	3.5987	-3.1880	-3.0831	-86.083	396.149	236.91	33.569
	-5.2619	-2.8234	-8.4476	-3.8528	-17.6730	-37.664	-226.315	236.91	33.569
	-4.0989	-1.9100	-7.1819	-3.6147	-12.7127	-86.350	470.874	236.91	33.569
	1.1153	-0.8460	3.9197	-5.8624	2.8290	-53.008	357.019	236.91	33.569
	-2.6920	-0.0536	-7.8409	-4.5273	0.2003	-32.086	-282.488	236.91	33,569
	-1.9536	-0.1054	-7.9933	-2.9940	13,7400	-32,071	-198 845	230.91	35,569
	1,9614	-0.3624	3,5937	-3,0273	-2.7444	-62,926	483,654	236.91	33,569
167.2	0.8834	-0.5633	4,4935	-2.2884	-1.1499	1.090	378.432	241.97	30.294
	0.7512	-0.6884	4,9517	-1.0631	-20.0944	51,005	-425.607	241.97	30.294
	-3.5716	-1,1680	-8,2844	-4.8503	-35.7188	53.537	-351,749	241,97	30.294
	0.8084	-0.8962	4.9530	-4.4876	-3 4163	-24.293	344.395	241.97	30.294
	0.7812	-0.6703	4,5612	-3.9/44	5.1026	41.883	-434.770	241.97	30.294
	-3.1187	-1.0612	-7.5777	-5.0807	-0.6416	60.226	392.359	241.97	30.294
	0.9811	-0.5046	4.2212	-8.3668	-3.7897	72.955	74.154	241.97	30.294
	1 7838	0,2027	3,3691	-4,5989	-1.8840	24,542	239,242	241.97	30.294
167.3	-0.1326	-0.3645	-0.8690	-3.0613	-0.4724	-3.383	86.599	212,43	22,671
	-4.1448	-2.9357	-1.3219	1.4029	5.3785	11.784	-44.830	212.43	22,671
		0,9130	-4.4110	-3.6420	-2.4020	5.015	07.040	212,43	22.071

Table 2d

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 5 AND SIMULTANEOUS VALUES OF PARAMETERS

F'IGHT And Run NO.	8 M 5 Multipfe Of 16 IOAD	VFRT. Accel. Cg g	ATLERON Angle Deg	PITCH Rate Deg/S	PITCH ACCEL. Deg/s2	ROLL Rate Deg/s	ROLL ACCEL. DEG/S2	TRUE AIRSPEED M/S	DYNAM1C PRESSURE KN/M2	MACH NUMBER
150.1	-0.4012 0.4555 3.1681	-0.2571 0.2035 1.2447	1,3612 1,2755 1,7705	0,2169 -0.4298 -1.2748	0.4466 ~2.1458 4.8305	-2.209 -2.118 -1.391	15.001 -10.629 -4.670	363.61 383.13 473.27	35,267 40,468 73,965	1,2286 1,2952 1,6018
	1.8592	-0.3003	1.0852	0.7861	-13.2441 -0.8932	-4.185	-18.929	454.89 446.08	61.033 53.257	1.5406
	0.6024	-0.2976	1.9181	-0.1925	-16.2422 6.1191	-3.547	14.706	434.48 419.42	45.628 34.814	1.4715
165.1	-0.7517 4.9539	0.0985	5.4512	0.5722	-1.6864	24.460	45.880 -27,656	379.73 374.56	54.751 52.271	1,2311
	4.8684	3.4084	2.1500	-5.4420	-5.0984 -0.5568	-5.447 0.467	4.827 -23.969	362.93 339.35	47.758 39.031	1.1790
163.2	0.8784	0.8059	1.9661	-8,7018	1.8433	6.353 -2.264	-12,270 29,395	332.54 229.27	41.477 35.883	1.0693 0.6737
	-0.6194	-0.0136	-0.4091	-0.0398 1.4107	-5.5291 -13.8127	-7.975 -7.337	13,490 51,520	260,15 285,88	48.100 60.262	0.7636 0.8381
167.3	0.4741	0.5243	0.7858	-0.3521	-2.0489	-20.803 9.422	-48.962 25.516	278,90 263,04	56.867 23.431	0.8177 0.8453
164.2	3,1367	1.3134	-6.2315	-5.0934	3,8094	-0.141	20.972	262.50 283.42	23.300 54.645	0.8436 0.8389
	-1,3608	-0.2533	5, 3879	-2,4422	-1.8014	121.450	23.162	287.98 300.87	55.919	0.853B 0.8908
164.3	2.8072	2.6467	n.2227	-5.6191	0.8958	4.084	26,851	293.73	58.672	0.8706
	0.6754	0.7.37	0.2154	-1.1017	4.0175	0.190	10.028	249.71	32.613	0.7072
	2.5470	2.3421	-0.3103	-4.8598	2.8721	-7.004	18.209	245.06	29.901	0.7770
164.4	4.1557	4.0015	-1.6481	-8.1040	14.5462	-32.150	-35.197	239.54	31.215	0.7243
164.5	1.8564	3.0002	0.6322	-10.7550	-9.5360	+8.212	-20.650	236.63	30.575	0.7150
	-0.4338 4.0614	-0.3028	-0.3941	1.8754	3.2615	-5.762	-18.044	182.30	18.011	0.5480
164.6	4,1174	4.4627	n.4434 n.7551	-10.0714	10.8677 7,1832	-30.920	-208.839	236.88	29.957	0.7180
	1.7131	0.7120	-11.8528 6.4245	-0.0035 6.5452	-0.6134	-40.119	-321.919 233.678	262,96	38.249	0.7959
	1.1643	0.4770 4.8922	-11.3520	-0.9088 -11.1532	6.8285 5.9713	-48.817 -1.927	-406.147 -37.492	298.19 259.06	42.818 36.686	0.8421 0.7854
104.7	5. 1392	3.9.331 3.8'42	1.4002	-10,4000	14,9608	1.010	10.813	193.37 174.90	19.884	0.5833 0.5259
	7.1579	3.3.88	-3.2682	-5,3528	26.2403	-11.719 8.005	-50.345	190.63	21.283 23.265	0.5682
164.8	-0.1310	-0.1415	0,0000	0,9914	-0.8352	2.848	-11.678	180.26	17.521	0.5419
165 1	-0.0711	-0,0/22	0.0000	-0.1787	-4.1282	2.173	-1.519	202.05	21.272	0.6020
	-0.4456	-0.1391	n. 6025	-1,5914	6.2231	0.538	-7.611	162.49	12.828	0.4940
	-0.9257 1,8938	-0.5078 0.8058	4.9574	-2.4994	-6.8230	73.290	36.721	183.50	16.902	0.5568
165.2	-0.8(79	-0.3766	6.7399	-1.7155	-6.5482	93.527	-29.117	215.96	23.781	0.6563
	-0.8208 2.9400	-0.216	6.7261 -4.3943	-3.2626 -6.2594	-12.9279 4,3585	94.123	-125.814	247.66 281.18	32.816 43.845	0.7512
165.3	+0.7151 -0.9534	-0.4713	-0.5353 6.7630	0.5261 -2.8854	-3.6944 -0.9079	-5.314 116.269	-15,334	288.60 214.10	46.132 24.390	0.8766
	7,7213 7,0878	2 1 92	-5.6831 0.8644	-11,5025	3,1359 1,6073	-63.609 13.550	74.639 -5.321	225.61 216.75	28.270 27.231	0.6793
165.4	-0.4645 2.4758	-0.018	7 7799 n.5524	-4.2355	-5.3800 22.4795	88.050 11.758	57.845 29.930	198.25 191.91	21.179 18.952	0.5971 0.5775
	-0.4854	-0. 9765	1.2628	0.8428	-1.6397	6.099	24.239	199.29	20.700 20.049	0.6029
	2.2005	2.0.49	2.2768	-12.5541	-31.6350	-88.351 8.472	103.757	195.77	19.654	0.5932
• 4 5 C	1.7654	3 7 33	1.7260	-7.9031	5.1404	-16.950	111.220	207.15	23.191	0.6249
165.6	5.4636	3.1.70	0.2694	-11.2480	+35.5613	10.873	6.298	190.73	12.931	0.4839
165 7	-0.8173	-0.7.67	-0.7933	-0.1358	-3.5359	-16.774	18,858	244.01	33.161	0.7360
	3,5310	3.9032	-1.8728	-11,9652	54,5991	-22,761	-155.388	175.81	16,378	0.5296
	2.1293	2 0536	B.2791	-4.4297	2 5157	-2.714	86.513 4.848	163.61	14.384	0.4915
166.1	1.0703 -0,7573	-0.0/06	-8.4011 3,6937	-3.9758 -3.5028	9.7355	-31.058 -50.594	-204.112 353.989	196.29	22.203	0.5866
	0.4575 +0.8585	-0.6719	-8.4134 3.9164	-4.1295 -6.0558	-7.3074 -5.2643	-77.847	-126.395 397,924	197.64	22.470	0.5908
	-1.4020	-3 0/89	0.4045 -R.0435	4 4674 -3 3853	-0.7110 2.2817	-14,915 -66,387	153.132 27.640	201.65 203.27	23,422 23,839	0.6029
	-3.6908	-2.5.41	-8.5487	2,9581	1.8455	-12.020	177.894	203.82	23.979	0.6094
	-1.6090	-1.4.166	-7.7280	-3.0327	10.7108	-103.798	-41.276	203.45	23.933	0.6082
	0.0009	-0,9+68	-8.3790	-1,9737	9.2093	-95.853	410.401	208.07	25,178	0.6219
166.2	1,1759	-0.0196	-8.1736 t 1073	-4.0687	16.4508	-34.570	457.666	234.64	20.103	0.6316
	0.7675	-0.5530	-0.0020	-2.8424	-4.4336	-32.944	-346.619	235.36	32,860	0.7039
	-1,6,13	-3,6-50	-1.5339	5 3769	-22.1646	-14.414	59.328	237.78	33.560	0.7113
	-1,4057	-2.5 183	3.6722 -8.5029	-3.2600	-7.5040 -2.3284	-80.630	541.601 -138.074	239.53	34.076 34.882	0.7166
	->.4940	-1.6065 -1.3211	7.6941	-4.2605 -6.4622	5.7377 10.1918	-80.984 -75.366	537.369 -67.014	242,98 243,97	35.236	0.7269
	-1.5876 0.8121	-0.8/81	5,9197 -7.3376	-5.8625	2.8290	-53.008 -85.134	357.019	245.51 246.95	36.135 36.681	0.7342
	-0.4304	-0.1.19	2.1836	-5.3202	-5.6401 2.8804	-60.075	438.983	246,95	36.681 36.865	0.7384
167.1	2,0199	1.0799	1.1555	-5.2716	2.8974	-2.664	484.321	249.36	37.804	0.7453
	2.0263	2.7716	1.0948	-6.4237	-1.3861	9.735	3.474	247.18	12,569	0.8371
	-0.8388	-0.4556	0.6810	-0.3436	8.0153	19.849	-7.657	214.90	7.868	0.7278
	1.9850 2.2299	2.0.77	1.4395	-5.6529	-3.9467	59.556	3.171	270.99	15.618	0.9178
	1.6573	2 1393	1.0347	-8.1327 0.4114	-28.6981	54.758 280.658	-39.658	235.44	10.498	0,7974
_	-1.2241	-1.0110	1.6169 2.2405	-1.6799 -1.048D	-3.8953	41,129		173.61 173.75	4.438	0.5880
167.2	-1.3010 0.1993	-1,2460	3,7997 -8,0475	-1.3354	-8.7922 -16.3283	72.318	74.856 -461.652	234,60 234,60	28,166	0.7142
	-1.4324 0.2741	-1,2451	4.2410	-3.2587 -5.0018	~13.5865 2.5655	70.089 45,343	121.838	235.23	28.320 28.320	0.7162
	-1.6084	-0.8632	5.1896 -8.3177	-4.4236	2.4820	-14.865 36.819	472.107 -507.826	237.17 238.74	28,856 29,331	0.7221
	0.3832	-0.6524 -0.8516	4,5823	-5.9534 -4.8082	0.9933	9.284 52.128	355.702 -399.233	240.63 242.13	29.974 30.461	0.7321
	1.0030	-0.7084	-4.2487	-6.6012	-11.4423	18.195	309.729	245,43	31.619 32.466	0.7459
167 3	1,6500	1.0620	-1.7966	-5.4291	2,5859	-1.005	-31.675	248,86	33.156	0.7549
	-11150 0 R348	-3.0724	-0.2720	-1.4855	6,3515	20.011	10.317	216.03	22.350	0.6563
	-0.2771	-0.6147	-1.1506	-2.4819	-5,7457	0.857	106.780	225,24	26,535	0.6831

Table 2e

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 6 AND SIMULTANEOUS VALUES OF PARAMETERS

FLIGHT AND RUN HQ,	B # 6 Mul71Ple of 16 LCAD	VERT ACCEL. Cg 6	AILERON Angle Deg	PITCH Rate Deg/s	PITCH ACCEL. DEG/SZ	ROLL RATE DEG/S	ROLL ACCEL. DEG/52	TRUE AIRBPEED M/S	DYNAMIC Pressure Kn/m2	MAGH NUABER
159,1	-9,3868	-0.3242 0.4636	1.3770	-0.1193	4,4015	-6.023	-10.067 5.451	365.11 383.13 473.27	35.657 40.465 73.965	1.2336
	0.4273	-0.2763	1,1451	0.1814	12.0995	-4.027	1,289	454.89	61,033 52,251	1,5406
	0.3284	-0.2309	1,3836	-0.8027 0.0187	-2.8798	=0.058 7.151	14,673	434.48	45,628 37,734	1.4715
163.1	-1.5871 6.3055	0.1600	5,7469	-0.2109	-1.7256 3.5611	42.297	39,134 =12,107	374,56	52.271	1,2158
	5,6623	3.2686	-0.0265	-4.5/30	7,4672	-28,679	-26.039	345,04	43,003	1.1175
103,2	5,5740	0.8164	-0.5728	0.5128	4,1371	-5.656	-46.119	228.21	35,526	0.6706
	=0.2072 1.5144	0.0523	0.0760	2.3851	+6,6565 16,7442	-5.582	119.265	279.45	57,106	0.8195
103.3	0,7489	0.4728	0.6955	1.8516	4.3454	6.033 2.260	-29,214	264.03	23.855	0.8500
104.2	5,2451 -4,3434	1.3134	-6.2315 6.4662	-5.0934	3,8094	29.941	379,804	287.00	55.675	0.8505
	5.3/66	0.3577	-7.2166	+0.9207	-17.2355	31,508	418.864	302.38	63,436	0,8952
164.3	3,5141	2,5740	0.1981	-5.9592	-6.9179 -0.0226	3,310	49.547	243.47 250.12	29,929 31,560	0,7433
104.4	4,3436	3,8307	0.3227	-7.1276	43.6064 3.8144	-5.194	-124.953 79.964	234.13	27.232	0.7155
	4,9763 4,6550	4.2054 3.8152	0.4735	-8.0304 -6.9967	12.3574	2.628	-50.734 252.317	291,98	30,575	0.7150
104.5	4.0373 6.2907	2.5639	-0.8400	-6.0436 -10.6553	-0.6772	2,530	*21.013 55,682	252.44	36,091	0.7606
104.0	6.5495	4.2084	-0.2650	-10,0458	37.0540	-15,400	=148.459 =321.919	207.98	22.384	0 6304
	-5,7524	-1.8455	9.4624	2.2601	=0.5247 6.8285	-88.971 -48.815	315,223	270.02	40.074 42.818	0.8187 0,8421
106 (4,9369	3.6309	-2.2623	-3,4938 -1,6821	20.5157	-19.538	-20,172	249.49	33.801 16.153	0.7556
	2.9278	3,5514	1,3950	-11.0390 -0,3602	1.8183	-3.325 -40.895	-13,561	175.94	10.003	0.5691
104.8	3.5050	3,3617	1.4611	-8,6596 -3,8652	18.4200	1.210	7.050	200.61	19,866	0.6110
	1.0606	0.6750	0,0000	-1.5760	-7.2473	0.022	1.228	216.05	27,400	0.6456
105.7	-0.4367	0.3348	5,0208	-4,5226	-10.3676	10,536	38,051 2,586	162,67	13,751	0.4913
	-1.0655	0.1016	7,1652	-5,2795	=2.5855 =3.6377	23.514	132.254	163.49	13,025	0.4989
	-0.3322	+0.1285	-1.2542 -4.7573	0.4093	-1,5173 -5,1381	-16.653 -77.420	-28.298	178.01	10,010	0,5696
	-1.7156 1.2643	0.5853	7.0853	-3.2592	-2.6293 8.0099	88,525 5,109 -89 509	+66.349	183.50	17,479	0.5652
105.2	-1.8002	0.2385	7.0587	-0.6970	-0.0529	34,795	245,861	215.85	23,782	0.6559
	3.2714	0.7859	+5.9284	-7.1837	*2.3453 4.3954	-109.953 46,721	=110.368 184.419	246.75	32,475 32,815	0.7486
165.3	4.3071	1.7652	-4,3943 5,2603	-6.2599	4.3585	-90.658	-4,766 237,018	281.18 196.34	43.845	0.8530
	1,5480 2,2996	0.1574	-7.5637 0.3395	-0.0062	3,6547	-25.250	=224.657 21.154 74 APD	195.35	19.272 20.532 28.270	0.6076
	4.3423	2.1992	0.6049	-6,9116	14,5651	-13,714	257.300	216.75	27,231	0.6485
769,4	2.8207	2,4881	0.5523	-14,4767	22.4795	11.758	29.930 73.456	190.92 192.13	18 855 19 120	0.5775
	2,0217	1 8783	0 7654	-7 1447 3 5153	7 4345	14 671	-225 246 -87 722	195.55	19 904	0,5915
	-1,9295 2,3470	-0.8899 2.4675	3,8753	-6.8291	-42.2175	-56.858	-29.264	195.85	19.811	0,5930
	-2.0481 3.9265	-0.3730 3.6967	1.6205	-9.6293	16,4643	-8.329 -24,960	39,315	224.42	29 179	0.6725
105.7	-1.5356	-1,1574	-0.7702	-0.7711	-10.7084	=71,150 =10,369	57,569 -237,708	158.77 202.10	12,686 22,619	0.4804
	-0.3351 -0.1946	0,1571	4.8570	-1.3482 +0.7116	5.7050	40.624	21.868 -71.589	153.21	12,449	0.4606
	4.2/22 2.4876	3.4585	-0.5391	-10.1006	-27.1354	-17,991	-0.979	235.35	31,524	0.7074
105,7	-0,8683 4,3356 7,7/43	5,0304	1,8923	-9.6760	93.8415	25.429	-10.110 25,497	245.14	33,267	0.7399
100.1	2,2300	1,8174	-0.0762	-3,9399	-19.0984 9.7355	0,665	28,911	165,50	14.807	0,4989
100.1	-2.6381 1.0319	+0.5723	3.8578 -0.9850	-3,3920 -3,1073	4,1349 6,3013	-54.083	318.905	197.51	22,471	0,5905
	-2,8*34	-0.7869	3,9621	-0.0015	10,6749	-27.007	+244,187	196,80	22,739	0,5943
	-2,5921	-3,0761	-8,0435	-3.3853	2.2817	-66,387	27.640 86.436	203.27 203.82	23.839	0.6078
	-1.6425	-2,4299	-8.8390 -8.3542	-5.6823	13,6013	-97.390 -103.343	-62.062	203.45	23,933	0.6082
	-3.8477 0.5237	-1.2890 -0.7935	4.0595	-2.9102	-8.7345	-84,549	452.529	208.07	26,163	0.6316
100.2	-3,2877 2,2475	-0.0396	-8.1736	-4,0687	16.4508	-34,570	-132,548	234.64	32,713	0,7016
	2.0094	-0.5579	-9.0153	-2.7987	-6.4565	-29.471 -58.194	-376.177 507.067	299 88 235,98	41.517 33.049	0.7039
	-0.5525	-2,4259	-9.0323	0.0596 3.2245	-17,4024 36,5829	-40.030	-231:105 132,866	236,60	33,218 33,560	0.7077
	-1.6606	-3.1022 -2.5251	-8.7137 3.5986	-4.2563	9.6553	-98.319	=172.050 396.149	239.53	34,076	0.7166
	-0.5246	-2.1505	3.6825	-4,3191	7.4706	-86.350	470,874	242.98	35,236	0.7269
	-3,9683	-0,8782	3,8685	-5.8915	0.1053	-56.581 -43.655	360,574	245.51 245.96	36,135 36,317	0.7342
	-2.3/34	-0.1004	2.3072	-5.3000	1.7534 13.7400	=55,853 =43,675	419.492	246.95 241.91	36.681 34,882	0.7384
167.1	-3,3178 2,3620	-0.3537	3.6360	-3.0417	-1.5121	-57,964 7,071	497.387	263.24	15.037	0.8915
	-0.6678	-0.7561	2,5796	-0.3101	0.6321	23.061	10,835	214.90	7.868	0,7278
	-0.6609	1.7162	1.1071	-4,3686	3.6579	-3.094	35.971 77.159	271.55	15.818	0.9207
	-0,1399	0.1485	3.8815 1.2461	1.6682	-2.8364 -3.3627	236,976	-8.130 20.014	208.88	7.500	0.0074
167.2	-0.8644	-1.0119 -0.6509	16,1745	-1.6799	-3.8953 -8.6113	41.129 4.853	-5.329 379.820	173.61	4.438	0,3800
,	1.0936	-1.3127 -0.0710	-8.1966	1.6632 3.1371	20.0944	51.006	425,607	234.60	28,166	0.7144
	1,1257	-1.4040	-0.1510	-4.4710	-3,4163	-24.294	344.395	237.17	28,856	0.7221
	1,5213 +3.3880 1 3477	-0.6301 -1 0384	4,5612	-5.9630	5.1026	5.724	367.241	240.6	29,974 30,461	0,7321
	-3,4339 1,8583	-0.7788	4.2741	-0.4866 -5.7612	-4.9075	15.076	241.068	245.4	31.619 2. 32.466	0,7459
	-1.8378 1.2848	0.0356	3.2229	-4.3617	21.5723	16.845	¥2,899 2,493 85 270	250.51	53,150 1 34,033 5 22,822	0.7588
167.3	-4.2612	-0,3704	-1.9030	-1,4855	6,3515	20.011	10.317	216.0	3 23,781 0 25,498	0.6563

Table 2f

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 7 AND SIMULTANEOUS VALUES OF PARAMETERS

FUIGHT And Run No,	B 'N 7 Muittele DF 16 LOAD	VERT. Accel. CG 9	AILERON ANGLE DEG	PITCH Rate Deg/s	PITCH Accel. Deg/s2	RATE De ^g /s	RDLL ACCEL, DEG/SZ	TPUE AIRSPEED N/S	DYNAMIC PRESSURE KN/M2	MACH Number
159.1	- 0,3110 1,1476 3,0518 0,5030 1,6030 0,2727	-0.4137 0.4431 1.2311 -0.3003 0.4422 -3.2664	1.7178 1.1484 1.7699 1.0852 1.7124 1.8293	~0.0147 0.2293 ~0.8380 0.7861 ~0.2593 0.6197	-0,8007 8,1364 8,7319 -13,2441 3,8193 -14, 2680	-7,103 1,675 -2,625 -4,185 -1,240	-6,039 13,987 -12,137 -18,929 -7,070	362.87 382.51 473.26 454.89 447.15	35.074 40.253 73.964 61.033 54.550	1.2261 1.2933 1.6018 1.5406 1.5144
163.1	1,2551 -0,6437 4,5468	0.2232 0.1148 3.3108	1.4412 5.6442 +2.1175	-0.0292 0.6065 -4.0364	2,7309 0,5490 3,5611	2,926 28,667 -16,398	14,865 67,035 -12,107	422.02 379.73 374.56	37,907 54,751 52,271	1,4293
163.2	5.0778 3.9301 1.0532 -0.6740 -0.4314 0.0737	4.3624 3.0063 0.3387 0.0821 -0.2671 0.4312	0.3972 0.3496 -0.3087 0.4822 -0.8376 -0.8678	-8,1148 -3,9074 -0,4953 0,6287 0,6115 +0,9351	-10,5734 11.3892 2.1960 -3.4900 -20,3031 3.6958	-5.317 -9.897 -10.869 -13.535 -3.945 -20.026	-28,470 -8,897 -60,766 36,838 86,149 -23,929	343,59 327,56 228,21 276,70 285,88 278,90	41,352 40,653 35,526 55,637 60,262 56,867	1.1170 1.0510 0.6706 0.8117 0.8381
163.3	-0.7578 -0.5218 0.0105 0.7215	3,0347 9,0347 7,0685 0,4643	-0.1646 -0.4286 1.3831 0.9557	1.0265 -0.0148 -0.0603 1.1839	-6,5585 -12,7739 -2,1217 2,9767	-3,707 -9,575 -4,674 5,582	15,701 0,814 8,537 13,583	279 41 283 15 262 54 262 54	57,111 58,983 23,299 23,295	0.8192 0.8301 0.8438 0.8439
164.2	0.8545 -0.0138 3317 -2.4568	0 5031 -0 1533 1 3134 -1.0014	1.1010 0.8403 -6.2315 5.6322	0.1607 0.2441 •5.0934 0.1296	2,2159 -4,9024 3,8094 -1,8014	8.568 2.260 -114.216 121.450	22,705 -10,025 20,972 23,162	265 09 264 98 283 42 287 98	23,851 23,852 54,645 55,919	0,8519 0,8515 0,8389 0,8389
194,3	1.6153 -2,0500 1.1910 1.9924 2.9332 -0.5755 0.5463	-0.2533 1.2017 1.7340 2.5740 -0.2198 0.6398	-7,0277 5,3879 -0,5862 -0,2902 0,1931 0,2360 0,0926	-0.004H -2.4422 -0.7847 -2.170H -5.7597 0.1093 -1.2686	10,7492 -4,4001 13,3475 0,8958 -6,9179 -6,0714 -1,8677	-122.888 103.700 16.211 4.084 3.310 6.814 -0.300	27.655 35.721 -109.934 6.568 49.547 -20.452 -1.187	300.96 500.87 302.23 293.73 243.47 232.51 249.71	62,364 62,646 53,642 58,672 29,929 27,735 32,613	0,8917 0,8908 0,8944 0,8706 0,7433 0,7074 0,7597
1-4.6	-0.571 2.6740 3.3072 0.3531	-0.1257 2.3421 3.7855 0.5543	0.0956 -0.31J3 0.2370 4.7449	0.4504 -4.3594 -7.9331 -4.0785	-2,6577 2,8721 -1,4106 -10,8112	2 265 -7 004 -7 242 54 438	-5,146 18,209 -54,561 -12,898	255 62 245 06 233 95 192 42	34.161 29.001 27.258 17.140	0,7783 0,7493 0,7146 0,5902
144.5	4.1199 4.7*07 3.7195 2.1643	4 0163 4 2130 3 1932 3 1287	-1.4766 1.1079 -1.6453 0.7752	-7.3704 -8.1480 -7.5879 -7.4815	14.3887 4.5592 -15.4602 42.6022	-28.845 -3.478 -23.298 -3.117	66,238 -1,286 12,106 -53,943	239,54 284,80 238,75 160,75	31,215 47,526 30,585 13,465	0.7243 0.8587 0.7233 0.4847
1.4 4	-0.1719 4.2813 4.0034	0 1401 4.1476 4.6627	0.0313 1.6253 0.4434	0.8416	5.261> 0.9931 -5.0106 10.8677	-5,762 0,328 6,112 -30,919	-18.044 0.890 59,386 -208,839	182.30 221.21 256.37 236.88	18,011 27,509 37,831 29,957	D.34Bn 0.6648 0.7714 0.718n
	1,6153 1,9339 -4,9958	1 410A 0.7120 -1 8655	-J.2113 -11.8530 -4.624	-4.9142 -0.0033 2.2601	1.4558 -0.6134 -0.5247	8.844 0.365 -40.117 -88.971	-182,621 -30,538 -521,919 315,223	201,53 261,62 262,96 270,02	21,050 38,019 38,249 40,074	0.6103 0.7921 0.7959 0.8187
104.7	3142 3755 4.70 2.6311	4 753A 3 8871 3 4142	1.2564	-11.6560 -11.3677 -11.7604	-9,8733	-48.815 0,492 7,376 -1.601	-206,147 -9,460 41,521 -4,066	277.74 261.95 199.55 174.90	42,818 37,585 21,210 16,463	0.8421 0.7938 0.6061 0.5259
144 8	2.8571 -0.4338 -1.7126	3 403P - 1 1024 - 1 5430	1.2948 -0.1324 0.1081	-6,9189 0,0559 1,4419	18,1683 0,6652 1,5078	11.339	-34,947 -13,667 -2,162	197.30 174.19 205.11	22,771	0.5885 0.5885 0.5261 0.6248
1-5.1	1.4168	1.5044 -0.0625 0.8638	0.2000	-4.2172	0.0036	1.413	1,562	208.09 206.92 206.96	21,463 20,153 22,677	0.6020
	2,2728 -0,3134 1,4773 -0,8727	1 8073 -7,1894 0,4348	-0.6804 0.6025 -4.7573	-2.0411 -1.5919 -5.7841	25,8674 6,2231 -5,1581	7.038 0.538 -77.426	36,130 -7,611 134,176	173.57 162.49 187.80	16,165 12,828 17,832	0.5220 0.4940 0.5696
155.2	2.0192	3 3500 1 7850 -1,1831	-2.9992	-7.6597 -7.1837 -3.5523	-3,4355 -2,3453 -5,7734	-89.781 -109.953 82.768	-5,468 -110,368 -229,199	183.50 216.85 246.75 247,76	16.902 24.358 32.475 32.815	0.5565 0.6578 0.7486 0.7516
105,3	*, 24.27 -1.6139 2.6921	1 4264	-3.1926 -3.6619 U.2454	-5,3094 -5,39990 0,1154 -9,3335	3,388D 5,2543 2,2410 0,8637	1,792 -88,422 -0,276 2,121	49.254 44.746 -31.186 -42.603	244,70 281,18 287,33 200,37	31.628 43.845 45.709 20.532	0.7431 0.853n 0.8726 0.6076
	-0.5124 2.2037 0.1138 3.4740	-0 5824 ? 1992 1 1355 5 1104	-0.7738 -5.6831 -0.3862 0.2469	-2.5815 -11.5025 1.2794 -6.4143	-9.5/45 3.1359 -2.3275 9.3948	-0.622 -63.609 3.550 -25.007	-50,437 74,639 54,058 -216,008	213,95 225,61 222,07 216,75	24,390 28,270 28,958 27,231	0.6464 0.6793 0.6539
10 5 ,6	7.51*3 +0.3134 0.0164 =1.3350	7701 - 1967) 370	-),3963 7,8670 0,4368	-13,2159 -5,2506 1,5127	13,1427 -10,4571 -1,2963	6 414 97 358 7 671	-74,195 36,506 \$1,260	190,92 192,13 197,34	18,855 19,120 20,307	0.5775 0.5813 0.5969
	2,2736 -1,0-16 1,6775	? 1467 -1 3448 7 3669	2.2738	-12.3984 -3.9903 -7.5364	5.0643 -12.9631 -17.9180	-1,436 30,157 -7,386	-189.038 194.579 -15.888	195.85	19,811 23,191 29,052	0.5930
1.5.5	-1,5394 3,1525 6,2172	-1 1574 3 1381 3 4773	-J,7702 2.9549 -0,4209	-0,7711 -14,3626 -10,4154	-10,7684 -69,4947 -25,5258	-71,156 28,148 -23,745	57.589 186.559 46.618	158,77 194,78 225,33	12.686 20,798 30.015	0.4804 0.5854 0.6733
105.7	-0.8 171 4,1577 3,2177	-).6576 4,6361 3,5181	-J.6256 2.4330 -1.6953	0.3239	1,5433 20,7435 11,0122	-14.780 42.955 -1 267	0,739 76,446 12,770	244.01 245.14 179.54	33,161 33,267 17,130	0,7360 0,7399 0,5408
146.1	2.0.46	2 1887	0,0028 -8,3162	-3.7757	26.2793	-0.608	->4,837 -214,086	111.35 165.50 196.29	6,075 14,807 22,203	0,3369 0,4969 0,5866
	- 0. 3173 - 2. 2179 - 5 1092	-0.6227 -0.7860 -3.0922	-8,2699	-4,053H -6,0015 6,5589	U.8906	-77.651	3,344	197.64	22.470	0.5903
	-3,9031 -4,5771 -2,9133	-3 1997 -1 1894 -2 1644	-7.9665	-3,4773	-9,3838	-66.794	-44.769	203.27	23,639	0.6078
	-4.3 18 -1.471	-1.5+35 -1.4066	5.9445	-4.2465	15,5598 10,7108	-85.988 -103.798	439.960	203.45 208.07	23,933	0.6082
	-1.5735	-) 906A -) 906A	-8.3790	-1,9737	9,2093 -14,6485	-95.853 -83.970	-09.490	211.39	26,163	0.6316
	-1.9360	-0.3117	-8.2018 3.1073 -9.0153	-3.9736 -2.7986	21.9061 0.3696 -0.4565	-36,570 -40,719 -29,471	-199,935 395,947 -376,177	234,64 235,29 235,36	32,713 32,681 32,880	0.7016 0.7036 0.7036
	-2.3968 -5.493 -7.370	-0.4601	3.7975 -1.3512 -8.3263	-2.4964	39.1215 -11.5216	~58,194	507,067	235,98	33,049 33,560	0,7058
	-5.4413	-2 5083 -2 7585	3.6722	-3.2600 -4.8743	7,5040	-80.630	541,601	239.53 241.91	34.076	0.7166
	-4.1373 -1.2760 -2.9365	-1 6065 -1 286° -0 8782	3.6941 -6,9269 3.8645	-4.2605 -6.3019 -5.8915	5,7377 7,3883 0,1053	-80.984 -77,235	537,369 -94,504 840 574	242.98	35,236	0.7269
	. 71 10	-1 5494	-7.6022	-5.2167	-1.0320	-81.004	-150,544 458,983	245,96	36.317	0.7355 0.7384
157,1	-2.2395 -2.0900	-J. 1547 1,9290	3,5736	-2.0940 -3.0974 -5.2714	15,7400	-43.875 -53.100 -2.664	-198,865 484,321 7,139	247,40 249,36 263 24	36,865 37,604	0,7397
	2,1*42 2,1307	2 2001	1,1371	-5.8623	4,5596	5 739 32 351	-88,606	256 01	13.875	0.8671 0.8538
	-n.4293 -1.0210	-0 3795	1,4515	+0.7137 0.5334	7,6239	71,331	-4,715	219.89	9,461 8,645 7,567	0,7617 0,7447 0,7218
	2.1º69 2.2780 2.2167	1 2162	1,2670	-4.7719	5.6579	-3.380	35,971	270,99	15,617	0.9178
	-0.3560 -0.9764	-0.2653 -1.0119	2.1282	-0,9653	- 1.0430 - 1.8953	270 911 41,129	-20.367 -2.195 -5.529	205.32 173.61	75.655 7,164 4,438	0.8778 0.6954 0.5880
167.2	-0.7579 -2.2542 -0.2508	-7,6835 -1 2460 -1 3127	9,7660 3,7997 -5 1944	-3,3543 -1,3354	-0.4653 -8.7922	-44 463	2,483	173 75	4,385	0.5885
	-7 4752 -7 1300	-1 2592 -1 1798	4.2474	-3,5097	9,5892 2,5655	72 169	31,579 -437,759	235 23 235 23	28,320 28,320	0.7162
	-2.6523 0.9566 -2.8355	-7,9178 -1,0200 -0,608/	4,9530 -8,3177 4,5197	-4.4876 -5.9204 -6.0144	-3.4183 5.9264 2.257/	-24,294 36,819	344.395 -507.826	237 17	28,856	0.7221 0.7267
	-7.0754	-0.8816 -0.7788	-7.5501	-4.8082 -6.4866	19.8777	52.128 15.076	-399,233 241,668	240.03 242.13 245.43	29.974 30,461 31,619	U.7321 0.7365 0.7450
	0.5468 -0.9346 1.1146	-0 2590 0 0356 1 0794	-0.1356 3.2229 -1.7432	-5.6621 -4.3617	9.5353 -21.5723 2.95/2	34,001 18 543	-329.491 92,899	247,42	32,466 33,156	0.7517 0,7549
197.3	-0.6735 -4.5.90 -1.288 -1.2747	-0 2476 -3 1913 -0.1222 -0 6147	-0.9810 -0.3052 -4.4236 -1.1504	-3.8541 -1.5465 -2.7325 -2.4840	10,3155 -15,2603 -2,1745 -5,7457	-0.979 -9.694 19.916 3.610 0 857	60,173 -31,587 -40,869	230.51 210.49 215.96 221.90 225.7/	54,033 22,550 23,781 25,498	0,7588 0.6394 0.6563 0.6736
								,24	20,030	v.0031

Table 2g

MAXIMUM AND MINIMUM BENDING MOMENT LOADS AT STATION 8 AND SIMULTANEOUS VALUES OF PARAMETERS

PLIGHT AND RUH NO.	B M 8 Hult1Ple Of 10 Load	VERT. Accel. CG g	AILERON Angle Deg	PITCH RATE Deg/s	PITCH ACCEL. Deg/s2	ROLL RATE DØG/S	ROLL ACÇEL. De g/s 2	TAUE Atreped M/S	DYNAMIC Pressure Kn/H2	MACH Numher
159,1	-0.1177 1.1466 7.8850 0.6729 1.6848	-0.2460 0.2935 1.1016 -0.3003 0.4694	1.3937 1.2755 1.7637 1.0852 1.7368	-0.0687 -0.4298 -0.8783 0.7861 1.2626	-2.7668 -2.1458 5.0717 a13.2441 13.7938	-3.806 -2,118 -7.033 -4.185 -2.356	-23,872 -10,629 -11,203 -18,929 19,133	364,36 383,12 473,27 454,89 446,08	35,461 40,467 73,965 61,033 53,257	1.2311 1.2952 1.6018 1.5406 1.5108
163.1	0,4152 1,3954 -1,4717 6,9457 3,2555	0.1976 0.1879 0.1181 3.3883 2.4361	1.2856 5.8333 -1.8238 0.9532	-0.2589 -1.1066 -4.2599 -3.7169	-0.4568 -1.8512 6.4632 11.1382	-1,937 44,635 -15,637 12,342	-19,449 29,621 -18,910 -5,292	422.70 380.46 374.56 323.83	37,734 53,014 52,271 29,966	1.4316 1.2335 1.2158 1.0753
163.2	1.1717	0.8387	-0.3087	-0.4953	2,1960	-10.869 -9.784	-60,766	228.21	35,526	0.6706
163,3	1.4170	0.2885	-1.8516	0.7536	-3.7743 4.7807	-25.718 9.501	-24,016	278.90 266.63 242.54	56,867 23,855 23,200	0.8177 0.8500
166.2	5.5392	1.2304	-6.7075	-5,2367	6.0636	-115.119 29.941	48,973 379,804	286.60 287.00	55.124	0.8424
	-3.6785	0.0605	-7.0952 5.3879	0.5390	5,2367	*123.011 103.700	-5.992	301.32	62.598	0.8927
164.3	2.6365 3.1269 -0.6158	2.6053	0.5017	-6.9586 0.8921	-2.6577	-0.286	5,937	244.68	30,256	0.7470
	0.7321 -0.3895	0.7437	0.2154	-1.1015 0.6013	4.0175	0.190	10.028	249.71	32,613	0.7597
164.6	3.0440 3.6533 4.5243	3.5937	-0.0915	-7.8678	13.7844	-3.637 -35.722	=93,814 =43,016	230.00	26,410 31,215	0.7020
	4.6637 4.0640	4.1126 3.1724	0.3881	-8,6238	-13,3504 -15,0200	-0.074	25,598	284,80	47,526	0.8587
104.5	-0,7886 -0,7886	-0.3628	-0.3941	1,8794	3,2615	-5.762	-18,044	182.30	18.011	0.5480
164.6	4.1431 2.8949	4.2684 3.0288	-0.2656	-10.0458	-7 3918 6 9394	-4.792 17.334	188,984	235,40 207,10	28,861 22,272	0.7157
	1,5330 -6,3759	0.7120	-11.8530 9.4624 -11.3522	-0.0033 2.2601 -0.9088	-0,5247 -0,5247 6,8285	-88,971 -88,971 -48,815	315.223	270.02	40,074	0.8187
164.7	4.5618	3.5075 2.3770	-2.5587	-3.5999	-3,9759 29,9498	-24.919	-75.762 7.266	249.69 172.53	33,801	0.7556
	2.3725	3.6724	1.9226	-12,1766	30,0387 26,2403 25,0847	17.532 -11.719 A 814	25,259 -50,345 -59,254	190,63	21,283	0.5682
164,8	-0.9751	-0.2294	1.2831	1.6098	-3.9470 0.0110	22.904 2.363	-1.211	174.19	15.667	0.5261 0.6322
	1.0266	1.3603	0.0000	-3.6956	3,3225	2.258 -0.408	12,057	193,53 207,23	18,402 22,790 12,947	0.5893
103,1	2,3411	1.7324	-0.0916	-4.3178	-2,9673	13.001 23.519	-68,491 132,254	173,11	16,053	0.5206
	1.7841 2.3726	0.5057	-5.6213	-5,2538 -5,5358	-3,6377 3,6408	15.969	-206,065	165.20	13,427	0.5016
165 2	=1.2263 T.0634 0.4378	0.9544	-5,1220	-7.4954	1,4724	-89.509	-42,262	216,85	24,358	0.6578
	0.6216 3.7285	0.2283	+0.2080 -5.9284	-0.6995 -7.1837	-1,5432 -2,3453	4 756 -109 953	+46.811 110.368	246.75	32,475	0.7486
	-1.7005	-0.1831 0.9316	6.7448 -6.5298 0 3854	-3.5524	*5,7734 1,0876 6,8637	62,768 -117,774 2 121	39,167	248,55 280,12 200,37	43,433 20,532	0.8499
103,5	4.4748	2 1992	-5.6831 8.0139	+11,5025 -5,0355	3,1359	-63.609 88,186	74,639	225 61	28,270	0.6793
165.4	7.9004 -0.8793	2.2405	-0,2805 7,9179	-13.9062	-3,0546	10.278	-78,701 73,456	190,92	18,855	0.5775
	1.7030	0.0600	-7.6129	2,5712	18,3635	-21.358	174.329	194.09 195.77	19,308	0.5880
	2.2213 -1.8037	2.4675	2.2358	-5.9061	53,1993 +12,9631	-27.308 30.157	-29,264	195 85 207 15	19.811 23.191	0.5930
165.5	3,8424 0,7252 0,7711	3.6967 0.4598 3.3839	1.6205 0,2369 1.4900	-9.6293	0,4941	3,530 13,835	11,525	158.77	12,686	0.4804
.03.0	-n.3496 4.1635	0.1858 3.8383	5.8936	-0.5386	-1.5338 -27.1354	46.276	6,612	152 09 216 90	12,251 27,257	0.4572
165.7	2,5698 3,9982	1.5653 4.8867	-1.4090 2.1637	-3.6611 -7.4470	1.7904	-19.725	-19,504 -126,480 -16,111	235,35 245,14 175,84	31,524 33,267 16,380	0.7399
	2,0601	1.9665	0.0554	-2.9859	1,7327	-0.783	28,911 13,849	112 27 165 50	6,183	0.3396
166.1	0,1160	0.1622	0.0802	0.7110	3,4332	4.624	104.059	175.94	16,969	0,5279
	n,8507	-0.5787	-8.9721 3.9621	-3.0230	1.4323	-30.043	-175,599	197 01 198 23	22,336	0.5889
	-5,2218 -2,2041	-2.7927	0.1851	-1.9217 -5.8162	29.4650 11.4398	-60,516 -96,804	148,676	203.27	23,839	0.6078
	-5,1269 -0,8712	-1,4842	-8.5393 4.0595	-3,4718	8.7602	-103,343	-40,999	208.07	25,178	0.6219
166.2	0.1402	-0.9068	-8.3790 -8.3945	-1.9737	9.2093	+95,853	-69,490	211.39	26.163	0.6316
	-7.8362 -4.8125 -4.4810	-1.9526	1.5690	2,4630	52.4119 20.5682	-56 646	273,823	236.60	33,218 34,076	0.7077
	-5.3071	-1.6281	3.6103	-4.3930	12,2455	-91.050	372,705	241.91 242.98	34,882	0.7237
	-4.2357 1.1636 -2.5902	-0.6538	-7.9659	-4.5792	-5.3835	-34.600 -55,653	-272,955	245.51 245.96	36,135	0.7342
	2.0795	0.0196	-7.9621 3.6360	-3.1343 -3.0417	20,8684	-41,734 -57,964	-115,925	246.95	36.681	0.7384
167.1	1.8410 -0.9307 -0.2457	-0.7594 -0.5287	2.4956	1.5370	-2,6279	112,937	-2.017	224.76	9,461 8,329	0.7612
	-n.8656 1.9047	-0.8286	0.7745	-0.5679	-2.9263	45.948 58.643	-3,229	213,48	7.566	0.7230
	-0.2321 0.3232	=0,2653 0,3456 0,1341	2,1281 5,2504 0,1635	4,9888	+2.5124	173,132	-20.406	205.32	7.164	0.6954
	n. 3689 -0. 1179	-0.0198 -0.2629	1.2641 0.0924	-0.9296 -3.7840	0.4909 -5.3136	2.086	=13,451 15,927	191.26 422.70	5.803 37.734	0.6477
167.2	-2.7370	-0.7972	4,1847 -8,1966 4,9474	-1.1912 -1.8632 -3.2048	2,0521 =20,0944 =6,6593	38,193 51,006 4 141	200,948	234.60	28,165 28,165 28,166	0,7141 0,7142 0,7144
	1.1701	-1.3938	-8,2844 4,9530	-4.8504	-35,7188 -3,4163	53.537 -24.294	-351,749 344,395	235.23	28.320 28.856	0.7162
	1.5544	-0.9810	-8.3585 4.5197 -7 4777	-5.9744	11,0637 2,2574	61.883 2.043 60 227	-454,770 309,930 -392,340	238.74 240.63 247 13	29.974 30.441	0.7267 0.7321 0.7365
	-3.2717	-0.7788	4.2741	-6.4866 -5.6621	-4.9075 9,5353	15.076 34.001	241.668	245.43 247.42	31.619 32.466	0.7459
1/7 -	-1.9019	0.0356	3,2229	=4.3617 =5.5492	21,5723 5,2528 0,0257	18,843 0,708	92,899 14,203 48 434	248.86 250.51 211 59	33,156 34,033 22,822	0.7549 0.7588 0.4427
107.3	-4.3899 -4.1405	-3,1913	-0.3052	-1.5466	=13.2603 3.3375	19 915	-31,587	216.03	23,781 26,088	0.6563
	-1,2216	-0.5726	-1,2891	-2.4555	3,3684	-6.072	57,497	224.79	26.385	0.6819

PARAMETRIC	FORMULAE	FOR	STAGE	1	ANALYSIS
------------	----------	-----	-------	---	----------

.

Table 3

Station No.	Parametric formula	Total correlation coefficient	Standard deviation of error % of rms BM
2	$\mathbb{B}M_2 = 0.9699\ddot{z}_8 + 6.955 \times 10^{-3}\xi_q + 2.385 \times 10^{-3}\ddot{\phi}$	0.9902	14
	$BM_2 = 0.9180\ddot{z}_{s} + 9.817 \times 10^{-3}\xi q$	0.9828	19
	$BM_2 = 1.1663\ddot{z}_s$	0.8426	55
3	$\mathbb{R}_{3} = 0.7182\ddot{z} \div 3.945 \times 10^{-3} \xiq \div 0.6377 \dot{\theta}q/V_{t}$	0.9823	19
	$BM_3 = 1.0963\ddot{z} + 4.465 \times 10^{-5} \xi q$	0.9757	22
	$EM_3 = 1.1833\ddot{z}_s$	0.9512	31
4	$\text{EM}_4 = 0.9826\ddot{z}_8 \div 5.889 \times 10^{-3}\xi_9 \div 2.412 \times 10^{-3}\ddot{\phi}$	0.9800	20
	$BM_4 = 0.9423\ddot{z}_{s} + 9.028 \times 10^{-3}\xiq$	0.9709	24
	$BM_4 = 1.1545\ddot{z}_s$	0.8434	54
5	$BM_5 = 0.6059\ddot{z}_8 - 4.265 \times 10^{-3} \xi_q - 0.15270\dot{\theta}_q / V_t$	0.9820	20
	$BM_5 = 0.6224\ddot{z}_s - 4.380 \times 10^{-3}\xi q$	0.9814	20
	$BM_5 \approx 0.6106\ddot{z}_s$	0.9473	33
6	$\mathbb{BM}_{6} = 1.3263\ddot{z}_{s} - 8.458 \times 10^{-3}\xi_{q} - 2.597 \times 10^{-3}\ddot{\phi}$	0.9834	19
	$\text{EM}_{6} = 1.3812 z_{s} - 11.286 \times 10^{-3} \xi q$	0.9759	22
	$BM_6 = 1.3176z_s$	0.8119	60
7	$BM_7 = 1.8736\ddot{z}_s - 5.453 \times 10^{-3}\xi_q + 0.7153\dot{\theta}_q/V_t$	0.9693	25
	$BM_7 = 1.6849\ddot{z}_s - 4.956 \times 10^{-3}\xi_q$	0.9578	29
	$BM_{7} = 1.6657 z_{s}$	0,9218	39
8	$BM_8 = 1.2048\ddot{z}_8 - 8.108 \times 10^{-3}\xi_9 - 3.124 \times 10^{-3}\ddot{\phi}$	0.9667	26
	$EM_8 = 1.2433z_s - 10.522 \times 10^{-3}\xi q$	0.9546	30
	$BM_8 = 1.2727\ddot{z}_s$	0.8119	59

Table 4					
PARAMETRIC FORMU	LAE FOR	STAGE	2	ANALYSIS	

Station No.			Parametric formula	Total correlation coefficient	Standard deviation of error % of rms BM
5	^{BM} 5	=	$0.777\ddot{z}_{CG} - 3.861 \times 10^{-3}\xi_{q} - 6.784 \times 10^{-3}\ddot{\theta} + 2.00$		
			$0.26792 \times 10^{-3} + 1.9579 \text{M}^2 - 3.9275 \text{M} + 2.5649 \text{M}^2 + 1.4573$	0.9900	13.9
	^{BM} 5	=	$1.0202z_{CG} - 3.9083 \times 10^{-3}\xi_q + 0.7283M^2 + 0.3396$	0.9859	16.3
	BM 5		$1.0242\ddot{z}_{CG} + 0.14209$	0.9458	31.4
6	BM 6	=	$1.060\ddot{z}_{CG} - 8.3477 \times 10^{-3}\xi q - 10.02 \times 10^{-3}\ddot{\theta} -$		
			2.1796×10^{-3} + 2.1248 Mz - 4.2985 M + 0.29745 M ² + 1.2768	0.9862	16.6
	^{BM} 6	=	$1.3434z_{CG} - 10.045 \times 10^{-3}\xi_{q} + 1.0749M^{2} - 8.628$	0.9777	20.8
	^{BM} 6	=	$1.30611\ddot{z}_{CG} + 0.026132$	0.8099	57.6
7	BM 7	=	$0.94947\ddot{z}_{CG} = 3.592 \times 10^{-3}\xi_{q} = 9.6056 \times 10^{-3}\ddot{\theta} =$		
			1.6748×10^{-3} + 0.3435Mz - 3.962M + 2.7473M ² + 1.0073	0.9801	20.3
	BM 7	=	$1.2148z_{CG} - 4.7098 \times 10^{-3}\xi_q + 0.9548M^2 - 0.9116$	0.9724	23.5
	BM 7	=	$1.2126\ddot{z}_{CG} - 0.2746$	0.9258	37.8
8	[™] 8	-	$0.5964\ddot{z}_{CG} - 7.7496 \times 10^{-3}\xi q - 13.664 \times 10^{-3}\theta +$		
			$2.69537 \times 10^{-3} \ddot{\phi} + 0.90148 \text{Mz} - 0.71427 \text{M} + 3.3289 \text{M}^2 + 1.5873$	0.9763	21.9
	^{BM} 8		$1.2687\ddot{z}_{CG} - 9.6272 \times 10^{-3}\xi_{q} + 1.17137M^{2} - 0.9790$	0.9605	27.7
	BM 8	2	$1.2937\ddot{z}_{CG} = 0.17554$	0.8052	58.6
			7-PARAMETER FORMULA FOR STATION 5 CHOSEN BY REGRESSION (S	SEE APPENDIX C)	1
5	BM ₅	8	$0.8256\ddot{z}_{CG} - 4.2164 \times 10^{-3}\xi_{q} - 0.9111 \times 10^{-3}\dot{\theta} \frac{q}{V_{e}} -$		
			$0.07646 \times 10^{-3} \frac{q}{v_t} - 4.0503M + 2.724M^2 + 0.2361M^2\ddot{z} + 1.30862$	0.9919	12.5

Flight			Port stations		Starboard stations					
No.	Height (ft)	IAS (kn)	SG2	SG3	SG4	SG5	SG6	SG7	SG8	Case
160	10000	350	146.0	111.5	93.9	184.3	122.5	97.0	70.7	3g turn - port
			157.0	124.4	107.8	189.3	118.5	102.9	72.4	3g pull out
			138.3	104.8	87.8	181.2	117.9	90.9	68.4	
			134.9	102.5	84.2	174.3	117.4	90.0	67.4	
			135.2	105.8	87.6	174.6	175.3	91.3	66.5	
			134.0	105.3	85.6	179.2	120.6 ·	94.2	69.3	Turn
161	10000	350	136.5	101.7	-	147.3	100.4	68.1	49.4	Turn
			123.6	93.5		167.9	108.2	76.2	54.0	Turn
163	10000	350	131.7	113.0	-	179.4	129.9	91.9	68.1	Turn
			148.7	113.9		168.0	114.5	80.26	57.8	Turn port
164	10000	350	128.3	111.1	-	162.2	113.2	83.8	60.4	Turn
			118.5	90.8	-	158.5	99.7	69.9	51.5	
165	9000	350	133.8	105.7	-	182.8	127.2	89.8	66.2	Turn port
			125.8	100.2	-	180.9	127.5	85.3	65.7	Turn starboard
166	10000	350	136.9	107.1	-	173.0	125.8	87.3	64.8	Turn port
			134.8	103.5	-	164.8	117.3	80.6	60.5	Turn starboard
167	10000	350	136.4	105.1	-	162,9	114.3	81.2	56.8	Turn
			124.4	95.0	-	164.3	114.8	77.1	56.5	Turn
168	10000	350	143.7	100.5	87.4	154.3	107.0	77.4	48.5	
			-	97.1	71.9	176.3	139.8	96.0	79.1	
			123.9	97.0	82.4	154.8	108.5	76.7	52.3	
Mean of	10000	350	126 62	104.2	07 6	170 5		0.5.1		
LIIGHUS	10000	330	134.02	104.5	07.0	170.5	117.2	85.1	62.2	
160	10000	450	129.9	111.6	87.3	178.4	119.0	97.6	68.0	
			142.1	118.7	95.9	182.6	115.5	101.1	69.5	5 g
			126.9	109.8	88.0	181.2	119.5	98.0	69.5	Pull up 5 g
			127.7	103.1	81.7	173.9	106.8	90.0	69.3	Turn port 5 g
			131.9	110.3	82.5	180.5	101.5	98.6	67.2	Turn starboard 5 g
168	10000	450	130.5	95.8	82.3	124.4	-	-	-	
			117.4	114.3	95.2	171.0	115.9	92.9	-	
Mean of flights	10000	450	129.5	109.1	87.6	170.3	113.3	96.3	68.3	
Mean of										
all Table 5 flight			128 5	105 5	87.6	170 45	116 3	87 5	63 /	
		1	1.20.5		1 0/10	110.43	110.5	1 07.5	103.4	

.

Table 5 CALIBRATION FLIGHT GAUGE RESPONSE

.

LIST OF SYMBOLS

,

BM2-BM8		bending moments at stations 2-8 in multiples of 1 g load
M		Mach number
^p s		static pressure (N/m ²)
^p tot		total pressure (N/m^2) . Equal to $p_s \left[1 + \frac{\gamma - 1}{2} M^2\right]^{\gamma/(\gamma-1)}$ dynamic pressure (kN/m^2) . Difference between total and static
ч		pressures $(p_{tot} - p_s)$. (Not kinetic pressure, $\frac{1}{2}\rho V_t^2$)
v _t		true airspeed (m/s)
ż		kinematic normal acceleration (g)
γ		specific heat ratio for air
θ		pitch rate (degree/s). Positive, aircraft nose pitching down
		(nonstandard sign)
ë		pitch acceleration (degree/s ²). (Same sense as for $\mathring{\theta}$)
ξ		aileron angle (degree). Positive, starboard aileron up
		(nonstandard sense)
• ф		roll rate (degree/s). Positive, rolling to starboard
$\ddot{\phi}$		roll acceleration (degree/s ²)
subscripts	CG	at the centre of gravity
	s	at a position 355 cm forward of the centre of gravity

٠

.

REFERENCES

.

<u>No</u> .	Author	<u>Title, etc</u>
1	Anne Burns	The development of a parametric method of measuring
	J.P. Thompson	fin fatigue loads based on flight measurements on a
	E.W. Wells	Lightning Mk T5.
		ARC R & M No.3824 (1976)
2	P.B. Hovell	Operational and load data required for service life
		estimates for military aircraft and helicopters.
		RAE Technical Report 74121 (ARC 35855) (1974)
3	P.B. Hovell	The estimation of the fatigue lives of combat aircraft
	J.R. Sturgeon	from operational parametric data.
		ARC 36928 (1976)
4	H.T. Skopinski	Calibration of strain-gauge installations in aircraft
	W.S. Aiken, Jr	structures for the measurement of flight loads.
	W.B. Huston	NACA TN 2993 (1953)
5	P.B. Hovell	The use of calibrated strain gauges for flight load
	D.A. Webber	determination.
	T.A. Roberts	ARC CP 1041 (1969)
6	R.G.D. Steel	Principles and procedures of statistics.
	J.H. Torrie	Chapter 14. McGraw-Hill Book Co Inc (1960)

a. Flight 159 run 1. High Mach number longitudinal manoeuvring, 36000 ft, M = 1.2 to 1.6. 7-parameter formulae

Fig 3 Time histories of parametrically derived and strain derived bending moment loads for formulae containing 7, 3 and 1 parameters

a. Flight 159 run 1. 3-parameter formulae

Fig 3 contd

a. Flight 159 run 1. 1-parameter formulae

Fig 3 contd

b. Flight 163 run 1. Supersonic manoeuvres, 25000 ft, M = 1.0 to 1.2. 7-parameter formula

Fig 3 contd

Fig 3 contd

b. Flight 163 run 1. 1-parameter formulae (\ddot{z}_{cg})

ĩ

Fig 3 contd

c. Flight 164 run 6. Hesitation roll and g manoeuvre with aileron, 9000 ft (approx), 450 kn IAS (approx) 7-parameter formulae

Fig 3 contd

c. Flight 164 run 6. 3-parameter formulae

Fig 3 contd

:

Fig 3 contd

۱

Fig 3 contd

`

d. Flight 167 run 2. 1-parameter formulae (\ddot{z}_{cg})

Fig 3 contd

e. Flight 163 run 0. 3.5g turns port and starboard, 10000 ft, 350 kn IAS. 7-parameter formulae

9 \

Fig 3 contd

e. Flight 163 run 0. 1-parameter formulae (\ddot{z}_{cg})

Fig 3 concld

Fig 4 contd

c. Flight 164 run 6. Hesitation roll and g manoeuvre with aileron, 9000 ft (approx), 450 kn IAS (approx)

Fig 4 contd

/19

Fig 4 concld

Fig 5 Time histories for alternative 7-parameter formulae for BM5 compared with strain-derived bending moment

Fig 5

© Crown copyright 1979 First published 1979 .

HER MAJESTY'S STATIONERY OFFICE

Government Bookshops 49 High Holborn, London WC1V 6HB 13a Castle Street, Edinburgh EH2 3AR 41 The Hayes, Cardiff CF1 1JW Brazennose Street, Manchester M60 8AS Southey House, Wine Street, Bristol BS1 2BQ 258 Broad Street, Birmingham B1 2HE 80 Chichester Street, Belfast BT1 4JY

Government Publications are also available through booksellers

R &M No.3836 ISBN 0 11 471169 0

.