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SUMMARY 

A numerical method has been developed for calculating compressible (inclu- 

ding transonic) flow past a single aerofoil with an allowance for viscous effects, 

providing that the boundary layer is fully attached over the aerofoil surface. 

This method has been developed by combining an iterative scheme for the inviscid 

flow, originally established by Garabedian and Korn, with an integral method 

(the lag entrainment method of Green et al) for the calculation of compressible 

turbulent boundary layers. The inviscid scheme has been modified to incorporate 

a boundary condition on the aerofoil surface, which is imposed on the velocity 

normal to the surface, with a corresponding boundary condition for the wake. 

Wake curvature effects are also included. An iterative procedure is established, 

which iterates between successive calculations of the pressure distribution and 

of the displacement thickness of the boundary layer and wake. Results are 

presented from a computer program (VGK) and comparisons are made with experimental 

measurements and other theoretical results. 

* Replaces RAE Technical Report 77]04 - ARC 37680 



LIST OF CONTENTS 

4 

5 

5o5o! 
5o5o2 

6 CONCLUSIONS 

Acknowledgments 

Page 

INTRODUCTION 3 

FORMULATION OF THE COMPRESSIBLE FLOW EQUATIONS WITH VISCOUS EFFECTS 5 

2oi The basic inviscid method 5 
2.2 Alterations to the flow field calculations to include viscous 

effects 8 

REPRESENTATION OF THE BOUNDARY CONDITIONS IN FINITE DIFFERENCE FORM 12 

3o1 Boundary conditions on the aerofoil surface 12 
3.2 Boundary condition arising from the wake thickness effect 14 
3.3 Boundary condition arising from the wake curvature effect 15 
3°4 Effect of surface and wake curvature ]8 

FORMULATION OF THE INVISCID-VISCOUS INTERACTION SCHEME 21 

4o1 The basic scheme 21 
4°2 Convergence of the interactive scheme 24 
4°3 Smoothing and extrapolation near to the trailing edge 26 

RESULTS FROM THE VGK PROGRAM 28 

5~! Basic test examples and features of the inviscid program 28 
5°2 Interim steps in the final viscous solution 30 
5°3 Calculation of drag 33 
5°4 Comparison with experiments 35 

5o4.! NACA 0012 35 
5°4°2 RAE 2822 38 
5°4°3 Korn Nool 40 

5°5 Comparison with other viscous theoretical results 42 

Free-air results 42 
Results with allowance for tunnel interference 43 

45 

47 

Appendix A Application of the Kutta condition in the inviscid scheme 49 

Appendix B Formulae for the coefficients in the finite difference 
equation on the circle r = I 51 

Appendix C Solution at the trailing edge 53 

Appendix D Second-order terms in the wake-thickness boundary condition 55 

Appendix E Calculation of the flow curvature 56 

List of symbols 60 

References 63 

Illustrations Figures 1-25 

Detachable abstract cards 



1 INTRODUCTION 

In recent years various theoretical methods have been developed for 

predicting the pressure distribution, lift and drag for steady inviscid flow past 

two-dimensional lifting aerofoils |-5'|6o These methods are based on schemes in 

which the inviscid equations are represented in finite difference form, and 

solutions sought by iterative techniques. It is, however, well known that 

viscous effects are important for the range of Mach numbers and Reynolds numbers 

at which a typical aerofoil is designed to operate, and hence, more recently, 

efforts have been made to develop theoretical models which incorporate the 
6- ]0  

effects of viscosity . The present work is concerned with an improved treat- 

ment of this topic and with the development of a computer program, named VGK, 

which is based on an inviscid scheme devised by Garabedian and Korn 2'3. This 

Report gives a description of the mathematical model on which the program is 

based, together with results for various aerofoils, while a companion note 

describes the computer program and contains instructions on running it. 

The project may be regarded as an extension of previous work at the RAE 

by Firmin 6 and Firmin and Jones 7'8. In these Reports the viscous effects are 

included by an amalgamation of a scheme for inviscid flow calculations which 

determines a pressure distribution on the aerofoil surface and along the wake, 

with an integral method for predicting the development of the turbulent boundary 

layer and wake in a given pressure distribution providing the boundary layer is 

fully attached. In the first Report, an interim method was developed, based on 

a simple inviscid scheme devised by Lock et al, for calculating the pressure 

distribution. The boundary layer development is determined by an entrainment 
13 

method due to Green and includes a contribution from wake curvature. In the 

subsequent work 7'8 a more sophisticated inviscid scheme was adopted, which led 

to the development of the RAE Transonic Aerofoil Program. This is based on an 

iterative procedure for solving the transonic small perturbation (TSP) equations, 
I 

originally devised by Murman and Cole , and modified subsequently at RAE by 

Albone et al 5. The turbulent boundary layer method used is the 'lag-entrainment' 
14 

method of Green et al , in which the boundary layer development is predicted 

by the forward integration of three simultaneous ordinary differential equations, 

namely the momentum integral equation, the entrainment equation and an equation 

for the rate of change of the entrainment coefficient derived from the turbulent 

energy equation. Starting from the stagnation point, a laminar boundary layer 

is first calculated by Thwaites' method, extended for compressible flows by the 

Stewartson-lllingworth transformation 15 At a certain transition point a 



turbulent boundary layer is assumed to develop, and the laminar boundary layer 

calculations form initial conditions. 

In the present development of the problem of including viscous effects 

the boundary-layer method employed by Firmin and Jones 7'8 is retained, but the 
2,3 

inviscid scheme is replaced by a more accurate one due to Garabedian and Korn 

(referred to hereafter as G & K). This scheme consists of a conformal transfor- 

mation of the aerofoil into the interior of the circle [r I = I, which was 

developed initially by Sells 16'17, combined with an iterative solution of the 

exact irrotational, isentropic equations in a manner similar to that used by 

Murman and Cole I . An iterative procedure is employed to obtain consistent 

solutions for the inviscid flow and the boundary layer. Thus, after every few 

iterations of the inviscid scheme the current pressure, on the aerofoil surface 

and along the wake, is calculated, and this is used to determine the current 

boundary layer displacement and momentum thicknesses. Boundary conditions for 

the inviscid scheme, which are modified to take account of the viscous effects, 
18 

are formed by the 'equivalent source' method of Lighthill , and in this manner 

the repetition of the mapping procedure after every boundary layer calculation 

is obviated. Under-relaxation is used in applying the boundary conditions. 

Allowance for curvature effects of the boundary layer on the aerofoil surface 

and of the wake are included in these boundary conditions. The application of 

the method is restricted to cases where the boundary layer remains attached 

everywhere. 

Other attempts at creating a program for transonic flows with viscous 

effects, based on the inviscid G & K program, have been developed recently by 

Bauer and Garabedian 4'9 and Bavitz I0 For the turbulent boundary layer analysis 

in the former case a relatively simple integral method due to Nash and 

MacDonald 19 is used, while in the latter a more sophisticated differential 

scheme developed by Bradshaw et a~ 20'21 is employed. For both of these methods 

the turbulent boundary layer is calculated over the aerofoil surface only, so 

that no wake effects are included. Each employs a similar numerical procedure, 

different from the one adopted here, by seeking a nearly converged inviscid 

solution before calculating a pressure distribution which is used to determine 

the boundary layer displacement thickness. This is then added to the aerofoil 

normal to produce an equivalent 'inviscid aerofoil'~ and the resulting shape is 

mapped conformally as though it was the original aerofoil. 

In section 2 the inviscid method on which the G & K analysis is based is 

described briefly, as well as the modifications to it required to include 



different boundary conditions due to viscous effects° A full description is 

given in section 3 of each of these changes to the boundary conditions on the 

aerofoil surface and along the wake. In section 4 a description of the inter- 

active procedure between the inviscid analysis and the boundary layer calcula- 

tions is presented, together with various smoothing and extrapolation procedures 

employed near to the trailing edge in order to aid convergence. The convergence 

of the interactive process is also discussed° In section 5 results are presented 

for the NACA 0012 aerofoil, the RAE 2822 aerofoil and an aerofoil designed by 

the hodograph method of Ref 3 (referred to as 'Korn No.]'). These have been 

used as test cases for the computer program. These results are compared with 

experiments and other theoretical methods. 

2 FORMULATION OF THE COMPRESSIBLE FLOW EQUATIONS WITH VISCOUS EFFECTS 

2.1 The basic inviscid method 

A brief summary of the theory and numerical analysis associated with the 

inviscid method of G & K 2'3 is presented here. The basic theory consists of 

two parts. Firstly, the exterior of the aerofoil in the (x,y) plane is mapped 

conformally into the interior of the unit circle Irl = l , 

where x + iy = F(re ie) (I) 

denotes the mapping function, and the transform derivative is defined by 

B = I F' (reie) I . (2) 

This is the Sells' transfo:~ation 16'|7 The second part consists of solving a 

second order partial differential equation, which can be derived in terms of the 

(r,e) coordinate system as follows. The equation of motion for irrotational 

isentropic flow (obtained by combining the equation of continuity with the 

Euler equation) may be written as 

2 a div u = u.grad (~u 2) (3) 

where u = grad 

and a 

is the velocity (non-dimensionalised by the free-stream 

velocity U , 

is the speed of sound (also non-dimensionalised) given by 

Bernoulli's equation 
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2 M -2 
! 2 a oo 
2U + - -  _-- I + _ _  

- ~ f -  I y -  I 
(4) 

where y(= 1.4) is the ratio of specific heats, 

and M is the free-stream Mach number. 

Equation (3) may be written with r and 0 as independent variables in the 

form 

(a2 - ~2)~00 - 2~rCr0 + r2(a2 - ~2)~rr + a2r~r + u~o 

+ r(~ 2 + ~2)(~B o + rVB r) = 0 , (5) 

where ~ and ~ are the non-dimensional components of velocity in the e and 

r directions respectively, defined by 

! ! 

= B--~0 and ~ = B Cr " (6) 
r 

In order to remove the singularity in ¢ at r = 0 

stream in the physical plane), a modified potential 

(corresponding to the free 

is introduced by setting 

¢ = ~ + ,cOs (e + ~) 
r " (7 )  

with ~ = ~ - s 0 , 

where E is the angle of incidence 

and s 0 is the zero-lift angle for incompressible flow. 

A modified mapping function m is introduced by setting 

= r2B . (8) 

Both ~ and m are now regular as r + 0 . A further restriction is imposed 

on m by normalizing it so that ~ + I as r ÷ 0 . This implies that the 

chord of the aerofoil, S , is no longer arbitrary, but is instead determined 

by the mapping analysis. The final form of the partial differential equation 

for ~ is 

(a 2 - ~2)~ee - 2rN~r e + r2(a 2 _ ~2)~rr_ 2N~ e + r(a 2 + N2 _ 2~2)~ r 

-! 
+ r (~2 + ~2)(Nm e + r~mr ) = 0 (9)  



with -" } =- ~ r O  0 - s i n  ( 0  + ~ ) ]  

-I[ - cos (0 + cO] = ~ r2~r 

( 1 o )  

The boundary conditions to be satisfied concern the normal velocity on the 

aerofoil surface, and the flow at infinity. On r = I , ~r = 0 , ~e 

= c o s  ( 0  + ~ )  o n  r = I . ( I 1 )  
r 

At r=0 , 

where the circulation, 

~0 = 0 , and hence 

O satisfies the boundary condition. 

~ = 2-~ t a n - 1  1 - M2 t a n  (0 + c~ 

r 0 , i s  d e t e r m i n e d  f r o m  t h e  K u t t a  c o n d i t i o n  t h a t  

(12) 

~0 = sin ~ (13)  

at the trailing edge (e = 0, r = I) . 

In the numerical analysis the governing partial differential equations (4) 

and (9), are approximated by finite difference equations. A grid is set up in 

the computing (e,r) plane (see Fig I) such that the point Pi,j is defined by 

o = (i- I) ~ (j - I)~ - -  , r = i - 
m n 

For the derivatives in the r direction (which is normal to the direction of 

flow at the aerofoil surface and nearly normal to it close to the aerofoil) 

central differences are used throughout. For the derivatives in the 0 direc- 

tion, corresponding approximately to the direction of flow, central differences 

are used in subsonic (elliptic) regions of flow, while in the supersonic 

(hyperbolic) regions backward differences are used on the upper surface 

(~ ~ 8 ~ 2~) and forward differences on the lower surface (0 ~ 8 ~ ~); this 

allows for the correct physical domains of dependence. At each iteration the 

equations are solved successively along radial lines advancing from 8 = ~ to 

e = 2~ and then from 0 = ~ to e = 0 (see Fig I). The equations are not 

solved along the radial line i = I , corresponding to 8 = 0 . Instead the 
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value of ~ is updated by adding a constant P0 to the solution obtained along 

the radial line i = mm , corresponding to 8 = 2~ , where F 0 is adjusted at 

the end of every cycle so that the jump in the value of $ satisfies the Kutta 

condition that 48 = 0 at the tr.ailing edge. A detailed explanation of how 

this condition is applied in the finite difference scheme is given in Appendix A. 

2.2 Alterations to the flow field calculations to include viscous effects 

The alterations to the basic inviscid scheme, described in the previous 

section, in order to include viscous effects, result in changes to the boundary 

conditions on the aerofoil surface and in the wake. These have been formulated 

by Lock 22 . 

The effect of the viscous layers (boundary layer and wake) on the flow 

about the aerofoil is represented by defining an 'equivalent inviscid flow'. 

This is identical to the real flow outside of these viscous layers, and is 

continued analytically inside of them onto the surface of the aerofoil and the 

centre line of the wake. The boundary condition for this inviscid flow on the 

aerofoil surface is equivalent to a distribution of sources, required to make up 

the mass deficit produced by the boundary layer. Assuming that the velocity 

component, u , parallel to the surface, may be regarded as (approximately) 

constant across the boundary layer, we have effectively, in the inviscid model 

the component of non-dimensional velocity v , normal to the surface given by 

v -- 7 ~-7 (Pq~*) (14) 

where ~* is the displacement thickness and the total velocity q and the 

density p are evaluated at the aerofoil surface, rather than at the edge of 

the boundary layer. The velocity components u,v are defined as 

u = ~-/ ~ (15) ~S ' V = ~n 

where s is the distance measured along the surface from the leading edge and 

n is the distance normal to the surface, and 0 is defined by 



which is the ratio of the density to its value at the stagnation point, and M 

is the local Mach number at the surface in the equivalent inviscid flow. 

The boundary condition on the aerofoil surface has to be transformed into 

a condition in the computing plane on the circle r = I . The relationship 

between the velocity components u,v in the physical plane to the velocity 

components u,~ in the computing plane, on the aerofoil surface, is determined 

by the relationship 

D I D ~ 1 D 
- - -  = + - - - -  ( 1 7 )  

Dn B ~r ' ~s - B DO 

where the upper sign refers to the upper surface of the aerofoil and the lower 

sign to the lower surface (see Fig 2). Thus, from (6) 

u = -+ ~ , v = - ~ . (18) 

When the boundary condition is transformed into the computing plane 5" needs 

to be scaled by a factor S , because of the normaliza£ion of B as r ÷ 0 

adopted in the basic analysis (of section 2.|, p 5). Thus if we define 

~* = ~*/S (the non-dimensional value with respect to the chord), then we have 

from (14), on the upper surface of the aerofoil, on r = l 

~_~ = S d T ( I )  
Dr 0 dO (oq~*) ~ (O) (~ $ 0 ~ 27) (19) 

while on the lower surface of the aerofoil, on r = 1 

D_~ : S d (pq~,)  ~ T(1)(B) (0 ~ 0 $ 7) (20) 
Dr p dO 

Thus by differentiating equation (7) the boundary condition to be applied on 

r = 1 is 

= T(1)(0) + cos (0 + ~) . (21) 
r 

Similar considerations are applicable in the wake, where the variation in 

displacement thickness can be interpreted as a distribution of sinks along the 

rear dividing streamline. In this case, if 5" represents the total displace- 
w 

ment thickness of the wake, applying (14) leads to a jump in the normal velocity, 

v , across the wake, such that 



I0 

a(v) = I d (pq6*) (22) 
p ds 

(The notation A(v) implies v[e=2 ~ - vie=0°) In order to apply this condition 

it is strictly necessary to know the position of the wake in the (r,e) plane. 

This is not known in advance so that an approximation is introduced by applying 

the boundary condition along the radial line e = 0 From the basic analysis 

of Sells 16'17 the direction of the line e = 0 near to r = 1 is determined 

so as to bisect the trailing edge angle. If s is measured from the trailing 

edge along the line e = 0 (in the physical plane), then from (I), (2) and (8) 

we have 

ds[ ~(__ r,0 ) 
~r = r 2 (23) 

Thus 

1 

s = / ~,(r,0)2 dr. (24) 
r 

r 

To transform the boundary condition (22) from the physical plane into the 

computing plane we introduce the coordinate transformation 

n Br ~e ' ~s B Dr (25) 

where s is the distance measured along the wake and n is the distance normal 

to it (see Fig 3). Hence, the velocity components in the physical and computing 

plane are linked by the relationship 

u = - ~ , v = - ~ • (26) 

Thus, from (10), (22) and (25) we have along 8 = 0 the boundary condition that 

A(~8 ) = rS d (pq~ ~ (]) 
p dr ~) ~ (r) . (27) 

A further effect to be included arises from the curvature of the wake. 

In order to match the pressure change across the wake in both the viscous and 

equivalent inviscid flows, it is necessary to introduce a boundary condition on 

the jump in the tangential velocity u across the wake (see Ref 22), such that 
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A ( u )  = - q ~ ( 6 *  + 0 .) ( 2 8 )  
w w 

where e is the momentum thickness and the curvature 
w 

Appendix E (equation (E-7)) 

is given in 

i ~q 
K = q ~n " (29) 

In equation (28) q and K are taken as the means of the values on each side 

of the wake. In the computing plane this condition is also applied along the 

line 

that 

0 = 0 , and with the coordinate transformation (25), leads to a condition 

A(~ r) = BSq~(~* + ~w) -- o(2)(r) (30) 

along 8 = 0* . This is equivalent to 

d (A~) = o(2)(r) (31) 
dr 

so that 

1 

&~ ~ £(r) = r 0 - f o (2)(r)dr (32) D 

r 

A further change to the inviscid scheme, associated with the previous one, 

is introduced in order to allow for the effect of the curvature of the aerofoil 

and wake on the pressure change across the viscous layers. This change is 

greater in the equivalent inviscid flow than in the real viscous flow, and 

consequently the pressure on the surface of the aerofoil or the centre line of 

the wake (as calculated for the equivalent inviscid flow) needs to be adjusted 

before it is used to calculate the boundary layer. It is shown in Ref 22 that 

the required pressure increment is 

Ap --~ - mpq2(8 + 6*) (33) 

and this is equivalent (a~proximately) to correcting the calculated velocity 

* The appearance of the factor S in equations (30) and (34) is due to the fact 
that, as calculated in the present method, the curvature K corresponds to 
that in the flow in the physical plane about an aerofoil of chord S 
(c~ p~, whereas 6, and ~ are non-dimensionalised with respect to the chord. 
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q to q' , 

where q' = q[ I + S~* + ~)] , (34) 

with a similar correction occurring for the velocity in the wake. 

One other change in the basic inviscid scheme concerns the solution of 

the finite difference form of equation (9) at the trailing edge. For the 

inviscid case it is sufficient to set ~ = ~ = 0 in order to determine the 

coefficients in the equation. However, in the viscous case (~e for the 

equivalent inviscid flow) it is necessary to adopt a more sophisticated scheme 

in which the finite difference equations are developed from the governing partial 

~ifferential equation before the transformation to the computing plane (see 

Appendix C) and N and ~ are not set to zero. 

3 REPRESENTATION OF THE BOUNDARY CONDITIONS IN FINITE DIFFERENCE FOP@~ 

3.1 Boundary conditions on the aerofoil surface 

The governing equation (9) is of the form 

A~ee + B#er + C~rr = D (35) 

where A = (a 2 _ N2) , B = - 2N~r , C = (a2 - ~2)r2 1 

D = 2~ e _ ((a 2 + ~2) _ 2~2) ~r - (~2 + ~2)(~ e + ~Wr)r-I 

(36) 

and applies to the flow outside the viscous layers. In order to determine a 

solution along a radial line the variables A, B, C and D are treated as known 

quantities (using values derived from the previous iteration), and (35) is 

represented in finite difference form by a tri-diagonal system of equations 

aij~o + b..~.o + c. ~. = do. (37) 
1,j-! ij z 3 lj l,j+l lj 

where, in turn, (37) is solved successively for each of the values of i from 

m/2 to mm and m/2 to 2 ~ The elements of the arrays a,b,c and d can be 

defined in terms of known values of A,B,C,D and ~ evaluated at the various 

mesh points. This is exactly the same method of solution as in the basic 

inviscid model, and the only difference occurs in determining values for the 

coefficients for j = ] , (~e at the aerofoil surface in the equivalent inviscid 

flow). 



13 

In order to represent 

it is necessary to expand 0 

in finite difference form on the circle 
rr 
in a Taylor series; 

r --  I , 

0i2 = O. - ~r(0r) i + ½(~r)2(0rr)i l l l  1 ' 

which leads to 

_ 2 ( _ 0i ) + 2 
(0rr)il (~r)2 0i2 I ~r (4r)il " (38) 

The second term on the right-hand side of (38) can be evaluated by using the 

boundary condition (21). To determine Ore on the circle r = 1 , the 

expression 

= • (2) 
Ore (0) - sin (0 + ~) (39) 

is used, 

where T(2) = ~d0 l T(l)(0))" (40) 

The remaining term, 00e , can be expressed in finite difference form in the 

normal manner. It is thus possible to represent (35) in finite difference form 

on the circle r = 1 ~ and hence determine values for the coefficients a,b,c 

and d for j = ] in terms of known values of A,B,C,D, 0 , T (I) and (2) 

evaluated at various mesh points. The details of this are given in Appendix A2. 

The solution at the trailing edge point also differs from the inviscid solution, 

and this is described in Appendix C3. 

of 

(1) of s . Thus, from (17) to (20), we may expect T 

By using (15) we have 
(1) 

T 
v = on r = 1 

LO 

On both surfaces of the aerofoil 8" is usually an increasing function 

s , whereas q and p are, by comparison, more slowly varying functions 

< 0 for all values of 0 . 

(41) 

and thus v > 0 , which corresponds to a distribution of sources on the aerofoil 

surface. The value of IT(1)[ usually increases from the leading edge with the 

maximum value occurring either close to the trailing edge, or in the region of a 

strong shock, if one exists. Typical maximum values for IT(1) I are about 0.03. 

At the trailing edge point the slope of 8" is discontinuous (unless the 
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aerofoil has a cusped trailing edge), but since 

T(]) = ± B d 
7 d--s (pq6*) (42) 

and B + 0 as 8 + 0 , 2~ , then T (1) + 0 at the trailing edge° However v 

is not specified at the trailing edge. This quantity tends to a non-zero con- 

stant, but its values can only be determined by examining the limit of (40) as 

e + 0,2~. 

3.2 Boundary conditi£n arising fromthewake thickness effect 

In order to solve the finite difference equations along the radial line 

i = mm , corresponding to 8 = 2~ , it is necessary to calculate derivatives 

of ~ , with respect to e , by central difference formulae. For this purpose 

the 'fictitious' value of ~ along the radial line i = mp (mm + I) is 

introduced (see Fig 4). This may be defined as the analytic continuation of 

beyond e = 2~ , so that 

mp,j = ~mm,j + (6e)(~e)mm,j + ½(6e)2(~ee)mm,j + 0(~e)3 (43) 

Now 

~2,j = #lj + (68)(#8)1j + ~(6e)2(#ee)l,j + °(6e)3 " (44) 

Subtracting, we obtain 

~mp,j = #2,j + F. + 68o (|). + ½(68)2&(#es)j + 0(6e) 3 (45) 
J J 

where r. = ~ - ~ (46) 
] mm,j ]j ° 

It is shown in Appendix D,4 that the effect of the 0(6e) 2 term in (45) is small 

and can be ignored, so that (45) reduces to 

Cmp,j = ¢2j + P" + 68°!]) (47) 
J J 

For the inviscid case o ~l~f ~ .  = 0 for all values of j , and r. reduces 
J J 

to a constant, r 0 . In the viscous case, if the wake curvature effect is 

i g n o r e d ,  t h e  jump i n  ~ , g i v e n  by  Fj , r e m a i n s  as a c o n s t a n t ,  However ,  i n  

the fully viscous case, when the wake curvature effect is included, r. varies 
J 

with j since there is a jump in ~ across e = 0,2~ . It is necessary to 
r 
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apply the Kutta condition (13) at the trailing edge, as in the inviscid scheme. 

This condition ensures that in the computing plane ~ approaches a finite limit 

as e ÷ 0,2~ ; otherwise, without this restriction, u would be infinite at 

the trailing edge in the physical plane. In this manner it is possible to 

determine F. at j = I . If the wake curvature effect is neglected, this 
J 

condition determines the constant F 0 , and hence ~mp,j is determined. When 

the wake curvature effect is included, rj , for j ~ I , can be determined from 

equation (46), where details of the method of obtaining ~ij are given in the 

following section. 

Along the wake we can expect 8" to be a decreasing function of s 

Thus we may expect 0 (I) to be positive while from (22) and (27) we have 

(i) 
ro 

Av = - ..... ; (48) 

and hence A(v) < 0 for all r . This corresponds to a distribution of sinks 

along the line 9 = 0 • The function 0 (I) is well defined and it can easily 

be represented in finite difference form by central differences. The function 
(I) 

has no singularities either as r + 0 or as r ÷ I ; in both cases o ÷ 0 . 

Thus Av at the trailing edge can be determined by examining the limit of (48), 

as r + I. In the examples considered this value has been found to be non-zero 

and finite. For a typical aerofoil a (I) attains its maximum value, of about 

0.03, at about 5% of the chord behind the trailing edge. 

3.3 Boundary condition arising from the wake curv_~ature effect 

The effect of this boundary condition is to alter, from the basic inviscid 

scheme, the manner in which the value of ~ along the radial line i = I (cor- 

responding to e = 0), is derived from the value of ~ along the radial line 

i = mm (corresponding to e = 27). For the inviscid case, ~.. is obtained by ij 

adding a constant F 0 to ~mm,j " When the wake curvature effect is included 

a similar situation exists, except that we must treat F as a function of r , 

as shown by equation (32). By applying (30) in finite difference form (using 

central differences) we obtain 

(~mm,j-1 - ~mm,j+1 ) - (~|,j-1 - ~I,j+I ) = 2(~r)o~ 2) . (49) 

(Note that j 

tion of ~.. 
ij 

decreases as r increases.) In order to reduce the determina- 

to an iterative procedure we require a further equation. 
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By considering the jump in ~ we obtain 
rr 

(Onm, j-I - 2#mm,j + ~mm,j+l ) - (~l,j-I - 2~lj 
+ Ol,j+l ) = (~r)2o (3)j ,(50) 

= d (0(2)(r)) . (51) where 0 (3) (r) dr 

Combining (49) and (50) gives 

~lj = Omm,j - rj_l + (~r)o~ 2) + ½(~r)2o! 3)3 (52) 

since 

rj-l = ~mm,j-I - ~l,j-I " (53) 

Equations (52) and (53) can be used to develop an iterative procedure to deter- 

mine #]j for j = 2...n . As an initial condition the value of #|] is 

required. This is given by 

~11 = 0 - r (54) 
mrs)] 1 

where F is determined from the Kutta condition at the trailing edge, as ! 
described in the previous section. 

The function 0 (2) is given by equation (30)° In Appendix E a rigorous 

definition of the flow curvature, ~ , in a general orthogonal curvilinear 

coordinate system (x],x 2) is obtained, and a suitable approximation for the 

present problem is given by equation ~-9). To obtain the flow curvature in 

the wake we set 

x! = - r , x 2 = - 8 , h I = B , h 2 = Br (55) 

and obtain 

~ = <0 + <l =-!-~r ~0 (~) Bl ~r~ (-_u_~gl " (56) 

The first term represents the curvature of the line 0 = 0 , and the second 

term arises from the curvature of the displacement surface relative to the 

line 8 = 0 . This latter term takes slightly different values on either side 

of the line 8 = 0 , when the wake thickness and curvature effects are included~ 

hence a mean value is used to define 0 (2) . 



17 

The form that the expression 0 (2) takes, both as r ÷ 0 and as r + I , 

needs careful consideration. The limits of ~(2) are determined by the magni- 

tude of BK . Now as r ÷ 0 , B has a singularity of 0(r-2). However, in 

this region the effect of the two terms in (55) cancel, and when 0 (2) is 

evaluated in finite difference form the resulting curve tends smoothly to zero 

as r÷0 . 

There is greater difficulty in evaluating 0 (2) in finite difference form 

near the trailing edge. This is largely due to the singular behaviour of the flow 

in this region in the present mathematical formulation of the problem. The 

situation is as follows: for a purely inviscid flow (or for the 'equivalent 

inviscid flow' if the wake curvature effect is not taken into account), it can 

be shown that in general the curvature of the dividing streamline approaches 
_! 

infinity at the trailing edge, like s 2 (where s is the distance from the 

trailing edge); and this implies that BK approaches a finite, but non-zero, 
+! 

limit (since B ~ s 2). However, when the effect of the wake curvature 

(equation (28)) is included, the interaction with the flow causes the curvature 

of the wake to be reduced to a finite value at the trailing edge (just as in 

the somewhat analogous case of the 'jet-flap' problem32); so that now BK ÷ 0 

and hence 0 (2) ÷ 0 . This is of course essential in order to keep the pressure 

jump across the wake in the inviscid flow model finite at the trailing edge, 

since from (6), (26) and (30) we observe that 

(2) o 
Au = . (57) 

B 

In view of the facts stated above, it is not surprising that numerical 

difficulties occur in the evaluation of m (and hence 0 (2)) near the trailing 

edge, particularly at the early stages of the iteration process. Referring to 

equation (56), we see that part of the trouble is due to the fact that the 

first term, K 0 (the curvature of the line 0 = 0) does in general (for a 
_! 

cambered aerofoil) have a singularity (of order o 2 ) at the trailing edge, so 

that the finite value of K which should eventually emerge from the calcula- 

tions can only be achieved as a result of cancellation by an equal and opposite 

singularity in the second term, K! . Thus, although we do not actually need 

to know the value of m at the trailing edge itself, we are in a situation 

where the values calculated at neighbouring points are inevitably subject to 
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some degree of arbitrariness. For example, the first term < 0 can be evaluated 

by central difference analogous of either of the two (mathematically equivalent) 

equations 

I ~B 
B<0 = Br 28 (58) 

or B~0 = r ~0 " (59) 

Now the first of these equations would give an infinite value for B< 0 at 

r = I, 0 = 0 , while the second would give the value zero; so clearly the values 

at the first few points behind the trailing edge will differ appreciably accord- 

ing to which formula is chosen. [In fact, the second formula (59) is used.] 

Furthermore, if the second term, <l = B Dr , were to be evaluated by a 

standard central difference expression, then it would not be possible to obtain 

a value at the first point behind the trailing edge, because the value of 5 is 

indeterminate at the trailing edge; so some extrapolation would be needed at 

this point. 

As a result of these considerations, and after a good deal of numerical 

experimentation, the following procedure has been adopted. At a typical point 

P. on the line 0 = 0,27 (defined by r = I - (j - l)~r), the value of q~ is 
] 

taken to be that calculated at the point P. using the central difference 
j+I 

form of equation (56). This is analagous to using a backward difference scheme 

(with respect to r)*. Finally, the values of o (2) (equation (30)) are smoothed 

using the formulae (78) and (79) of section 4.3. Over the range of aerofoils 

that have been tested this procedure leads to a finite difference scheme which 

is numerically stable. In a typical situation it is found that o (2) rises 

smoothly from zero at the trailing edge and reaches a maximum value at about 

2-3% of the chord downstream of the trailing edge, and then decays to zero. 

Further justification for the use of this procedure is given in section 5.2. 

3.4 Effect of surface and wake curvature 

As we have already mentioned (see p II), the calculated pressures on the 

aerofoil surface and along the wake need to be adjusted to take account of the 

flow curvature. The following adjustment to the calculated velocity q is 

required in order to give the velocity q' on the aerofoil surface used in 

* The procedure described here is used with the 'coarse' (80 x 15) mesh. When 
the 'fine' (]60 × 30) mesh is used, the value at P. is taken to be that 

J 
calculated at Pj+2 " 
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determining the pressure distribution: 

q' = q [ l  + (60) 

where ~ is the curvature of the displacement surface over the aerofoil. If 

the curvature is defined in a similar manner to the curvature of the wake, then 

setting 

x I = ± 8, x 2 = r, h I = Br, h 2 = B ~ (61) 

in equation (E-9) we obtain 

= 1 B (Br) 1 ~ ( ~  1 -- K0 + KI B 2 Dr B D0 " (62) 

The first term defines the curvature of the aerofoil surface and the second 

one determines the additional curvature arising from the displacement effect. 

However, the curvature, as expressed by equation (62) is not satisfactory 

for determining a finite difference form for the expression, since the first 

term must be obtained by a first order (one-sided) approximation from a Taylor 

series expansion, and this was found to lead to inaccurate values for mO " 

Near to the trailing edge the expression for K has two relatively large terms 

of opposite signs, so that an accurate evaluation of each is required. An 

alternative approximation to the curvature K is given by 

d 2 
= (y + 6*) (63) 

ds 2 

(see equation (E-10) in Appendix E). 

With the aid of (17) a simple finite difference approximation to (63) 

may be obtained from 

d-~ (Y + ~*) , (64) 

where y , like ~* , is non-dimensionalised with respect to the chord S . 

This is evaluated by a standard central difference expression over an interval 

2~e , rather than 68 , to enable the known values of m at mesh points to be 

used. There are difficulties especially on the fine grid, of ensuring values 

of 6" sufficiently smooth to obtain smooth second derivatives of the function. 

This occurs particularly near to the trailing edge where large variations in 
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8" occur. Hence it is necessary to use the coarse grid values of ~ even for 

the fine grid, with linear interpolation and smoothing employed to determine 

values at intermediate grid points. 

Over most of the aerofoil the curvature of the aerofoil surface is negative 

(convex), while that of the displacement surface is positive; only near to the 

trailing edge does the second effect usually predominate. The curvature effects, 

given by (64), are most important in this region, because of the relatively 

large values of 8" . They may also become important in the region of a strong 

shock. For a lifting aerofoil typical maximum values of K of about 0.4 occur 

close to the trailing edge on the upper surface, leading to values of 

(q' - q) ~ 0.025 o In the process of an iterative scheme, with an interaction 

between the pressure distribution and the boundary layer development, it may be 

expected that in a converged solution the difference between q and q' will 

be substantially reduced° 

In the wake the calculated velocity q± needs to be modified to give 

q'i = q+E1 +_ S<+_(~w* + Ow)+]_ (65) 

where the upper and lower signs refer to the upper and lower surfaces of the 

wake respectively. The finite difference form of the expression for K has 

already been described in the previous section. Without this effect included it 

is seen from (28) and (30) that 

(2) 
A(u) = B " (66) 

When the curvature correction is included we have, from (65) 

A(q') m A(u)+ S~q<)+ (~* + 0)+ + (q<)-(~* +w Ow )--3 

(2) and on substituting for A(u) and using the definition of o we have 

(67) 

A(q') ---- 0 . (68) 

Thus the velocities used to calculate the pressure distribution on the upper and 

lower sides of the wake are effectively the same. 
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4 FORMULATION OF THE INVlSCID-VISCOUS INTERACTION SCHEME 

4.] The basic scheme 

A basic feature of the interactive scheme is that the mapping analysis 

is performed once only, for a particular aerofoil. (In the VGK package the 

mapping analysis can be performed by either one of two alternative methods; 

~e either from a program based on the original G & K 2'3 mapping analysis or 

from the original Sells '16'17 analysis. For further details see Ref ]I.) A 

solution is then sought for a particular free-streamMach number, angle of 

incidence, Reynolds number and position of the transition points. It is usual 

to increase the Mach number, increase incidence, or alter the viscous parameters 

in steps as with the basic inviscid program in order to calculate a solution. 

This is necessary in order to avoid problems of convergence. Thus, for an 

initial solution, after the mapping analysis, T (1) and o (i) , i = 1,2, are 

initialized to zero and the ~-field is initialized according to the basic G & K 

analysis. At the start of the next calculation all parameters take the final 

values of the previous solution. For any solution a calculation can be performed 

either on a coarse (normally 80 × 15) or a fine (160 × 30) grid. It is usual to 

use the coarse grid solution as a basis for the fine grid solution. On pro- 

ceeding from a coarse to a fine grid, linear interpolation is employed to deter- 

mine initial values of the solution at the additional grid points. 

At the start of a particular solution, a prescribed number, k! , of 

inviscid flow field iterations is performed (with the current boundary condi- 

tions) before a new boundary layer is calculated. (The parameter k is ! 

termed INVISC(]) in the FLOW program in the VGK packagel].) This allows the 

iterative procedure for the flow field calculations to respond to the changes 

in the basic parameters and so to avoid calculating boundary layers for 

unrealistic pressure distributions. This procedure is most important for the 

initial solution after the mapping and for fine grid solutions with strong 

shocks. Usually it is sufficient to set k! equal to ]0 for these situations. 

Before calculating the boundary layer, the velocity is calculated on the 

aerofoil surface, r = ! , and along the line 8 = 0 , representing the wake. 

On the aerofoil surface the velocity q is given by 

2 _2 (1) /~)2  
q = u + (T (69) 
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where ~ is determined from (I0) by using the latest values of ~ o On the 

upper surface of the wake 

_- .2 2 _2 + v+ (70) q+ u+ 

where ~ and ~ are calculated from (10) similarly. On the lower surface of ÷ + 
the wake the jump conditions on u and v can be used to determine 

n = n - ~ o (I) (71) 

2 
_- ~ _ r__ o(2) (72) 

from which q2 may be calculated. The velocities q , q+ and q_ are then 

corrected to allow for curvature, according to equations (60) and (65), in order 

to determine q' . The pressure coefficient~ Cp , may he derived from the 

equation 

C 
P ~M 2. + 2 - ! 

<73) 

and in turn the pressure p/H , which is the ratio of static pressure to total 

pressure, may be obtained from the equation 

+ 2 " 
(74) 

This pressure distribution is used to calculate the current boundary layer. 

The boundary layer on each surface is calculated separately. In order to 

determine the wake development, the computation over each surface of the aero- 

foil is extended beyond the trailing edge to obtain separately the part of the 

wake on either side of the dividing streamline originating at the trailing edge 14. 

The pressure distribution is specified at mesh points around the circle r = I 

and along the line e = 0 , but is specified for the boundary layer analysis 

as values at the corresponding x and z coordinate points, starting at the 

stagnation point rather than the leading edge and proceeding downstream towards 

infinity on each surface. 
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The boundary layer calculations produce values for the (non-dimensional) 

displacement thickness, ~ , and the momentum thickness, 0 , at the various 

mesh points. In the wake the separate values for ~* and ~ , obtained on 

either side of the dividing streamline, are added together to form the total 

displacement thickness, ~* w ' and the total momentum thickness, 0 . 
w 

Equations (19), (20), (27), (30), (40) and (51) are used to calculate T and o , 

and hence to determine the boundary conditions to be applied for the flow field 

calculations. Current values of ~ are used to form the values for q and p 

which are needed in order to evaluate r and o . Values of the curvature K 

are determined from equations (56) and (62) in a similar manner. 

Under-relaxation is employed in order to determine the actual values of 

T (i) and o(i) used in the boundary conditions for the flow field calculations. 

Thus, at the previous boundary layer calculation a value of T (i) existed, say 
(i) (i) 

Tol d , and a new value, • say, has just been calculated. The actual value 
new 

of T used for the flow field calculations is given by 

(i) (i) + ~ - • (75) 
T = Told ~ new old/ 

where ~ is an under-relaxation parameter, (termed ABCMAX in the VGK program11). 

A number of flow field iterations are performed with the new boundary conditions, 

the number being determined by a parameter k , (termed NVISCR in the VGK 
11 

program ). Values for T , O and K are not recalculated until after the 

next boundary layer calculation, (although it would be possible to update these 

values after every flow field calculation since new values of ~ are available). 

After k flow field iterations have been performed the whole cycle is 

repeated. Thus, the current velocity on the aerofoil surface and along the 

wake is recalculated, and then the current pressure distribution is used to 

calculate the boundary layer. Hence, new values for T (i) a (i) and K are 

obtained and further flow field calculations are performed with the new boundary 

conditions. This process continues until either certain convergence criteria 

are satisfied or until a specified number of iterations are completed° 

At the completion of the iterative procedure the lift and drag coefficients 

on the aerofoil are calculated. Firstly, the pressure distribution around the 

aerofoll is integrated and then separated into component form in order to obtain 

the lift coefficient, C L , and the pressure-drag coefficient, CDp . Similarly, 

the skin-friction drag coefficient, CDF , is obtained through integrating the 
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shear-stress over the aerofoil surface. Also calculated is the viscous drag 

coefficient, CDV , which is obtained from the momentum decrement far downstream 

and neglects any wave drag. The total drag coefficient, CDT , is obtained 

from CDp + CDF ; for subcritical flow CDT should (approximately) equal CDV 

(see section 5o3)~ 

4.2 Conver e~e of the interactive scheme 

The two parameters k and e affect the convergence of the iterative 

scheme, and their effects are related. As the value of k increases, so 

relatively fewer boundary-layer calculations are performed, and it is therefore 

necessary to increase the under-relaxation parameter, e , in order to produce 

the full effect of the boundary conditions in the flow field calculations. 

Ideally, to make sure the calculation has been fully corrected for viscous 

effects, s should be set as high as possible and k as small as possible, but 

upper and lower bounds respectively need to be set otherwise the iterative 

process becomes divergent° These bounds are dependent on the particular solu- 

tion being calculated and the starting conditions that prevail° On the basis 

of some numerical experiments a reasonable choice is to set g = 0.15 and 

k = 5 ° For some subcritical solutions it is possible to increase c slightly, 

while for cases especially on the fine grid, and with high Mach number or 

incidence, it is necessary to reduce ~ significantly in order to achieve 

convergence. 

The convergence test in the inviscid situation is based on examining 

changes from the previous iteration, both in ~ and the jump in ~ at the 

trailing edge. When the maximum value of any change, called the error level 

, is less than the convergence parameter set, then the solution is said to 

have converged. For a viscous solution it is necessary to include in this 

test, in some manner, the viscous parameters involved in the solution. 

Originally a convergence test similar to that used in the small perturba- 

employed 7'8 tion RAE Transonic Aerofoil Program was . In this test the inviscid 

convergence test is unaltered, and when a specified convergence parameter is 

reached the calculation is completed by setting the under-relaxation factor 

equal to 1 in calculating T (i) and o(i) , so that the boundary conditions 

appropriate to the full current boundary-layer solution are used in the next 

flow field calculation° Further iterations are performed in the normal manner 

until the convergence limit is reached once more. This is considered as the 

converged solution. In a normal situation the solution is stable to this 
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disturbance and convergence is reached again within a few iterations. If the 

convergence is not achieved within a specified number of iterations then the 

process is repeated, when convergence is reached, by once more setting ~ equal 

to I. This procedure is repeated until convergence is attained within the 

specified number of iterations. 

It was found with this scheme that for some cases, especially on a fine 

grid at a high Mach number or incidence, a solution which had converged according 

to the original (inviscid) criteria would not converge again when the full 

boundary-layer correction was applied (ie by setting e = I). It appears that 

this method can give too large a disturbance to the iterative procedure of the 

flow field calculation, even though it was otherwise converging satisfactorily. 

It therefore seems preferable to allow the solution to proceed without disturbing 

it in this way, and to include a further convergence test, based on examining 

the boundary-layer parameters. Hence, the viscous convergence test now adopted 

is to examine changes in the calculated values of T from the previous iteration, 

and to determine a viscous error level, ~v ' as the maximum change, ie 

~v = max (I) _ ToldJ . (76) 

Both this test and the usual test on the values of ~ must be successful before 

convergence is said to be achieved. 

Various schemes were tried to see if the rate of convergence could be 

increased. The underlying idea behind each of the proposals is that, since 

convergence problems usually occur in the initial stages of the iterative 

procedure for a new solution, then it would be possible to vary the under- 

relaxation parameter so that it is kept low initially and increased as a con- 

verged state is approached. Firstly, a simple procedure was introduced whereby 

the boundary-layer calculation is not performed when it would normally be due; 

if at this stage the inviscid error level, ~ , is above a certain level then 

the iteration is ignored as far as counting iterations between boundary-layer 

calculations is concerned. Secondly E is allowed to vary so that 

= min (CO,e'(x,B)) (77) 

where e 0 is a specified value of ~ , and e' varies with both x and 

This variation in e' is arranged so that when ~ falls below a certain level 
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then c = c 0 , and for larger values of ~ the value of c v decreases as 

increases. In this manner c is kept low while the error level is high. The 

variation of c' with x enables lower values of c to be specified over the 

rear of the aerofoil where the maximum values of T (i) and o(i) occur. This 

scheme also operates only while ~ is relatively high. Although these various 

schemes were very successful for certain examples and increased the rate of 

convergence, univers~l parameters could not be found so that the schemes could 

be guaranteed to work for the general case. The difficulty seems to arise 

because the boundary layer can be very sensitive to small changes in pressure 

gradient and U is not a good measure of this. A more rational approach tried 

was to relate c to the boundary layer iteration count. Thus for the first few 

boundary-layer calculations the value of c would be increased gradually to its 

full value c o . This scheme was also successful for particular solutions which 

otherwise would have diverged, but for other cases it did take more iterations 

for T and a to converge. Again it was felt that for general ease of use in 

the computer program, fixed values of c and k should be specified (k = 5 

and c = 0.15 on the coarse grid and 0.075 with the fine grid). The option is 

available of altering these values if convergence problems appear. It is worth- 

while to note that, for comparison with the RAE small-perturbation Transonic 

Aerofoil Program (VISTRAN), typical values used there are < = I0 and c = 0.Io 

The difference is consistent with arranging for the full effect of the 

boundary layer to be included in the calculation before convergence of the basic 

inviscid method would occur. The G & K method tends to converge, under normal 

circumstances, in a smaller number of iterations than the TSP method. 

4.3 Smoothing and extra--ion near to the ~ ~  

The trailing-edge point is a mesh point and since the transformation is 

singular at this point it is not possible to obtain directly values for N and 

at the trailing edge. Furthermore, although the value of @ at the trailing 

edge point is known it has been found to be unreliable when used to obtain 

and ~ at the neighbouring points. Thus an extrapolation procedure is used to 

obtain values of qV at the trailing edge point and also close to it. Because 

of the usual density of mesh points near to the trailing edge, this implies, for 

both the coarse and fine grids, that the last mesh point on the aerofoil surface 

at which the velocity is calculated from @ is at about 99% of the chord. 

Similarly, the first mesh point in the wake used is less than I% of the chord 

downstream of the trailing edge. 
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The reason for the difficulty in the region of the trailing edge would 

seem to be that an iterative method is used in the inviscid-viscous interactive 

procedure, so that the current pressure distribution, rather than a smoother one 

resulting from a converged solution, is used to calculate the boundary layer, 

and similarly the modified boundary conditions are formed by using the velocity 

determined from current values of ~ which might not be smooth. The particular 

numerical scheme employed in the basic inviscid flow-field calculations sometimes 

gives, in the initial stages of the iterative procedure, an inconsistency in the 

extrapolated values of the velocity q' at the trailing edge, depending on whether 

the point is approached along one of the aerofoil surfaces or along the wake. 

It has been found that if the values of q' on either side of the trailing 

edge are not obtained by the extrapolation mentioned, then an oscillation may 

develop during the iterative procedure, in the values of T and c near to 

the trailing edge, which causes failures in the calculation. 

The following scheme is incorporated in order to avoid these problems. 

For a coarse grid, on both upper and lower surfaces, the velocity q' , on the 

aerofoil surface at one mesh point before the trailing edge is obtained by a 

linear extrapolation in x from the two values upstream of this point. A further 

linear extrapolation is employed to obtain values of q' at the trailing edge. 

A similar treatment takes place in the wake. The values of q' at the trailing 

edge are averaged to produce a trailing-edge velocity. A similar procedure takes 

place with the fine grid calculation, but to produce compatibility with the 

coarse grid solution the extrapolation procedure assigns values to q' at the 

trailing edge and at the three mesh points on either side. 

A smoothing routine is employed to determine the actual values of q' 

which are used to determine the pressure. This routine is employed for all 

values of q' in the wake and for all values of q' over the last 10% of the 

chord, being progressively relaxed for the portion between 90% and 80% of the 

chord of the aerofoil. (This is achieved by a linear interpolation between the 

smoothed and unsmoothed values.) For the coarse grid, three iterations of 

smoothing are used, where the smoothed value, q' , is given at the ith mesh 

point by 
^ 

, = ¼ , q, 
qi (qi-1 + 2q~ + i+I ) • (78) 

The value of q' at the trailing edge is fixed and remains unaltered. For the 

fine grid, the smoothing is obtained by ten iterations of a second order scheme 
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where 

^, = I q' + ' + 10q~ + 4q~+, ' . 
qi !--6 (- i-2 4qi-I I I - qi+2 ) (79) 

At one mesh point before the trailing edge the first order smoothing given by 

(78) is used. 

The smoothed values, ~' rather than q' , are not only used in 

equation (73) to determine the pressure, but also in determining values for 

and ~ ° The values of ~* and 0 resulting from the boundary-layer calcula- 

tions are not smoothed. An option exists in the FLOW program ]l to enable the 

current values of T and o(I) to be smoothed near to the trailing edge, 

although this is not usually required. The smoothing routine is always used 

to obtain values for o(2) ° 

5 RESULTS FROM THE VGK PROGRAM 

5.1 Basic test examples and features of the inviscid ~ 

During the development of the program three aerofoils, with significantly 

different characteristics, were used as test cases. Subsequently the program 

has been used to obtain results for a variety of other aerofoils. The three 

aerofoils chosen were the NACA 0012, RAE 2822 and Korn Aerofoil No°l. The 

first, NACA 0012 is a conventional symmetrical aerofoil° The second aerofoil, 

RAE 2822 has a design pressure distribution of ~roof-top' type with moderate 

camber and some 'rear loading'. The third, Korn Aerofoil No.l, was designed 

by the inviscid hodograph method of Garabedian and Korn 3 to have a shock-free 

pressure distribution at the design condition, with the intention that the 

shock waves that form at off-design conditions should remain weak over a wide 

range of conditions. Experimental results are available for each aerofoil for 

comparison with the theoretical results from the program. An assessment of the 

measure of agreement between theory and experiment is handicapped by some 

uncertainty in the magnitude of wind-tunnel corrections necessary to reconcile 

measured data and free-air results. Other theoretical results are also available 

for comparison, although those presented here only include results for the 

Korn No.! aerofoil. 

As described earlier there exist two alternative programs in the VGK pack- 

age for performing the mapping analysis. One is based on the G & K mapping 

routine 3, and the other on the original Sells' mapping program 17 Blockley 23 

has investigated the performance of the two alternative programs and suggested 
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that the latter program is preferable, mainly because it has been found that 

the Sells' routine would give a well-converged result for some aerofoils, while 

the G & K routine would not. This occurs primarily on thin aerofoils and 

particularly those with a small leading edge radius. In this work we did not 

investigate the mapping procedure directly, but we did construct a test which 

involves the results of the mapping analysis. 

For each of the three aerofoils a mapping was performed using both the 

Sells' and the G & K programs with their respective default values chosen but 

without smoothing the original ordinates. An inviscid solution was then sought, 

for subcritical conditions, based on the two alternative mapping results. A 

highly converged solution was obtained, by allowing I00 iterations on the coarse 

grid and then a further 100 iterations on the fine grid. At this stage all the 

solutions seem to have converged fully in that no significant changes take 

place in the value of C L from one iteration to the next. Results for the 

three aerofoils are shown in Table I. For the NACA 0012 aerofoil a flow at 

zero incidence was chosen. The values of C L obtained from both solutions were 

not precisely zero, although the accuracy was significantly better with the 

Table I 

Comparison of solutions f~r different mappirL~p_procedure s 

Aerofoil M~ 

NACA 0012 0.72 

RAE 2822 0.676 

Korn No.1 0.65 

I 
c~ 

~0.0 i 
!i .06 

1.0 

Max local M 

0.98 

0.97 

li .09 (Sells) 
.05 (G & K,400) 
07 (G & K,800) 

Sells 

C L CDP 

0.00001 0.00012 

0.5681 0.00012 

0.6205 0.00030 

G&K 

CL 

0 . 0 0 0 1 5  

0.5689 

0 . 6 1 0 9  
0 .6111  

I 
I CDp 

-0.00033 

0.00042 

0 . 0 0 4 1 3  
0 .0 0 1 1 3  

solution based on the Sells mapping. Similarly, the value of CDp predicted 

for the two aerofoils at inviscid subcritical conditions (which should be zero) 

also demonstrates that more accurate solutions are obtained by using the Sells 

mapping. For the Korn Aerofoil No.l, a slightly supercritical flow was obtained 

on the upper surface of the aerofoil but no sign of a shock wave exists in the 

pressure distribution. For this case significantly different estimates of CDp 

are predicted, while the value of C L also differs by nearly 2%. Because the 

G & K mapping does not seem to have converged very well with the recommended 

values it was performed again for 800 iterations, instead of 400. Subsequently 

the results from the inviscid flow calculation show a better agreement with the 
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results originating from the Sells mapping; but the comparatively large change 

in the value of CDp between the calculations using 400 and 800 iterations 

suggest that even the latter may not be fully converged° This exercise demon- 

strates the differences that can occur by using different mapping procedures, 

and the importance of obtaining a well converged result from the mapping program. 

It also seems to indicate the superiority of the Sells v mapping program, and 

accordingly this mapping program was used for all the results shown subsequently 

in this Report. 

In the inviscid G & K program there exist various parameters which can be 

varied by the user° The effect of altering these parameters has already been 

investigated by, for example, Blockley 23 and O'Mahoney et a124. Therefore, the 

corresponding parameters in the FLOW program of the VGK package are not altered 

as their effects have already been studied. In particular, the relaxation 

factors XS, ~ and XPHI, which control the inviscid iterative procedure, and 

the artificial viscosity parameter, EP , are all allowed to take their default 

values. Similarly, consideration is not given to the effect either of altering 

grid size (although the effect of changing from one grid to another is con- 

sidered), or of varying convergence levels. A converged solution is said to be 

attained when the inviscid error level falls below 0.000! on the coarse grid or 

0.00005 on the fine grid, together with a successful test on the viscous con- 

vergence parameter, which should fall below 0.0025 on the coarse grid and 0o00! 

on the fine grid. To determine that the values of 

it is really necessary to examine the variation of 

5°2 Interim steps in the final viscous solution 

C D obtained are accurate, 

C D with iteration. 

The separate effects of the boundary conditions on the aerofoil surface 

and along the wake have been studied. Thus different solutions can be obtained 

from the FLOW program of the VGK package by altering the parameter IVP, and 

these consist of:- 

(a) - IVP = 0 - an inviscid solution; 

(b) - IVP = | - displacement thickness effect is included in the aerofoil 
surface only; 

(c) - IVP = 2 - in addition, the wake thickness effect is included; 

(d) - IVP = 4 - in addition, the wake curvature effects and the curvature 
corrections to pressure on the aerofoil and wake are 
included. 

A sequence of solutions was obtained, using the RAE 2822 aerofoil, to examine 

the various types of solution. Thus solutions were obtained for the following 

cases for each of the conditions (a)-(d):- 
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M e Reynolds No. Transiti0n location 
(based on chord) (in chords) 

(i) 0.676 
(ii) 0.676 

(iii) 0.7 
(iv) 0.725 
(v) 0.725 
(vi) 0.725 

1.06 ° ] 
2.03 ° J' 

2"30 1 
2.3 ° 
2.62 ° 
2.93 ° 

5.76 × 106 

6.5 x 106 

0.11 

0.03 

These range from a subcritical case through to a supercritical one with a 

strong shock. Example (i) has been used previously for other theoretical results, 

and experimental results from the RAE 8ft x 6ft tunnel are available for com- 

parison with cases (ii), (iv) to (vi) (see section 5.4.2). Fine grid solutions 

were obtained for each of these cases, and (iii) was used as an interim step in 

the solution. The under-relaxation parameter ~ was set at 0.15, until a fine 

grid solution was sought for case (v) when the parameter was reduced to 0.075. 

A major problem experienced in the analysis was to obtain a converged 

solution with the wake curvature effects included. It has been explained in 

section 3.3 how this was achieved. For the first solution at M = 0.676 , 

= 1.06 the values of the curvature terms in the wake, <0 and K l , defined by 

equation (56), and expressed in finite difference form, are shown in Fig 7. 

These were evaluated on the coarse grid from a solution in which the curvature 

effects were not included (IVP = 2). This leads to values of o (2) which 

increase very steeply as the trailing-edge is approached, and these are shown 

in Fig 8 by the dotted line. Initially, a scheme was proposed whereby the 

values of ~(2) that were calculated (and setting 0 (2) = 0 at r = I), were 

smoothed by using the smoothing formulae of section 4.3. The values of ~(2) 

resulting from this model are shown in Fig 8 by the dashed line, for a converged 

solution with wake curvature effects included (IVP = 4). However, this scheme 

provided a model which is numerically stable for this example, but the solutions 

diverged for the more severe cases (iv) to (vi). The scheme described in 

section 3.3, which was adopted, led to values of 0 (2) which are also shown in 

Fig 8 by the full line for a converged solution with wake curvature effects 

included (IVP = 4). The value of C L has been altered for a fine grid solution 

from 0.420 to 0.430 by this change in the model. It is perhaps disappointing 

that this change in lift occurs between the two solutions, since it suggests 

that the effects of wake curvature are slightly underestimated by the new 

scheme. The advantage of the new scheme, however, is that it provides solutions 

which have converged for all the test cases (i) to (vi) in roughly the same 

number of iterations whether or not the curvature effects are included. (A fully 

viscous solution for M~ = 0.676, ~ = 1.06 is shown in Fig 15.) 
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An interesting test of the physical plausibility of the mathematical 

model used in the present method is to examine the smoothness of the effective 

displacement surface in the neighbourhood of the trailing edge° We can 

calculate an approximation to the slope of this surface in the following way. 

Over the aerofoil surface, we simply take the value of d y + ~ o For 
dx u 

convenience, the sign of v on the lower surface of the aerofoil is reversed, 

for this exercise onlyo In the wake, it is necessary to calculate first 

the slope of the line 8 = 0 , by integrating K 0 with respect to x 

from the trailing edge (using as starting condition the mean value of the 

slopes of the upper and lower surfaces of the aerofoil at the trailing 

edge) and then to add to this the appropriate value of ~ . An example is 
u 

shown in Fig 9, using converged solutions (with the coarse grid) for the 

aerofoil RAE 2822, at ~= 0.676 , ~ = ].06 ° . Values at the trailing edge 

and at grid points either side of the trailing edge are omitted since they are 

determined only by linear extrapolation. Results are given both for the full 

method and for the version in which curvature effects are not included° These 

results show that there exists a small discontinuity in the slope of the 

effective displacement surface at the trailing edge when curvature effects are 

not included, but that this discontinuity virtually disappears when they are 

included. 

Comparisons of the important features of the fine grid results for the 

four types of solution, with IVP = 0, I, 2 and 4, are shown in Table 2 for an 

example with fully subsonic flow and for an example with supercritical flow 

termination by a shock wave. It is seen that the trailing edge pressure does 

not vary greatly, for a particular value of IVP, as changes occur in the free- 

stream Mach number and incidence; but it does increase significantly in going 

successively from an inviscid calculation (IVP = 0), where C is 
Pt°e. 

predicted to be about 0.35 (but should of course strictly take its stagnation 

point value) to a viscous calculation without any wake effects (IVP = |), 

giving Cpt.e" ~ 0.26 , to either of the viscous calculations incorporating wake 

thickness effects, which give Cpt ~ 0.22 . 
.eo 

The reduction in lift coefficient from its inviscid value is also not 

very sensitive to the free stream conditions. It is interesting to note that 

the greatest reduction (26-28%) is predicted by the first viscous model 

(IVP = I); that the introduction of wake thickness effects then increases C L 

by 5-9%; and that the final introduction of wake curvature effects leads to 
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a further reduction of 2-3%. All these changes are in qualitative agreement 

with similar results obtained in earlier work on this subject 6'8. The 

Table 2 

comparison o ffinvi_sci d and viscous solutions 

C at t.e. 
P 

C L 

Changes in C L 

from previous solution 

Inviscid 

0.336 

0.568 

~* on aerofoil 
surface only 

0.267 

0.421 

-26% 

8" on aerofoil 
and wake 

0.225 

0.441 

+5% 

Full curvature 
effects included 

0.226 

0.430 
(0.420)* 

-2~ 

(-5Z)* 

(a) M = 0.676 , e = 1.06 ° 

C at t.e. 
P 

C L 

Change in C L 

from previous solution 

0.364 

0.922 

m 

0.261 

0.663 

-28% 

0.211 

0.721 

+9% 

0.219 

0.699 

-3% 

.(a) M = 0.725 , ~ = 2.3 ° 

differences that occur in the pressure distribution are shown for the solution 

M = 0.725 , ~ = 2.3 ° in Fig 10. This demonstrates that altering the features 

of the mathematical model in the wake produces a significantly different 

pressure distribution over most of the aerofoil surface. 

Finally, the difference is considered between a converged solution on the 

coarse and fine grids. For M = 0.676 , ~ = 1.06 ° C L changes from 0.435 to 

0.430 on changing from a converged solution on the coarse grid to one on the 

fine grid. For M = 0.725 , ~ = 2.3 ° , C L changes from 0.701 to 0.699; 

and for this example Fig 11 shows how the changes in grid size affect the solu- 

tion on the upper surface where the maximum changes to C occur. 
P 

5.3 Calculation of drag 

With the present method, there are in principle two possible ways of 

estimating the overall drag of the aerofoil, which may be termed the 'near field' 

and 'far field' approaches. In the former, one calculates separately the skin 

friction drag (CDF) by the boundary-layer method and the pressure drag (CDp) by 

* Values using basic formula for wake curvature effects (see Fig 8). 
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integrating the streamwise component of the surface pressure, and then the 

total drag is given by adding the two components: C D = CDT = CDF + CDp . In 

the latter, the drag is obtained in subcritical (or shock-free) flows from the 

momentum thickness of the wake far downstream of the aerofoil, again calculated 
20~ 

by the boundary layer/wake method: C D .... c CDv say. A straight test of the 

self-consistency of the present method is provided by comparing the values of 

C D obtained in these two different ways, for purely subcritical flows. Some 

examples are given below: 

NACA 0012 (Re = 3.5 × 106 ) 

M :0:7 ~=0 
M~ = 0.72 , ~ = 0 
M = 0.65 , ~ = 2 ° 

RAE 2822 (Re = 6 x 106 ) 

M = 0 . 6 7 6  , ~ = 1 . 0 6  ° 

CD F CDp CD T CD V CD V - CDT 

CD V 

0.00700 0.00229 0.00928 0.00976 0.049 
0.00694 0.00244 0.00938 0.00984 0.047 
0.00703 0.00230 0.00932 0.00984 0.053 

0.00610 0.00199 0.00809 0.00833 0.029 

From this table it will be seen that the values of C D predicted by the 

first method (CDT) are slightly smaller than those predicted by the second 

method (CDv ~ but that the discrepancy does not exceed about 5%. Since the 

estimates of CDF and CDv are considered more reliable than that of CDp , 

it is probable that the fault lies with the calculation of CDp To put the 

matter in perspective, an error in CDp of 0.0005 for NACA 0012 could be due 

to a mean error in C of 0.015 over the last 10% of the chord (equivalent to 
P 

an error in C of 0.03 at the trailing edge diminishing linearly to zero at 
P 

x/c = 0.9)° Now this neighbourhood is one in which the mathematical model used 

in the present method (based as it is on the assumptions that the conventional 

boundary-layer approximations are valid) is likely to be least reliable and the 

implication of the above discrepancy is that the interaction in this region is 

not represented sufficiently accurately. In fact, as will be seen in section 5.4 

the method does appear to overestimate C at and near the trailing edge by an 
P 

amount of this order (judged by comparison with experimental measurements). It 

should however be emphasised that these discrepancies in drag are quite small, 

and that in few (if any) of the other methods for this problem is it possible to 

make such a check at all - either because the accuracy of the pressure calcula- 

tion near the leading edge is poor (as in Refs 6 to 8), or because no calcula- 

tion of the wake development is made (Refs 9 to I0). 

When the flow is supercritical, and shock waves are present, the problem 

of drag estimation becomes more complicated - and controversial. It is still 
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possible to use the first ('near field') approach, and calculations of CDT 

certainly show the expected increase in drag (at least qualitatively), as we 

shall see later. To apply the second ('far field') approach, it is necessary 

to add to the 'viscous' drag, CDv, an estimate of the wave drag (CDw , say). 

A method for doing this has been suggested by Murman and Cole 38, which requires 

a knowledge of the Mach number distribution upstream of the whole length of any 

shock waves that may be present. Although it would in principle be straight- 

forward to apply this technique to the present method, this has not yet been 

implemented*. But it must be emphasised that the total drag arrived at in this 

way (CDv + CDw) would not in general agree with the alternative estimate CDT , 

mainly because of the 'non-conservative' difference scheme used in the present 

method. It remains uncertain which of these two estimates would show the 

better agreement with experiment; or whether it might be better still to use a 

'conservative' difference scheme 4 for the inviscid part of the calculations 

(ef Ref 39). 

5.4 Co_q_~arison with experiments 

5.4.1 NACA 0012 

For this aerofoil a range of fully viscous solutions (IVP = 4), for s 

fine grid, was obtained from the VGK program (using the Sells' mapping) at 

five ~ifferent angles of incidence. The principal features of the results for 

0 °, 2 ° and 4 ° = are summarized in Table 3. A series of experiments on the 

NACA 0012 aerofoil was performed in the 36in × ]4in transonic wind tunnel at 

NPL, Teddington during 1967-1968 25. These have been used to make comparisons 

with the present theory. The Reynolds number in the experiment varied between 

3 x ]06 (at M = 0.6) and 3.7 × 106 (at M = 0.8). For the theoretical 

results a fixed value of Re(= 3.5 × 106) was taken and transition was also 

fixed, at 0.05 chord on both surfaces. O'Mahoney et al have also used these 

experimental data to compare with results from the inviscid G & K program. 

In Fig ]2 the variation of the lift coefficient, C L , with M is shown 

for both theory (inviscid and viscous) and experiment. It is seen that there 

is a reduction in lift for the viscous solutions, compared to the inviscid 

solutions, which varies between I]% and ]7% over the range of solutions con- 

sidered. The values of C L predicted by the viscous theory are still 

* A version of this technique has been used with the RAE 'viscous' TSP method 8,29 
and has been found to yield sensible results. 
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= 0 ° 

Table 3 

Viscous solutions for NACA 0012 

M C L CDT Local (M)ma x 

0.7 0.0004 0.00928 0.935 
0.72 0.0004 0°00938 0.979 
0,74 0.0004 0.00951 1.031 
0.76 0.0003 0.01009 1.010 
0.78 0.0003 0.01263 1.163 
0.80 0.0005 0.01799 1.217 
0.81 0.0005 0.02183 1.238 
0,82 0.0004 0.02640 1,258 

= 2 ° 

0.65 0.302 0.00932 1.009 
0.67 0,311 0.00950 1.069 
0.69 0.324 0.00995 1.136 
0,71 0.338 0.01154 1,199 
0.73 0.354 0.01467 1.252 
0,75 0.369 0.01936 1.296 
0.76 0.375 0.02228 1.315 
0,77 0.380 0.02546 1.332 

= 4 ° 

0.57 0.548 0.00962 1,089 
0.59 0.560 0.00988 1.162 
0.61 0.574 0.0]046 1,218 
0.63 0.591 0.01199 1,254 
0.65 0.608 0.01485 1.295 
0.67 0.628 0.01909 1.335 
0.68 0.637 0.02231 1.353 
0.69 0.647 0.02553 1.371 

considerably higher than the uncorrected experimental results. However, the 

statement made in Ref 25 that "the tunnel conditions are close to those giving 

blockage-free and lift-interference-free conditions" is now believed to be 

incorrect; according to 'classical' wind tunnel interference theory 36 it is 

in fact impossible that both parts of this statement can be simultaneously true. 

By assuming that the conditions are indeed blockage-free (for which there is 

substantial experimental confirmation), Blockley and Hodges 37 have deduced values 
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for the standard lift-interference parameters, 60 and 61 (-0.088 and 

+0.068) and in this way corrections to the experimental values of ~ and C L 

may be readily obtained. The effect of these corrections to the experimental 

values of C L is shown in Fig 12 by the vertical arrows, and it is seen that 

reasonably good agreement between theory and experiment is now achieved. The 

theoretical values of C L are still slightly greater than the experimental 

values, but the discrepancy does not exceed about 5%, which is probably within 

the limits of accuracy of the experiment (bearing in mind the uncertainty of 

the interference corrections), as well as those of the present theory. 

The variation of the total drag coefficient, CDT (of section 5.3), with 

M is shown in Fig 13. At zero incidence reasonable agreement is obtained 

between theory and experiment over the whole Mach number range 0.7 to 0.8, 

including both subcritical and supercritical conditions. The small discrepancy 

when the flow is subcritical would be reduced if CDT were replaced by the 

viscous drag coefficient, C V (shown by the dotted line in Fig 13). Experi- 

mental results are also shown for nominal values of ~ of 2 ° and 4 ° , together 

with theoretical results, both for these same values of ~ and also at 

= I°75 ° and 3.5 °, which give values for the lift coefficient close to the 

corresponding (uncorrected) experimental values. Comparing the calculated 

. 2 ° 4 ° values of CDT at ~ = I 75 ° and 3.5 ° with those measured at e = and 

respectively we note that for subcritical conditions the theory appears to under- 

estimate the drag by an amount that increases with e At least part of this 

discrepancy can be explained by two possible defects in the experimental tech- 

nique, namely 

(a) for subcritical conditions the roughness band used to fix transition 

(at x/c = 0.05) at zero incidence may lead to 'over-fixing' at higher 

values of ~ , and hence cause a spurious increase in measured drag. 

40 
(b) it has been suggested by Thompson that the general tendency that 

has been noted for experimental measurements of drag, made by the wake 

traverse technique under nominally two-dimensional conditions, to increase 

more rapidly with C L (or ~) than is predicted by any of the accepted 

theories, may be partly due to a three-dimensional lateral convergence of 

the streamlines at the edge of the boundary layer on the upper surface of 

the model caused by the growth of the boundary layer on the side walls of 

the wind tunnel, particularly if the aspect ratio of the model (1.4 in 

this case) is low. 



38 

At supercritical conditions the general agreement between theoretical and 

experimental values of C D appears to be more satisfactory. However, it must 

be pointed out that if the theoretical drag level for subcritical conditions were 

adjusted to agree with experiment (or vice versa), then the increase in drag 

with Mach number when shock waves appear would definitely be overestimated by 

the theory (even at ~ = 0) o This phenomenon has been observed on a number of 

other aerofoils, and must therefore be considered a weakness of the present 

method, at least in its current form. (See the remarks at the end of section 

5.3.) 

A final point of interest is the influence of the boundary layer on the 

position of the shock wave occurring on the upper surface for supercritical 

flow. A comparison is shown in Fig 14, for M = 0.82 and zero angle of 

incidence, of the pressure distributions calculated with and without boundary 

layers and from an experiment° (Solutions for the fully viscous method 

(IVP = 4) have been obtained from the VGK program only up to a value of 

M of 0.82, although, judging by the level of the shape factor for the 

boundary-layer profile, separation has not occurred at this Mach number, and 

further solutions at higher Mach numbers could easily be obtained.) Note that 

the effect of the rapid growth of the boundary layer (shown inset in Fig 14) 

due to the pressure rise through the shock is to cause a marked rounding in the 

Mach number (or pressure) distribution, both upstream and downstream of the 

shock. Because of this, it is difficult to define the position of the shock 

wave as precisely as for the inviscid solution. However, it would seem that the 

shock position is further forward by about 2% of the chord for the viscous solu- 

tion. A similar result occurs for solutions at other Mach numbers. 

5°4°2 RAE 2822 

The theoretical solutions obtained from the VGK program for the RAE 2822 

aerofoil have already been listed in section 5.2° The principal features of 

the results are summarized in Table 4. Experimental results are available for 

a model of 610mm (2ft) chord spanning the 8ft × 6ft transonic wind tunnel at 

RAE 26o A number of experimental results were obtained covering a range of 

Mach number and angle of incidence at Reynolds number up to 6.5 × 106. Boundary- 

layer transition was fixed by bands of ballotini, of 1.2 mm (0.0002c) diameter 

at M = 0.676 and of 2.5 mm (0.0004c) diameter at M = 0.725. The angle of 

incidence in the experiments has been adjusted to allow for tunnel interference 

effects (and called the effective angle of incidence) and no blockage correction 
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was considered necessary. For the following examples comparisons were made at 

a given effective angle of incidence rather than at a given lift coefficient. 

The main features of the experimental results are included in Table 4. 

Table 4 

Viscous solutions from VGK rp..r~gram for RAE 2822 aerofoil and experimental values 

M 

0.676 
0.676 
0.725 
0.725 
0.725 

f~ 

1.06 ° 
2.03 ° 
2.3 ° 
2.62 ° 
2.93 ° 

C L 

0.431 
0.590 
0.699 
0.759 
0.815 

VGK theory 

CD T 

0.0081 
0.0083 
0.0119 
0.0143 
0.0177 

Local (M)ma x 

0.921 
1.077 
1.181 
] . 2 ] 2  
1.249 

C L 

0.566 
0.658 

0.743 
0.802 

Exper" ent 

C D 

0.0085 
0.0107 
0.0127 
0.0175 

Transition 
position 
(x/e) . . . .  

0.11 
0.03 
0.03 
0.03 

Comparisons of theoretical and experimental distributions of C are 
P 

shown in Figs 16-19. For the two solutions at M = 0.676 the boundary layer 

transition position was taken to be at 11% of the chord, and there is a notice- 

able disturbance to the theoretical pressure distribution in this region 

(Fig 15)*, due to the discontinuity in 6" assumed at transition. This dis- 

turbance is intensified for the solution at ~ = 2.03 ° (Fig 16), since the flow 

is slightly supersonic in the region of boundary-layer transition and evidence 

of a weak shock exists in the theoretical pressure distribution. For the three 

solutions at M = 0.725 (shown in Figs 17a, 18 and 19) the shape of the C 
p 

curves obtained from the theoretical results varies smoothly with incidence. 

In general, the main differences that occur between the experimental measure- 

ments and the theoretical results are (i) a slightly more positive value of 

Cp on the lower surface for the theoretical values, (ii) a different slope of 

the pressure distribution along the forward part of the upper surface ahead of 

the shock (this may be partly influenced by different disturbances at transi- 

tion), (iii) the shock position is further back for the experimental values, 

by about 10% of the chord, (iv) a greater slope of -C for the experimental 
P 

values along the rear half of the upper surface, and (v) the trailing edge 

pressure is slightly overestimated by the theory in all cases. 

* No experimental measurements are available at this particular condition. 
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It is interesting to note that the change in wind tunnel blockage which 

would be required to improve the agreement between the measurements and results 

from the VGK program, for lower surface values of the pressure, is about 0.008 

in free-stream Mach number. It would not be unreasonable to suggest that such 

a blockage correction could be undetected in experimental work. The solution 

for M 0.725 , ~ = 2.3 ° = , shown in Fig 17a, is therefore reconsidered, and 

a solution from the VGK program sought for M = 0.733 , ~ = 2.3 ° , and this is 

shown in Fig 17b. The predicted value of C L is 0.709, and C D = 0.0141. There 

is now very good agreement over the lower surface between theory and experiment. 

Two features which have also been improved in a comparison of the upper surface 

values is (i) the slope of the pressure distribution before the shock, and 

(ii) the position of the shock, which now agrees well with the experiment. 

However, there is a greater discrepancy between the actual levels of pressure on 

the upper surface forward of the shock. This feature could be improved if the 

angle of incidence in the theory were decreased slightly. A further considera- 

tion to take into account is the effects of transition fixing in the experiment, 

by allowing for an increment in momentum thickness at transition in the theory. 

A solution from the VGK program was therefore obtained for M = 0.733 , 

= 2.3 ° , with an increase of 0.0002 in momentum thickness at transition on 

both the upper and lower surfaces. The value of C L is 0.689 and C D = 0.0144. 

The major change in the pressure distribution, apart from near to transition, 

occurred on the forward part of the upper surface, with the shock position moving 

back by about 3%. 

It may well be possible to obtain a very good agreement between theory 

and experiment for pressure distribution and C L by allowing small changes in 

the free-stream Mach number and incidence from those quoted as the experimental 

values. This exercise is not proceeded with further, since the current version 

of the VGK program does not contain the effects of a 'quasi-conservative '4 

finite difference scheme for the treatment of shocks. This additional feature 

would need to be included in the theory for a proper evaluation exercise to be 

undertaken. 

5.4.3 Korn No.| 

This aerofoil was designed by the inviscid hodograph method of Garabedian 

= = 0 ° = and Korn 3 to achieve a shock-free flow at M 0.75 , e with C L 0.67 ° 

A large number of new* experimental results for this aerofoil have been obtained 

* Earlier experimental results, at higher Reynolds numbers, were obtained at 
NAE, Ottawa: see Ref 35. 
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Table 5 

Viscous solutions from VGK program for Korn No.l aerofoil 

M 

0.76 
0.76 
0.76 
0.76 
0.76 
0.76 
0.76 

C~ 
C L CD T 

0.00 

0.25 ° 
0.5 ° 
0.75 ° 
1 . 0  ° 

1.25 ° 
1.5 ° 

0.444 
0.498 
0.554 
0.607 
0.657 
0.702 
0.744 

O.OlOl 
0.0105 
0.0115 
0.0135 
0.0163 
0.0195 
0.0232 

Local M 
max 

1.145 
1.168 
1.190 
1.208 
1.225 
1.242 
1.258 

recently by ARA 27, in their 18in x 8in transonic wind tunnel. These tests were 

carried out over a range of Mach numbers from 0.5 to 0.8, usually at a Reynolds 

number of 6 × 106 with transition fixed at 7% of the chord. A correction to the 

incidence has been made to allow for tunnel interference effects, and no blockage 

correction was considered necessary. For the purposes of comparison with experi- 

ment a series of solutions has been obtained from the VGK program at a Mach 

number, M~ = 0.76 (slightly above the design value) over a range of incidence, 

from ~ = 0 ° to 1.5 ° , at the same Reynolds number and transition position as 

in the experiments. The lift and drag coefficients and the maximum local 

Mach number are given in Table 5. 

Experimental results are available at M = 0.76 (approximately) over a 

range of incidence. At ~ = 0.62 ° (Fig 22) the experimental results have the 

distinctive feature of a marked double shock system on the upper surface. At 

higher incidences (Figs 20 and 21) this shock structure disappears and is 

replaced by an approximately constant value of C on the forward half of the 
P 

upper surface followed by a strong shock. At lower incidences the double shock 

system is present in a modified form with a similar distribution of C (Fig 23). 
P 

These features are present in the experiments, at similar incidences, over a 

range of Mach numbers from 0.75 to 0.77. Experimental results are available at 

M = 0.76 for ~ = 1.66 ° , 1.17 ° and 0.71 ° with C L = 0.708, 0.603 and 0.496 

respectively. These seem to be directly comparable with solutions from the 

VGK program at ~ = 1.5 ° , 1.0 ° and 0.5 ° respectively, since in each case the 

lower surface values of C are in excellent agreement, even though the values 
P 

of C L are slightly different. The comparisons are shown in Figs 20 to 22. 

For the solution at the highest incidence (Fig 20) there is reasonable 

agreement over the upper surface, and the shock position is also similar. 
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However, the slopes of C over the rear part of the upper surface show a simi- 
P 

lar difference between theory and experiment as for the RAE 2822 aerofoil, as 

does the trailing edge pressure. As the incidence is decreased so the solution 

obtained from the VGK program varies in a smooth manner, and no double shock 

system appears for ~ = 0°5 ° (Fig 22). A discussion on the effects of tunnel 

interference is given in the following section (5.5). At lower incidences 

better agreement in values of C on the upper surface is again apparent. In 
P 

Fig 23 the theoretical results from the VGK program for M = 0.76 , ~ = 0 are 

compared to the experimental results obtained at ~ = 0.23 ° with C L = 0.408. 

On this occasion there is a larger difference in incidence between theory and 

experiment, so that the pressure distributions are not matched so well on the 

lower surface. However, better agreement is obtained on the upper surface than 

in Fig 22, and results show that a further slight decrease in incidence, in the 

theory, would provide better agreement, although of course there would then be 

a bigger difference on the lower surface. 

5.5 Comparison with other viscous theoretical results 

In this section the results from the small perturbation RAE Transonic 

Aerofoil Program (VISTRAN) 7'8 are compared to results from the VGK program. 

There is little doubt that, in principle, the present method should produce the 

more accurate solution: the mathematical models used to allow for viscous effects 

are essentially the same in both methods, but the inviscid part of the VGK method 

is nominally exact, while several approximations are involved in the TSP method. 

The Korn No.| aerofoil is used as a test aerofoil. In section 5.5.1 some free 

air results are considered. First, solutions are compared for a low value of 

the free-stream Mach number (0.5); and then comparisons are made for two angles 

of incidence at a higher (supercritical) Mach number, 0.76. 

The VISTRAN program has an option for computing flow past an aerofoil in 

a solid, porous or slotted wind-tunnel,28'29 and in section 5.5.2 this facility 

is used to examine the differences between theory and experiment noted in the 

previous section. 

5.5.1 Free-air results 

Experimental results for the Korn No.! aerofoil exist at M = 0.5 over 

a range of incidence, all for Re = 4 × 106 . As a typical example an experi- 

mental result at ~ = 2.74 ° was considered, for which C L = 0.621 . A solution 

from the VGK program at ~ = 2.74 ° provides very good agreement with the 

experiment for the lower surface values of C , but produces a higher peak value 
P 
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of -C on the upper surface (see Fig 24). The predicted value of C L is 
P 

0.674. As was noted with an earlier example, if the theoretical value of the 

incidence is decreased then this would produce a better agreement in C values 
P 

on the upper surface but a poorer agreement on the lower surface. However, as 

the main purpose is to compare results with the VlSTRAN program a solution from 

this program was obtained at M = 0.5 , ~ = 2.74 ° , and this is also shown in 

Fig 24. The predicted value of C L is 0.643. Over the lower surface there is 

almost exact agreement in the C values between both theories and the experi- 
P 

ment. However, on the upper surface there is better agreement between the 

viscous TSP theory and experiment, which is perhaps fortuitous in view of the 

approximation in the theory. 

Further examples on the comparison between solutions from the VISTRAN 

and the VGK programs are considered for the situation in which there is super- 

critical flow. Thus a solution from the VISTRAN program was obtained for 

M = 0.76 , ~ 1.5 ° = , for which C L = 0.769. This is included in Fig 20. 

The solution at a lower incidence, ~ = 0.5 ° , is also included in Fig 22 (for 

which C L = 0.551). It is seen that reasonable agreement occurs between the 

two theories. This agreement is to be expected as the inviscid TSP method 

depends upon assigning certain values to various parameters, and these have 

been determined mainly through comparison with inviscid results from the 

original G & K program over a range of conditions, for a number of aerofoils. 

These aerofoils have included the Korn No.| aerofoil*. 

The G & K method seems to be more sensitive to local changes in aerofoil 

ordinates and the local effects of boundary layer transition. For example, in 

the low Mach number solution, shown in Fig 24, it is seen that the disturbance 

to the peak value of -C on the upper surface, for results from the VGK 
P 

program, is due to the occurrence of boundary layer transition at 7% of the 

chord. 

5.5.2 Results with allowance for tunnel interference 

The inviscid TSP program developed by Albone g~ aZ 5 for calculatin~ flow 

flow past an aerofoil in unconfined flow, has been modified by Catheral128 

It should be noted that comparison between the inviscid form of the two 
theories (TSP and G & K) for the same aerofoil are given in Ref 23, Part II, 
section 4.8. These show a similar degree of agreement. For example Fig 20 
of the present Report should be compared with Fig 48 of Ref 23, (for 
M = 0.75 , C L = 0.63). 
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to take account of boundaries above and below the aerofoil. In this manner the 

effect of the wind tunnel walls on the flow can be modelled. The tunnel walls 

can be either solid, porous or slotted. (This problem has also been investigated 

by Murman39) o Test aerofoils used by Catherall included the Korn No.l aerofoil 

and the NACA 0012 aerofoil. The results demonstrate that for NACA 0012 at 

M = 0.75 , ~ = 3.07 ° a strong shock occurs for free-air conditions (see Fig 6 

of Ref 28); and this flow structure is only slightly modified by the presence 

of the tunnel walls (slotted tunnel walls were considered). However, for the 

Korn aerofoil at a lower angle of incidence, ~ 0.5 ° = , with M = 0.75 , the 

effect is much greater and the shock structure is substantially modified from 

free-air conditions, with a double shock occurring when the presence of the 

tunnel walls is allowed for (see Fig 7 of Ref 28)° 

There exists a version of the VISTRAN program 29 in which the effect of 

tunnel walls is included in a similar manner to the inviscid version of the 

TSP program. By using this program it is possible to compare results directly 

with uncorrected experimental data, and hence to ascertain the differences 

between theory and experiment. The input parameters to the tunnel interference 

program necessary to specify the wind tunnel parameters are H , F and P 

where H is the tunnel half height in chords, F is a slot parameter and P 

is a porosity factor. This last parameter needs to be determined empirically, 

and the precise value is often difficult to establish. For the purposes of 
• 27 

comparison with the AlIA experlments , values of 1.8, 0oi|55 and 0.4 were taken 

for H , F and P respectively; the definition of the first two is unambigu- 

ous but the choice of P (corresponding to B/P = 1.6) is somewhat arbitrary. 

The tunnel interference version of the VlSTRAN program should strictly be 

used at the geometric incidence, which for the case shown in Fig 25 (corrected 

= 0.71 ° ) is 0.86 °. However, in the previous work an attempt has been made to 

match the solutions from the VGK program and experiment by matching lower surface 

values of the pressure rather than using the effective incidence of the experi- 

mentso It has been seen that it is necessary to reduce the effective incidence 

by about 0.2 ° in order to achieve this match. Initially, a solution from the 

tunnel interference VlSTRAN program was obtained at e = 0.75 ° . This solution 

produced a nearly constant value of Cp on the forward part of the upper 

surface followed by a single shock. But as the maximum value of -C on the 
P 

lower surface was less than the experimental value it would seem necessary to 

reduce the incidence slightly in order to make a reasonable comparison. Accord- 

ingly, a solution at ~ 0.6 ° = was obtained, and this is shown in Fig 25. (The 

predicted value of C L is 0.487.) 



45 

In order to compare with a free-air result from the VISTRAN program a 

solution is obtained from that program for ~ = 0.2 °, which leads to good agree- 

ment in pressure on the lower surface between the free-air and the tunnel inter- 

ference results (see Fig 25). However, the upper surface pressure distribution 

also matches quite well, and thus it appears that the additional effects* of 

tunnel interference are small. (A solution from the VGK program at ~ = 0.25 ° 

shows similar features to the free-air result from VISTRAN.) For this one 

example, the results from VISTRAN show that, effectively tunnel corrections are 

equivalent to a reduction in ~ of about 0.4 ° , in order to achieve agreement 

with C on the lower surface when comparing results in a wind tunnel to those 
P 

in free-air. This is consistent with the reduction of 0.36 ° , considered in 

Fig 22, in order to obtain agreement between the experiment and the VGK theory. 

It has already been mentioned that there is some uncertainty about assigning a 

value to the porosity factor P , and if it were decreased then the tunnel 

interference effects would be larger. This exercise has demonstrated that 

differences between the VGK theory and experimental results for this aerofoil 

probably cannot be accounted for by tunnel interference effects. It is a 

possibility that including a conservative finite difference scheme in the VGK 

theory would produce a better agreement with experiments. 

It might be possible to modify the VGK program to calculate flow past an 

aerofoil in a tunnel as well as in free-air. Indeed this problem has been con- 

sidered recently for the inviscid situation by Kacprzynski 31. However, because 

of the difficulty of representing the effect of tunnel walls in the computing 

plane of the present model, it is possible that the Sells' transformation is not 

ideal and th@t a better approach would be to use a rectangular mesh where the 

potential equations are solved with interpolated boundary conditions. For the 

present an estimate of the tunnel interference effects can only by obtained by 

first comparing the free-air version of the VISTRAN program to the VGK results, 

and then using the VISTRAN program to estimate the tunnel interference effects. 

6 CONCLUSIONS 

The aim of this work has been to develop a computer program (VGK) based on 

modifications to the inviscid Garabedian and Kron computer package for calculating 

steady two-dimensional viscous flow past a lifting aerofoil at transonic speeds, 

which will supersede the small perturbation RAE Transonic Aerofoil Program as 

* ~e the curvature of the flow induced by the walls is small compared with the 
change in effective angle of incidence. 
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far as free-air calculations are concerned° The inviscid method adopted was 

based on the most accurate numerical model available at the inception of the 

work. (Subsequently Bauer et al 4 have produced a sequel to the original 

Garabedian and Korn program which incorporates various alternative schemes for 

the treatment of shocks° These have not been included in the initial version of 

the VGK program). In order to calculate the turbulent boundary layer an integral 

method was preferred to a differential one, mainly because of the iterative 

approach adopted in the inviscid-viscous interactive scheme, which requires a 

computationally efficient method for the Boundary layer calculations. However, 

the lag-entrainment method has shown an accuracy in comparison with a wide range 

of experiments which is at least as good as most finite-difference methods. 

A user's guide to the VGK program for its operation on an ICL 1906S com- 
I! 

purer is available o The running time for a particular calculation to converge 

depends largely on the starting conditions prescribed. However, a typical coarse 

grid calculation might take the order of 100 iterations to achieve the standard 

level of convergence, with a boundary-layer calculation performed every five 

iterations and an under-relaxation factor of 0.15. Further refinement on a fine 

grid to a higher level of accuracy might require a further 100 iterations. The 

time required for the former calculation is about two minutes and for the latter 

about five minutes. 

The mathematical model, as represented By the VGK program, should describe 

the viscous flow past a lifting aerofoil as well as can Be obtained from any 

theoretical model which is based essentially on representing the viscous effects 

as a disturbance to the inviscid flow, rather than solving the full Navier-Stokes 

equations in some manner. The features which are not described adequately by 

the present approach relate to conditions of high free-stream Mach number or 

large angles of incidence. Under these conditions flow separation can occur near 

to the trailing edge or at a shock, which is not allowed for in the turbulent 

boundary layer model. Also the treatment of shocks and of the interaction of 

the shock wave and boundary layer for an unseparated flow is not properly 

represented in the VGK model; nor is the flow in the immediate neighbourhood of 

the trailing edge° Both these problems have been discussed recently by 

Melnik et a/33'34, who show how 'triple deck' solutions in these regions can be 

obtained. Any further major refinements to the present model would seem to lie in 

incorporating a better treatment of these features. 

These are minor ways in which the present VGK model could be enhanced. The 

smoothing routine in the region of the trailing edge and the smoothing of the 
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curvature effect in the wake could be improved, although these are not likely to 

alter the present results greatly, but undoubtedly some very local smoothing 

routine is required near to the trailing edge region because of the inviscid 

viscous-interactive scheme that is adopted. Possible ways of increasing the 

rate of convergence of the iterative procedure in the inviscid-viscous interactive 

scheme have been shown to be of use for specific examples. Although it has not 

been possible to produce a scheme which is completely satisfactory for the general 

situation, more work on this topic could produce a saving in computing time. 

Finally, it is intended to alter the present model to allow for the treatment of 

flow past aerofoils with a blun~ trailing edge, and to include alternative schemes 

for the treatment of shock waves. 
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Appendix A 

APPLICATION OF THE KUTTA CONDITION IN THE INVISCID SCHEME 

At the end of every flow field sweep a new value for ~ is defined, 
mp,j 

where mp = mm + 1 , which is used to determine a solution along the radial line 

i = mm (see Fig I). Thus at the end of the (k - l)th flow field calculation 

o(k-l) = ~(k-l) + r~k-l) (A-l) 
mp,! 2,1 " 

At the end of the subsequent flow field sweep 

~(k) + r 2  k ) (  ( A - 2 )  
mp,l = 92,1 u 

The Kutta condition gives ~e = 0 at the trailing edge, and from (13) we have 

~e = sin ~ . (A-3) 

By applying this condition in finite difference form, we obtain 

! f~(k)  _ ~ (k)~ _ 
268 ~ mp,l m,l] sin ~ = 0 . (A-4) 

From (A-2) we have 

r2k)C = ~(k) .(k) + 26e sin ~ (A-5) 
m,l - ~ 2 , 1  U 

The current value of ~2,1 

from (A-I) 

can be determined from its previous value. Hence 

r=k)< = r=k-l)( + ~(k) _ ~(k-l) + 26e sin a (A-6) 
m, 1 mp, 1 U U 

A relaxation factor sr is introduced so that the actual equation used in the 

iterative procedure to update F 0 is given by 

( ( 1 /~(k)  (k - l )  
r 0 k )  = r 0 k - i )  + s r - * + s i n  ( A - 7 )  

rap, 1 
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It is usual to set sF = | , which in fact is equivalent to using an over- 
1 

relaxation factor of 260 [This looks like an accidental error in the program 

of Ref 3, but apparently causes no trouble.] 
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Appendi x B 

FORMULAE FOR THE COEFFICIENTS IN THE FINITE DIFFERENCE EQUATIO ~ ON 
THE CIRCLE r = I 

The region in which ~ 4 e $ 2~ is considered first. If the governing 

equation is elliptic, ~ (N2 _ a 2) < 0 , then ¢e8 can be represented by 

central differences; 

(6e)2~ee = ~ i + l , l  - 2~i ,1  + ~ i - l , l  (B- l )  

and the coefficients a~l b¢l~ , C~l and d. of equation (37) are determined 
' 1,1 

in terms of A, B, C and D (equation (36)) by the relationship 

= 0 a. 
1,I 

bi, I = - 2A - 2C (6e)2 
(6r) 2 

2 
c-,i I ffi 2C (88) 

(6r) 2 

2 

di,l (6e)2D - A(~i+|,j + ¢i-I,I ) - 2C ro(6e) = o--cos (e + ~) 

2 
(6e) 3(I) 

- B(69)2[T (2) - sin (8 + ~)] - 2C 6~ 

(B-2) 

where the variables A, B, C, D, T (I) and T (2) can be evaluated at mesh points 

around the circle r = | . If the governing equation is hyperbolic~ ie 

(~2 _ a 2) > 0 , then ~ee is represented by backward differences: 

(6e)2~ee = ( ~ i , l  - 2~ i -1 ,1  + ¢ i -2 ,1  ) + ¢ (~ i ,1  - 3~ i -1 ,1  + 3~ i -2 ,1  - ~ i -3 ,1  ) 

with a similar expression for 
er ' 

(B-3) 

where 0 < e = (I - %6e) < I . (B-4) 

The coefficients a.l,1, bi,1' ci,1 and d.z,l are given by 
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a °  
i ~ I  

Do 
a.)l 

C° 

d~ 

(2 - %de)A - 2C (~e)-~2 
2 (dr) 

2c (6e )2  
(6 r )  2 

(~e)2D + A{(5- 3%de)@i_1, ! - (4 - 3%de)@i_2, I + (I - %d0)@i_3j } 

- 2C (de)2 
d ~  cos (e + a) - ( d e ) 2 B [ r  (2) - s i n  (e + ~)] 

2 
- 2C (~e) ( I )  

dr z 

> (B-5) 

Similar equations apply if 0 ~ e ~ ~ o If the equation is elliptic then 

the suffix i " | is replaced by i + I etc. If the equation is hyperbolic 

then as well as replacing the suffix i - I by i + ! , we also replace ~e 

by -de and % by -% . 
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A_p_pendix C 

SOLUTION AT THE TRAILING EDGE 

At the trailing edge point B + 0 , and from equation (8) w ÷ 0 , and 

thus ~ and ~ , defined by (10), both tend to infinity unless the terms in 

square brackets tend to zero. In inviscid flow ~ = 0 everywhere on the aero- 

foil surface, and hence ~ = 0 at the trailing edge, while application of the 

Kutta condition (]3) ensures that 

~0 ÷ sin ~ for r = I , as e + 0,27 (C-I) 

so that ~ may be finite at the trailing edge. Unless the aerofoil has a 

cusped trailing edge, N does in fact tend to zero, so there is no difficulty 

in determining the coefficients in the governing partial differential equation 

when expressed in finite difference form at the trailing edge (ie ~ = ~ = 0). 

In the viscous flow, although ~ is non-zero over the aerofoil surface, we have 

the condition (41) that T (I) + 0 , and that ~ numerically approaches a finite 

limit at the trailing edge. Also ~ does not tend to zero, although the Kutta 

condition ensures that (C-I) holds. Therefore the previous numerical scheme is 

not applicable for the viscous flow. However, this difficulty can be overcome 

by a different procedure. Normally the co-ordinate transformation is introduced 

before the governing partial differential equation is expressed in finite 

difference form, but for the viscous flow this process is reversed. This is 

because in the physical plane the finite difference equation is properly defined 

at the trailing edge point, and is given to a sufficient approximation by 

(a 2 - u2)~ + = 0 (C-2) 
xx ~yy 

~ssuming that v ~ u). A diagram of the situation in this region, both in the 

physical plane and in the computing plane is shown in Fig 6. 

It now remains to demonstrate how this new scheme can be included in the 

original computing scheme. In the sweeping system adopted it is necessary to 

obtain a solution of (C-2) in finite difference form only at the mesh point B 

(i = mm , j = I). To a first approximation we may suppose that the trailing 

edge angle of the aerofoil is small, and thus S B ~ S C , so that a possible 

approximation of ~xx is 
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2 2 2 
Cxx = (S A + SB)S A ~A+ -SASB CP+ + (S A + SB)S B CB (C-3) 

and Cyy is defined by 

] , 
- l ~Q --S-2. ~p + 7 ~R Cyy $2 + (C-4) 

with ~R CR + r] defined to allow for the jump in ~ at the trailing edge. 

The positions of Q and R are arbitrary, although we have already defined 

PQ = PR (=S) , and for further convenience they are specified such that 

S 2 = SAS B , and thus in the computing plane PQ = ~/~-~r~e . Finally, the value 

of ~ at Q can be specified by interpolation in terms of its values at B, 

A+ and E , which are neighbouring points in the computing plane. (A similar 

interpolation is required for CR ") Linear interpolation both in the 

r and e directions gives 

¢Q ffi ~I~E + ~2¢A+ + ~3~B } 

~R = ~|¢D + ~2~A + ~3¢C 
m 

(c-5) 

I 

= (- I + ¢f72 + vTT"ff)[ 

where ~2 = (I - ~ I (C-6) 
= (l 

and % is defined by 

6e n 
- . (c-7) = 6r m 

Thus equation (C-2) can now be expressed in finite difference form using 

the values of ~ at eight mesh points for j = 1 and j = 2 in the 

r-direction and i = 1,2,m and mm in the e-direction. If the original 

numerical scheme had been employed at the trailing edge, then values of ~ at 

j = 2 for i = 2 and i = m (~e at D and E) would not be used. In the 

physical plane this means that information would be used only at points in the 

x-direction, and thus the basic equation would not be represented properly in 

finite difference form in the computing plane. 
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Appendix,.,,p 

SECOND-ORDER TERMS IN THE WAKE-THICKNESS BOb~DARY CONDITION 

In order to determine ~mp,j to 0(~e) 2 we need to know the jump in 

~0e across e = 0,2~ . (See equation (45).) A sufficient approximation to 

this may be found by considering the small-disturbance approximation to the 

basic equation for ~ , given by equation (5). Along e = 0 , the velocity 

component ~ , and all derivatives with respect to e are neglected, and 

equation (5) becomes, with the aid of (6), 

2 + + = v r . 
a ee rCr rr (c-i) 

Hence 

where M 2 = v2/a 2 

M2)r 2 ~ rM B 
Cee = - (I - ~rr- \ + -  rCr 

is the approximate local Mach number, and 

(C-2) 

A({e8) =- (!- M2) r2o (3) - (1 + rM~Br) ro(2) (C-3) 

with o(2) and o(3) defined by (30) and (50) respectively. 

An evaluation of the right-hand side of (C-3) in a typical example showed 

that its value did not exceed 0.04, and since, for the fine grid, 

½(88) 2 ~ 8 x 10 -4 , the value of the last term in (45) does not usually exceed 

3x10 -5 . This suggests that the term may be safely neglected, and a full cal- 

culation by a version of the program with this term included confirmed that the 

effect on the pressure distribution was negligible. 
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AppendixE 

CALCULATION OF THE FLOW CURVATURE 

We start by deriving general expressions for the curvature of a streamline 

in orthogonal curvilinear coordinates, and then go on to obtain approximations 

suitable for use in the present application. 

E.I  Streamline curvature_in general orthogonal coordinates 

We consider an orthogonal coordinate system (Xl,X2) , with metric components 

(hl,h2), in which the velocity components are (~i,~2). 

Referring to Fig 5, we see that the curvature, K , of the streamline PQ , 

is given by 

d (e +@) 
K = d-~ 

Here ¢ t a n -  1 1J(~_~) = is the inclination of the streamline to the 

s is the distance along the streamline, 

and 

direction. 

(E-l) 

x I direction, 

is the inclination of the x I coordinate llne to a fixed reference 

Now, to first order, we see that 

RQ ~2 

PR ~I 

so that 

and 

RQ = 

Q 
RS 

~'-~2hldX i 
1 

~2 hl dXl 

!a 1 h 2 dx 2 

x P2 hl ) 
Thus the point Q has coordinates I + dXl'X2 +---- dXl 

~I h2 

Hence the change in e from P to Q is 

(+x 2h 21 6c = dx 1 3~ + 
~alh 2 

(E-2) 
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Now the change in ~ from P to Q is 

~$ = ~IPR + K2RQ 

P2 
= ~ l h l d X l  + K 2 ~ 1  h ldXl  , (E-3)  

where K 1 and K 2 are the curvatures of the coordinate lines (positive if the 

line is concave to the left in the positive direction) and are given by 

1 3hl  1 ah2 
~1 = h l h  2 ~x 2 ' K2 = h l h  2 ~x t 

(E-4) 

Combining (E-l), (E-2) and (E-3), and noting that 

ds = hldX I secc , 

we obtain the equation 

Ih.~ P2 DE 21 1 Pl  ~ + + + p2 ~ ( E - 5 )  
K = 

q a x  1 h 2 ~x 2 P I l l  

where q = ~21 + ~22 is the total velocity. 

As a digression, we note that for an irrotational flow, the relationship 

ax" 1 (h2P 2) = ax 2 (hl ,~-i ) 

is equivalent to 

PlKI + ~2K2 
1 a~l  1 aP2 

h 2 ~x 2 h I a x  I 

and this may be used to eliminate the coordinate line curvatures from 

equation (E-5) leading eventually to the alternative expression 

I I ~2 aq ~I ~q ). (E-6) 
K = 2 h I ~x I + hq ~x 2 q 

It may be easily shown that this is equivalent to the familiar expression for 

the streamline curvature in irrotational flow: 
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= (E-7)  q ~n 

in streamline coordinates, n being the direction normal to the streamline. 

However, for present purposes equation (E-5) is the more convenient. 

E.2 A~roximation for small ~erturbations from a coordinate line 

In both the cases where we need tocalculate the flow curvature in the 

present problem - for the equivalent inviscid flow on the surface of the aero- 

foil and in the wake - we can assume that the angle between the local velocity 

vector and a coordinate line (either r = ] , for the aerofoil surface, or 

@ = 0 , for the wake) is small. Taking this coordinate line to be a line 

x 2 = constant (ie PR in Fig 5), this implies that 

P2 

correct to order (s), so that we can is small. We require to calculate 

neglect terms of order (2). 

Thus, q = H! + 0(c 2) , and equation (E-5) becomes 

K = ~| + h~ ~x I + h 2 ~x 2 
+ ~2 + 0(E2) 

The last two terms can be further approximated by making use of the equation 

of continuity, div (p~) = 0 ; this gives 

3 
'~'Xl (h2P~ | )  + 3x 2 (hlPlJ 2) = 0 , 

so that 

Hence 

1 3 e  1 1 3 

<2 + h 2 ~x 2 h I plJ 1 3x I (PlJl)  + O(e)  . 

I ~ ( P F )  _ 1 ~t..~2 1 ;) ( p p )  + 0 (E2)  
= K1 + hl  ~Xl h l  ~1 P~I 3Xl 1 (E-s) 
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Now the last tern in this expression, though not strictly of order (e2), will 

usually be numerically much smaller than the second term (because the quantity 

multiplying e is ~ (log p~l)), and may therefore be neglected. We there- 

fore use finally the~expression 

where K 
1 

dg 
is -- 

ds ' 

-- E l + hl Bx 1 

1 ~hl is the curvature of the 
hlh 2 ~x 2 Xl 

(E-9) 

line, and the second term 

s being the distance along the x] line and ~ the angle between it 

and the direction of flow. This formula may appear 'obvious' but the 

argument given above (in the sentence between (E-8) and (E-9~ shows that an 

additional assumption, other than that s is 'small', is required to justify it. 

It may also be shown that the expression (E-9) for the flow curvature at 

the aerofoil surface in the equivalent inviscid flow is in fact approximately 

equal to the curvature of the displacement surface. For the second term dI~ ) 

may be written, using equation (14), as 

d-~ "p-q ds ds---~ d--s pq as (pq 

and the term inside the square bracket is generally numerically small compared 
d~* 

with d---~ (as has been verified in a typical example). 

Hence 

d~ ~ d2~* 
r 

ds ds 2 

and so 
d2~* ~ d 2 

K ~ ~1 + (Y + 6*) (E-IO) 
ds 2 ds 2 
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LIST OF SYMBOLS 

local speed of sound 

coefficients defined in section 3.1 

mapping transform derivative 

aerofoil chord 

skin friction drag coefficient 

form drag coefficient 

total drag coefficient (= CDF + CDp ) 

viscous drag coefficient 

lift coefficient 

local pressure coefficient 

critical pressure coefficient (local M = |) 

mesh point in tangential direction of computing plane 

mesh point in radial direction of computing plane 

relative frequency of boundary layer calculations 

number of flow field calculations performed for a new case before 
re-calculating a new boundary layer 

number of intervals in computing plane around aerofoil 

defined as m + 1 

defined as mm + 1 

local Mach number 

free-stream Mach number 

distance normal to aerofoil surface and wake 

number of intervals in radial direction of the computing plane 

defined as n + 1 

local pressure 

ratio of static pressure to total pressure 

local velocity 

local velocity corrected for curvature effects 

smoothed values of the velocity q' 

local velocity on upper surface of wake 

local velocity on lower surface of wake 

coordinate in radial direction in circle plane 

distance along the aerofoil surface and wake (measured from the 
leading edge) 

scaling factor introduced by normalizing 

distances defined in section 3.5 
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LIST OF SYMBOLS (continued) 

non-dimensional velocity in vector form 

velocity component along aerofoil surface or wake 

velocity component in the e direction in the computing plane 

on upper surface of wake 

on lower surface of wake 

free-stream velocity 

velocity component normal to aerofoil surface or wake 

velocity component in the r direction in the computing plane 

on upper surface of wake 

on lower surface of wake 

coordinate in the free-stream direction 

transition position 

coordinate normal to the free-stream direction 

angle of incidence 

zero lift angle for incompressible flow 

defined as N - s 0 

Z-rV 
ratio of specific heats (= 1.4) 

circulation 

jump in ¢ across wake 

parameters used in wind tunnel interference calculations 

boundary layer displacement thickness on aerofoil surface 

non-dimensionalised with respect to chord (~ 6"/S) 

total displacement thickness of wake 

non-dimensionalised with respect to chord (= 6"/S) 
w 

distance between grid points in radial direction of computing plane 

distance between grid points in tangential direction of computing 
plane 

under-relaxation parameter of viscous-inviscid interaction scheme 

parameters controlling variation in ~ , defined in section 4.2 

coordinate in tangential direction of computing plane 

boundary layer momentum thickness on aerofoil surface 

non-dimensionalised with respect to chord (= G/S) 

total boundary layer momentum thickness of wake 

non-dimensionalised with respect to chord (= e /S) 
w 

curvature of aerofoil surface or wake 



62 

K ] 

v 

VI'V2'B 3 
P 

o(])(r) 

o(2)(r) 

o(3)(r) 
(I) 

T (e) 

T(2)(0) 

LIST OF SYMBOLS (concluded) 

curvature of displacement surfaces relative to the aerofoil surface 
or wake 

total curvature (= K 0 + Ki) 

defined as ~8/~r 

current error level of iterative scheme for flow field calculations 

current error level of boundary conditions 

coefficients defined in section 3°5 

local density 

function which determines the wake thickness effect 

function which determines the wake curvature effect (equation (30) 
or equation (3])) 

defined as d/dr (0 (2)) 

function which determines the boundary layer thickness effect on 
the aerofoil surface 

defined as d/dO(T (I)) 

velocity potential 

modified velocity potential to remove singularity at infinity 

modified mapping transform derivative (= r2B) 
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