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SUMMARY 

It is argued that the formulation of the method of applying a flutter 

constraint in weight optimisation which allows for all the methods of avoiding 

flutter is so complicated that it is best not to try to include a flutter con- 

straint in a general optimisation program with other constraints but to apply 

it only if the structure obtained from optimisation with the other constraints 

alone is flutter-prone. In this way much unnecessary and possibly inappropriate 

calculation can be avoided. 

A method of weight optimisation with only flutter constraints, based on 

inverse iteration, which can be used in conjunction with any suitable optimisa- 

tion procedure which requires the values of the objective function and its first 

derivatives to be calculable is suggested. Its use in association with more 

than one procedure is described as is the optimisation of a wing of fairly-high 

aspect ratio. 

The question of how detailed a representation of the structure is needed 

is also discussed. 

Replaces RAE Technical Report 77130 - ARC 37537 
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1 INTRODUCTION 

When considering weight optimisation with flutter constraints it is import- 

ant to keep in mind the complexity of the phenomenon being dealt with. In gen- 

eral a surface may be prone to more than one instability within the speed range 

of interest and each instability might react in a different manner to local 

structural changes. In some cases measures taken to avoid one type of flutter can 

introduce another type. 

The structural properties that have most effect on flutter can be itemised 

as overall stiffness, separation of the frequencies of the normal modes in still- 

air and the shapes of the normal modes themselves. The general characteristics 

of these last, ~ those given descriptions such as flexure or torsion, will not 

change overmuch with changes to structural detail but in some cases small changes 

in such as the chordwise position of a nodal line or the amount or sign of the 

incidence in a mode can alter the stability of the surface significantly. One 

classical method of changing the shapes of the modes is to add mass at appro- 

priate places. In this way flutter can sometimes be avoided without altering the 

structural stiffness and with a smaller weight penalty than the appropriate 

change in stiffness would incur. 

The variety of ways of achieving stability coupled with the variety of 

possible forms of instability leads to the conclusion that the flutter constraint 

in an optimisation process must depend on the flutter characteristics directly 

rather than on purely structural properties. It also suggests that any optimum 

found is more likely to be local than global. 

Ideally, a complete flutter calculation in which every root at the lower 

frequencies is examined should be made for every change in the values of the 

structural parameters. Also the complete speed range should be covered because 

it is possible for a surface to be stable at its maximum speed whilst being 

unstable at lower speeds. The need to allow for the changes in the distortion 

shapes caused by structural changes dictates that the structural and aerodynamic 

representation should be detailed. Thus the calculations would be of large 

order as well as extensive in the number of speeds and the number of roots 

examined. Such a comprehensive approach is too time-consuming to be practical 

and ways of reducing the amount of calculation to be made must be found. 

There are two contexts in which flutter optimisation can be considered; 

one is as part of the initial design process in conjunction with strength con- 

straints and the other is to find the minimum extra weight needed to improve the 
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flutter characteristics of an existing design° There is an argument for not 

involving flutter constraints in initial design optimisation on the grounds of 

lack of definiteness of the objective. In the case of strength the loads the 

structure has to sustain are fairly well defined and in general local strengthen- 

ing will not increase the loads on another part of the structure. The equivalent 

cannot be said in the case of flutter; for an economical cure for an instability 

cannot be found until the surface suffers from it and an exact description of it 

is available; local stiffening may have adverse effects overall. Further it is 

questionable whether a structure optimised with simultaneous strength and flutter 

constraints will be significantly lighter than one optimised first with strength 

constraints and subsequently modified in the lightest manner to satisfy any 

flutter constraints that may have appeared using the 'strength' values of the 

parameters as minima. 

If the weight saved is trivial the complication of optimisation with simul- 

taneous constraints can be avoided and 'flutter' optimisation need only be con- 

It will be assumed that sidered in the context of curing a known instability. 

this is so in what follows. 

2 

2.1 

ACCOMMODATION OF FLUTTER CONSTRAINT 

Reasons for using inverse iteration 

In calculations a system is free from flutter when the real parts of all 

the roots of the flutter equation (see Appendix A) are negative. When optimis- 

ing~ the task is to change the values of those coefficients in the flutter equa- 

tion which depend on the structural properties in a way such that either the real 

parts of the roots remain negative while the weight is reduced to a minimum or~ 

if one or more of the real parts is not negative~ all the real parts become nega- 

tive with the minimum increase in structural weight. In practice the real parts 

of most of the roots show no tendency to have other than negative values and in 

general there is one root which can be looked upon as the principal critical root 

with perhaps one or two other critical roots in the background. 

In these circumstances inverse iteration seems likely to provide the most 

economical method of solving the flutter equation. The principal critical root 

for the basic structure is found by a calculation in which all the roots are 

found. Subsequently the variation of this root alone is followed as the struc- 

ture changes during the optimisation process. At the end of the optimisation 

process all the roots of the system have to be calculated to reveal whether the 

real parts of all the roots are still negative up to the required speed. If not 



the structure must be subjected to the optimisation procedure again with the new 

principal critical root. It may be possible to prevent reversion to the previous 

instability by appropriate limitations of the values the variables can take. It 

cannot be guaranteed that such a reversion will not occur. Neither can it be 

guaranteed in the general case that a stable root with a value near that of the 

critical will not be mistaken for the critical root which will, of course, result 

in the program failing. 

For completeness the flutter equation and the method of solving it by 

inverse iteration used are given in Appendix A. Inverse iteration can be assoc- 

iated with many optimisation routines and some that have been tried are described 

below. 

2.2 Graphical representati0n ' of optimisatian process 

Fig I is a graphical aid to the description of what is required of an 

optimisation process when there are two variable elements and one type of flutter. 

The sizes, r; and r 2 , of the elements, in terms of weight, are the axes of the 

graph and with these axes lines of constant weight are at 45 °. The flutter 

speed varies with the sizes of the elements and contours of constant flutter 

speed can be drawn. If there is more than one type of flutter there would be 

more than one set of contours. Optimisation will have been successful in the 

case of a single flutter instability when the representative point on the con- 

tour for the desired flutter speed is the point of contact of the tangent to the 

contour whose slope is the same as that of the constant-weight lines. If there 

is more than one type of flutter the achievement of an optimum design is more 

difficult due to the lack of continuity between the sets of flutter speed con- 

tours. Limits on the sizes of the variable elements can be represented by for- 

bidden areas on the graph. 

3 WAYS OF USING INVERSE ITERATION 

3. ! Optimisati0n at constant speed 

The minimum required by any optimisation routine is that the objective 

function, in this case the weight, should be calculable for any set of values of 

the variables. In the problem considered here the calculation of the objective 

function is trivial; it is the calculation of the values of the variable which 

satisfy the flutter constraint that is difficult. 

The first optimisation routine tried was one based on Powell's conjugate- 

direction method. When applying this the values of one of the variables were not 
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determined by the optimisation routine but were calculated to be just sufficient 

for the flutter constraint to be satisfied when the other variables had values 

determined by the optimisation routine. Thus, referring to Fig I, starting from 

the point on the contour at ol,the routine might require the weight when T 2 

had its value corresponding to ~ . The flutter speed at ~ is above that 

required and the value of T! , the special variable, is reduced from that at 

to that at B and the weight calculated is that appropriate to ~ o 

The actual version of Powell's method used was not designed with flutter 

in mind, did not limit the changes in the variables to small increments and, 

because of this, the unstable root was often lost. It seemed probable however 

that, were the program modified to restrict the sizes of the changes, a fairly- 

efficient program could have been created; notwithstanding the egalitarian criti- 

cism that one of the variables was treated differently from the others. 

Optimisation with the first routine was abandoned however because a routine 

which had the advantage of invoking the flutter constraint internally, thus mak- 

ing special treatment of one variable unnecessary, became available. This optim- 

isation routine required the real part of (~ -%), see Appendix A, for given 

values of the variables T . 

A sketch of a typical sequence of moves is included in Fig I. Starting 

near the point o at the top of one of the contours the flutter contour is 

found exactly at o (say) and then the slope of the tangent to the contour at 

o . A step is made along this tangent in the direction of lower weight to a 

(say)° The point a will not, in general, lie on the contour and so a step is 

made normal to the tangent to reach the contour (at b say) and the weight is 

calculated° The sequence is continued (through c and d etc) until the point 

(near D) corresponding to values of T which result in minimum weight is 

approximated to. 

3°2 O~timum for increased spee d 

As originally conceived the method of finding the optimum variations of 

structural elements for increasing the flutter speed was a sequence of two events. 

First the flutter speed would be increased to the desired level by reliable means 

such as an overall increase in stiffness and then the new structure would be the 

structure to be input into the optimisation procedure using the values of the 

variables pertinent to the original structure as lower limits perhaps. 

It turns out that this can be a somewhat uneconomic procedure if the opti- 

mum distribution is not close to that chosen for getting the initial increase 



in flutter speed and if the critical root is close in frequency to other roots 

so that there is a great danger that the critical root will be lost during the 

radical changes in mass and stiffness distribution. It was decided therefore 

that an attempt should be made to find a better method of obtaining increases in 

speed. 

With the encouragement of the comments in Refs i and 2 a computer program 

was written by which an increase in flutter speed was obtained in a specified 

number of increments, the ratios of the increases in the values of the variables 

being determined at the beginning of each increment as those that gave the dir- 

ection of steepest ascent, that is the normal to the flutter speed contours. 

This does not lead to the structure of least weight even when the steps are small 

but is likely to be a reliable way of obtaining a good starting point for subse- 

quent optimisation. 

The rates of increase of flutter speed with increase in weight for each 
m 

variable, #r | (~u/~T.) are required for the calculation of the direction of 
r ' 

steepest ascent and expressions for them are given in Appendix B. The direction 

is such that the increments in the variables are in the ratios of the speed 

derivatives with respect to them: for an increase in speed of ~ estimates of 

the increases in the variables were obtained from 

m 

r ~'~- r ~rs (11 
s=l 

The overall factor by which all the estimated increments, ~T , had to be multi- 
r 

plied to obtain the flutter speed required exactly was obtained by inverse itera- 

tion and interpolation. In use this method of increasing the flutter speed was 

reliable. 

An alternative to the above was also programmed. This was to alter only 

the value of the variable which, from the value of the speed derivative with 

respect to it, appeared to offer the lightest way of achieving the current speed 

increment. The process followed is illustrated by the sequence ABCD in Fig | 

although there the actual increments needed are compared rather than the speed 

derivatives at the lower speed. If none of the starting values of the variables 

is greater than the value at the optimum and the path to the optimum is smooth, 

an approximation to the optimum can be obtained quickly and by increasing the 

number of intervals over which the final increase in speed is made the answer 

can be found as accurately as desired. The limitation here is the inability to 

reduce the values of the variables. 



In view of the success of the latter method of finding good ways of increas- 

ing the flutter speed it was adapted to provide a good method of optimising at 

constant speed. For this the variable which is least effective in increasing 

flutter speed is reduced in value so that the flutter speed would fall by a 

specified amount if it were linear with the variable. The flutter speed is 

maintained at the required value however by a sufficient increase in the value 

of the variable most effective in increasing flutter speed. The process is con- 

tinued until the derivatives of speed with respect to weight of those variables 

not on limits are sufficiently close to each other in value; for at the exact 

optimum they are all equal. To start with the weight will always be reduced but 

the weight will increase as the optimum is passed. If this happens before the 

structure is near enough to the optimum the implied speed reduction is halved 

in size. 

It might be argued that this method is of no interest because it is only 

economic if the number of variables is small. It is thought however, that such 

a program could cover a significant proportion of the flutter optimisation 

problems that arise in practice. For what is usually wanted is some means of 

which general regions of the structure need to be stiffened or increased in mass; 

the exact means of providing the extra stiffness or mass are best left to the 

detail designer and production engineer. When there are a large number of 

variables there is the further difficulty of including degrees of freedom 

adequate, in number and type, to describe all the possible variations without 

having to make frequent normal-mode calculations; this is discussed further in 

section 5. 

As to the calculation of flutter stability there could hardly be a more 

economical method than that used here but it is important to keep control over 

what is asked of it if the unstable root is not to be lost. 

4 OPTIMISATION OF SWEPT WING 

4oi Description of wing 

The example calculation was done to check that the optimisation programs 

would work in a simple case based on a preliminary design for a swept-back wing 

of moderately-hlgh aspect ratio carrying no concentrated masses. 

A plan of the wing is shown in Fig 2. It was taken that the aspect ratio 

was high enough for the structure to behave in a way that could be described 

using the concept of a flexural axis. This flexural axis was taken to be at 39% 

chord, the inertia axis at 46% and the radius of gyration was taken to equal 24% 



chord. The main hope of increasing the flutter was assumed to lie in increases 

of skin thickness and it was assumed that these increases would affect flexural 

and torsional rigidity equally. 

The wing was divided into five sections and the distribution of the extra 

skin thickness was limited to uniform thickening of each of these individual 

sections. Thus there were five variables whose values could be altered in the 

basic example. The sections were of equal span apart from the most-outboard 

one which was almost 50% larger than the others (ill-advisedly as it turned out). 

Each of the initial modes involved distortion of only one strip so that 

the modes followed the discontinuities in the thickness distribution. The 

modes themselves were based on loadings rather than deflections because it was 

thought more realistic. The simplest two loadings possible were taken that 

would represent linear variations of flexural or torsional moments over the 

strip. One was a uniform moment, which gave flexural curvatures or rates of 

twist which were proportional to the local (EI~ 1 or (GJ~I° The second was a 

moment varying linearly across the strip, orthogonal, with respect to stiffness, 

to the first mode. In this mode flexural curvature or rate of twist was zero 

outboard of the strip as well as inboard. Because the moments at the tip must 

be zero the tipmost strip was allowed only two modes; those whose moment 

distributions were triangular. 

The reference axis for the modes was the flexural axis. As a result of 

this, the limitation of distortion in each mode to one strip and the orthogonal- 

isation of the modes for any one strip, all the 18 generalised coordinates were 

orthogonal with respect to stiffness. In the modes, sections outboard of the 

one that was distorting had deflections due to their carriage as rigid bodies. 

Inertia and stiffness matrices were calculated for increments in the skin thick- 

ness of each section. In calculating the increase in weight it was assumed that 

the weight of the basic structure was equally divided between structural and 

non-structural items. Before the optimisation calculation the coefficient 

matrices were transformed to those for the normal coordinates of the basic wing. 

The aerodynamic forces assumed were those obtained from strip theory. 

The values of the aerodynamic derivatives taken when referred to the leading 

edge, were 
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I: 411  -m&j 1 

~ ~ = 32 1 . . ~  

m~ - 6 

>- . ( 2 )  

4.2 Description of calculatio ~ 

The flutter speeds of the wing after uniform increases in skin thickness 

of 25%, 50% and 100% were found. The optimum distributions to obtain the same 

flutter speeds were then found by using each of the optimising programs. To 

test how sensitive the results were to the freedom given the wing the calcula- 

tions were made allowing 18, 10 and 5 degrees of freedom. The degrees of free- 

dom were the graver normal modes of the basic wing. It was found that the 

results for 18 and 10 degrees of freedom were almost identical so they are not 

reported separately. The results with 5 degrees of freedom were somewhat 

different. 

Fig 3 shows the increase in flutter speed against increase in weight with 

the two optimum distributions, including I0 and five modes, and with uniform 

distribution. The difference between the increases in flutter speed for a given 

increase in weight in the case of the optimised wings grows continuously and the 

increase in flutter speed with five modes is about 37½% for a weight increase of 

38% whilst that with I0 modes is about 35~%. In both cases the increase is over 

twice that obtained with a uniform thickening. 

The difference between the fiv~ and 10-mode cases is more obvious in Fig 4 

in which the distributions of the additional thicknesses are given. They are 

quite different for the two cases and when the thickness distribution which 

gives 37½% increase in flutter speed with five modes is used with 10 modes the 

increase is only 29%. Thus although calculations on an overconstrained repre- 

sentation of the structure might give a good upper limit of the increase in 

flutter speed that can be obtained for a given increase in weight there is a 
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risk that the calculated distribution will give a significantly smaller increase 

in the flutter speed of the unconstrained structure. In all cases the outboard 

sections have to be thickened more than the inboard sections for optimum results. 

This was not anticipated. 

The variations of decay rates and frequencies of the roots with speed are 

shown in Fig 5a&b for the I0 degrees-of-freedom calculation with the highest 

flutter speed. It can be seen in the optimised case that once the critical 

flutter speed is exceeded the rate of growth of the flutter oscillation increases 

abruptly. Whilst this is comforting as an indication that the optimisation 

procedure has got the last fraction of speed out of the structure, apparently 

by tuning the overtone bending mode, the gain could be illusory to some extent 

as the severity of onset of flutter has been changed and it might be thought 

prudent to have a larger margin between the highest flight speed allowed and 

the calculated flutter speed in the optimised case. The stability is also 

likely to be sensitive to the exact frequency and shape of the overtone bending 

mode. 

A further difference between the five-and 10-mode cases was that a local 

optimum was found in the five-mode case when no thickening of the tip section 

was allowed to begin with. At the optimum almost all the thickening was to the 

section immediately inboard of the tip with a trifling amount to the section 

next inboard. The weight was about 5% lower than that with the other minimum 

found. In the 10-mode case there was no second optimum and the weight with no 

thickening at the tip was much greater than the optimum. 

The optimisation procedures used were not limited to finding just the 

critical boundary at which oscillations are maintained but were also able to 

follow a boundary on which the real part of (7 - %) was non-zero and which 

corresponds to growing or decaying oscillations. This ability was used to 

obtain a structure with a less abrupt change in the rate of decay by having the 

reference speed in the optimisation below the critical flutter speed and requir- 

ing the (positive) decay rate at this subcritical speed to remain unchanged (and 

greater than that given by the initial optimisation). Fig 5c shows how the 

severity of the onset of flutter can be reduced by using as reference speed of 

1.35 rather than the flutter speed which is 1.448. Fig 4d shows that the 

increases in thickness are more evenly distributed and Fig 3 shows that the 

weight increase is about 45~% instead of 42% for the optimum based on critical 

speed. 
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The ability to follow a boundary on which the real part of (~ - %) is 

non-zero could prove useful in optimising structures whose rates of decay, 

although never negative, are unacceptably small over a significant range of 

speed. 

The programs should work equally well if the optimum way of increasing the 

flutter speed is by altering the inertia distribution rather than the stiffness 

distribution. A calculation was made in which mass balance in the form of masses 

set ahead of the leading edge between the most outboard section and the one next 

inboard was used to increase the flutter speed. The optimum distribution was 

with all the mass added at the position furthest ahead of the leading edge. 

Unfortunately this solution was much heavier than thickening the skin and it 

proved impossible to get the two methods of increasing the flutter speed to 

interact with each other. 

4.3 How the increase in flutter speed was obtained 

It is instructive to consider which of the factors affecting flutter were 

most in evidence in the change from the basic wing to the optimum wing with 

flutter speed increased by 38%. The normal modes in still air of the uniform 

wing and the optimum wing are given in Fig 6. Two sets of frequencies are given 

for the uniform wing: the frequencies with twice the original thickness and with 

the original thickness. The first four modes are shown and it can be seen that 

the fundamental flexure and torsion frequencies are decreased by the changes 

whilst the frequencies of the overtone flexure modes are increased. 

The changes to the fundamental normal modes do not appear large enough to 

have a significant effect on binary flexure torsion flutter and when they are 

scaled so that the inertia terms are equal the optimum wing gains in that its 

coupling terms in aerodynamic stiffness are smaller by about 20% each but pre- 

sumably loses because its aerodynamic torsional stiffness is numerically larger 

and its structural stiffness smaller° The change in structural frequency ratio 

is insignificant. 

However in this particular case it is inappropriate to look for explana- 

tions in terms of binary flutter alone and this can be seen from an examination 

of Fig 5b which gives the variations of the roots of the flutter equation with 

speed for the wing optimised on critical speed. It would appear from the 

behaviour of the mode which is first overtone flexure mode in still air that 

part of the optimisation process is to 'tune v it so that its decay rate falls 

as the flutter speed is approached at the same time as the decay rate of the 
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mode that goes unstable falls. Thus there are two modes with low decay rates 

instead of one with a higher decay rate and one with a negative decay rate, 

i~ growing in amplitude. 

To evaluate the effect of the overtone mode the binary and ternary flutter 

speeds were found for the uniformly thickened and both the optimum wings. In 

the case of the uniformly thickened wing the removal of the overtone degree of 

freedom led to an increase in flutter speed of ½%. In the case in which minimum 

decay rate was the constraint the flutter speed decreased by about 3% when the 

overtone mode was removed and in the case of critical speed the decrease was 

almost 6%. Hence although the tuning of the overtone is apparently effective in 

increasing the stability it cannot be a major factor in the increase achieved. 

Another effect which is not so immediately obvious is the effect of the 

fourth mode on the stability of the wing with uniform increase in thickness. 

From the behaviour of the root with airspeed (Fig 5) it would not appear to be 

having any effect. However the binary flutter speed is about 17½% greater than 

the speed with I0 degrees of freedom and almost three-quarters of this increase 

comes on the elimination of the fourth mode. The fourth modes of the optimum 

wings have negligible effect on their flutter stability. 

Thus a substantial part of the increase in stability in this case comes 

from altering the ratios of the overtone frequencies to those of the fundamentals. 

5 STRUCTURAL REPRESENTATION 

The normal modes in still air are commonly used in flutter calculations 

because generally they lead to convergence with fewer coordinates than other 

cholces. During the optimisation process the mass and stiffness are changed and 

hence the normal modes change. It is inconvenient to calculate the normal modes 

after every change and in practical cases it is inconvenient to include enough 

normal modes of the original structure to ensure that a precise description of 

the effects of possible detailed changes to it is always available. The descrip- 

tion of the deflections of a structure in terms of a limited number of semi-rigid 

modes puts constraints on those deflections and these constraints can make the 

results obtained nonsense. In general this does not happen because the dangers 

are obvious but during optimisation the structure is constantly changing and 

any inappropriateness of the original modes that may arise might not be noticed. 

Thus a favourable combination of deflections may continue due to the limitations 

of the modes after the mass and stiffness distribution which gave rise to them 

have been changed significantly. 
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The choice of simple changes to the overall skin thickness in the example 

meant that these difficulties could be kept in the background but by restricting 

the number of normal modes included in the flutter calculation the effect of 

overconstraint could be investigated. As has been mentioned in section 4°2 it 

was found that the first 10 normal modes gave results practically identical to 

the full set but differences were noticeable when the modes were limited to five~ 

A further indication of the effects overconstraint can have was obtained by 

observing how the flutter speed increased with increase in thickness of the tip 

section alone when 5 and when 10 degrees of freedom were allowed. These rates 

of increase were almost identical to begin with but differed, albeit slightly, 

before the speed had been increased by 10%. The flutter speed could not be 

increased much more than 20% when I0 degrees of freedom were allowed but continued 

to increase when there were only 5 degrees of freedom although the rate was 

reduced when the increase in speed passed 25%. 

For complete reliability of the results obtained it would seem necessary 

to have a generalised coordinate for each variable element of the structure so 

that the effects of changes to the structure on its oscillatory characteristics 

can be traced accurately. Thus if there are a large number of variable elements 

it seems likely that the mathematical model should be large in size if it is not 

to suffer from overconstraint. In this case it might be prudent to identify 

those general areas of the wing it is most profitable to alter first, the detail 

of the alterations being determined by subsequent calculations. 

It is not easy to choose generalised coordinates which allow adequately 

for the effects of changes of element stiffness for what are really wanted are 

generalised coordinates in which the elements are separately given one or more 

predetermined realistic patterns of strains and the rest of the structure con- 

forms to these strains but is otherwise unloaded. What can be achieved in this 

direction is very dependent on the structure being considered. If mass balance 

is being considered however, discrete-load modes 3 provide the complete answer. 

6 CONCLUDING REMARKS 

The objective of optimisation with flutter constraints has been considered 

and it has been concluded that, in view of the complicated nature of the phenom- 

enon, it should be confined to the finding of the lightest way of increasing the 

flutter speed of a wing already designed using other criteria. In this case the 

critical eigenvalue of the flutter equation is known and inverse iteration pro- 

vides an economic way of following it as the structure changes. The optimisation 
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routine should only change the structure gradually to minimise the risk of losing 

the critical eigenvalue. 

The biggest problem associated with weight optimisation with flutter con- 

straints is adequate structural representation. It is believed that for complete 

reliability each variable structural member should have a separate degree of 

freedom in the calculations to represent each of its possible distortions. 

Thus calculations with large numbers of variable elements are either expensive 

or unreliable and to avoid these the numbers of variables should be kept to a 

minimum. Overconstraint in the mathematical model may not lead to a gross under- 

estimate of the extra weight needed but will probably give an inaccurate distri- 

bution which means that the increase in flutter speed will not be achieved in 

practice. 

Work is needed on a method suitable for describing the effect of stiffen- 

ing local parts of a structure on the modes of the complete structure. 
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Appendix A 

SOLUTION OF FLUTTER EQUATION USING INVERSE ITERATION 
L 

Take the flutter equation to be 

[A~ 2 + (Bo + D)~ + Co 2 + E]q = 0 (A-I) 

where A,D,E are real square matrices of the structural inertia, damping and 

stiffness coefficients 

B,C are real matrices and the aerodynamic force coefficients are given 

by (B% + Cu)u 

is a scalar whose imaginary part is proportional to frequency and 

whose real part is proportional to growth 

is a scalar proportional to airspeed. 

For convenience write equation (A-I) as 

[A~2 + B~ + C]q = 0 . (A-2) 

Equation (A-2) has a linear equivalent 

Rearranging equation (A-3) 

 1[1 I:l 
Adding ~A,~ <p,q} to each side leads to 

I: I[:I  lql 
here represents a scalar constant, purely imaginary in value, and itera- 

tion based on 

gives the latent root and vector nearest ~ . 
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Equation (A-6) can be replaced by the two equations 

(wA + B)Pr+I + Cqr+! = - (%- w)APr (A-7) 

Wqr+l = Pr+l - (% - W)qr " (A-8) 

Multiplied by ~ and with qr+] substituted for from equation (A-8), 

equation (A-7) becomes 

(~2A + nB + C)Pr+I = -(X - ~)(wAPr - Cqr ) (A-9) 

In the flutter equation used in optimisation 

m 

A = A 0 + ~TrA r 

r=l 

m 

E = E 0 + ~TrE r 

r = l 

(A- 1 O) 

and the weight which is the objective function is 

m 

= + '~'r ¢ ¢ 
¢0 r r 

r=l 

(A-11) 
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FLUTTER-SPEED AND -FREQUENCY DERIVATIVES 

The flutter equation can be written 

or 

with respect to 

(B-I) is 

AI + (BD + D)I + Cu 2 + E~q = {0} 

P'EAI2 + (Bu + D)I + Cu2 + ~ = L0J 

Let the matrices A and E be functions of r 
r 

T be denoted by a d o t .  Then the  d e r i v a t i v e  of  e q u a t i o n  
r 

Premultiplying by p' and rearranging we get 

p'EAI2 + E + (2AI + Bu + D)I + (BI + 2Cu)~q 

This can he rewritten as 

(B-I) 

• (B-2) 

and let differentiation 

(~-3) 

= 0 . (B-4) 

with e ~ p'(Al2 + E)q 

(B-5) 

8 = p'(2AI + BO + D)q 

and ¥ = p'(Bl + 2Cu)q . 

Separating real and imaginary parts of equation (B-5) and using a notation 

with which, typically, = ~ + i~ we get 

- -  - - ~ -  _--7 -- a % .  

+ 8X - B~ + y~ = 01 
_ =-;- _~ 
g + ~ + ~ + ~ = 

(B-6) 

If we take the rate of change of the real part of the root with the variable 
w 

to be zero, ~e I = 0 and hence the time rate of decay is constant, we can write 

a rearranged equation (B-6) in matrix form as 

The solution of this is 

(B-7) 

(B-S) 
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from which the rates of change of flutter frequency and speed with the variables 

can be obtained. 

Thus to obtain the values of the derivatives analytically a knowledge of 

the coefficient matrices, A, B, C, D, the derivative matrices, A, E , the 

critical eigenvalue and the corresponding right and left hand eigenvectors is 

necessary. 
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