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SUMMARY 

A flat plate containing a circular hole is subjected to arbitrary 

bi-axial stresses at infinity; adajcent to the hole and bonded symmetrically to 

both sides of the plate are cylindrically wound fibre composite annular discs. 

The relatively low shear moduli of the composite cause shear lag effects normal 

to the plane of the plate. The present paper shows that it is possible to allow 

for these effects, within the framework of a two-dimensional analysis, by the 

use of an effective thickness for the reinforcement which is a function of the 

overall geometry, the elastic moduli and the type of loading. The practically 

important case of applied uniaxial stress is considered in detail and it is 

shown how, for a given weight of reinforcement, the reinforcement cross-section 

can be chosen to minimise the peak stresses. 

* Replaces RAE Technical Report 76148 - ARC 37224 
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I INTRODUCTION 

In many structures, particularly those in the aerospace field, the saving 

of weight is of paramount importance. Aircraft structures, for example, are 

generally of stressed skin construction in which loads are carried primarily by 

membrane stresses in flat or curved plates. When such a plate contains a hole 

there is a redistribution of stress in the vicinity of the hole and a conse- 

quent weakening of the plate. To counteract this the designer reinforces the 

plate and a considerable body of research literature is devoted to this problem. 

There are, needless to say, conflicting requirements. Thus, confining attention 

to the flat plate, the optimum reinforcement is symmetrically disposed about the 

mid-plane so as to avoid the introduction of bending stresses, but this is not 

practicable if the plate forms part of the aerodynamic surface; similarly, 

according to classical two-dimensional theory the optimum reinforcement generally 

consists of a compact member following the (curved) boundary of the hole and 

carrying direct rather than bending loads, but this compactness can lead to 

difficulties in transferring the load from the plate and, indeed, in transferring 

load to those parts of the reinforcement furthermost from the plane of the plate. 

There is now renewed interest in this problem because of the introduction 

of fibre composites, particularly those based on carbon (CFRP). Such composites 

show up to maximum advantage when they carry purely tensile or compressive loads 

for these require a unidirectional array of fibres. In these applications the 

potential gains are considerable because the specific strength of unidirectional 

CFRP, for example, is some four to five times that of aluminium alloys. 

Here we consider an infinite isotropic elastic plate containing a circular 

hole whose boundary is reinforced with cylindrically wound fibre composite 

annular discs syrmnetrically disposed about the mid-plane of the plate. Such a 

reinforcement primarily carries hoop loads, although the transfer of load from 

the plate necessarily introduces shearing forces Nrz, Nez (z normal to the 

plane of the plate) and therefore brings into play the relatively poor trans- 

verse properties of the composite. Strictly speaking the reinforcement should 

therefore be analysed in a three-dimensional manner but, because of the 

complexities involved, this has been possible I only for the rotationally 

symmetric case of a remotely applied uniform radial tension - and then only with 

the simplifying assumption of an infinite modulus E This analysis shows 
z 

that the 'shear lag' effects normal to the plane of the plate reduce the 

effectiveness of those parts of the reinforcement furthermost from the plate, 



and the effect is significant for reinforcements with compact cross-sections; 

for shallow plate-like reinforcements a two-dimensional analysis, which 

embodies the additional assumption of an infinite shear modulus Grz , is 

adequate. Such a two-dimensional analysis is given by McKenzie and Webber 2 for 

remotely applied radial tension and shear, thus yielding by superposition the 

practically important case of uniaxial tension° 

The present paper presents approximate three-dimensional solutions for 

these same loading conditions° Account is taken of the shear lag effects 

normal to the plane of the plate by the introduction of appropriate efficiency 

factors for the reinforcement; these factors determine an effective thickness of 

the reinforcement which is used in a subsequent two-dimensional analysis. When 

E is assumed infinite the method yields excellent agreement with the results 
z 

of the three-dimensional analysis of Ref.1; indeed, the method is expected to 

yield even more realistic results because it is further refined to take account 

of the finite value of E 
g 
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NOTATION (see also Figol) 

3 x 3 matrix defined by equation (4-5) 

YoungVs modulus, shear modulus 

thickness of annular reinforcing disc 

force per unit length 

polar coordinates 

radius of hole, outer radius of annular discs 

½ (r I + r 2) 

thickness of plate 

radial and tangential displacement 

volume of reinforcement, see equations (7-I) to (7-3) 

width of reinforcing annulus, r 2 - r! 

normal distance from surface of plate 

3 x 3 matrices defined by equations (4-I) and (4-2) 

shear strain, direct strain 

z/h 

efficiency factor 

parameters defined by equation (4-12) 

parameters defined by equations (5-5), (5-26) and (5-27) 
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P 

(7, T 

r2/r l 

Poisson's ratio 

r/r; 

direct stress, shear stress 

parameter defined by equation (5-14) 

stress function 

parameter defined by equation (6-I) 

Suffices 

P, R 

T, S 

refer to plate and reinforcement, respectively 

refer to uniform radial tension and shear, respectively. 

3 THE STRUCTURE AND MATERIAL PROPERTIES 

is reinforced over an annulus from r l 

composite annular discs of thickness 

line of the plate, as shown in Fig.l. 

modulus E and Poisson's ratio ~ . 

A flat plate of thickness t contains a circular hole of radius r I and 

to r 2 by cylindrically wound fibre 

h symmetrically disposed about the centre 

The plate is isotropic with Young's 

The fibre reinforced discs possess 

cylindrical orthotropy with Young's moduli Ee, E E z shear moduli Gre 
r' ~ 

Grz , Gez and Poisson's ratios ~Sr' ~re ' etc. 

Generalised plane stress conditions are assumed throughout for the plate, 

while in section 4 the fibre reinforced discs are represented by discs of 

effective thickness nh under generalised plane stress, thus confining attention 

to the moduli E e, Er, Gre Account is taken of the moduli Ez, Grz' Gez in 

section 5 which determines the 'reinforcement efficiency factor' ~ . 

Finally we note that if the fibres are disposed isotropically or in a 

random manner over the reinforcement cross-section we have 

E = E , | 
r z 

and (3-I) 

G r e  = G e z  • 



4 GENERAL TWO-DIMENSIONAL FORMULATION 

Apart from the introduction of the factor n the analysis in this section 

is based entirely on earlier work by McKenzie and Webber 2, Lekhnitskii 3 and 

Mansfield 4 . 

4.1 Stress-strain relations 

In the plate P the stress-strain relations are given by 

where [ a . . ]  
z3 

ISr ' s0' Yr0} = [~ijl{°r' °0' TrO}P 

is a symmetrical 3 × 3 matrix in which 

c~II = c~22 = I / E  , a12 = a21 = - ~ /E 

a33  = 2(1 + ~ ) / E  , ~13 = a23  = m31 = a32 = 0 

] 
> (4-i) 

l 
and E is Young's modulus and v is Poisson's ratio, 

Similarly, in the material of the reinforcing annulus R 

{Er '  ~0 '  YrO } = [ B i j ] { ° r '  ° 0 '  Tr0}R ' 

where 611 = I/E = I/E e BI2 , r ' B22 ' = 621 = - ~er/Ee 

B33 = I/Gr8 , 613 = 623 = 831 = 832 = 0 

(4-2) 

These equations may be inverted to give 

{°r' ~0' Tre}P = [~ij]-l{er' CO' Yr01 ' 1 

J ~°r' ~0' ~re}R = [BiN ]-I iSr, s0' Yre} 

(4-3) 

Now in the range r I < r < r 2 the stress resultants are given by 

{N r, N 0, Nr8 } = t{o r, o 0, ~r0}P + 2nh{Or, °0' ~r0}R (4-4) 



where n is an efficiency factor which takes account of the shear lag effects 

normal to the plane of the plate. Hence from equations (4-3) and (4-4) we obtain 

{¢r' gO' YrO} 

where [ aij ] 

= [aijl{N r, N o , Nr8} 

= [t[eij]-' + 2~h[Sij] -l] 
-l .} (4-5) 

Finally, we relate the stresses to the stress resultants by means of equations 

(4-I), (4-2) and (4-5) : 

valid in the range 

{Or' g0 Tr0}P [~ij ]-I , = [aijl{Nr, N o , Nro} 

{° r '  g0' ~r0}R = [sijl-l[aijl{Nr' NO' Nr0} 

r 1 < r < r 2 , while for r > r 2 

1 (4-6) 

{ar' g0' rr0}P = {Nr' NO' Nro}/t ° (4-7) 

4.2 Equilibrium and compatibility 

The stress resultants satisfy the following equations of equilibrium 

3N r Nr - NO 1 3Nr0 
3r r r 30 = 0 

1 3N0 3Nr0 2Nr0 
- - ~ +  ,,, + ~ _- 

r 30 3r r 0 

} (4-8) 

which are satisfied by the introduction of a stress function 

1 3~ 1 32~ 
r r 3r r 2 302 ' 

32~ 
N o = 

3r 2 ' 

1 ~ 1 82~ 
Nr8 = -'2 3--O- ~ '~'r38 

r 

such that 

(4-9) 
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Now in terms of the displacements u, v the strains are given by 

~u 
C ---- m 

r 8r ) 

u l 8v 
eO r r 88 ' 

,,u ,(v) 
Yr8 r 88+ r ~- 

from which the displacements can be eliminated to yield the equation of 

compatibility: 

Cr r 8 2 I ~r.r 8. 
80 2 r ~ + ~r r 8r r 30 / = 0 

(4-I0) 

(4-11 ) 

Equations (4-I), (4-5), (4-7) and (4-9) enable us to express equation (4-1l) 

in terms of the stress function ~ , whence 

where in the range rl <r <r2 : 

= a22/a] I 

A 8 - (I + K + 2m)A ~ -- 0 , 

, ~ = (al2 + ~a33)/a]] 
(4-12) 

and for r > r 2 : 

I< = u~ = l 

and the differential operators A A 0 are defined by 
r ) 

AoF = 1 + -~ F 

(4-] .3) 



5 THE EFFICIENCY FACTORS 

In this section we derive expressions for the efficiency factors nT' ~S 

appropriate to a uniformly applied radial tension or shear respectively. Shear 

lag effects normal to the plane of the plate stem from the finite and relatively 

low values of the shear moduli G G 0 in comparison with E 8 The moduli 
rz ~ z 

Er, Gr8 which are also small in comparison with E 0 play a negligible role in 

these shear lag effects and they are then assumed to be zero. Account is taken 

of the actual values of Er, Gr% in the subsequent two-dimensional analyses 

which assume an effective thickness DT h or ~S h for the annular reinforcement° 

It is first assumed that the displacement normal to the plane of the plate is 

zero, which is equivalent to an assumption of infinite E , but this assumption 
Z 

is later relaxed. 

In terms of the displacements u, v the stress-strain relations in an 

element of the reinforcement are now given by 

and 

a 0 = E e +-- r 

~U 
T = G 
rz rz ~z ' 

~v 
TSZ = GSz 3-~ 

(5-i) 

The equations of equilibrium in the radial and circumferential directions are 

and 

~T 
rz 1 

0 
~z r g0 

+ 
3z r 20 

= 0 1 (5-2) 

5.1 ~T for applied radial tension 

In the case of a uniformly applied radial tension the displacement 

zero and substitution of equations (5-I) into equations (5-2) yields 

~2u I EG00__I _u_u 

3z 2 \ rz! r 2 
= 0 

v is 

(5-3) 
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Now the shear lag effect is of significance only for compact reinforcements in 

which (r 2 - r l) is small in comparison with r I It is thus adequate, bearing 

in mind the approximations already introduced, to treat r as constant in 

equation (5-3) and equal to the average value ~(r I + r 2) represented by r* . 

Equation (5-3) may now be integrated to give the following z-wise variation 

of u : 

kl~ -kl~ 
u = f1(r)e + f2(r)e , (5-4) 

where ~ = z/h , 

1 

r* Grz" 

.} (5-5) 

The boundary conditions are that T is zero at z = h , whence 
rz 

and similarly 

cosh %1(1 - ~) 
u = cosh k [U]z=0 

l 

cosh %l(1 - ~) 
°O = cosh k 1 [°e] z=O 

(5-6) 

(5-7) 

Integration of 0 8 over the range 0 ~< z ~< h now yields the following 

expression for the efficiency factor n T , 

h 

f oedz 

0 

nT : h[°o]z :O 

l 
%-- tanh %| (5-8) 
i 

In the next section we modify this expression to take approximate account 

of the finite value of E The good agreement already found between a two- 
z 

dimensional analysis based on equation (5-8) and Ref.], which is a rigorous 



I! 

three-dimensional analysis but with the assumption of an infinite value of 

is adequate justification for attempting this further improvement. 

E 
z 

5.1.1 Effect of finite modulus E 
Z 

The assumption of an infinite value for E necessarily results in an 
Z 

overestimate of the value of qT although this is significant only when the 

reinforcing annulus has a compact cross-section. In such circumstances an 

approximate allowance can be made for the finite value of E by treating the 
Z 

reinforcing annulus as a (very) short cylinder. Thus within the framework of 

elementary shell theory 5, modified to take account of shear deformation, we can 

write 

d4Ub wu 
D -- + E e • = 0 (5-9) 
z dz 4 r,2 ' 

where u b is the component of radial displacement due to bending, w is the 

width of reinforcement (r 2 - rl) and D is the flexural rigidity of the 
z 

'shell', given adequately by 

1 3 
D = --Ew 
z 12 z (5-10) 

Similarly, the deflexion due to shear u satisfies the equation 
S 

d2u 
S WU 

G w E e = 0 (5-1 I) 
rz dz 2 r,2 

Now 

u = u b + u s , (5-12) 

and hence equations (5-9) to (5-11) yield 

d 4 2 
u 2 d__~u + 4~2u = 0 

d~4 - ~I d~2 
(5-13) 

where ~, %1 are as previously defined and 

l 

: \E. j (5-14) 
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The general solution of equation (5-13) can be expressed in the form 

U = 

4 
4 Pi ~ 

~ BiPi e 
i=i 

(5-15) 

where the Pi are the roots of the equation 

4 22 
Pi - t lp  i + 4~ 2 = 0 (5-16) 

Substitution of equation (5-15) into equations (5-9) and (5-;]) and integration 

yields 

Z Pi E 
u b = - 4~ 2 B.el 

i 

U 
S 

= I~ ~ Bip2e pie 

i 

(5-17) 

The boundary conditions are that 

U = U 0 

du b 
- 0 

d~ 

and 

h enc e 

at E = 0 , 

d2Ub d3Ub du s 

dE2 dE3 dE 

at E = I , 

= u 0 
4 

BiP i 

i 

- 0 

~ 2pi ~ ~ 3pi 
= .e = = 0 BiP i BiP 1 t~iPie 

i i i 

(5-18) 

(5-19) 

(5-20) 
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In terms of the coefficients B. the efficiency factor is given by 
i 

~T 

l 

_ I f Lld~ 
J Uo 0 

I~ ~ 3. Pi 
= u-~ ~iPi~e - l) . 

U 
i 

(5-21) 

The resulting analytical expression for ~T is very cumbersome, particularly 

when the Pi are complex. To simplify matters we have determined n T 

numerically over the practical range of values of %1' ~ and find that there is 

excellent agreement with the following empirical expression which was chosen 

because it gives the correct variation with %1 when ~ is zero, the correct 

variation for small values of %1' ~ and the correct asymptotic variation with 

when %1 is zero: 

n T ,%~ tanh %~ 

where %~ = + ~ tanh I (5-22) 

5.2 ~S for applied shear 

The analysis for an applied shear, with E assumed infinite, is only 
Z 

slightly more complex than that for uniform radial tension despite the fact that 

account must now be taken of the tangential displacement. Thus substitution of 

equations (5-I) into equation (5-2) yields 

~2u Ee ( ~v) 

Grz 8z 2 r2 u + ~- = 

2 v 
G0z ~ + 

~z 

-- 0 

(5-23) 
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Now it can be shown from this simplified analysis or, indeed, from a 

rigorous three-dimensional approach that the 0-variation of u, v is such that 

- } u = u cos 20 

v = v sin 20 , 
(5-24) 

where u, v are independent of 0 , Substitution of equation (5-24) into 

equation (5-23) and division throughout by cos 20, sin 20 respectively gives 

a2 u 

~2 

32 v 

3~ 2 

_ 

--- %l(U + 2v) = 0 

-- - 2l~(u + 2~) = 0 

(5-25) 

where ~, X are as defined in equation (5-5) and 

! 

r ~ \G0z / 
(5-26) 

Equation (5-25) may be integrated to give 

where 

and 

X3 E -X3 ~ 
u + 2v = fl e + f2 e 

U = 

V = 

= U , say, 

X3 = (X~ + 4122)½ 

~2 

-J-1 U + 2k 
2 

%3 

1 + 2k2E 

2 
~3 

--U - k] - k2E 

(5-27) 

(5-28) 
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The boundary conditions are such that 

k 2 = 0 

Trz, TSz vanish at z = h , whence 

and 

cosh %3(I - ~) 

U = cosh %3 [U]z=0 ' ~ (5-29) 

J cosh %3(1 - ~) 

a s = [ o 8 cosh %3 ]z=0 " 

(The terms involving k] correspond to deformations in which e8 vanishes.) 

Corresponding to equation (5-8) we now find 

I 
nS - %3 tanh %3 (5-30) 

5.2.| Effect of finite modulus E 
Z 

For the case of uniform radial tension the finite value of E caused a 
Z 

r e d u c t i o n  i n  the  v a l u e  o f  ~ due p r i m a r i l y  t o  a b e n d i n g  o f  t he  (compac t )  

reinforcement cross-section. As such it resulted in an increase in the value 

of %1 ' i . e .  an e f f e c t i v e  r e d u c t i o n  i n  t h e  modulus  G 
r z  

The same effective reduction in the modulus G occurs in the present 
rE 

i n s t a n c e  bu t  t h e r e  i s  no comparab le  e f f e c t  i n  t h e  t r a n s f e r  o f  s h e a r s  Nr8 . 

Th i s  i s  b e c a u s e  t h e  ' h a l f  w a v e l e n g t h '  o f  t h e  s h e a r s  Nr0 , namely  ~ r , i s  

much g r e a t e r  t h a n  h A c c o r d i n g l y  we t a k e  a c c o u n t  o f  t h e  f i n i t e  v a l u e  of  E 
z 

i n  t h e  c a s e  o f  a p p l i e d  s h e a r  by w r i t i n g  

where 

nS %7 tanh %~ 

1 

2 
%3 = (%~2 + 4%2) 

} (5-31 ) 

Note that %3 > %~ and hence nS < ~T and the z-wise shear lag effects are 

thus more significant for shear loading than for uniform radial tension. 
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i 

5.3 Higher harmonic loadings 
J ~ 

~sin~ 2e do not In the problems discussed here e-variations other than ~cosj 

occur, but for more complex loadings or boundary conditions they will occur. 

In such circumstances we note that if 

- } u = u cos me , 

v = v s in me , 
(5-32)  

an analysis similar to that previously given, with E 
z 

infinite, shows that 

where 

1 tanh % 1 n m , say = ~ 

X = (%21 + m2%22 )½ 

(5-33)  

Finally we emphasise again that the concept of a single efficiency factor for 

the reinforcement is valid only within the context of a given harmonic load 

distribution. The case of an applied uniaxial tension, for example, requires 

separate analyses for its component harmonic parts, namely uniform radial 

tension and shear, each with its own value of n 

6 APPROXIMATE THREE-DIMENSIONAL SOLUTIONS FOR VARIOUS LOADING CASES 

With the introduction of the efficiency factors ~T' nS the reinforcement 

can now be analysed in a two-dimensional manner. This closely follows the work 

of McKenzie and Webber 2 with occasional simplifications deriving from Ref.4. 

6.| Applied radial tension 

For the case of uniform radial tension o applied at infinity the dis- 

placement v is zero and this restricts the general form of the stress 

function to: 

¢ = 

where ~ = K , 

( c2 

in the region r I < r < r 2 , 
(6-1) 
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the c. are arbitrary contants and the other terms have been introduced for i 
convenience. Similarly 

2 p2) 
= rl(c 3 in p + ~c 4 

in the region r >r 2 

(6 -2) 

and we note that to satisfy the conditions at infinity it is necessary that 

c 4 = to (6-3) 

The remaining constants are to be chosen to ensure the vanishing of 

and the continuity of N r , u at r = r 2 . Hence 

m 

I 

~-~ - ~a 

(a21 22 ) 

1 

~(a21 + ~a22) 

m m m 

0 c 1 

-1  
- l a  c 2 

c~22 - c~21 
~t c3 

[N ]= 
r r r ! 

M 

0 

Btc~oo 

(I - v) ~Ooo/E 

...... (6-4) 

The stresses in the plate and reinforcement are now given by equations (4-6), 

(4-7) and (4-9). 

6.2 Applied shear 

When the applied loading at infinity is one of pure shear T referred to 

cartesian coordinates at e = ±¼~ the stresses at infinity are such that in 

polar coordinates 

Or = - °e = r~ cos 2e 

Tre = - T~ sin 2e 1 (6-5) 

The plate and reinforcement possess rotational symmetry about the origin and 

accordingly the stress function is of the form 

= r 2 cos 2e ~ qm 
1 CmP ' 

m 

( 6 - 6 )  
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where it is convenient to let m = I, 2, 3, 4 refer to the region r I < r < r 2 

and m = 5, 6, 7, 8 refer to the region r > r 2 . 

Thus from equation (4-12) we obtain the following auxiliary equation for 

the region r] < r < r 2 , 

'((qm - I)4 - (qm - l)2(I + K + 8~) + 9 = 0 , (6-7) 

whose roots are 

ql,2 

q3,4 

='-+I 
= I + I 

+ z< + 8 to -  {(I + K +2K 8~°)2 - 36m}~ I" 

+K+8m+ _{(I + ,( + 8t0) 2 - 36~}1217 

] 2K 

Similarly in the region r > r 2 , 

> (6-8) 

q5,6,7,8 = - 2, 0, 2, 4 (6-9) 

The stress resultants are given by equations (4-9) and (6-6), whence 

qm-2 
N r = cos 20 ~_a (qm- 4)CmP 

m 

qm-2 
N o = cos 20 ~ qm(qm- l)Cm0 

m 

qm_2 
Nr0 = 2 sin 20 (qm - l)CmP 

m 

;" (6 - ]0 )  

and we note that to satisfy the conditions at infinity, equation (6-5), it is 

necessary that 

C 8 = 0 , 

C 7 = - ½tT 

(6-11) 
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It may likewise be shown that the displacements are given by 

u = 

- %-I 

r| c°s 20 Z {all (~ ~- $) + al2qmlCmO 
m 

V z{ (-))'-' qm 4 i - 4a CmP = ½r I sin 20 a22qm(qm- ]) -a|l ~ 12 

m 

(6-12) 

The remaining unknown coefficients C 
m 

vanishing of 

at r = r 2 

N r , Nre 

These conditions yield: 

are now determined by the 

at r = r! and from the continuity of Nr, Nr0, u, v 

4 

(qm - 4)Cm 

m=l 

= 0 

4 

Z (qm- l)Cm 
m = 1 

= 0 

4 

Z (qm - 4)Cm ~qm + 6C5 ~-2 + 4C6 

m= | 

2 
= ~ tToo 

4 

(qm - 1)Cm ~qm + 3C5 ~-2 + C6 

m=1 

= - ~2tT 

4 

>='~j {al| (~m - ~') + a|2qm}Cm ~qm - Et2 {(I + ")C5~-2 
m = 1 

+ 2c6) 
(I + ~)~2T 

OO 

4 
~-'~ { <qm- ~I-4a ICm ,qm 4 I(i + ,)C5~-2 (I- ,)C61 
m=1 a22qm(qm - I) - a II qm 12 - E-~ - 

- 2(I + ~)~2T 
OO 

. . . . . .  ( 6 - ~  3 )  

The stresses in the plate and reinforcement are now given by equations (6-10), 

(4-6) and (4-7). 
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6.3 Uniaxia i tension 

A unit uniaxial tensile stress applied at infinity in the direction of 

O = 0 , say, can be split into components of uniform radial tension and pure 

shear in which 

! 
o = T = ~ (6-14) 

oo co 

The stresses in the plate and reinforcement are therefore given by appropriate 

addition of the stresses as determined in sections 6.1 and 6.2. 

7 OPTIMUM CHOICE OF REINFORCE~,~ENT CROSS-SECTION FOR UNIAXIAL TENSION 

When the hole size, plate thickness and applied load are specified the 

reinforcement can be said to be optimised if, for given allowable peak stresses, 

the volume of reinforcement is a minimum. However, the variation of this 

optimum with the magnitude of the allowable peak stresses is more conveniently 

determined by the inverse approach in which we search for configurations which 

give minimum peak stresses for a given volume of reinforcement. In this 

connection it is convenient to introduce the following 'basic volume' V 0 

defined by 

V 0 = 2~r~t(E/E 0) , (7-I) 

which enables us to express the actual volume, namely 

2 2 
V = 2~h(r 2 - r I) , (7-2) 

by the non-dimensional term V* where 

V* = v/v 0 

( 2  _ 1 )hE 0 

tE 
(7-3) 

As for the weight of reinforcement we note that the density of CFRP, for 

example, is about 0.56 times that of aluminium and Es/E is typically about 

2.5; accordingly a unit value of V* corresponds to a reinforcement weight 

which is 0.45 times the weight of plate removed° It is shown later that for a 
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CFRP-type reinforcement on an aluminium alloy plate the practical range of 

values of V* is from 0.5 to 1.0; such a method of reinforcement is therefore 

highly efficient. 

7.1 The magnitude of the peak stresses 

For the case of uniaxial tension in the direction of O = 0 , the peak 

stresses in the reinforcement are the hoop stresses at the edge of the hole at 

+I 0 = _~ The peak stresses in the plate are either the hoop stresses at the 

edge of the hole at 0 = ±½7 or stresses at certain points at the junction with 

the reinforcing annulus at r = r 2 From the analysis of section 6 the peak 

stresses at the edge of the hole are given by equation (4-6) in which Nr, Nr0 

are zero and 

4 

N O = ,(c 2 -c l) - ~, qm(qm- I)C m , (7-4) 

1 

, are given by equations (6-4) (6-13) (6-14). and the coefficients Cl, c 2 C m , , 

When ~0r = ~ ' a condition which is effectively satisfied in all practical 

cases, these peak hoop stresses satisfy the relation 

OR/E 0 = Op/E , (7-5) 

which stems from the equality of hoop strains. It is thus sufficient to confine 

attention to Op , say, which, for a unit value of the applied uniaxial stress, 

is numerically equivalent to a stress concentration factor. Indeed, it can also 

be regarded as a strain concentration factor, in which context it is applicable 

to both plate and reinforcement. 

In discussing the peak stresses in the plate at r = r 2 it is appropriate 

to introduce the concept of an equivalent stress, and because of its convenience 

we adopt the Mises-Hencky version defined by 

° H  + + 
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Now from equations (6-2), (6-12), (6-13), (6-]4): 

Or = Pl + P2 cos 28 

°e = P3 + P4 cos 28 

Tr8 = P5 sin 28 , 

c 3 
where p! = o + -.. 

oo 2 
t~ 

P2 = Too 
6C 5 4C 6 

tB 4 t~ 2 

c 3 

P3 = Ooo - .... 2 
tH 

6C 5 

P4 = - Too + 4 
tB 

P5 ---- -- Too 

6C 5 2C 6 

4 2 
t~ t~ 

1 (7-7) 

(7-8) 

Thus we find 

°M-H = (J1 + J2 cos 2e + J3 c°s220)~ , (7-9) 

where 2 2 2 
Jl = Pl + P3 - PlP3 + 3P5 

J2 = 2(PlP2 + P3P4 ) - (P2P3 + PlP4 ) 

J3 = P~ + P4 - P2P4 - 3p2 

(7-10) 

Now cos 20 varies between +I at e = 0, ~ and -I at O = +17 , and the maximum 

value of °M-H therefore occurs at one of these extremes or at an intermediate 

point. It can be shown that the values of aM_ H at these extremes, namely 
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! 

(J| ± J2 ÷ J3 )~ ' are less than the peak hoop stress at r = r! ; accordingly 

OM-H is of interest only when a maximum value occurs at an intermediate value 

of e , i.e. when 

2 
4J > J2 ' (7-I !) 

in which case 

which occurs where 

! 

J2 (7-|2) 
~M-H,max = 1 - ~J3 ' 

e = ½ cos k2-~3 j . (7-13) 

The stress concentration factors appropriate to the hoop stress Op at 

the edge of the hole and °M-H at r = r 2 have been determined in the following 

numerical example for various values of rl/t over a range of values of V* , 

each value of V* corresponding to a range of values of ~, h related 

according to equation (7-3). We consider an aluminium alloy plate with a CFRP- 

type reinforcement with the following elastic properties: 

E = 70 GPa 

E e = 175 GPa 

E = E = 7 GPa 
r z 

Gr0 = G e = 2 . 8  GPa 
Z 

G = 2.7 GPa 
rz 

= V^r~ = ~ = 0.3 
rE 

I 
(7-14) 

The stress concentration factors are shown in Figs.2 to 6 for values of 

rl/t = 10, 20, 30, 50, 100 respectively; the full lines refer to Op and the 

broken lines to °M-H " However, before discussing these curves it is convenient 

to distinguish between those cases in which the allowable hoop strain in the 

reinforcement (SR ' say) is greater or less than the allowable hoop strain in 

the plate (Sp , say). 
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7.2 Maximum allowable hoop strains such that eR ~ ~P 

When the allowable hoop strain in the reinforcement exceeds that in the 

plate the allowable hoop stresses are such that 

o R > Op(E0/E) (7-15) 

It follows from equation (7-5) that the choice of reinforcement cross-section 

is dictated by the allowable stresses in the p~ate. Thus in Figso2 to 6 we are 

concerned solely with the maximum stress° For example, in Fig°4 if V* < 0.62 

the maximum stress is always the hoop stress at r = r! , but if V* > 0.62 the 

maximum stress between typical points a and b occurs at r = r 2 . In 

general, for any given value of rl/t there is a critical value of V* below 

which the maximum stress in the plate is always the hoop stress and, furthermore, 

there is an optimum value of r2/r I which minimises the stress concentration 

factor~ for any given value of V* greater than the critical value there are 

two optimum values of r2/r I (corresponding to points a, b) which 'minimise ~ 

the stress concentration factor; at these optimum values the maximum hoop stress 

at r = r I equals the maximum equivalent stress at r = r 2 The optimum 

values of r2/r I corresponding to points a yield slightly lower stress concen- 

tration factors than those corresponding to points b , but this apparent 

advantage is offset by the fact that the low value of reinforcement width 

(r 2 - rl) results in very high shear stresses in the bond between the plate and 

reinforcement. (This aspect is considered in greater detail in section 7.4.) 

Fig.7 shows the minimum obtainable stress concentration factor for given 

values of rl/t and V* focusing attention, where necessary, on the optimum 

points b rather than the points a Note that Fig.7 gives a clear indication 

of the importance of three-dimensional shear lag effects, because if these were 

neglected the curves for different values of rl/t would coincide. The reason 

for this marked dependence lies in the fact that with no shear lag the 

theoretical optimum reinforcement is a compact 'bead' which is, in practice, 

highly influenced by shear lag~ it follows that the optimum design occurs 

when the deleterious effects of shear lag balance the otherwise beneficial 

effects of a small value of reinforcement width. The curves show that the stress 

concentration factor, which is 3.0 for the unreinforced hole, can be reduced to 

between 1.5 to 1.6 (depending upon the ratio rl/t) by the proposed method of 

reinforcement. The minimum value of V* required to achieve this reduction 
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varies from about 0.5 when rl/t = I00 to 1.0 when r|/t = 10 ; a further 

increase in the value of V* does not cause a further reduction in the stress 

concentration factor. 

7.3 Maximum allowable hoop strains such that c R < ep 

When the allowable hoop strain in the reinforcement is less than that in 

the plate (KE R = ep , say) the allowable hoop stresses are such that 

Ko R = Op(E0/E) , (7-16) 

where K > I 

It follows from equation (7-5) that the choice of reinforcement cross- 

section will be dictated by the hoop stresses in the reinforcement or °M-H 

in the plate. The stress concentration factors appropriate to °M-H are given 

by the broken lines in Figs.2 to 6, while comp~able stress concentration 

factors for the hoop stresses in the reinforcement are given by a K-fold increase 

in the factors corresponding to the full lines. 

Suppose, for example, that we require to optimise the reinforcement cross- 

section when 

rl/t = 30 

K = I.I0 

V* = 0.8 .t (7-17) 

The full lines in Fig.8 show the stress concentration factor in the plate 

derived from Fig.4 while the broken line shows the factored hoop stress concen- 

tration factors in the reinforcement, also derived from Fig.4. At points a, b 

the stresses in the plate and reinforcement reach their respective allowable 

values simultaneously. Similar curves can, of course, be drawn for different 

values of V* as in section 7.1. 

In general, if we compare cases in which K > I with those in which 

K < I it will be found that for a given value of V* within the low range of 

values in which the hoop stresses are dominant, the optimum design will yield a 

(modif~ied) stress concentration factor which is greater by the factor K ; 

alternatively the stress concentration factors can be made the same by an 
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increase in V* For given values of V* in the higher range of values in which 

the hoop stresses and OM_ H are of equal importance, the stress concentration 

factors are still greater, but by factors which vary between K and some number 

only slightly greater than unity. 

7.4 Bond strength and off-optimum designs 

We have already mentioned that low values of the reinforcement width can 

cause unacceptably high shear stresses in the bond between the plate and rein- 

forcement. A measure of the peak load/unit length in the plate at r = r 2 is 

given by tOM_ H and the av~e shear stress in the bond is therefore given 

approximately by 

t°M_ H 

Tbond,av ~ 2(r2 _ rl ) (7-18) 

The peak shear stress will be greater than this because of variations across 

the width and it would be prudent to assume that 

Tbond,ma x = 2Tbond,a v , say (7-19) 

Indeed, very high but localised shear stresses occur near r = r 2 because of 

the 90 degree re-entrant angle I . However, these can be avoided by tapering the 

outer edges of the discs so that the re-entrant angle is increased to 

135 degrees, say; of course, in the analysis r 2 will then refer to an average 

value. 

Consider now the following example: if rl/t = 30 we see from Fig.7 that 

the stress concentration factor can be reduced to 1.55 by taking V* = 0.6 ° 

Fig.4 shows that this is possible if 

r2/r I = 1.082 , 

whence, from equations (7-3), (7-14) 

r 2 - r I = 2.46t I 

and I (7-20) 

h = I .40t 
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Similarly from equations (7-19), (7-20) 

= 0 406a M H (7-21) 
Tbond, max " - " 

Now if the allowable stresses are such that 

Tbond 

~-H 

= 60 MPa 

= 200 MPa , say , 

must not exceed 0.3aM_ H The theoretical optimum it follows that Tbond,max 

design specified by equation (7-20) will therefore fail prematurely in the 

bond. However, this problem can be overcome without an increase in the weight of 

reinforcement and with negligible increase in the stress concentration factor 

by the adoption of an off-optimum design in which 

so that 

r 2 - r !  = 3.33t 

r 2 / r  ! = 1 . 1 1 1 

which results in a stress concentration factor only about I% greater than the 

theoretical minimum. 

The above example highlights the fact that for a given weight of rein- 

forcement it may be advantageous to choose an off-optimum design in which r2/r | 

is greater than that required to minimise the stress concentration factor. 

This is because the slight increase in stress concentration factor will be 

offset by a marked reduction in the shear stresses in the bond and a marked 

reduction in the thickness h . 

8 CONCLUSIONS 

A simplified technique is presented for the stress analysis and optimum 

design of fibre reinforced annular discs surrounding a circular hole in a flat 

plate under various loading conditions. The method allows for shear lag 

effects normal to the plane of the plate. For the practically important case of 

applied uniaxial stress it is shown that the optimum design of reinforcement is 

markedly dependent on these shear lag effects. Detailed numerical results are 

given for an aluminium alloy plate with a CFRP reinforcement. The lightest 



28 

reinforcement which reduces the hoop stress concentration factor to a prescribed 

amount is shown to depend on the ratio (hole diameter)/(plate thickness). 

Typically, a stress concentration factor between I.5 and 1.6 can be achieved with 

a reinforcement whose weight is between 0°3 and 0.6 times that of the plate 

removed. 
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