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Summary 

A linearised theory is presented for the calculation of force and moment coefficients for two-dimensional 
cascades of blades in supersonic flow. The cases of both supersonic and subsonic axial velocity are treated. 
The perturbations are due to bending vibration, torsional vibration, and wakes shed from moving obstruc- 
tions upstream. The method leads to analytical results in the quasi-steady case, and to a fast computer 
program for the general unsteady case. Results are in good agreement with previous work. The method can 
be used to predict forced vibration and flutter in transonic fan blades. 

* Replaces A.R.C. 37 198 
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1. Introduction 

In the development of high performance compressors and turbines for aviation applications, the problem 
of blade vibration has been one of the most persistant and troublesome. This is because the need to minimise 
the weight of the machine leads to slender blading which is prone to vibration. In particular, the fan blading 
on modem fan engines has encountered severe flutter in a mode in which the blade motion includes both 
bending and torsion, and the blades are coupled together through their snubbers. This type of flutter has 
been described by Snyder and Commerford (1974) 1~ and by Halliwell (1976) s. The flutter occurs when the 
blade tips have a supersonic relative inlet Math number and are not stalled. There is a pressing need to be 
able to predict this type of flutter, and there is also great interest in predicting the amplitude of vibration that 
will be forced by wakes or other kinds of maldistribution in the inlet flow. 

In the construction of a prediction method, it is necessary to use a number of simplifying assumptions in 
the development of the theory. All available supersonic theories are two-dimensional, and this assumption 
will be made here. Namba (1976) n has shown that in a three-dimensional subsonic situation the two- 
dimensional unsteady strip theory works well, so that there is good reason to hope that strip theory can be 
extended to apply to fans with supersonic tips. 

It will also be assumed that the unsteady effects are small perturbations of a uniform flow with a 
supersonic Math number. Thus all effects due to incidence, lift, camber, thickness, and shock waves are 
neglected. It appears that flutter of actual fan blades running at a given speed is worst when the pressure rise 
through the fan is least. The neglect of the effect of the pressure rise is therefore likely to lead to a 
conservative estimate of the flutter susceptability of the fan. It will also be assumed that all blades vibrate 
with the same amplitude and with a constant phase angle ~b between each blade and its neighbour. Both 
flutter and forced vibration of identical blades is of this form, but in fact any motion of a blade row can be 
synthesised by superposing components of this kind, so that the assumption does not lead to any loss of 
generality. The object of this report is therefore to predict the aerodynamic forces and moments acting on a 
cascade of vibrating flat plates, due to (a) translational vibration of the plates normal to their chord lines, 
corresponding to bending vibration of a three-dimensional blade, (b) torsional motion about a given axis, 
and (c) wakes convected into the cascade from some other obstruction upstream. This is the basic 
aerodynamic data necessary to predict both flutter and forced vibration. 

The nature of the solution is fundamentally different according to whether the axial velocity is subsonic or 
supersonic. In all practical turbomaehines the axial velocity is subsonic, and therefore this ease is of primary 
interest. In this case it is possible for information to be transmitted upstream in an axial direction, and the 
situation therefore combines some features of subsonic flow with some features of supersonic flow. But the 
ease when the axial velocity is supersonic is much easier to treat theoretically, and this was the first case to be 
studied. 

The problem of wall interference for a single aerofoil oscillating in a wind tunnel, which corresponds to an 
unstaggered cascade with antiphase oscillation of the blades, has been investigated by Drake (1957) 2. The 
unstaggered cascade with arbitrary phase angle was analysed by Lane (1957) 9 using Laplace transform 
teetmiques. The case of supersonic axial velocity has also been analysed by Gorelov (1966) 4 and by Platzer 
and Chalkley (1972) ~4 who used the method of characteristics. Nishiyama and Kikuchi (1973) 12 have 
reported a theory based on the image method. 

Turning to the case of subsonic axial velocity, this was considered by Gorelov (1966) 4 but no numerical 
results were obtained. An analysis for a finite cascade was given by Verdon (1973) 17, in which blades were 
added to a finite cascade until no further significant change in the flow pattern was obtained. Kurosaka 
(1973) 8 gave a quasi-steady solution, valid for low frequency parameters. Brix and Platzer (1974) 1 have used 
the method of characteristics, and obtained reasonably good agreement with Verdon (1973) 17 for a finite 
cascade. An analysis by Verdon and McCune (1975) TM for an infinite cascade gives the most comprehensive 
results available to date. A comparison between the finite cascade and infinite cascade assumptions has been 
made by Platzer, Chadwick, and Sehlein (1976) 13, who also developed an infinite cascade theory which 
showed good agreement with the results of Verdon and McCune (1975) TM. Platzer, Chadwick, and Schlein 
(1976) ~3 find that as the number of blades used in the finite cascade analysis increases, the results for lift and 
moment converge towards the results of the infinite cascade analysis, but the results for the individual 
surface pressures do not converge. 

In most of the above analyses, including that by Verdon and McCune (1975) TM, the solution is obtained in 
terms of the velocity potential. Here, it is preferred to work in terms of the pressure (or acceleration 
potential), since there are then no source terms arising from the wakes of the blades, due to the vorticity shed 
from the trading edges. 



The method of solution used in the present report is very similar to that proposed independently by 
Goldstein (1975) 3. However,  Goldstein's paper does not take the solution so far as to obtain any results. 

2. Basis  of  The  Theory  

In setting up the basic equations of motion, it is convenient to regard the force applied to the fluid by the 
blades as a generalised body force (F) per unit mass, which could be distributed over the whole field. 

The thin-aerofoil assumption is made, that the deviations from a uniform flow with velocity U are small, 
so that the equations may be linearised and are as f o l l o w s : -  

Continuity 

-•+poV • v = 0. (1) 

Momentum 

D v  1 
- -  Vp = F. (2) 

Dt  + po 

Isentropic flow 

_P = YP___2 = ag. (3) 
19 P0 

The solution will be constructed in terms of the pressure, p. From equations (1), (2) and (3), this satisfies 
the convected wave equation with a source term on the right hand side, 

1 D 2 
( V2 a~-D-~)P=19oV 'F .  (4) 

The case of interest is when all variables oscillate with angular frequency o2. Hence the body force is of the 
form: 

F(t, x, y) = F(x, y) e u~t, 

and similarly, 

p(t, x, y ) =  p(x,  y ) e  i'°'. 

Then equation (4) becomes 

( O  2 0 2 0 2 2i¢oU O ~._~o}P(X,. 
{- (M2-110- -~q  ay2 a 2 0 x  y) = poVF(x, Y). (5) 

This body force is applied by the thin blades, in the y direction normal to the blade surface. Thus each 
blade is considered as being replaced by pressure dipoles distributed along the chord. The origin of 
co-ordinates is taken at the mid point of the reference blade (m =0) ,  and extends from x = - c / 2  to 
x = + c/2.  Hence the body force corresponding to the reference blade has only a y component which is 

Vo(X, y ) =  - l f ( x ) 6 ( y ) ,  
19o 

where f ( x )  is the distribution of lift force along the chord of the reference blade, and the minus sign is 
because the lift force on the blade is taken positive in the y direction. 

The mth blade has its mid-chord point at x = ms sin 0, y = ms cos 0. Also, it is assumed that there is a 
constant phase angle & between each blade and the one below it. Hence the body force due to the mth blade 
is 

F,,(x, y ) =  F o ( x - m s  sin 0, y - m s  cos O)e ime~ 

= - (1/19o)f(x - ms  sin 0)8(y - ms cos 0) e i"6. 

Summing for all blades, the force field is 

-+-cO 

F(x, y ) =  -(1/19o) Y~ f ( x  - m s  sin 0)8(y - m s  cos 0)e '""~. (6) 
rrl  = - - o o  



The solution of equation (5) may be expressed as 

p(x, y)= f f poVlF(g:, ~)G(x-~, y-?l)d{d~, 

where G is the Green's function of equation (5). 
Substituting equations (6) into (7), and evaluating the integral over r /by  parts gives 

(7) 

f +c/2 +oo 
p(x, y) = -,_c/2 f(~) d~ Y 

l,n ~ ~ o o  
ei"'~ ~y {G(x - ~ - m s  sin O, y - m s  cos 0)}. (8) 

Once the pressure has been found, 
harmonic oscillation and in any region where the body force is zero, this gives 

the velocity perturbations can be found from equation (2). For 

( iw+ Uo-~)u : 1 0 p  (9) 
Po OX' 

( O )  l o p  
ioJ + U v = . (10) 

Po Oy 

The distribution of pressure dipoles along the chord, f(s¢), has to be arranged so that the induced velocity 
normal to the surface of the blades, vl, given by equation (10), matches the required upwash velocity vu, so 
that 

vl = Vu. (11) 

Three kinds of upwash will be considered. These are (a) Bending vibration of the blades with velocity 
q exp (io)t), so that 

Vu =q. (12) 

(b) Torsional motion of the blades with angular displacement a exp (kot), positive nose down, about an axis 
position given by x.. Matching the vibration normal to the surface gives 

Ua) e~'= (x-x~)o (~ (v, ei~Ot), 
oi 

so that 

Vu = Uot{1 + ko(x - x,, )/ U}. (13) 

(c) The effect of wakes from any kind of periodic obstruction upstream is calculated. These wakes involve a 
vorticity perturbation, but no pressure perturbation, so that they are convected downstream at the main- 
stream velocity U. The amplitude of the wakes will be specified by the velocity which the wakes would 
induce at the position of the mid-chord point of the reference blade, if the cascade were removed, which is 

- w exp (iwt). Matching the velocities normal to the surface gives 

so that 

Vl ei° ' t - -w e i°J(t-x/U) = 0 ,  

vi = w e -i°~x/u (14) 

This known upwash velocity enables an integral equation to be set up to calculate the unknown dis- 
tribution of pressure dipoles along the chord, given by f. The calculation of the kernel function of the integral 
equation is considered in the next section. 

Once f is known, the lift on the aerofoil is given by 

+c/2 t" 
L = | f(~:) d~:. (15) 

a-c~2 

The moment about the torsional axis at x = x,, taken nose down positive, is 

f +c/2 
M~ = f(~)(~:-x,)  d~:. (16) 

a-c~2 



3. Calculation of the Kernel l~netlon 

The Green's function of equation (5) can be obtained by solving the equation 

to2 
(17) OX 2+ 0y 2 a 2 Ox 

This equation has to be solved subject to the boundary condition that there is no disturbance outside the 
Mach cone emanating from the origin. 

This boundary condition will be handled by the mathematical device of supposing that the angular 
frequency to has a small negative imaginary part, so that 

to = tol--/to2 

where to1 and toE are real and positive, and the limit to2-->0 is implied. This means physically that an 
oscillation which is growing very slowly in time is being studied. Disturbances which originate far from the 
reference blade must have been emitted at much earlier times when the oscillation was negligible small. 
Hence this device eliminates unwanted effects coming from the far field. 

The solution is sought in the form of a double Fourier transform as follows 

1 f+OOe -axdA +~o 
G(x'  Y)=--~2 Loo I-o,, d (A 'a )e - i ° 'Y  d°~" (18) 

The Dirac delta functions in equation (17) can be similarly expressed as 

+oo 
1 I_ e-iAx 8(x) = ~---£~ oo dA, (19) 

+oo 
1 I_ e-i"Y 8(y) = ~--~ co da. (20) 

Substituting equations (18), (19) and (20) in equation (17) gives 

{ 2 2 t ° U  to2} ~ 
- 

This may be written 

{B2(A - ~ / c )  2 -  ot 2 -B2~2/c2}G(A,  a ) =  1, 

where B 2 -- M s -  1, 

= ~,c/U, 

= M ~ / B  2, 

=M£ 

Hence the Green's function is given by 

I S 1 2 e-lAx e -~ay da G(x, dX 

It will be convenient to replace A by a displaced variable A' = A - 12/c, so that 

1 lax~of +oo •/c +oo e -'~'y da 
G(x,  y) = ~ e -  / e -ix'~ dA' I_ (21) • , -~ ~ ~ B2A '2 -0z2-B2~2/c2"  

If to and therefore /i are real, the displacement by ~ / c  on the limits of the first integral makes no 
difference. But since to is supposed to have a small negative imaginary part, it will be necessary to allow for 
this in the evaluation of this integral. 



At this point it is convenient to switch to a non-dimensional co-ordinate system, and to work in a 
transformed plane (2,)7). The relationships are as follows 

~=xlc,~=dc,~=cx', 

)7 = By~c, ~ = B n / c ,  ~ = ca~B, 

tan ti = (tan O)/B, (22) 

= (sB cos  O)/(c cos  #). 

In this plane the Mach waves propagate at 45 ° to the £, )7 axes. 
Equation (21) becomes 

1 .-- I +co-# e_0-,~ d,~- I ;  co e-'a~ d~ 
G(2, )7 )=BG(x ,  y ) = ~ 2  e - ' ~  ~ 2 _ & 2 _  if2. 

~ C O - - #  CO 

Equation (8) becomes 
+ 1 / 2  

~(~' )7)= ,.-[i/2 f(f)~(~-f" )7)eg 

where 

and 

(23) 

(24) 

+co . . . .  1 I+co-# I ;  co i~e- 'a~"d~  (25) 
/~(:~,)7)= ,,=-coE e - '~"+' '~s 47r 2 -oo-a e-i£e'~d'~ co h"2-t~ 2--2'K 

P = p/ao U 2, f = I/ao U 2, 

:~., = :~ - m g  sin 0, )7"* = )7 - m g  cos t~ 

This shows how the solution for the pressure is constructed from the strength of the dipole sources 
distributed along the reference blade. 

The corresponding expressions for the velocity perturbations may be obtained from equations (9) and (10) 
and are 

U ( X ,  Y) 
+ 1 / 2  

a ( ~ ,  )7) = J' U = - , /2  f ( f ) a e ( x -  ~ )7) a~  (24) 

v(x, y) [+1/2 
~('~' )7) = n u  = ~-1/2 f (¢)~( '~-  ~ )7) d~ (27) 

where 
+ c o - #  - - I -  - - i £ & , ,  - +co . -  - i ~ 9  - +~o i-= +i.,* 1 /" (A / , ) e  dA f ~ a e  - d ~  

e - ' ~ -  ~" - " ~ " - - - - - -  (28) t~,~(£,y)=-,,,=_ooE 4¢r2J._co_a (~+alB 2) L~ (~ -a2 -~2 )  ' 
+~o 1 r + c o - #  -i£~,,, A ~  r + c o  - ' - -  

e-i~,,.  +i''¢, ~_ I e - aA I ifft 2 e "*Y" da  (29) 
t~e(£, )7) = -,,=_coY~ 4~r2 j__co_a (,(-+o5/B2) j_co (~-2_a2_ if2 ). 

Equations (28) and (29) show that in the ,~ integration an additional pole appears at ,~= - ~ / B  2. This 
corresponds physically to vorticity waves which are convected downstream at a speed U, and which do not 
involve any pressure perturbation. 

The integrals in equations (25), (28) and (29) can be evaluated in terms of the Bessel function 3"o to give 
the form 

-[-OO _ _ i ~ r a . ~ t . i / l l ~  0 -- - - 2  1 2  1/2 - 

ffe(£, y) = - m~_co e ~--~ {Jo[K ( x , , - y , , ) I H ( x = - I Y " * I ) } ,  (30) 

where H is the Heaviside step function. However,  this series shows poor convergence, and becomes 
unsuitable for numerical work anywhere near the acoustic resonance which will be discussed later. 

If, alternatively, the series in these equations are subject to a transformation similar to the Poisson 
summation formula, the result is another series, which in physical terms consists of propagating or decaying 
acoustic waves. This technique works very well in subsonic flow (Kaji and Okazaki (1970) 6, Smith (1972) 15) 



but in this case of supersonic flow the convergence is bad since all the higher order terms consist of 
propagating waves, and these do not decrease in amplitude. 

The procedure that will be followed is therefore to split the inner factor in these equations into three terms 
as follows 

1 1 if2 1 1 (31) /~2__ ~2__/~2 - - ~ +  (~"2__ ~ 2)2 .{_/~4 ('~2 ~ ~2)2('~2-- C~2--/~2)" 

The first two terms are the first two terms of an expansion in ga, or frequency parameter.  These terms 
therefore give the low frequency behaviour, and are conveniently handled by summing over blade numbers. 
The last term is the remainder, and it will be transformed into a summation over propagating and decaying 
acoustic waves. 

Since only the v velocity is required in order to set up the Kernel function, only this variable will be 
treated. Equation (29) is therefore written 

zT~ = 0~Te + 1~ + 2~e, (32) 

where the three terms correspond to the terms in equation (31). 
The og~ term is obtained from equation (29), putting g = 0. The integrals may be evaluated by standard 

contour integration methods to give 

+oo . -  
oZSe(x, 37) = -½ X e-i~°"+l'~'llB2)+ime'{8(.r,,, toJ -lyre I)+ n(xm -lYm I)}. (33) m=--oo 

The 8 function shows the disturbances propagating along the Mach lines, at 45 ° to the transformed axes. 
There is also some unsteady effect downstream of these Mach waves, given by the H function. 

Similarly the lz7, term may also be evaluated as follows 

+~ 1 f+~-c, e-lX~d£ f+ooiaE~Z e - ~ , , d a  
l~e(-~, 37)= - y, e - i a ~  +i='~ . . . .  4~r 2 J-m-~, (,~+a3/B 2) J-m ( / ~ 2 - - a 2 ) 2  

-2 +~ B 2 (34) 
=K__ Z e-i~'(*~+l~"l/B=>i"e'{lY"l+-~ l H ( ~ m -  ]~m[). 

m=_o o 

These velocities need to be evaluated on the surface of the reference blade, where -0.5(Y(0.5, and )7 = 0. 
The delta function in equation (33) always yields a finite number of terms in the summation over m. The 
other terms in equations (33) and (34) are governed by the H function, which yields the condition 

x.,-l;ml>o 
$ -  mg sin i - ] m l g  cos i f>0 ,  

i.e. 

and 

where 

and 

.~ > rod1 for m > 0, (35) 

~, > rod2 for m -< 0, (36) 

dl = g(sin i +  cos 0), 

d2 = g(sin i -  cos if). 

These results are illustrated physically in Fig. 2, which shows the Mach lines radiating at 45 ° to the 
transformed axes from a row of sources. If the axial velocity is supersonic, all the waves go downstream of 
the row, and there is no upstream effect. In this case i < 4 5  °, d2 is negative, and there is no effect if ~ is 
negative. For ~ positive the summation includes a finite number of terms given by 

m -  = [~/d2] ~< m ~< m + = [$/d11, 

where the square brackets indicate that the quantity enclosed is to be truncated to the nearest integer 
towards zero. 



For the subsonic axial velocity case, Fig. 2 shows how some of the waves go upstream of the row. In this 
case O> 45 °, d2 is positive, and equation (35) gives 

and equation (36) gives 

and 

O<~rn<~m + f o r g > O  

- o o < m < m -  f o r g < 0  

- o o < m < 0  f o r g > 0 .  

In this case therefore the summation has an infinite number of terms. 
These infinite summations may be evaluated by the formulae 

e iz 

= i e i----~' 
e ~mz 

m = l  

e iz 
m e imz = - -  m=l (l_eiZ)2, for i f ( z )>0 .  

The condition on the imaginary part of z is satisfied, from the assumption that to has a small negative 
imaginary part. 

Applying these formulae to equations (32) and (34) gives, for subsonic axial velocity, 

otSe(.g, 0 ) = - ½  e i " ( - ~ ° ~ a + ' ~ ) 6 ( Y - m d a ) +  ~ eim(-a~¢°~°-~')6(£+md2) 
0 m=l 

} to) -i,r,e -m-  1 
2B 2e i e i ~ C ~ - H ( - ' ~ )  m=0Y" e i ~ c ~ + ~  , 

-a "+ I m - B2 1 
- -  K - - i t 5£ [  ~r~ lVg(X, O) ----4- e ~m~__l eimC2 ScosOff"7~- (e- i~(x-mdl) /B2--1)  Ito 

-'- [m )] - Y. e i " q  gcosf f+- - (e -~ '~ (e+ 'ag /n~- i  H ( - x )  
m=O lto 

e iC~ B 2 [ e  - i ~ e / B "  1 ]} 
+ g cos 0(1 - eiq) z +)-~--[(1 - - - -~)  (1 --eiq)  " 

where C~ = -oSg sin ff-oSg cos f f /B  a - 4) 

Ca= +o3~ sin ff-oSg cos O/Ba+d~ 

(?6 = - t2g sin ff-4~ 

Turning now to the third term in equation (32), this is given by 

(37) 

(38) 

d-oo 
2re(g, 17) = - E e_ia(e_m~i,o)+i,,, ~ 1 [+°°-ae-~X(e-"e~"°3dK f+~ id2f f4e- ie ' ( f - ' e~°~°)dd 

m=-~ 47r----~j_oo_a ~ )  j _ o o ( - ~ L - _ ~ ~ _ -  ~ (39) 

The summation over m will be transformed using a result given by Lighthill (1958), as Example 38 (pp. 
67, 68). For a period of 2zr, the result is 

1 +cO +oo 

2~mff-~  ei'x=.=-ooE 8(x-27rv)  (40) 

This result is closely related to the Poisson summation formula. Applying this result to equation (39) gives 

2~5e(£ ' )7) = -~-~  e-  ~ : ~  - ' - -  - -  oo e '"Yg(l~s sin 0+cTg cos O+~b-2~u)  =-co oo-g (~ + to ) J_ sin 0 + Ag 

ia2 itS2 /~ 2/~2 ] (41) x[(xa_a2_ 2) (X2_a2) (Xa_aa)ajd  

9 



Using the delta function to evaluate the integral over t~ gives 

1 -iae-~A~ 1 1 + o o  f+_ °°+0" e--iA(~--9 tan O) : -x(A -37tan if)2 
2v~(g, ) 7) = ~-~ e g cos/~ (tan 2 O -  1) ~_-~-oo ~o-a dA ( f f -+ -oS '~  

[ 1 ] 
x (37-f~+)'(37-1)-) (37- f l~ ) (37- f~)  ~" (tan 2 i f -  1 ) ( 3 7 - ~ ) 2 ( 3 7 - ~ p )  z 

where 

A = ( - g g  sin/7-4~ + 2 z r v ) / ( g  cos 0), 
-2 

fZ±_A t a n g  q:A 1 [ 1 - ~ 2 ( t a n 2 -  "11/2 
- tan 2 t7-1  tan 2 i f - 1  0 - 1 ) J  , 

(42) 

(43) 

tan/~ . 1 A 
f ~  = A tan2 g _  1 ~ A  tan2 i f _  1 = tan t i+  1" 

(44) 

The terms in the square bracket in equation (42) correspond to the terms in the square bracket in equation 
(41). The first is the genuine unsteady cascade effect. The second and third terms are the quasi-steady effects 
which were added in equation (32) and are subtracted out again here. 

In the evaluation of the integral over 37, there are poles at 37 = f~+ and 37= lq-, which correspond to 
pressure waves, and a pole at 37= - J I B  E, w h i c h  corresponds to vorticity waves. There are also poles at 
37 = fI~- and A- = f~- which are purely mathematical artifacts with no physical significance. For large values of 

or IAI, f~+ and 1)~ coincide, and f l -  and 1-1~ coincide. 
Due to the small negative imaginary part of o5, these poles are slightly displaced from the real axis in the 37 

plane. The positions are illustrated in Fig. 3, which also shows the contours used for the evaluation of the 
integral in equation (42), and the small displacement of the path of integration from the real axis will be 
noted. If the axial velocity is supersonic, all poles lie within the contour for a downstream point, and all 
effects are downstream. If the axial velocity is subsonic, which is the case illustrated in Fig. 3, the poles O-  
and f ~  lie within the contour used for an upstream point, so that these poles correspond to upstream going 
waves. The poles ~+, fl~-, and ( -oS /B  2) lie within the contour used for a downstream point, so that these 
poles correspond to downstream going waves. Carrying out the contour integration yields 

2~e(3~, 37) = 0 , for (~-37 tan 0 ) < 0 ,  

for 

if the axial velocity is supersonic. 
If the axial velocity is subsonic 

= ~.. ( _ j +  j -  _ j w  + j ; + j ~ + j ~ _ j ~  _ j q  _ j q ) ,  
v 

(~ - 37 tan 0) > 0, 

(45) 

2 ~ e ( $ , 3 7 ) = X ( J - - J ~ + J ~ ) ,  for (:~-37 tan 0 ) <  O, 
v 

+ w+ ++ w + w = Y ( - J - J  G 
v 

In these expressions 

j ~  (A - 112 tan ti) 2 i~(W +a)+i~(fl ± t a n  0 - - A )  

= - Ca (1.~± _ 12~:) (~  + ~ / B  2) e -  

± - 2  ± ± 
J~ = - C 3  ~(A ,-7z77,,, ~ . - - z - ; -  f~p tan 0) 2 e-~(n,  +~)+~ta~ t~ #-A) 

( ~  - n ~ ) ( n ~  + , o / B  ) 

(A + o3 t a n  O/B2)  2 -ie.(-,Z,/B2+f,)+ig(-d, t a n  ~/BZ-A) 
j w  = _ C3 ( _  ~ / B  2 _ UZ+)( _ ~ / B  2 _ f l - )  e 

(A +o5 tan O/B2)  2 
J ~  = - Cs  ( _ ~ /  B 2 _ f F ~ ) ( -  ~ /  B 2 - f ~ )  e-iet-~'/B~+c')+i~¢-'a t~, o-/B2-A), 

for ($ - 37 tan 0) > 0 

(46) 

(47) 
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± tan tT) -2 J q = - C 3  r_ I 2 tan~ 0(A~:2-fl~:~. _ 2 2 ( A -  fl~: tan 0) 
( t an0-1) [ ( f~p- f t~ , )  (ftp+to/B ) + ;a  + - 2 ( fb  - ft~) (rip + o,/B ) 

( A - f l ~  tan if)2 i 0 ? - ]  tan O-)(a - f l ~  tan 0")2~ e_ie(o;+g)+ig(n ~ tan #-A) 
± :~ 2 ~ - 2 2 - ~"~  ~ , _-7----s-7--n~2- ( n ~ - n ~ )  ( n ~ + o , / B )  ( n ~ - n p )  (n ,+< , , /B)  J 

-2  
r (A + O3 t a n  i f / B 2 )  2 e-~t-,~/e2+~x)+i,~(-,~ t a n  ~ / B 2 - A )  

J~' = - Ca (tan 2 g _  1) ( -  dj/B2- f~+)2(_ oa/B 2_ fl~)2 

where 1 
Ca= 

g cos 0(tan 2 0 - 1 ) "  

When the axial velocity is supersonic the argument of the square root in equation (44) is always positive, 
and the disturbances take the form of waves propagating away from the row of dipoles. But when the axial 
velocity is subsonic the argument may become negative, ~+ and f~- become complex, and the pressure 
disturbances decay exponentially with distance from the row. The marginal condition is 

-2  
1 -~-~ (tan 2 t~- 1) = 0. (48) 

This is the 'resonance' or 'cut-off' condition, and corresponds to waves carrying energy in a direction parallel 
to the cascade direction. The corresponding expression for the phase angle is 

- 2~rv = { - M  tan g +  (tan 2 0-1)l/2}ffg COS ~ (49) 

At  this resonance condition, l~ + = l~- and J+ and J -  become infinite. The calculation therefore fails at these 
two points, and discontinuities in the results are to be expected. 

Equations (47) show that there are three other points at which some of the J functions become infinite. 
These are a t  ( ~ ' ~ p + o a / B  2) = 0, (f~-+Oa/B2)= 0, and ~ = f ~  (corresponding to A = 0). The calculation also 
fails at these three points, but this is purely a result of the mathematical devices used, and has no physical 
significance. The further possibility, (fZ±+ Oa/B 2) = 0, never occurs. 

The series over v for J±, J~: and ~r~: are evaluated numerically. The series for J± alone is not uniformly 
convergent, since the terms do not decrease with increasing v. The terms of zero order are removed by J~  
and the terms of order v -1 are removed by J~. This leaves a series with terms of order v -2, which is good for 
numerical computation. This is the whole point of introducing the 0fie and lt~e terms in equation (32). 

The series for jw, jp~ and J~,  which correspond to the vorticity waves, may be evaluated analytically. This 
will be done for the case 37 = 0 and the required formulae are 

, :  ::--'r. , 1 ] 
,=-~o(2~rv-x) - z  2zl_l_ei(~+x)+ l_ei(:_~) 1 , 

+ =  ( 2 ~ - x ) :  __LI 1 1 11 lr 1 ~ ] .~l(2~rv_x)2_z2}2-4z[l_e,(:+,> + l _ e , ( , - . ) -  ] -7[ i1_e,( .+.>}2~ {l_er~.-->}2 • 

When the result is combined with equation (37) and (38), the final result for the kernel function in the case of 
subsonic axial velocity is as follows: 

+ o 0  

~(~, O) = -½ F. eim(-~s~°~°-'~)8(~ +md2) 

- e  --m~=l e --~ B2 rn---~g cos O +--~ B2 - -  

for ~ < O, 

eiC~ 

1 - e ic~ 
- - n 2 .  i r a -  iC6 - ) +oo 

_Oz,zli~ - l ' l - l J  . [ _  ,o imc6+ e ~ \ 
- e  t 4  B 2 ~ ~L--le 1 - e  ic~)l +~=-~o y" ( J - - J P + J q ) '  

~2 -- eiC~ I 
~g cos 0 (1 - e~C')2/ (50) 

_ , ( 4  _ 
[ T e ( ' ~ ' 0 ) = - - l m = 0 Z  e lm( -#ee°s  ~')B(x-mdO-e-~'e  + =1 eimCz B 2  m - ~ - - g c o s 0  

io3 1 - B  2 e ic2 / ~ 2  --  e ic2 o3 sinh (oag cos O/B) } 
4 B ~ 1 - e  ~ ~ cos 0(1 _e,~)~ + ~ cosh (o3~ cos ~/B)-cos (4, +o3~ sin ~) 

-i~z~fio3 1 + B 2 / +  "+ 
- e  ~ --~ t ~ ,  e - i ' c 6 + ~ ) } - ~  (J+-JP+Jq) '  for£~>0. 

(51) 
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For the supersonic axial velocity case, there is no effect for g < 0 (upstream of row of dipoles) and for 
£i>0;  

+ C O  +O0 

~ ( £ , 0 ) = - }  ~ ei~(-r~°~+'~) 8(~-mdl)-½ ~, ei"q-~°~°-¢) 6(£ +mdz) 
m=O m ~ l  

- e  { -~=-e"~C' ( '41-B2 g2 _) m+ ( . 4 1 _ B  2 -2 if) -i~.~ e *mc2 B2 m ~"~ g COS 1 n 2 m z s  c ° s  0 -1"- m~-- 1 

i~ l - B 2 [  e iC1 eiC2 \ ~2 [ eiC1 eiC2 .] 
4 ~ ~ + ~ }  +-~-s cos 0 (1-e"CD 2 + (1-e~C:)2J 

o3 sinh (o3g cos O/B) } 
-t 2B cosh (o3g c-~s-O/--ff))---co-s-~'+o3g sin 0) 

/ .+C • 1 + B  2 eimC6. + e_irnC6..b +e-'C'~t4 B2 Y. 1 (J--J;+J~+J+-J;+J~). (52) 
1 m = l  =--  

4. Effect of Wave Reflections 

The integral equation which has to be solved is, from equations (11) and (27) 

i 
+1 /2  

,/2 o) (53) 

where f~ is the known kernel function from equations (50), (51) and (52), and gu is the known upwash 
velocity. 

In the general unsteady case, this equation has to be solved numerically, f(~:) being specified at N points 
evenly distributed along the chord. The integral equation is then replaced by a set of N simultaneous linear 
equations. In its simplest form this scheme was found to be very inaccurate. The reason may be seen by 
noting that the leading term in the kernel function is the sum of a number of delta functions, and that in the 
steady case (O3 = 0) this is the only term. This term corresponds physically to the Mach waves radiating from 
the row of dipoles on other blades hitting the reference blade, as shown in Fig. 2. When these Mach waves 
hit another blade, they ought to be reflected. In the numerical scheme, the wave originating at one of the 
points where f(~:) is specified on one of the other blades will not hit the reference blade exactly at a point 
where f(~7) is specified, and the reflection is very imperfectly modelled by the numerical scheme. This is the 
cause of the inaccuracy, and it occurs whatever numerical interpolation scheme is used. 

In order to overcome the difficulty, the reflections are allowed for explicitly. A new dipole strength, g(~), 
is defined along the chord of the reference blade, and with it go the additional dipole strengths necessary to 
give the required reflections. The total dipole strength, f(~:), is therefore given by 

f(~-) = g(~)+ E F,[g(~-+dp)]g~, (54) 
reflections 

where Fa is a constant factor which depends on the phase angle between blades, dp is a displacement 
distance, and the notation [ ]~ indicates that the term is to be included if ~:1 < ~:< ~:2. Fa, dp, ~:1, and ~2 are 
given in Table 1 for various cases; and the corresponding wave reflection patterns are shown in Fig. 4. 

Considering first the subsonic axial velocity case, if d2 > 1 the wave from the trailing edge of one blade 
goes ahead of the blade above it, as shown in Fig. 4a, and there are no reflections• In steady flow there is no 
interference between blades, but in unsteady flow each blade can influence the flow over the blades behind 
it. If d2 < 1 and dl > 1, the upward starting wave may be reflected once, as shown in Fig. 4b, but as the 
downward starting wave from the leading edge of one blade falls behind the trailing edge of the blade below 
• • 
It, the downward starting wave is never reflected. If dl < 1 and (2dl - d z ) >  1 the pattern is shown in Fig. 4c, 
with the upward starting wave reflected 0, 1 or 3 times, and the downward starting wave reflected 0 or 2 
times. This is the usual design case for a fan tip section. If ( 2 d l - d 2 ) <  1, there are possibilities of further 
reflections, as shown in Fig. 4d, but these cases are not thought to be of much practical importance. 

If the axial velocity is supersonic, d2 is negative, and if ( - d 2 ) >  1 the waves from the leading edge of one 
blade go behind all other blades, as shown in Fig. 4e. There is then no interference between blades in steady 
or unsteady flow, and each blade behaves as an isolated aerofoil. Figs. 4f, 4g, and 4h show cases of increasing 
numbers of possible reflections. 
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When equation (54) is substituted into (53), the result may be written 

1/2 reflections A ~1 +dp 

This is the required integral equation for the unknown dipole strength ~(~). When the kernel function, 
shown in braces thus { }, is evaluated, all the delta functions cancel except for that at (~ - ~) = 0. The result is 
that ~(~) is a smooth function of ~7 over the range - 0 . 5  < ~<  0.5, whereas f(~) shows discontinuities at the 
points where the waves from the leading and trailing edges of other blades are reflected. 

The corresponding expressions for lift and moment are, from equations (I5) and (16) 

/ s - ~ L  - l f + 1 / 2  g(0{ 1+ Y. rPle2+d"ld(- (56) 
- -  " r r p o U 2 c  - 7r J--1/2  reflections t" aJg~+dpJ 

" B ' p o U 2 C 2 - - g a - 1 / 2  g(()  ((--)~vT)-~-reflections~" [ ( ~ - d o - X . ) F . ] ~  d~ (57) 

5. Numerical Solutions of Integral Equations 

The dipole strength ~(~) is specified at N equally spaced points along the chord of the reference blade 
given by 

( =  - 0 . 5 +  I-_____f.1 for I<~I<~N. 
N -  1' (58) 

The upwash velocity is matched at the same points. Equations (12), (13) and (14) may therefore be written 

I-1 1 i~ 1 _i~e] r q/U] r q/U] / - /  
J Lw/UI Lw/UJ 

(59) 

where R is a matrix with N rows (corresponding to the N matching points) and 3 columns (corresponding to 
the 3 kinds of upwash velocity). 

The integrals in equations (55), (56) and (57) are evaluated by the trapezoidal rule; that is assuming that 
the integral varies linearly between the points given by equation (58). Equation (55) then gives 

KG = V, (60) 

where G is a column matrix giving the values of the ~ function, and K is a square N × N matrix giving the 
values of the kernel function. 

Equations (56) and (57) may be written 

where A is a matrix with two rows and N columns, giving the coefficients necessary to evaluate the integrals. 

where 

[ q/U] 

(62) 

Equations (59), (60) and (61) then give 

c = [ cLw ] 
CMq CM,~ CMW-I = AK-1R" (63) 

Two computer programs have been written in Fortran to calculate the force and moment coefficients given 
by equation (63). The first program works for both subsonic and supersonic axial velocity, but does not 
include CLW and CMW. The second program only covers the case of subsonic axial velocity, but since more 
care has been taken to optimise the coding it is much faster. On an IBM 370 this second program requires 
64 K bytes of core store, and with N = 16 the execution time is about 0.3 seconds for each case. 
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6. Steady Solutions 

The steady solution is obtained by putting 03 = 0. Then equations (50) and (51) give (for $ # 2wn) 

~Te(~,O) = - 1  ~ e-im*8(2+md2), 2 < 0 ,  
m = l  

Vt~(2,0) = --I  ~ e+i '~ ' (~ (2 -mdl ) ,  2>i0.  

The kernel function of equation (55) then reduces to 

K(2)  = -½8(2). 

In this case all three kinds of upwash velocity become identical, so that 

R = 111, 1, 1]. 

The solution of equation (55) is therefore simply 

2 
g(~)= B"  

(64) 

(65) 

(66) 

The force and moment coefficients are the same for all three kinds of upwash, so that 

C ~  = C ~  = CLW(= CL), (67) 

C ~  = CM,~ = C~ra,( = CM ). 

In case (a) (subsonic axial velocity with no interference) the results are 

f ( $ )  = - 2 / B ,  

CL = - -  2 /  ~rB, (68) 

C ~  = + 2 x J  ~B.  

In case (b) (subsonic axial velocity with one reflection of the upward starting wave) the results are 

/ - 2 ( 1 - e - i * ) / B ,  - 0 - 5  < ~ <  (0 .5-d2) ,  
hO= 1 - 2 / B ,  (0.5 - d 2 ) < ~ < 0 . 5 .  (69) 

CL = 2---{1 - e- '* (1 - d2)}, 
" f i b  

CM = + 2-~B Xn - e -i~" (1 - dz)(x,7 + ½d2)}. 

In case (c) (with up to three reflections of the upward starting wave and up to two reflections of the 
downward starting wave) the results are 

- -  ~ ] - - 0 " 5 + d l  T [ 1  - -  ~ ] - 0 . 5 + ~ l - - d 2 J "  ~ 

~ B  1 - e- '* (1 - d2) + 2(1 - cos ~b )(1 -d l )} ,  (70) CL i 

---~--{B x,7 - e -'~ (1 - d2)(xn + ½d2) + 2(1 - cos ~b)(1 - dl)(X. - ½da + ½d2) CM + 

+ i sin ¢ (1 -- dl)d2}. 
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General expressions for the force and moment coefficients are 

CL= -~-~-BI 1 - e - ~ ' ( 1 - d 2 ) H ( 1 - d 2 ) +  2 ( 1 -  cos ~b)r__~l (1 - r d l  + rd~_-d2)H(1- rdl + rd2-  d2)], 

1 [ ~ 
CM = -- x,CL -- - -~l  e-  d2(1 - d2)H(1 - d2) 

+ Z 2[r(1 -cos  4,)(dl - d O -  id~ sin ,#](1 - rd~ + rd2-  d2)H (1 - rd~ + rd2 - d2)}. 
r = l  

(71) 

In these expressions, the H functions switch on the various reflections as they appear in groups of four with 
decreasing values of the cascade spacing. 

These results are not strictly valid when ~ = 0 (or a multiple of 2~-) so that all blades move in phase. The 
results then depend on the way in which the limits o3 --> 0 and ~b --> 0 are approached, and in particular on the 
ratio a3/~b. Actuator disc theory should be used for this case. But the results for cases (b) and (c) do 
correspond to steady flow in a cascade, when a particular back pressure is applied. It is interesting to note 
that over the front part of the blade, - 0 - 5  < i f< (0.5 - d2), f-(~-) is zero. There is then no wave coming from 
the leading edge of the blade, and the effective incidence is zero. This corresponds to the unique incidence 
condition given by Kantrowitz (1946) 7. In case (a), on the other hand, it is possible for Mach waves to pass 
upwards through the cascade, and each blade operates as an isolated aerofoil, with incidence. 

For the cases of supersonic axial velocity, equation (66) is still true. General expressions for the force and 
moment coefficients are 

2{ [ CL = - - ~  1+ ~ - e - " b ( 1 - r d l + r d 2 + d l ) H ( 1 - r d l + r d 2 + d l )  

--e+'•(1--rdi + r d z - d 2 ) H ( 1 - r d ,  + ra2-d2)+ 2(1 - ra,  +rd2)H(1-ra~, + rd2] } 

C M = - - x . C L - - - ~  ~_. [ - e - i * ( - r d l + r d 2 + d l ) ( 1 - r d l + r d 2 + d l ) H ( 1 - r d l + r d 2 + d l )  (72) 
r = l  

- e + ~ ( -  rdl + rd2 - d2)(1 - rdl + rd2 - d2)H(1 - rdl + rd2 - d2) 

+ 2 ( -  rdl + rd2)(1 - rdl + ra2)H(1 - rdl + rd2)] 

In these expressions, the H functions switch on the various reflections as they occur with decreasing values 
of dl and - d2. 

Equations (68), (69), and (70) agree with the results given by Kurosaka (1973) 8 for the same cases. In the 
general case, the result for the lift coefficient in equation (71) also agrees, but there appear to be some 
discrepancies in the results for the moment coefficient. 

7. Quasi-Steady Solution 

An analytical solution can be obtained when O3 -* 0, retaining only terms of zero and first order in o3. The 
zero order terms are those already given as the steady solution. It is again necessary to exclude the case 
~b ~ 0. Only the case of subsonic axial velocity will be treated. 

The expression for the induced velocity may then be written 

1 /'o3 1 0)= { 

- -  { } 1 ~ e i . ( _ ~ o ~ + ~ )  8 ( £ - m d l ) + - ~ H ( £ - m d i )  
2 m=l  

(73) 
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The kernel function of equation (55) then reduces to 

1 - i03 1 1 
K ( 2 -  #) = - ~  3 ( g -  ~:)+~B-~ { 1_--£~ H(-~+d2-~) -H(g- ( ' ) } .  (74) 

This shows that, as for the delta functions, most of the H functions cancel out. However,  this cancellation 
is not exact for the general unsteady case, and shows that reflection is not exactly modelled by putting a 
dipole on the reflecting surface. 

The solution of the integral equation (55) may then be sought in the form 

~(~)= _ 2  [1, 1, 1]+i03(Ao+AaO, 

which shows the steady solution plus two terms of first order in 03. When this is substituted into the integral 
equation, and terms of second and higher order in 03 are neglected, it is found that the equation may be 
satisfied and the constants A0 and A1 determined. The result may be written in the form 

where 

~(~) = Go+ Gt(1 (75) 

2 2i03 / d2 1- + 2i03xn "0 
O o = - ~ [ 1 , 1 , 1 ] - - f f S ~ l - e i , ~  1) [1 ,1 ,  ] ---B--- t ,1,01, 

2i03 "1 2i03 
G1 =-B--~ l , 1, l l+--~-  [0, - 1 ,  1]. 

(76) 

(77) 

This result is true for subsonic axial velocity with any number of reflections, except that in case (a) with no 
reflections (d2 > 1) the d2 in equation (76) must be replaced by unity. 

The following results for the force and moment coefficients have been obtained. 
In case (a) (subsonic axial velocity with no interference) 

CL Go 
7/" 

+1_2_ 
CM = --x,TCL 12~- G1. 

(78) 

In case (b) (subsonic axial velocity with one reflection of the upward starting wave) 

I{  ( 1 ) 2i03M2g cos O _ie~ } 
CL=-~ Go-e -i+ ( 1 - d 2 )  Go+ Gld2 B3 e ( i -d2 ) [1 ,  1, 1] . 

CM = -- xnCL + GO27r e-'e" d2(1 - d2)+ ~ {1 - e -'~ (1 - 2d2 - 2d2Z)(1 - d2)} 

i03M2gc°STrB 3 0e-i '~d2(1-d2)[1, 1, 1]. (79) 

Incase  (c) 

CL = Go {1 - e-'+(1 - d2)+ 2(1 - cos 6)(1 - dl)} 
7"/" 

+ G1 {_ e_i~,d2(1 _ d2)- 2(1 - cos ~b)(d~ - d2)(1 - dl) + 2i sin ~bd2(1 - dl)} 
27r 

2i03M2g cos tij 
4 -~--~ | - e-"b(1 - d2)+ [4(1 - c o s  ~b)+ 2i sin ~b](1 - d~)}[1, 1, 1]. (80) 

16 



Cut = -x,~CL +Go {e_~,t, d2(1 _ d2 ) -  [e+~'bd~ - 2(dl - -  d2)+ e-"~ (dl - 2d2)](1 -d l ) }  
2rr 

G1 
+ ~ {1 - e- '* (1 - 2 d 2 -  2d2)(1 - d2) + 2(1 - cos ~b)(1 - 2dl - 2d2)(1 - e l )  

- 12[d~(dl - 2d2)+ e-"bda(dx - d2)](1 - dl)} 

khM2g cos 0 -io 
-~ ~ {e dE(1-d2)-[e~*dl-4(d1-d2)+3 e-~'b(d~-2d2)](1-da)}[1, 1, 1]. 

In equations (78), (79) and (80), the symbols CL and CM denote the first and second rows respectively of 
the matrix C used in equation (5.5). 

For torsional vibration, the results in equations (78) and (79) have been shown to agree with those 
obtained by Kurosaka (1973), but the results in equations (80) appear to show some discrepancies. For 
bending vibration, since Kurosaka's theory is based on the displacement rather than the velocity of 
vibration, he only obtains results which are comparable to those obtained in section of this paper headed 
"Steady Solutions". 

8. Results and Comparison with Other Work 

The convergence of the second computer program has been assessed by running with increasing numbers 
of matching points (N) for two cascades. The results are shown in Table 2. It is clear that the values of the 
force and moment coefficients rapidly approach a limit. It is concluded from this that N = 16 is sufficient to 
ensure accurate results, and that N = 11 is often enough. 

The results of the programs have been compared with those obtained by several other workers. 
Gorelov (1966) 4 gave results for the case of zero stagger and therefore supersonic axial velocity. The 

notation used compares as follows 

Gorelov M k z 3 I~ CCa C~la C~a C~M~a 

N.&W. M ~/e 1/s 0 - ~  -2~r~(C~) -2~rY(C~) -2~(C~)-2~Y(CM~) 

Figures 5 and 6 show a comparison between the results obtained, for the force and moment coefficients due 
to torsion. Very close agreement is seen. 

Nishiyama and Kikuchi (1974) 12 gave results for the case of a staggered cascade with supersonic axial 
velocity. The notation used compares as follows 

Nishiyama M K d/2b A ~" (p_-p+)/(lp~u~) 

N. & W. M (5/2 s 0 -4) - 2 f  

Fig. 7 shows the comparison for the pressure difference across the blade due to torsional vibration. Good 
agreement is seen. It will also be noted how, for this case of supersonic axial velocity, the pressure difference 
across the forward part of the blade is independent of phase angle. There is then a discontinuity at the point 
where the wave from the leading edge of the blade below hits the reference blade, and behind this point the 
pressure difference depends on phase angle. 

Verdon and McCune (1975) have given rather complete results for two cascades with subsonic axial 
velocity. The notation used compares as follows 

Verdon&McCune  M k s 0 tr p - - p +  CM 

N. & W. M ~ M / B  2 c/s 0 q9 - 2 f  2rrC~ 

Figure 8 shows the pressure difference across the blade for 'Cascade A', which is the case when the 
downward starting wave from the leading edge of one blade passes behind the trailing edge of the blade 
below. There is then one discontinuity in the pressure distribution. Fig. 9 shows similar results for 'cascade 
B'. In this case there may be two reflections of the downward starting wave, and the pressure distributions 
show three discontinuities. Figs. 10 and 11 show results for the moment  coefficient due to torsion. In all cases 
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the agreement between the two programs is very close. Figs. 10 and 11 also show discontinuities at the two 
"resonance" points. Between these points the Verdon and McCune program fails to converge. 

Fig. 12 shows comparison with some results taken from the paper by Snyder and Commerford (1974) 16 
which were obtained using Verdon's (1973) 17 earlier program for a finite cascade. This is less accurate than 
the later Verdon and McCune (1975) TM program, but it does give results for the range of phase angle 
between the resonance points. Good agreement is seen, except for points close to the resonance points. 

Finally, Fig. 13 shows results which were obtained for comparison with an annular cascade experiment 
which has been reported by Whitehead, Watson, Nagashima, and Grant (1976) 19. In this case only a few 
points have been computed in the region between the resonance points. So far the experimental results have 
not been extended to a sufficiently high Math number to enable any significant comparison to be made 
between the experimental results and the theory presented here. 

9. Conclusions 

A theory has been presented for the calculation of unsteady linearised flow in supersonic cascades. 
Analytical results are given for the steady flow and quasi-steady flow limits. For the general unsteady flow 
case, the method leads to a fast computer program. In all cases good agreement with previous work has been 
obtained. 

Single degree of freedom bending flutter would be predicted if the real part of the force coefficient Ct4 
became positive. In fact it has always been found that this number is negative, so that bending vibration is 
always stable. 

Single degree of freedom torsional flutter is predicted if the imaginary part of the moment coefficient CM~ 
becomes positive. Figs. 6, 10, 11, 12 and 13 show extensive ranges of phase angle for which this condition is 
met, when the torsional axis is at the mid-chord point, so that extensive flutter of this kind is predicted. 

In practice, transonic fan blades are coupled together at a point about three quarters of the way up the 
blade by snubbers, so that the principal modes of vibration include both bending and torsion. The present 
program can be used to predict flutter in a mode of this kind. 

The program can also be used to predict the amplitude of vibration forced by wakes. 
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LIST OF SYMBOLS 

The notation used is illustrated in Figure 1. 

Equation (43). 

Free stream sound speed. 

Force coefficient due to bending. 

Force coefficient due to torsion. 

Force coefficient due to wakes. 

Moment coefficient due to bending. 

Moment coefficient due to torsion. 

Moment coefficient due to wakes. 

Matrix of force and moment coefficients. Equation (63). 

Chord. 

~(sin O+ cos 0). Displacement distance for downward wave. 

g(sin O-cos  0). Displacement distance for upward wave. 

Displacement distance for reflections. 

Factor for reflections. 

Generalized body force. 

Lift distribution along chord. 

f /poU 2. 

Green's function. 

Lift distribution before allowing for reflections. 

Heaviside step function. 

Integer specifying point number along blade. 

Bessel function. Also equations (47). 

Kernel function. 

Lift force. 

L/~poU2C. 

U/ ao. 

Moment, positive nose down. 

M~/ TrpoU2c 2. 

Integer specifying blade. 

Number of points used along chord. 

Pressure. 

p/poU 2. 

Upward velocity of blade due to bending vibration. 
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0 
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D 

Dt 

Matrix, equation (59). 

Blade spacing. 

sB cos O/c cos ft. 

Time. 

Free stream velocity. 

Perturbation velocity, parallel to chord. 

u/U. 

Perturbation velocity, perpendicular to chord. 

v/BU.  

Velocity, perpendicular to chord, due to wakes. 

Coordinate parallel to chord. 

X/C. 

Torsional axis position. 

Coordinate perpendicular to chord. 

yB/c. 

Wave number in y direction. 

cc~ / B. 

Torsional amplitude, positive nose down. 

Ratio of specific heats. 

Dirac delta function. 

y coordinate for force distribution. 

Stagger angle. 

tan -1 (tan O/B). 

~ M / B  2. 

Wave number in x direction. 

cA -~.  
MY = ~ M 2 / B  2. 

Integer specifying acoustic wave. 

x coordinate for force distribution. 

~/c, 

Freestream density. 

Perturbation density. 

Phase angle between blades. 

Equation (44). 

Equation (44). 

Angular frequency of vibration. 

ooc/U, Frequency parameter. 

0 0 
- - + U - - .  
c?t Ox 
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V 2 
a 2 0 2 

OX 2q Oy 2" 

Other  symbols used locally in the text are defined as they occur. 
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TABLE 1 

Wave Reflection Factors 

Subsonic axial velocity (d2 ~> 0) 

Wave starting Reflection No. Fa 4 ~1 ~2 

Upward 1 - E2 d2 
Downward 1 -- E1 - dl 
Upward 2 E1E2 - d l  + d2 
Downward 2 EIE2 - dl  + dE 
Upward 3 - E 1 E  2 - dl  + 2d2 

Supersonic axial velocity (d2 < 0) 

Wave starting Reflection No. 

-0"5 
- 0 " 5 + d l  
- 0 " 5 + d l  

- 0 " 5 + d 1 - d 2  
- 0 " 5 + d r - d 2  

+0"5 -d2  
+0"5 
+0"5 

+0"5 -d2  
+0.5 -d2  

G G f~ & 

Upward 1 
Downward 1 
Upward 2 
Downward 2 
Upward 3 
Downward 3 

dl = g(sin 0+cos 0) 
d2 = g(sin 0 -  cos 0) 
E1 =exp ( - i f t g  cos 0+i&) 
E2 = exp ( -  il2g cos 0 -  i~b) 

- -  E 2  d 2  

- E 1  - dl 
E1E2 - d l  + d2 
EaE2 - d l  + d2 

- E I E  2 - d l  + 2d2 
- E21Ez - 2dl + dE 

- 0 " 5 - d 2  
- 0 " 5 + d l  

- 0 " 5 + d 1 - d 2  
- 0 " 5 + d l - d z  

- 0 " 5 + d t - 2 d 2  
- 0 " 5 + 2 d l - d z  

+0.5 
+0.5 
+0.5 
+0.5 
+0.5 
+0.5 
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TABLE 2 

Convergence of Supersonic Vibration Program 

Cascade'A' 'k =0.5 '  

M =  1.3454, ~ = 0.3010, 

N 6 

~ c  = 0"7889, 0 = 59.53 °, x n = 0, ¢ = - 3 0  °. 

10 11 16 21 26 

CL~ R -0 ' 1574  
I 0"3812 

C ~  R -0"1383 
I 0"3877 

CLw R -0 .1759  
I 0"3729 

CMq R -0 ' 0245  
I 0.0613 

CMa R -0"0192 
I 0"0377 

CMW R -0"0303 
I 0"0844 

Cascade'B" 'k =2.0 '  

M =  1.2806, ~ = 1.0, 

N 6 

-0 .1593 -0"1580 -0 .1592  -0 .1589  -0 .1593  
0.3810 0.3831 0.3822 0.3827 0.3821 

-0 .1400  -0 .1385  -0 .1396  -0 .1393 -0 .1397  
0.3882 0.3900 0.3894 0.3898 0.3893 

-0 .1782  -0 .1767  -0 .1780  -0 .1777  -0 .1781 
0.3721 0.3745 0.3733 0.3738 0.3731 

-0 .0245 -0 .0238  -0 .0241 -0 .0240  -0 .0242  
0.0644 0.0639 0.0648 0.0648 0.0650 

-0 .0186  -0.0180~ -0 .0181 -0 .0180  -0 .0181 
0.0412 0.0407 0.0417 0.0417 0.0420 

-0 .0307  -0 ' 0300  -0 .0304  -0 .0303  -0 .0306  
0.0871 0.0867 0.0874 0.0875 0.0877 

sic = 0"6708, 0 = 63.43 °, x, = 0, 

10 11 16 

¢=o.  

21 26 

Czq R -0 .2233 
I -0 .0795 

CL~ R -0 .1767  
I -0 .0816  

CLw R -0 .2629  
I -0 .0724  

CM~ R 0.0022 
I 0.0433 

CM~ R -0 .0367  
I -0 .0211 

CMW R 0.0391 
I 0.1113 

-0 .2280  -0 .2266  -0 .2291 -0 .2290  -0 .2292  
-0 .0754  -0 .0771 -0 .0754  -0 .0754  -0 .0761 
-0 .1822  -0 .1804  -0 .1830  -0 .1832  -0 .1822  
-0 .0788  -0 .0806  -0 .0787  -0 .0789  -0 .0795 
-0 .2670  -0 .2661 -0 .2686  -0 .2682  -0 .2695  
-0 .0682  -0 .0698  -0 .0683  -0 .0683 -0 .0691 

0.0013 0.0012 0.0042 0.0033 0.0035 
0.0449 0.0440 0.0466 0.0457 0.0473 

-0 .0383  -0 .0383  -0 .0352  -0 .0361 -0 .0359  
-0 .0177  -0 .0193  -0 .0163  -0 .0171 -0 .0155  

0.0385 0.0386 0.0412 0.0404 0.0406 
0.1106 0.1106 0.1125 0.1115 0.1131 
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FIG. 4. Wave reflection patterns. 
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