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Summary 

Results of measurements of control-surface oscillatory derivatives on a sweptback, tapered half-model of a 
lifting surface of aspect ratio 2 are presented. The measurements were obtained during the development of a 
derivative rig which measures normal force, pitching moment, wing bending moment and hinge moment due 
to control surface oscillation. They were made in the 18 in. × 14 in. (0.46 m × 0.36 m) N.P.L. Teddington 
tunnel and the 3 ft (0.91 m) R.A.E. Bedford tunnel, the rig being found to operate satisfactorily in both 
situations. Mach number was varied from 0.4 to 1.0 and stagnation pressure from 0.5 to 2.3 bar. With this 
combination of Mach number and stagnation pressure, Reynolds number varied from 1 to 6 millions based on 
mean chord. 

The effects of varying the control-surface deflection amplitude from 0.4 to 1.6 degrees and the oscillation 
frequency from 20 to 70 Hz were examined. The effect of tunnel interference was assessed by measurements in 
ventilated and closed wall working sections in each tunnel. 

Most of the tesfs were carried out with transition bands on the model, but a few tests were made with the 
bands removed. The measured derivatives are compared with those obtained by theoretical methods of 
calculation. 

* Replaces R.A.E. Technical Report 76007-A.R.C. 36 716. 
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1. Introduction 

The measurements reported here were primarily undertaken as part of the proving tests of a rig designed to 
measure the derivatives due to control-surface oscillation. The performance of the rig needed to be assessed in 
the appropriate wind tunnel situation before deciding on the construction of new models for which 
measurements are required. For the purpose of testing the rig it was convenient to use an existing model 
(representative of a wing or tail surface) for which derivative calculations had already been made; thus, as 
well as providing a test of the equipment, some comparisons between experiment and theory could be made. 

Measurements were first made in the 18 in. x 14 in. (0.46 m x 0.36 m) tunnel at Teddington and following 
satisfactory operation there, further series of measurements were made in the 3 ft (0.91 m) tunnel at Bedford 
which is the intended location for the future measurements. 

The rig is described in Ref. 1. The present Report, apart from demonstrating satisfactory operation of the 
equipment, gives the results of the measurements, draws conclusions regarding wind tunnel interference and 
provides comparison between measured and calculated derivatives. 

2. Defi ifion o[ Model and Measured Quantities 

The measurements were made on a wall-mounted half-model conforming to planform E of the F and V 
series 2, the geometrical details of which are given in Fig. 1. A point worthy of note is that the biconvex 
streamwise sections of the model entail a sharp leading edge which had unfortunate implications when the 
wing was set at incidence. For convenience the term 'flap' will be used in place of 'control surface'. For the 
measurement, the flap was forced to oscillate sinusoidally in rotation about its hinge whilst the main portion of 
the model remained stationary. The aerodynamic hinge moment was extracted from measurement of the 
torque in the drive shaft, while the principal aerodynamic forces and moments on the combined wing and flap 
were obtained from measurements with a dynamic balance to which the model was attached. Specifically the 
balance readings were reduced to yield the wing forces, namely normal force Z, pitching moment M, and 
bending moment B acting on the complete model in addition to hinge moment H ,  acting on the flap, as defined 
by the system of axes shown in the diagram of Fig. 2. In the general oscillatory case each of these quantities is 
complex consisting of a real part inphase, and an imaginary part inquadrature, with the oscillatory displace- 
ment of the flap. For the purpose of this Report it is convenient to call the inphase and inquadrature 
components the p- and q-components of each complex quantity. 

The non-dimensional form of each force and moment is also complex and, as shown in the text of Fig. 2, can 
be represented in alternative ways: either as a complex derivative (e.g. Za consisting of a modulus and phase 
angle (e.g. [zal, ~b~), or as p- and q-components (e.g. z a, ~'zt~). It should be noted that in the first method of 
representation it is most convenient for the phase angle to be the phase displacement of the negative of the 
force or moment coefficient with respect to the flap displacement, because then the lags or leads are always less 
than 7r/2. The second method of representation involves the aerodynamic inphase and inquadrature 
derivatives (e.g. z a, z¢, h a and he). The negative of the real, or inphase, derivative is conventionally termed an 
aerodynamic stiffness: direct stiffness as for ( -ha) ,  or cross stiffness as for ( - z  a). The negative of the 
imaginary, or inquadrature, derivative is termed an aerodynamic damping: direct damping as for (-h~),  or 
cross damping as for ( -  z~). 

The above nomenclature assumes a linear situation in which sinusoidal motion of the flap engenders 
aerodynamic forces that are also pure sinusoids. In reality there is always the possibility that the forces may 
contain higher harmonics, but in most of the present experiments these components were not found to be 
significant and the measurements were confined to the fundamental inphase and inquadrature components. 

Attention is drawn to the particular manner in which flap deflection and hinge moment are defined in this 
Report. Following a commonly used convention the flap deflection/3 refers to an angle measured in a 
streamwise plane (i.e. a plane normal to the y axis); thus/3 corresponds to a larger angle/3 s e c m  h measured in a 
plane normal to the hinge-line, where Ah is the hinge-line sweepback. The values of wing force derivative if 
referred to unit flap angle measured normal to the hinge-line would therefore be smaller (by the factor cos Ah) 
than the values given herein. Consistent with the.above definition of/3, the so-called 'hinge moment', H, of this 
Report is really sec Ah X (true moment about hinge). Thus values of hinge-moment derivatives representing 
true moment per unit flap angle measured normal to the hinge-line would be smaller, by the factor cos / Ah, 
than the hinge-moment derivatives given herein. 

3. Model Construction and Measuring System 

The geometrical details of the model have already been shown in Fig. 1. The fixed part of the model was 
constructed of solid steel and its root was rigidly attached to the frame of the dynamic balance. The flap was 
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hinged to the fixed part of the model by a strip of spring steel and was driven in oscillation by a shaft contained 
within the thickness of the model and connected to forcing gear outside the tunnel wall. Details of the drive to 
the flap, the hinge-moment measuring unit and the dynamic balance are described in Ref. 1, whilst the process 
of extracting the aerodynamic forces and moments is described in Section 6. After an initial series of tests to 
examine the effects of boundary layer transition, roughness bands were added to upper and lower surfaces of 
the model. These consisted of tapered areas extending from 10 to 15 per cent of the chord from the leading 
edge onto which a sparse and random distribution of ballotini was glued. The size of the ballotini (grade 13, 
approximate diameter 0-11 ram) was chosen to be slightly larger than that calculated by the method of Braslow 
and Knox 3 for a stagnation pressure of 1 bar. 

4. Wind Tunnels 

The 18 in. x 14 in. tunnel, the 'smaller' tunnel, was induction-driven and had a stagnation pressure ranging 
from 1 to 2.5 bar. In the condition in which it was used for the majority of measurements it had a ventilated 
working section with solid sides and slotted liners at the top and bottom. The internal cross section of this 
working section was 0.36 m wide by 0.43 m high, the open area ratio of the liners being 9.1 per cent. 

The 3 ft tunnel, the 'larger tunnel, is a continuous compressor-driven tunnel with a nominal range of 
stagnation pressure from 0.25 to 2.0 bar. The majority of measurements in it were made in a ventilated 
working section (called TABS) 0.91 m wide by 0.67 m high with solid sides and slotted top and bottom liners 
having an open area ratio of 13.6 per cent. In order to examine the effects of wall interference on the 
derivatives, some measurements were made in both tunnels with closed (i.e. unventilated) working sections. In 
the smaller tunnel, the closed wall condition was obtained by sealing the slots with plastic adhesive tape, in 
which case the cross section remained the same. In the larger tunnel, the closed condition was obtained by 
removing the top and bottom slotted liners, so that in this case the closed section (0.91 m × 0.91 m) was larger 
than the ventilated section. 

5. Range of Parameters 

Table 1 shows the general coverage of parameters. 
Mach number was varied from 0-4 to 1.0. Stagnation pressure was varied between 1-0 and 2.3 bar in the 

18 in. x 14 in. tunnel and between 0.5 and 1.5 bar in the 3 ft tunnel. Based on mean chord, these variations 
correspond to approximate ranges of Reynolds number, 2 to 6 x 106 in the smaller tunnel and 1 to 5 x 106 in 
the larger tunnel. For all the oscillatory tests the mean flap angle was zero; most of the tests were made for an 
amplitude of 0.8 degrees but in the larger tunnel some measurements were made with additional amplitudes 
0-4, 1.2 and 1.6 degrees. In the main tests the wing incidence was zero, but a few measurements were made 
for incidence 1 and 5 degrees. Oscillatory tests were made for a range of frequency from 20 to 70 Hz and 
static measurements were made with steady flap deflection to correspond to the zero frequency case. Most of 
the measurements presented and discussed in the present Report  are for a frequency 70 Hz which cor- 
responds to a frequency parameter based on wing mean chord varying approximately from 0-6 to 0.25 as the 
Mach number varies from 0.4 to 1.0 (see Table 1). 

6. Determination of Aerodynamic Forces 

The operation of the dynamic balance is fully described in Ref. 1. Briefly, the balance comprises three sets of 
strain gauge units corresponding in an ideal situation to normal force, pitching moment  and bending moment  
reespectively. However, because of interactions it was necessary to treat the required force and moment  
components as linear combinations of the outputs from the three strain gauge bridges. Hinge moment was 
determined directly from the output of a fourth strain gauge bridge incorporated in a torque-measuring unit in 
the drive shaft of the flap. 

The time-varying electrical output from each strain gauge bridge consisted of the force signal in response to 
the oscillatory motion of the flap together with some amount of random-type noise generated by tunnel flow 
fluctuations. In some cases, the noise was considerably larger than the signals to be measured. The first step in 
processing the signals from the force and moment bridges was to feed each in turn, along with a reference 
signal representing the flap motion, to a transfer function analyser (TFA). In effect the TFA performed a cross 
correlation of each pair of signals and yielded the required p- and q-components respectively inphase and 
inquadrature with the flap motion. Each reading of the TFA corresponded to an analysis of 100 cycles of 
motion; normally all readings were repeated five times and the average was used in the subsequent data 
reductions. Readings were taken with the tunnel running and in still-air, and the wing forces were then 
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obtained by the matrix relation: 

where 

C 

is a vector of complex amplitudes of the bridge outputs obtained with the tunnel running, 
is the corresponding vector measured in still-air, 
is a 3 x 3 matrix of complex factors obtained by calibration at the appropriate frequency as described in 
Ref. 1. 

The aerodynamic hinge moment was simply obtained by the application of a single complex calibration factor 
to the difference of wind-on and still-air torque readings. 

It is important to note that each aerodynamic force or moment is obtained as the difference between a 
balance reading with the tunning running and one obtained in still-air. There are two points to be considered 
regarding this procedure. Firstly, it is only valid when the model is stiff enough for the oscillatory aerodynamic 
loads to cause only negligible distortion and thus neglible change in the intertial loads appearing at the balance. 
Secondly, the procedure is, in principle, liable to involve errors due to contributions from the air forces acting 
in still-air. The inphase and inquadrature balance readings in still-air include contributions from the still-air 
virtual inertia and the air damping respectively. The former provides a negative inphase contribution, the 
latter a positive inquadrature one. Simply taking the difference between a wind-on and a still-air reading 
means that an aerodynamic stiffness so obtained is, if anything too large and an aerodynamic damping too 
small. A preferable procedure is to obtain balance tare values appropriate to vacuum conditions, but in the 
present case this was not done. However, past experience of derivative measurements under similar 
circumstances, but where vacuum tare values have been obtained, indicates that in the present case the 
involvement of still-air forces should not cause significant error. This is confirmed by the results of 
measurements made with different tunnel stagnation pressures (to be described in detail in Sections 7.2.3 and 
7.2.4). For these measurements the still-air tare readings were all obtained under atmospheric pressure. Since 
in the present case the non-dimensional value of a stiffness or damping derivative is, in effect, obtained by 
dividing the difference between wind-on and still-air readings by the stagnation pressure Ho, the non- 
dimensional measured quantities have the forms: 

R'~ = Re + I /Ho 

R b = R~ - D / H o  

where R~ and Re are the true wind-on values, 
I and D are constants relating respectively to the virtual inertia and air damping in still-air at 
atmospheric pressure. 

Thus the involvement of quantities I and D could in principle lead to a variation in the measured  
non-dimensional derivatives with stagnation pressure. It is possible for the true derivatives to change with 
stagnation pressure on account of the change of Reynolds number, and there are of course other means 
through which stagnation pressure might be expected to affect the measurements. However, the fact is that 
provided boundary layer transition was fixed, the non-dimensional derivatives were found to be independent 
of stagnation pressure. The implications with regard to the effect of Reynolds number will be discussed in 
Section 7.2.4; for the moment, this experimental finding is regarded as plausible evidence that negligible 
errors arise from the still-air virtual inertia and air damping. 

7. Results of Measurements 

7.1. Accuracy 

Before describing the results of the measurements and the influence of various parameters, it is necessary to 
consider the accuracy of the measured quantities, the relative sizes of the inphase and inquadrature 
components and the implications that follow about the possible errors in the data presented. At this stage it is 
useful to refer to a particular set of measurements obtained for M = 0.8 and frequency 70 Hz (ff = 0.31) that 
are tabulated in Fig. 3 as stiffness and damping derivatives and displayed on an Argand diagram as complex 
quantities. It will be noticed that only the hinge moment has a substantial phase difference with respect to the 
flap displacement, the phase difference of the other component forces 2t3, tilt3 and bt3 being not more than a few 



degrees. The phase differences are, of course, even smaller when the frequency is reduced. As will be discussed 
in the later sections, changes in Mach number and various other conditions lead to changes in both the 
magnitude and phase of the forces. Those encountered in the present tests involved changes of magnitude but 
never the sign of the inphase components. But in some cases the inquadrature components changed both in 
magnitude and sign. The smallness of the phase angles has a large effect on the percentage accuracy'of the cross 
damping derivatives zt~. rnt~ and b9 as will now be discussed. 

Although the oscillatory forces and moments were measured as p- and q-components and the results are 
presented mostly in the form of stiffness and damping derivative coefficients, it is more convenient to relate 
accuracy to the precison of measuring the amplitude and phase of the electrical signals corresponding to the 
forces. If we suppose there is a possible error of + n per cent in the measurement of an amplitude A, and a 
possible error of +e rad in the measurement of a phase ~b, the possible errors in the p- and q-components are 
approximately 

+ A [(n/100) cos 4) + e sin 14)[] in the p-component ,  A cos 4) 

+A[(n/lO0) sin [~bi+e cos 4)] in the q-component,  A sin 4). 

Information about accuracy comes from two sources: firstly, an analysis of the possible magnitude of 
random errors using the results of a series of repeat measurements; secondly, a consideration of possible 
systematic errors bases on our subjective assessments regarding the measuring equipment and its calibration. 
With regard to the former, an examination of repeatability in the 3 ft tunnel for flap amplitude 0-8 degrees and 
frequency 70 Hz was made by taking ten, instead of the usual five repeated readings. The results suggest that in 
general for the usual five repeated readings, the standard error of the mean* is: 

wing forces, Z, M and B, + 1.5 per cent in amplitude +0.75  degrees in phase angle 
hinge-moment H, + 0.5 per cent in amplitude + 0.75 in phase angle. 

Since these values are the result of experiment, they take into account all random errors arising in the 
measuring system due, for instance, to fluctuations in the wind tunnel flow, variations in oscillation amplitudes 
and the effect of signal noise generally. 

With regard to an assessment of possible systematic errors, a general and necessarily subjective considera- 
tion of the instruments used suggests a possible error of 1.5 per cent in the measurement of signal amplitude 
and a possible error of about 1 degree in phase which are therefore slightly in excess of the random errors. Thus 
putting n = 1.5 and e = 0.015 (a convenient substitute for 1/57.3) in the expression for the errors in the p- and 
q-components, we arrive at the simplified expression 

:i:0"015A[cos 4) + sin[4)]] 

for the possible error in either. For the derivatives, the p- and q-components of hinge-moments are h~ and 
~h~ respectively, so that the possible error in each is 

+ 0.015[h~ [[cos ~bh + sin kbh [] 

where 

[/~t~ 12 = h~ + (~hti) z and tan (~h = ~ht~/ht~. 

Similar expressions relate to the other force and moment derivatives. 
For oscillation at 70 Hz, the phase angle of the hinge moment  lies between 18 and 40 degrees depending on 

Mach number, so that the possible percentage error in ht3 is approximately 2 or 3 per cent and that in ht~ 
between 3 and 6 per cent. For a lower frequency, the proportional error in hti would be larger because of the 
decrease in phase angle. For the normal force, pitching moment and bending moment,  the phase angles are 
sufficiently small for the possible errors to be approximately +0.015 A for both p- and q-components. 
Furthermore,  because 4) is small for the wing forces, the amplitude A is little different from the magnitude of 
the p-component ,  so that whilst the possible error in a cross stiffness derivative is + 1.5 per cent, the errors in 
the cross damping derivatives for frequency 70 Hz, based on a mean value of ~7, are of order: 

+ 0.05 m s in m~ . 

bt3 b~ 

* Standard error of the mean = tr/x/N where, tr = standard deviation, N = number of observations. 



For measurements made at the frequency 20 Hz, the possible errors in the damping derivatives are 
approximately 3.5 times larger. 

Most of the graphical presentation of results include an indication of accuracy based on these assessments. 

7.2 Influence of Parameters 

7.2.1. Mach number. The manner in which the derivative coefficients change with Mach number is 
essentially the same in the two tunnels. Results obtained in the larger tunnel are shown in Figs. 4 to 7 and 
show similar trends for the extreme oscillation frequencies 20 Hz and 70 Hz. The coefficients of the cross 
stittnesses, i.e. z e, m e and b e, remain fairly constant with increasing Mach number until M = 0.85 above 
which their magnitudes decrease as the sonic condition is approached. This decrease seems to herald the 
large reduction in control effectiveness which would occur if the Mach number were raised sufficiently for 
the local flow over the model to become completely supersonic; in which case, deflection of the control 
would have little influence on the flow over the fixed part of the model. The cross-dampings, i.e. zh, m~ and 
bB vary in an almost linear manner with Mach number, including a change of sign. Each wing force leads the II, 
flap motion at low Mach number and lags at the higher Mach numbers. For the normal force the change of 
sign occurs just above M= 0.4, but for pitching moment and bending moment the change occurs at 
approximately M = 0.7. For M = 0.9, the respective lag angles are approximately 

- ~  =tan -I (0.30 17), -~b,, =tan -1 (0-11 ~) and -~bb = tan -1 (0.14 ~). 

The magnitude of the hinge-moment stiffness derivative shows a reduction with increasing Mach number 
which is similar for the two frequencies. The lead of hinge moment on flap motion varies from tan -~ (0.7 if) at 
M = 0.4 to tan -1 (1.7 ~7) at M = 0.9, with a further large increase to tan -1 (3.3 17) at M = 1.0. No lagging hinge 
moment which would correspond to negative damping was encountered at any of the test conditions and 
frequencies. 

7.2.2. Oscillation frequency. The differences between the derivatives for 20 Hz and 70 Hz can be seen in 
the previously mentioned diagrams, Figs. 4 to 7. Results for the other test frequencies fall between these two 
sets. Furthermore steady derivatives obtained by displacing the control surface by a known angle and 
measuring the steady outputs from the strain gauge units showed only small differences from the inphase 
derivatives for 20 Hz. 

Because of the lack of any large effect of frequency, only the results for 70 Hz (since these provide the 
greatest accuracy for the damping derivatives) will be used in discussing the effects of other parameters. 

7.2.3. Transition fixing. At  an early stage in the measurements in the smaller tunnel some unexplained 
day-to-day variations in repeated measurements indicated a sensitivity to small changes in tunnel flow and 
suggested the need for an investigation into the desirability of fixing boundary layer transition. The initial tests 
with the roughness bands, already described in Section 3, were made with a stagnation pressure of 1 bar. 
Before roughness bands were applied, an oil-film examination of the surface flow at zero incidence with the 
flap stationary was inconclusive with regard to boundary layer transition. But when the model was set at 1 
degree incidence, the oil patterns showed a separation bubble on the upper surface close behind the leading 
edge, presumably caused by the flow detaching at the sharp leading edge. On the lower surface the oil patterns 
showed a laminar boundary layer extending over an appreciable area of the wing; for M = 0.6 it extended 
some 75 mm from the leading edge and thus up to the flap hinge over the outboard region. When a roughness 
band was attached to the lower surface only, the transition position moved forward. Measurements at M = 0.8 
showed that this roughness band caused reductions of the order of 10 to 20 per cent in the magnitudes of each 
of the Z, M and H oscillatory forces. For 1 degree incidence application of a roughness band to the upper 
surface in addition to the one on the lower surface produced hardly any further change in the forces. Thi~ 
evidence showed that the oscillatory forces were sensitive to the nature of the boundary layer. Whereas the 
boundary layer on the upper surface was already turbulent due to the leading edge separation, that on the 
lower surface was changed by the application of roughness, and this in turn apparently affected the oscillatory 
forces. 

In the absence of roughness bands the magnitudes of the forces, although not always repeatable, were greater 
at zero incidence than at 1 degree. For both incidences the magnitudes were reduced by roughness bands and 
the value of the forces for the two incidences were then in good agreement. 

The effects of attaching roughness band were further examined when the stagnation pressure was increased 
to 1-8 bar. Except for the hinge-moment damping all the oscillatory forces were less affected by transition 
fixing at the higher stagnation pressure than they were at the lower stagnation pressure. With transition fixed, 



the forces were the same for the two stagnation pressures (see also Section 7.2.4). Fig. 8 shows the results for 
the hinge-moment derivatives including the exceptional result for ht~ where transition fixing has a greater 
effect at the higher stagnation pressure. The general reduction in the magnitude of the hinge-moment 
derivatives due to transition fixing is in agreement with the conclusion of Moore 4. 

From a consideration of all the evidence of our tests on the effects of roughness, it seems probable that for 
the Reynolds numbers of the tests, and with the sharp leading edge of the model, the transition position for the 
zero incidence would be sensitive to small changes of flow angle at the leading edge unless roughness bands 
were present. Thus it seems possible that, in the absence of roughness bands, oscillation of the flap could lead 
to an oscillation in the transition position and therefore cyclic changes in the boundary layer characteristics 
which in turn could bring into play additional cyclic aerodynamic forces. 

Based on these considerations and the fact that day-to-day variations in the derivatives were thereby 
eliminated, it was decided to retain the roughness bands for the main body of measurements. However, the 
discrepancies between theory and experiment, to be discussed later in Section 9, and the appreciable reduction 
in the derivatives found by the addition of transition bands, which is possibly due to an increase in boundary 
layer thickness certainly suggest the need for research into viscous effects. 

7.2.4. Reynolds number. The variation of a derivative with tunnel stagnation pressure can be ascribed to 
Reynolds number only provided there are not significant changes from other causes (e.g. model distortion, and 
possibly tunnel turbulence) that are influenced by stagnation pressure. However, it is plausible to regard an 
insensitivity to changes in stagnation pressure as evidence of an insensitivity to Reynolds number at least over 
the range covered. As already noted in Section 7.2.3, changing the stagnation pressure from 1.0 to 1.8 bar in 
the smaller tunnel produced little change in any of the derivatives provided transition was fixed, the results for 
hinge moment being shown in Fig. 8. A few further measurements at M = 0.6 in which the stagnation pressure 
was increased to 2.3 bar also showed no other change in the derivatives. These results coupled with an 
estimated absence of any significant distortion from the change in aerodynamic loading leads to the conclusion 
that, provided transition is fixed, the derivatives are not sensitive to Reynolds numbers within the range 
covered (i.e. 2.5 < 10 -6 Re < 4.8 for M = 0.6). This is in agreement with the general conclusions of Moore 
based on a survey of previous information on hinge-moment derivatives. To a large extent the conclusion is 
confirmed by the subsequent measurements in the larger tunnel which show no significant effect of stagnation 
pressure on any of the derivatives except hinge stiffness, ht3. In Fig. 9 this derivative shows little change 
between 1.0 and 1.4 bar, but an increase in magnitude when stagnation pressure is reduced to 0.5 bar. That is, 
in the larger tunnel the only significant effect of stagnation pressure appears at the lowest stagnation pressure 
for which there are no comparative results from the smaller tunnel. Bearing in mind the sensitivity of the 
derivatives to boundary layer characteristics as described in Section 7.2.3, it seems likely that the change found 
in the larger tunnel at low stagnation pressure is due to a deficiency in transition fixing. Subsequent calculations 
of the size of ballotini that would be required to fix transition for 0.5 bar substantiate this view. Unlike the tests 
in the smaller tunnel, no oil-film examination of the effectiveness of the roughness bands was made in the 
larger tunnel. 

7.2.5. Oscillation amplitude. Measurements for flap amplitudes ranging from 0.4 to 1-6 degrees show no 
large differences in the wing cross-stiffness derivatives. Fig. 10 shows results for z~ and z9 which are typical of 
the amplitude effects on the other wing derivatives. Larger amplitude effects were found on the hinge-moment 
derivatives, and these effects were dependent on oscillation frequency. The carpet plots of Figs. 11 and 12 
show for 70 Hz an almost linear increase in - h a with amplitude and a smaller and less consistent change in hg. 
For both h~ and hg, the amplitude effects are greatest for the highest Mach number. Results obtained at a 
frequency of 20 Hz show less consistent variations and larger amplitude effects at the high Mach numbers 
including a sharp fall in stiffness and damping for the largest amplitudes, 1.6 degrees at M = 1.0. These low 
stiffness and damping values are given in Table 2 which gives values of h e and h9 for the various amplitudes at 
M =  1.0. 

7.2.6. Wing incidence. Most of the measurements were made for zero incidence but a few measurements 
covering a range of Mach number and oscillation frequency were made to examine the effects of incidence. 
One such series of measurements was made with incidence increased to 1 degree, and another with incidence 
increased to 5 degrees. These showed that, provided the wing was fitted with a transition band, the change of 
incidence from 0 to 1 degree made no significant difference in any of the derivatives, but the change to 5 
degrees produced large alterations in all the derivatives, some stiffness derivatives increasing as much as 25 per 
cent and some cross dampings changing sign. It is likely that these effects are associated with a substantial flow 
change occurring between 1 and 5 degrees. The sharp leading edge is known to cause a small separation bubble 



even at 1 degree. It seems probable that by 5 degrees the bubble will have changed to a fully developed 
leading-edge vortex which could modify the flow over the more outboard region of the wing. Although no 
detailed explanation can be advanced, it seems plausible that the development of this vortex flow would affect 
the lift effectiveness and hinge moment properties of the flap. 

7.3. Tunnel interference 

Comparison of measurements made in the 18 in. × 14 in. tunnel and 3 ft tunnel is valuable in assessing the 
effects of tunnel wall interference. The main measurements in each tunnel were obtained with ventilated top 
and bottom walls and solid sidewalls. For both tunnels, further measurements were made with all four walls of 
the working section unventilated (see Section 4 for details). For this condition the maximum speed was 
restricted to M = 0.8 in the smaller tunnel and to M = 0.85 in the larger tunnel. 

To provide direct comparisons, measurements in the two tunnels were made for the same oscillation 
frequency, 70 Hz, and the same stagnation pressure, 1 bar. For the restricted range of Mach numbers we thus 
have comparisons for four different conditions (two tunnels × two wall conditions) whilst for the higher Mach 
number we have comparisons between the two tunnels for only the ventilated conditions. Solid blockage 
corrections to the free stream velocity and Mach number are negligible even for the smaller unventilated 
tunnel. Although the thicknesses of the sidewall boundary layer were different in the two tunnels, the effect on 
the derivatives is likely to be small since the aerodynamic loading due to control surface movement is 
concentrated mainly over the outboard part of the wing. Thus any observed difference in the measured 
derivatives are considered to be due to differences in 'lift effect' interference. 

The results for the eight derivatives over the full range of Mach number are shown in Figs. 13 to 16. The 
diagrams show comparisons of the four tunnel conditions up to M----- 0.8 and compare the results from the two 
ventilated working sections up to M =  0.9. Broadly, the overall agreement between the various tunnel 
conditions is reassuring, for not only was there a considerable difference in the size of the two tunnels, but the 
noise level in the larger ventilated tunnel was several times that encountered in the smaller tunnel (see Ref. 1). 
Apart from the differences for the normal force derivatives z~, z~ there are no obviously significant differences 
between the results for the various tunnel conditions and the small discrepancies in the other derivatives do not 
seem to form a consistent pattern. Even the differences in z~ assume less significance when compared with the 
effects of flap amplitude (see Fig. 10). 

Below about M = 0.85, each derivative varies smoothly with Mach number so that it is possible to make the 
comparison of the four tunnel conditions for a single Mach number. For this purpose M = 0.781 was chosen 
because for this Mach number, theoretical interference corrections are available. For each of the four tunnel 
wall conditions the values of the derivatives measured at M = 0-6, 0.7 and 0.8 were then used to provide an 
interpolated value for M =  0.781. Fig. 17 shows the four values of each complex derivative plotted on an 
Argand diagram. For each derivative, except bending moment, there is a spread of points which is greater than 
the estimated possible errors of measurement. The widest spread occurs for the normal force ~¢ and for this 
force component the spread in the moduli follows a pattern consistent with our general knowledge of steady 
lift-interference. That is, for the smaller tunnel the modulus for the unventilated condition is greater than that 
for the ventilated condition. There is little difference between the two moduli from the larger tunnel and these 
lie between those for the smaller tunnel. A tempting interpretation is that each of the values from the larger 
tunnel is approximately interference-free and the divergence of the values from the smaller tunnel reflect the 
interference effects of opposite sign for open and closed working sections. It is difficult to discern any 
consistent pattern in the results for the other derivatives. 

The Appendix describes the correction of the measured derivatives for wall interference using a method 
based on Ref. 5. Fig. 18 shows the values obtained after applying the corrections to the derivatives shown in 
Fig. 17. There is indeed a dramatic collapse of the dispersion of ~ and some smaller reductions in the spread of 
the other derivatives except for 6~. The general conclusion is that for M ~  0.8 the derivatives that have been 
obtained in the larger tunnel (i.e. Bedford 3 ft tunnel) are sufficiently close to free-stream values without the 
need for correction, and that for any of the two wall conditions in the smaller tunnel, the free-stream values 
could be deduced from the measurements to an accuracy of a few per cent in modulus and a few degrees in 
phase. 

Returning to Figs. 13 and 16 and the comparison between the two ventilated tunnels, we see that at least up 
to M = 0.9 the general trends with Mach number show reasonable agreement between the two tunnels. In the 
light of the discussion of the comparisons for M ~ 0-8, it is reasonable to consider that the larger tunnel gives 
values closest to free-stream values. 



The model-to-tunnel size ratios relevant to wall interference are given in Table 3. In relation to normal wind 
tunnel practice, the model was somewhat too large for the smaller tunnel but smaller than is usual for the larger 
tunnel. It is therefore perhaps not surprising to find an absence of significant interference effects in the larger 
tunnel, at least up to M =  0.85. For the smaller tunnel, although appreciable effects would certainly be 
expected for wing motion damping derivatives, it appears that the effects for a part-span control surface are 
not very important. 

8. Preierred Set of Measured Derivatives 

The general agreement between the measurements made under various tunnel conditions is considered to 
be very satisfactory. On the basis that the interference must be less in the larger tunnel we consider the 
measurements obtained in the slotted 3 ft tunnel with frequency 70 Hz provide the 'best' set of derivatives. 
The values of the stiffness and damping derivatives together with the moduli and phase angles deduced from 
the measurements are given in Table 4 together with the estimated accuracy associated with each quantity. 

It is interesting to consider the planform position at which the resultant oscillatory lift (i.e. normal force) due 
to the control surface acts. In general, this oscillatory force acts at a point which is not constant during the cycle 
of oscillation. If its centre of action is distant ( - X) behind the pitching moment axis and distant (Y) measured 
normal from the root (see Fig. 2), then at times when the flap has maximum displacement, 

- X l e  = m~lz~ 

y / s  = 2bt3/zt3. 

This position, known as the centre of action of the inphase lift, which has been deduced in this way from the 
measurements, is shown in Fig. 19 for the various test Mach numbers. There is only little change in the position 
between M = 0.4 and M = 0.6, but with further increase of free-stream Mach number up to M = 1.0, the 
centre moves outboard and rearwards. This trend is consistent with the reduction in upstream influence implicit 
in subsonic compressible flow theory and, on physical grounds, it would be expected when local regions of 
supersonic flow develop. Theory also predicts that for a small steady deflection of the flap, the centre of action 
would approach the centroid of the control surface as the free-stream Mach number continues to increase 
supersonically. It is to be expected that the centre for the inphase lift would behave similarly. As will be seen in 
Fig. 19, the measured centres of action up to the highest test Mach number, M = 1.0, certainly appear to be 
approaching the centroid. Theoretical predictions regarding the centre of action for subsonic speeds will be 
considered in the following Section. 

9. Comparison with Theory 

Derivatives for the model planform have been calculated by two methods based on subsonic lifting surface 
theory, but neither of these methods takes account of wing thickness or boundary layer effects. Before the 
measurements were made Garner  and Lehrian 6, using their low-frequency method, made calculations for a 
' tapered swept wing' identical to the present planform. The Z, M, B and H derivatives were calculated for a 
single Mach number, namely 0.781. Subsequently the zero-frequency inquadrature derivatives were modified 
on the basis of equation (12 l) of Ref. 6 to take account of the frequency parameter of the experiment. In Table 
5 the zero-frequency inphase derivatives, the modified inquadrature derivatives and the corresponding moduli 
and phases derived from this source are denoted by G. 

After the measurements, Davies, using the method described in Ref. 7, calculated the Z, M and H 
derivatives for M = 0 . 6 ,  0.781 and 0.927 for values of the frequency parameter appropriate to the 
experimental values. These derivatives are denoted by D in Tables 5 and 6. 

For the purpose of providing an experimental set of derivatives for comparison, the preferred set of 
measurements (Section 8) has been used to interpolate values of derivatives for the particular Mach numbers 
of the calculations for which tests were not made. The comparisons extend over the inphase and inquadrature 
components and their moduli and phases, Table 5 relating to M = 0.781 and Table 6 to M = 0.6 and 0-927. For 
each measured quantity the probable bound to the measurement error is indicated. It will be noted that most of 
the measured cross damping derivatives have no more than one-figure accuracy. 

For M - -  0.6 and 0.927, the experimental values have not been corrected for tunnel interference, but the 
errors on this account are believed to be small apart perhaps from those in the derivative zt~. For M = 0.781 the 
uncorrected measurements and the values corrected by the method of the Appendix are given. Graphical 
comparisons are afforded by Figs. 20 to 25 which show the experimental and the theoretical D values plotted 
against Mach number, and by Figs. 26 to 28 which show, in the form of Argand diagrams the complex 
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derivative for each of the three Mach numbers. Before commenting on the comparisons we note from the 
theoretical values of Table 5 that the two methods of calculations are sufficient agreement for us to make 
general comparisons between 'theory' and experiment. 

An outstanding feature of the comparisons, concerns the moduli of the derivatives; the experimental moduli 
are considerably smaller than the theoretical ones. For both normal force and pitching moment, the ratio of 
measured to calculated moduli is approximately 0.76 for M = 0.6 and 0.64 for M =  0.927. For the hinge 
moment the ratio is even smaller, being about 0.56 for M =  0.6 and 0.29 for M =  0.927. For the hinge 
moment, the measured phase angles are significantly greater than the calculated ones. In other words, for 
hinge moment, the disparity between measured and calculated stiffness derivatives is greater than the disparity 
between the damping derivatives. For instance, for M = 0.6, the measured hinge-moment stiffness is only 0.56 
of the calculated value whilst the measured damping is 0.73 of the calculated value. 

The positions of the centre of action of the inphase normal force deduced from the measurements as 
described in Section 8, are compared in Table 7 with those obtained from theory for M = 0-6, 0.782 and 0.927. 
Although theory overestimates the magnitudes of the forces, the point of action is reasonably well predicted. 

It is interesting to review briefly other comparisons between measured values and the results of inviscid 
thin-wing theory for an oscillating control surface in subsonic flow. Information exists for two- and 
three-dimensional wings and is in the form either of direct measurements of hinge moment, or of measure- 
ments of chordwise distributions of unsteady pressure, which in some cases have been integrated to provide 
total forces s-13. Apart from one exception 13, the comparisons generally show the measured oscillatory hinge 
moment is less than the calculated one, and in some cases the modulus and the inphase components are 
considerably less. For instance, early work by one of the present authors 8 showed that for a two-dimensional 
system in low speed flow the ratio of measured to calculated hinge moment was approximately 0.6 for both 
stiffness and damping derivatives. A more recent investigation by Hertrich 11 using a three-dimensional model 
leads to a rather similar conclusion regarding hinge moment. With regard to wing forces, the integration of the 
unsteady pressures measured by Hertrich gives a total lift due to the control surface that is only some 75 or 80 
per cent of theory. In short, the differences between experiment and theory that have been found in the present 
tests are reasonably consistent with the results of several previous investigations. Essentially, the differences 
between experiment and theory are thought to be associated with the omission from the theory of boundary 
layer and wing thickness effects, which are considered to reinforce each other in the particular case of hinge 
moment. 

In Ref. 6 Garner and Lehrian put forward an empirical method of correcting the calculated damping 
derivatives to take account of the realistic flow features not included in the theory. The correction is obtained 
from the experimental value of the corresponding stiffness derivative and the application of equation (124) of 
Ref. 6. By this means the theoretical damping derivatives for M = 0.781 have been corrected and these are 
shown in comparison with the original theoretical values and the experimental values in Table 8. It will be seen 
that the correction provides a very real improvement as far as hinge-moment damping is concerned, whilst the 
effect on the wing cross dampings is less dramatic but in each case improves the comparison with experiment. 

10. Performance of Measuring Rig 

The derivative measuring rig has been used successfully in two tunnels of widely diffe~'ent character, and the 
results obtained are considered to be of high accuracy. Because of the plans to use the Bedford 3 ft tunnel for 
further oscillatory control surface measurements, it is particularly gratifying to record that satisfactory 
performance of the rig has been achieved in that tunnel in spite of the high level of signal-noise from 
fluctuations in the tunnel flow. 

11. Summary of Conclusions 

(I) The control-surface oscillatory derivative rig has operated satisfactorily under a variety of conditions in 
two tunnels. Its performance in the Bedford 3 ft tunnel augurs well for a further programme of measurements 
that is planned for that tunnel. 

(2) Although the test model was small in comparison with the size of the 3 ft tunnel, the evidence 
concerning the interference effects encountered in the two tunnels suggests that, even with normal sized 
models where only a control surface is oscillated, no large interference effects will be present in the 3 ft 
tunnel, at least up to M = 0.9. 

(3) The anomalous and inconsistent changes in the derivatives that occurred when boundary layer 
transition was not fixed or when the model was at incidence were thought to be due to the sharp leading edge 
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and its ability to cause flow separation. The measured changes provide a clear indication of the sensitivity of 
control surface derivatives to viscous effects. 

(4) Provided transition was fixed, the measured derivatives were not sensitive to changes of Reynolds 
number over the range 2-0 < Re x 10-6<  6"0 based on mean chord. 

(5) For the particular model used, the measured derivatives most representative of full-scale Reynolds 
number are considered to be those obtained with fixed transiton. These derivatives have magnitudes 
appreciably less than those deduced from theory, but the centre of action of the oscillatory lift is in good 
agreement with theory. 
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LIST OF SYMBOLS 

WING GEOMETRY (See Fig. 1) 

x, y, z Co-ordinate axes 

cr Wing root chord 

Wing mean chord 

~F Flap mean chord 

s Wing span 

sF Flap span 

S Wing area 

SF Flap area 

Ah Hinge-line sweepback 

FORCE AND MOMENTS (See Fig. 2 for definitions) 

Z' 

M 

B 

H 

z e , m e, b e , h e, etc.] 
4~z, 4'm, 4'b, 4~h 

FLAP MOTION 

f 
o) --- 27rf 

= ~o~/ V 

GENERAL 

M 

R e  

V 

P 

R(xl 

p-component 

q -component 

Normal force 

Pitching moment 

Bending moment 

Hinge moment 

Non-dimensional quantities associated with Z M B  H 

Angular deflection (radians, unless otherwise stated) 

Amplitude 

Oscillation frequency (Hz) 

Circular frequency 

Frequency parameter 

Mach number 

Reynolds number 

Air velocity 

Air density 

Real part of x 

Inphase, or real, component 

Inquadrature, or imaginary component. 
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APPENDIX 

Additional Notation 

b 

C 

F 

h 

X0 

/3 

60, t~l 

O" 

Zq, mq, bq, hq 

Zo, too, bo, ho] 
zo, too, bo, ho J ~ 

subscript T 

prefix A 

Approximate Corrections for Wall Interference 
By H. C. GARNER 

Breadth of tunnel 

Cross-sectional area of tunnel 

Slot parameter (see Ref. 14) 

Height of tunnel 

Complex interference upwash (see Ref. 5) 

Location of pitching axis 

Compressibility factor (1 - M E) 1/2 

Steady lift interference parameters (see Ref. 5) 

Inquadrature interference parameter (see Ref. 5) 

Span ratio 2s/b 

Non-dimensional forces associated with angular rate of pitch q (Z = pVS~qzq, etc.) 

Non-dimensional quantities associated with Z, M, B, H for pitching oscillation 
0 = O1R{e "°t} (definitions as in Fig. 2 with/31 replaced by 01) 

Denotes uncorrected 'tunnel" value 

Denotes incremental correction for wall interference. 

No great precision in evaluating tunnel-wall interference on the present experiments is possible for two 
reasons. The load distribution due to the oscillation of the part-span control surface is not available; nor is the 
porosity term in equation (10) of Ref. 14 for the boundary condition at the slotted roof and floor of either of the 
tunnels. Fortunately the interference corrections are fairly small, so that an approximate procedure based on 
Refs. 5 and 14 is shown to suffice. 

Following the analysis in Section 3 of Ref. 5 for a small model oscillating at low frequency in a subsonic 
stream, we first replace the complex interference upwash in equation (44) of Ref. 5 by: 

~i(x) 2fllsr 616/ X-Xo T) 
V = C t - - 6 O Z " T + - ~ k  ml3T-  ~ Z.__ + 

{ 6 ~ h  - /  X - X o  7") + i ~ - - - '~  Zl3r AC ~o( -- Zl~T-- ml3T + C Zl 3 + 

+~,ci x - x o  r) l]  
~ - ~  mt~T- e z~ , (A-l) 

without the final quadratic term in x. Thus equation (49) and (50) of Ref. 5 are replaced by incremental 
corrections 

2S 816 t~lC "] 

and 

2S [[ ~ , t ~ l t ~  ~ t ~ l t ~  
AZ~ = -'--~ [ ~--OoZoT * - ~  mCT) Zo --~-~ Z~rZq - 

6;h +~o{_Zor(zo_2zq)_morzo}] ' fig ZI3TZO (A-3) 

to the measured lift derivatives ZOT and ZaT. The corresponding corrections Am B and Area to the pitching- 
moment derivatives mt~T and mt~T are obtained by substituting too, mq, m6 for Zo, zq, Zo on the right-hand 
sides of equations (A-2) and (A-3). The corrections to the bending-moment and hinge-moment derivatives 
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are obtained similarly; to illustrate, the increments 

2S , 81c  "~, 81c  __ "] Aht3 = ----~[(-6oZt3r-e--~mor}no--fl-~zt37,nqj 
and 

(A-4) 

Ah~ = ----'~ [ (--80Z~T "t--~-~ mf3T) nO ---~-'l~ Zt~Tnq -- 

6[~h_.~ zt3rn°' + 6o{_Zt3T(ho - 2hq)- mt3rho} ], (A-5) 

are not explicitly dependent  on the uncorrected wind-tunnel values ht37- and ht~r. 
To apply these corrections, it is necessary to estimate the various derivatives due to both oscillatory and 

rotary pitching motion. With the aid of Table 16 of Ref. 6 and Table 39 of Ref. 15 and some further 
calculations with four chordwise terms ( N =  4), we obtain the following theoretical values for M = 0.781 
(/3 = 0.625) and a pitching axis x0 = 0.808~ through the root mid-chord. 

(A-6) 

-Zo = 1.276 -zq  = 1.039 -z0  = 1-285 

-mo = 0.349 -mq = 0.569 -m0 =0 .769  

-bo =0 .275  -bq= 0.242 -bo = 0.258 

-ho = 0.087 -hq= 0.227 -ho  = 0.410 

Of these derivatives the set for hinge moment  is least representative of practice, but equations (A-4) and (A-5) 
yield such small corrections that the uncertainty is of little consequence. 

The following geometrical data have been used for the three test configurations. 

Tunnel 

0.46 m x 0.36 m 
0.91 m x 0-67 m 
0 . 9 1 m × 0 . 9 1  m 

Roof and floor 

Slotted 
Slotted 
Solid 

b 

h 

1.657 
2.727 
2.000 

F 

0.0935 
0.2692 

2S 
o r =  

b 

0.5306 
0.2063 
0.2063 

6 

n 

0.440 
0.281 
0.206 

S 

C 

0.233 
0.058 
0.043 

In the usual notation of Fig. 1 of Ref. 14 for half-model testing the tunnel breadth b is taken as twice that of the 
actual tunnel. The slot parameter F has been calculated from equation (5) of Ref. 14. 

The procedure in Section 3.2 of Ref. 14 has been used to obtain the following values of the interference 
parameters 8o, 61 and 6~. 

Tunnel Roof and floor o" 8o 81 80 

0.46 m × 0 . 3 6  m Slots sealed 0 0.1228 0-253 -0 -0089  
0.5306 0.1050 0.216 - 0 . 0 0 7 6  

0 . 9 1 m x 0 . 9 1  m 

0 . 9 1 m x O . 6 7 m  

Open 
Open 
Idealslots 
Realslots 

Solid liners 

Open 
Open 
Slots sealed 
Slots sealed 
Ideal slots 
Real slots 

0 
0.5306 
0.5306 
0.5306 

0 
0.2063 

0 
0.2063 

0 
0.2063 
0.2063 
0.2063 

-0 .2 1 6 7  
- 0 . 1 8 2  
- 0 . 1 5 2  
-0 -062  

0.1368 
0.1286 

- 0 . 3 5 7 0  
-0 .3 3 2 7  

0.1793 
0.1586 

-0 .2 0 9 5  
-0 .0 8 1  

-0 .3 1 6  
- 0 . 2 6 5  
-0 .214  
-0 .064  

0.293 
0.275 

- 0 . 5 2 2  
- 0 . 4 8 6  

0-392 
0.347 

- 0 . 2 7 7  
- 0 . 0 5 9  

0.1315 
0.1105 
0.0980 
0.061 

-0 .0 0 4 0  
-0 .0 0 3 7  

0.2170 
0.2022 

- 0 . 0 0 0 6  
- 0 . 0 0 0 6  

0.1514 
0.098 
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Allowance for span ratio cr rests entirely on equation (38) of Ref. 14 in which 60 is deduced under conditions of 
elliptic spanwise loading, albeit a poor representation of that due to the part-span control. The interference 
parameters for 'real slots' are from linear interpolations of the form 

( 6 ) r e a l  slots = 0"  65 (6)ideal slots "31- 0"  35 (6)slot . . . .  led (A- 7) 

in an attempt to allow for the unknown porosity term in the wall boundary condition. The only justification for 
this is the limited evidence for the 0.46 m x 0.36 m (18 in. x 14 in.) tunnel in Fig. 34 of Ref. 5. Equation (A)7) 
is also used for the 0.91 m x 0.67 m tunnel in the absence of aerodynamic data concerning the effect of the 
gauze between the slots and the plenum chamber. 

The largest wall corrections occur with the 0.46 mx0.36 m tunnel, where the corrected values of the 
derivatives in the following table for M = 0.781 and f = 70 Hz are much more consistent than the uncorrected 
ones. 

Uncorrected values Corrected values 

Derivative 

- -  Zt~ 

- -  z g i  

- -  m / 3  

- -  m t ~  

- bt~ 

- h o 

- h t~  

Slots Slots 
sealed open 

0.219 0.199 
-0.075 -0.042 

0.183 0.177 
-0.022 0.000 

0.065 0.064 
-0-007 0.002 

0.132 0.127 
0.144 0-144 

Slots Slots 
sealed open 

0.206 0.206 
-0.066 -0.069 

0.175 0.180 
-0.022 -0-008 

0-062 0.066 
-0.004 -0.004 

0-129 0.129 
0.146 0.142 

In the corresponding calculations for the larger tunnel, only -zg,  -m9 and -bt~ involve corrections of 
magnitude greater than 0.002, which is no larger than the possible experimental error as indicated in Table 4. 
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TABLE 1 

Range of Parameters 

Mach number (nominal) 
Stagnation pressure 
Reynolds number 
Incidence 
Control surface amplitude 
Frequency of oscillation 
Transition bands 

0.4, 0.6, 0.7, 0.8, 0.85, 0.9, 1.0 
0.5 to 2.3 bar 
1 to 6 x 10 6 (based on mean chord) 
0, 1,5 ° 
0.4, 0.8, 1.2, 1"6 ° 
0, 20, 40, 55, 70 Hz 
with or without 

Values of Reduced Frequency, 17 - o ~ / V  

Mach number 

l~requency 
Hz 0.40 0.60 0.70 0.80 0.85 0.90 1.00 

20 0-18 0.12 0.10 0.09 0.08 0.08 0.07 
70 0.62 0.41 0.35 0.31 0.29 0.28 0.25 

TABLE 2 

Variation of Hinge Moment Derivatives with 
Control Surface Amplitude for M = 1.0 

20 Hz, ff =0.07 70 Hz, ~ = 0.25 

(deg) 

0.8 
1.2 
1.6 

-he 

0.052 0.257 
0.069 0-236 
0.016 0.080 

- h  0 -hti 

0"071 0"235 
0-091 0"222 
0-106 0"222 

TABLE 3 

Tunnel Intederence Parameters 

Tunnel 

18 in. x 14 in. 'smaller' 
ventilated 
closed-wall 

3 ft 'larger' 
ventilated 
closed-wall 

Model span 

Tunnel width 

0.530 
0.530 

0.206 
0.206 

Model chord 

Tunnel height 

0.440 
0.440 

0.281 
0.206 

Model area 

Tunnel area 
S 

C 

0.233 
0.233 

0-058 
0.043 
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T A B L E  4 
Preferred Set  of  Measured  Der ivat ives  70  Hz ,  3 ft S lot ted Tunnel  

M 0-40 0-60 0.70 0.80 0.85 0.90 1.00 
Possible 

0.62 0-41 0.35 0.31 0.29 0.28 0.25 error 

- -  z t~  

- z E 

(deg) 
- - / ~ / / 3  

- -  rl, l E  

I,h l 
~m 

(deg) 
- ba 
-bE 

4,b 
(deg) 

- h e 
- hti 

(deg) 

0.210 
0.011 
0-210 
1"9 

0.171 
0.021 
0-171 
4.4 

0-064 
0.008 
0.064 
4-4 

0.158 
0.112 
0.173 

23.7 

0.210 
-0 .013  

0.210 
- 1 . 4  

0.170 
0-007 
0.170 
1.0 

0-065 
0-005 
0.065 
1-8 

0.152 
0.126 
0-161 

18.8 

0.209 
- 0 . 0 2 7  

0-209 
-2 -6  

0.174 
0.002 
0.174 
0.2 

0.065 
0.000 
0.065 
0.0 

0.147 
0.140 
0.155 

18.4 

0.208 
- 0 . 0 4 0  

0.208 
- 3 . 4  

0-178 
- 0 . 0 0 4  

0.178 
- 0 . 4  

0.064 
-0 .0 0 5  

0.064 
- 1 . 4  

0.137 
0.154 
0.145 
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0.202 
- 0 . 0 4 6  

0"202 
-3"8  

0.176 
- 0 . 0 1 0  

0.176 
-0 -9  

0-065 
-0 -007  

0.065 
- 1 . 8  

0.127 
0.175 
0.137 

21.8 

0.199 
- 0 . 0 5 9  

0.200 
-4 .7  

0.177 
- 0 . 0 1 9  

0.177 
- 1 . 7  

0.063 
- 0 . 0 0 9  

0.063 
- 2 . 3  

0.113 
0.188 
0.125 

25.0 

0.151 
- 0 . 0 7 0  

0.152 
- 6 . 6  

0.144 
- 0 . 0 3 5  

0.144 
- 3 . 5  

0.050 
- 0 . 0 1 0  

0.050 
- 2 . 9  

0.071 
0.235 
0.092 

39.6 

+ 0.003 
± 0-007 
±0 .003  
±0.8 

+0.003 
+ 0.006 
± 0-003 
±0 .8  

+0-001 
+ 0.002 
±0.001 
±0 .8  

+2% 
+5% 
+2% 
±0 .8  

T A B L E  5 
Compar i son  of  Theory  and E x p e r i m e n t  

M = 0 . 7 8 1  

- -  z o 

- z E 

(deg) 
- - / ~ / 3  

- - / 7 - / E  

I,h l 
6m 

(deg) 
- b~ 

(deg) 
- h a 

- h  E 

(deg) 

Experiment if= 0.32 Theory 

Corrected for Possible D (Ref.7) G (Ref. 6) 
Uncorrected w/t  interference error ~ = 0.326 ~ = 0.31 

0.208 
- 0 . 0 3 7  

0.208 
-3-1  

0.177 
-0 -003  

O. 177 
- 0 . 3  

0.064 
- 0 . 0 0 4  

0.064 
-1 .1  

0.140 
0.151 

0.147 
17.9 

0.210 
- 0 . 0 5 4  

0.211 
- 4 . 4  

0.178 
- 0 . 0 1 0  

0.178 
- 1 . 0  

0.064 
-0 .0 0 8  

0.064 
- 2 . 1  

0.140 
0.150 

0.147 
17.8 

± 0-003 
+0 .007  
± 0.003 
+0 .8  

+ 0.003 
± 0.006 
± 0-003 
±0 .8  

±0.001 
+ 0.002 
±0.001 
+0 .8  

:1:0.003 
± 0.006 

±0.003 
±0"8 

0-293 
-0 .0 4 2  

0.293 
- 2 . 4  

0.244 
0.0195 
0.244 
1.4 

0.292 
0.208 

0.299 
12.0 

0.298 
-0-041 

0.299 
- 2 - 4  

0.244 
0-020 
0-245 
1.5 

0.092 
-0 .0 0 3  

0.092 
- 0 . 5  

0"303 
0.200 

0.309 
11.6 
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T A B L E  6 

C o m p a r i s o n  of  T h e o r y  and E x p e r i m e n t  

- z o  
- -  z g i  

(deg) 
- -  m o  

- -  m c i  

(deg) 
- bt3 
- bt~ 

~b 
(deg) 
- h~ 
- ht~ 

4~h 
(deg) 

M = 0 - 6  

Experimental  
= 0-41 

0 .210+0 .003  
- 0 - 0 1 3 + 0 - 0 0 7  

0 .210+0 .003  
- 1 . 4  + 0 . 8  

0 .170+0 .003  
0.007 + 0.006 
0 .170+0 .003  
1.0 +0 .8  

0.065 + 0.001 
0.005 + 0.002 
0 .065+0 .001  
1.8 + 0 . 8  

0 . 1 5 2 + 0 . 0 0 4  
0.126 + 0.005 
0.161 + 0.004 

18.2 +0 .8  

Theory D 
= 0.414 

0.276 
0.005 
0.276 
0.4 

0.222 
0.036 
0.222 
3.7 

0.271 
0.170 
0.280 

14.1 

M = 0.927 

Experimental  
= 0.27 

0 .193+0 .003  
- 0 . 0 5 8  + 0.006 

0.194 + 0.003 
- 5 - 2  +0 .8  

O. 174 + 0.003 
- 0 . 0 2 4  + 0.006 

0 .174+0 .003  
- 2 . 4  +0 .8  

0 .061+0 .001  
- 0 . 0 1 0 + 0 . 0 0 2  

0 .061+0 .001  
- 2 . 8  + 0 . 8  

0.103 + 0.002 
0 .200+0 .008  
0 . 1 1 9 + 0 . 0 0 2  

30.2 +0 .8  

Theory  D 
17 = 0.280 

0.300 
- 0 - 1 6 4  

0.304 
- 9 . 3  

0.276 
- 0 . 0 6 3  

0.276 
- 3 . 9  

0.358 
0.284 
0.368 

13-4 

T A B L E  7 

Centre  of  A c t i o n  on  Inphase  Lift 

M = 0.600 M = 0.781 M = 0.927 

Experiment  Theory  Exper iment  Theory  Exper iment  Theory 

-X/~ 0.81 0.80 0.85 0.82 0.90 0.925 
Y/~ 0.62 0.62 0.62 0.63 
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TABLE 8 

Damping Derivatives for M = 0-781 

Comparison of Theory and Measurement 

Derivative 

- z~ 

- -  m c i  

-h~  

Theory 

- 0 . 0 4 1  

+0.020 

-0.003 

+0-200 

Theory with 
empirical 
correction 

-0.054 

+0.010 

-0-007 

+0-145 

Measured 

-0.037 
(+ 0.007) 
-0.003 

(+o.oo6) 
-0.004 

(+0.002) 
+0" 157 

(+ 0.006) 

Measured 
corrected for 

tunnel 
interference 

-0.054 
(+0.007) 
-0.010 

( + 0.006) 
-0.008 

( + 0.002) 
+0-150 

(+0.006) 
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^h 
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I 
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S r -  
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Wing 

Streamwise section: 
circular arc biconvex 
thickness to chord rat io, 0-05 

Aspect ratio 

Taper ratio 

Leading edge sweepback 

Traiting edge sweepback 

Root chord Cr 

Mean chord E 

Semi-span s 

Control Surface (Flap) 

2 

0.238 

60* 

26.57 ° 

304'8 mm 

188.7 mm 

188.7 mm 

Chord ratio 

Span 

Mean chord 

Hinge line sweepback X h 36.87* 

inboard end 0.25 
outboard end 0.325 

SF= 0-Ss 94"35 mm 

~F 35"36 mm 
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FIG. 1. Wing planform and control surface details. 



-z  
4-z 

M 
Hcos A h 
13 sec A h 

f / 

Cr I 
2 

Or 
2 

C 
B 

Motion 

Normal force 

Pitching moment 

Bending moment 

Flap "hinge moment" 

Frequency parameter 

13 = I~1R{e i~t } 

Z = pV 2 S 13i R{z'l$ e i~t }  

M = pV 2 S e p, R { ~  e ~'t} 

B = 2pV2Ss I~,R{b'l~ e l " t }  

a = pV2SFEF 131R{hl~ ei~at} 

= u 'E/V 

Moduli and phases p and q components 

~: mi~+ iUm~ 

b'I~ : b~ + i~b~ 

h'i~ : hlt , + iUh~, 

Stiffness derivatives 

-z~ , - m~ 

-bl~, -hl~ 

Damping derivatives 

-z~ , -m~ 

-b~, , -h~ 

FIG. 2. Definition of axes and oscillatory quantities. 
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6p = bp., i~bl~ ; 

- z B  = 0"208 

-ml~ = 0.178 

-b  13 = 0 .064 

-hi3 = 0 .137  

-Zl~ = -o.o4o 

-rap = -o.0o4 

-bp : -o.oos 

-hl~ = *0.1 S4 

M =0.8 D=0.31 

F]G. 3. Typical set of measured derivatives. 
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FIG. 4. Variation of normal force derivatives with Mach number. Larger tunnel. 
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FIG. 5. Variation of pitching moment derivatives with Mach number. Larger tunnel. 
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Variation of bending moment derivatives with Mach number. Larger tunnel. 
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FIG. 7. 

Er ro r  " 

bands 

20Hz 

0'6 M 0 '8  
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~-I- x 

X 

Error band 
z 

0.,4 0.6 0.8 1.0 
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0 

FIG. 8. 

Transition free H o 
e 1,0 bar 
x 1.8 

Transition fixed 
A 1,0 
+ 1,8 

Error band 

1 

0"4 0'6 M 0"8 1.0 

Effect of transition fixing and tunnel stagnation pressure on hinge moment derivatives. Smaller 
tunnel. 
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0.1 

" 4 -  

0 

FIG. 9. 

H o 

® 1 • Obar 

1 ' 4  

4. 0 • 5 I Error band 
Z ! 

0 - 4  0"6  M 0"8  1.0 

Effect of tunnel stagnation pressure on hinge moment stiffness. With transition band in larger 
tunnel. 
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0-2 

-z~ 

0.1 
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® 

Error band 
p, zp zl~ 

0 .40 I I 

x 0'8° t A 1,2 ° ! I 
+ 1.6 ° 

0"4 0.6 M 
0 '8  1.0 

.05 - - - 

-zl~ 

-0.1 0.4 0 6 M 

± 

0.8 1.0 

FIG. 10. Effect of control--surface amplitude on normal force derivatives. Larger tunnel. 
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FIG. 11. Effect of control--surface amplitude on hinge moment stiffness. La~-ger tunnel. 
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FIG. 12. Effect of control--surface amplitude on hinge moment damping. Larger tunnel. 
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FIG. 1_ 3. Effects of different tunnel working sections on normal force derivatives. 
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FIG. 14. Effects of different tunnel working sections on pitching moment derivatives. 
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FIG. 15. Effects of different tunnel working sections on bending moment derivatives. 
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Effects of different tunnel working sections on hinge moment derivatives 
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Complex derivatives for M = 0.78 l, ~ = 0-32, interpolated from measurements. Before correction 
for tunnel interference. 
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Complex derivatives for M = 0.781, ~ = 0.32, interpolated from measurements. After correction 
for tunnel interference. 
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FIG. 19. Centre of action of inphase normal force. Variation with Mach number. 
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Comparison of theory and experiment. Normal force stiffness derivative. 
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FIG. 21. Comparison of theory and experiment. Normal force damping derivative. 
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Comparison of theory and experiment. Pitching moment stiffness derivative. 
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FIG. 23. Comparison of theory and experiment. Pitching moment damping derivative. 
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FIG. 24. Comparison of theory and experiment. Hinge moment stiffness derivative. 
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Comparison of theory and experiment. Hinge moment damping derivative. 
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FIc.  26. Comparison of theory and experiment. Complex derivatives for M = 0.6, 9 = 0.41. 
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FIG. 27. Comparison of theory and experiment.  Complex derivatives for M = 0.781, ff = 0.32. 
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