The Solution by Lifting-Line Theory of Problems involving Discontinuities

By

V. M. Falkner, B.Sc., A.M.I.Mech.E., of the Aerodynamics Division, N.P.L.

Crown Copyright Reservea'

LONDON: HER MAJESTY'S STATIONERY OFFICE

The Solution by Lifting-Line Theory of Problems involving Discontinuities

By
V. M. Falkner, B.Sc., A.M.I.Mech.E., of the Aerodynamics Division, N.P.L.

> Reports and Memoranda No. 2592
> October, 1947

Summary.-The report, which has been written as a preliminary to a later account of similar work in lifting-plane theory, describes how wing loading problems involving discontinuities are solved by lifting-line theory. The four discontinuities considered are (a) direction of leading or trailing edge, (b) incidence, (c) two-dimensional lift slope and (d) chord. As the effects of the first are of minor importance in lifting-line theory, attention is mainly confined to the last three, the solution being based on the use of a few terms of a Fourier series in conjunction with special functions tabulated elsewhere.

The work is limited to straight unyawed flight and includes lift, induced drag, and pitching, rolling and yawing moments, all with or without deflected landing flaps and ailerons. The method of formation of the equations, and the solutions of a representative range of problems for a hypothetical wing, including loading due to incidence, symmetrical wing twist, uniform roll, and deflected flaps and ailerons, are fully described. An indication is given of how induced drag and yawing moment calculations will later be simplified by the use of special derived functions.
Absolute values of wing properties as given by lifting-line theory are usually too high, but the specification of correction factors for viscosity is beyond the scope of the report.

1. Introduction.-The report has been written in order to demonstrate the principles by which problems involving discontinuities are solved by lifting-line theory, preliminary to a later account of similar work in lifting-plane theory. The nature of the discontinuities which are to be treated is first described, and a brief description is included of the loading functions, tabulated elsewhere, which are required to allow satisfactorily for the discontinuities.

The method of solution is demonstrated by calculating symmetrical and anti-symmetrical solutions for a hypothetical wing, a departure from the usual application of lifting-line theory being that the equating points are now spaced at even intervals of the semispan instead of in angular measure, an arrangement which is thought to be generally advantageous as well as coupling usefully with vortex lattice theory.
The scope of the report is limited to straight unyawed flight and includes lift, induced drag, and pitching, rolling and yawing moments, all with or without deflected landing flaps and ailerons. The induced drag and yawing moment have been calculated in the report by numerical integration. It is possible for these to be calculated from a formula which involves certain derived functions the computation of which is not yet complete. These will be published later, but their use will not introduce any new principle, the main purpose being to reduce the work of computation to a minimum.

Although the relative magnitudes of the properties of a straight wing as given by lifting line theory are usually considered to be reasonably accurate, the absolute magnitudes are usually too high on account of the influence of viscosity. This report deals only with the potential solutions obtained by the theory, and no attempt is made to specify correction factors for the effect of viscosity.
2. Statement of Problem.--The discontinuities which will be considered in this report, all but one of which are believed to be introduced for the first time, are the following:-(a) discontinuity in direction of leading or trailing edge, such as occurs at the median section of a straight tapered wing, (b) discontinuity of incidence, due either to a sudden change in geometrical incidence or to the deflection of a movable flap, (c) discontinuity of $d C_{L} / d \alpha$ due to a sudden change in wing profile, and (d) discontinuity of chord.

Since the circulation is continuous, a discontinuity of incidence such as (b) can only be expressed mathematically if a function is introduced by which the discontinuity of incidence is offset by a discontinuity in the induced downwash. Similar considerations apply to (c) and (d), for, with the former, a discontinuity of induced downwash must be introduced in order to satisfy the condition that $d C_{L} / d \alpha$ multiplied by effective incidence is continuous, and, with the latter, a similar discontinuity must be introduced in order to express the discontinuity of local lift coefficient which follows from continuity of circulation. The functions which are used to represent the discontinuities (b), (c), and (d) are the Multhopp functions, the derivation and tabulated values of which for centre and tip flaps, and centre and tip ailerons, are given in another report ${ }^{1}$. The discontinuity (a) is not of the same severity as (b), (c), and (d) and there are good reasons, supported by a trial calculation, for stating that no special functions are necessary in lifting-line theory, the usual terms of the Fourier series being adequate to cover or smooth over any effects due to this cause.

However, this discontinuity becomes of considerable importance in lifting plane theory, particularly where large angles of sweepback are involved, and some of the functions which it is proposed to use, which involve a discontinuity of rate of change of induced downwash with span, have, therefore, been described and tabulated. Hence, the present work is all based on the neglect of any special effects due to discontinuities of direction of leading or trailing edges, and on the treatment of the three other discontinuities defined above by including in the wing loading Multhopp functions with discontinuities at the appropriate spanwise positions.
2.1. The present work will be based entirely on expressing the loading as a Fourier series with the addition of Multhopp functions, and the subsequent solution of a set of simultaneous equations as described in a paper in Aircraft Engineering ${ }^{2}$. An alternative method described by Multhopp is based on the use of factors obtained by the pre-solution of simultaneous equations by an iterative process and is designed to simplify the work. There are three reasons why the latter method has been rejected in the present work:-(a) it has not been possible to devote any time to the consideration of whether this method, which has been demonstrated for a simple discontinuity of incidence only, could be extended effectively to include general discontinuities, (b) for the comprehensive set of solutions described in this report, which are carried out with despatch by trained computers, it is doubtful whether the saving of effort would be appreciable, and (c) it is frequently necessary when discontinuities are present to guard against oscillatory solutions by using more relations than necessary and reducing the number of equations by normalisation.
2.2. Where a single discontinuity of incidence is involved, the amount of Multhopp function to be included in the circulation is known, being, in fact, the value of $K / 4 s V$ as tabulated per radian of full chord discontinuity. The amount to be included to represent the other discontinuities is initially unknown, and is derived as part of the solution of the problem. In this report the Multhopp function has been left entirely unrestricted, and, where normalisation is used, has been subjected to the same treatment as the other functions.
3. Specification of Wing Example.-The method will be described by carrying out a complete hypothetical example as given in Fig. 1. The basic wing has straight taper of $2 \frac{1}{2}$ to 1 with the centre section 0.25 span and the tip 0.10 span . From 0.5 semispan to the tip, the chord is increased by $1 \cdot 2$ to 1 . Symmetrical flaps, equivalent to 25 per cent hinged flaps, extend from 0 to 0.5 semispan, and ailerons extend from 0.5 semispan to the tip, the flap chord ratio varying
from 25 per cent at the inner end to 35 per cent at the tip. The two-dimensional lift slope is supposed to have a discontinuity at $\eta=0 \cdot 25$; the assumed values are $7 \cdot 0$ for $\eta=0$ to $0 \cdot 25$, and 5.875 at $\eta=0.25$ decreasing linearly to $5 \cdot 5$ at $\eta=1$. Provision is made for a discontinuity of incidence at $\eta=0 \cdot 25$, and for symmetrical wing twist varying according to the law chord \times twist linear.
4. Formation of Equations.-The formula for the circulation for the symmetrical loading will be taken as

$$
\begin{align*}
& K / 4 s V=A_{1} \sin \phi+A_{3} \sin 3 \phi+A_{5} \sin 5 \phi+A_{7} \sin 7 \phi+m_{1} M_{\mathrm{CF} 25} \\
& +m_{2} M_{\text {CF }} \tag{1}
\end{align*}
$$

and for the anti-symmetrical loading as

$$
\begin{align*}
K / 4 s V= & A_{2} \sin 2 \phi+A_{4} \sin 4 \phi+A_{6} \sin 6 \phi+A_{8} \sin 8 \phi+n_{1} M_{\mathrm{TA} 25} \\
& +n_{2} M_{\text {TA } 50} \ldots \ldots \ldots \tag{2}
\end{align*}
$$

The first four terms of each series are the usual Fourier terms, whilst the remaining two are the Multhopp functions which must be included in order to allow for the discontinuities which are present at $\eta=0.25$ and $\eta=0.5$. These functions are taken directly from the Tables given in R. \& M. 2593^{1} and the notation is as follows:-

$$
\begin{aligned}
& \text { Suffix CF25 } \equiv \text { centre flaps for } \eta^{*}=0 \cdot 25 \\
& \text { Suffix TF25 } \equiv \text { tip flaps for } \eta^{*}=0 \cdot 25 \\
& \text { Suffix CA25 } \equiv \text { centre ailerons for } \eta^{*}=0 \cdot 25 \\
& \text { Suffix TA25 } \equiv \text { tip ailerons for } \eta^{*}=0 \cdot 25 \text {, and so on. }
\end{aligned}
$$

The standard equation for the solution of any problem is given in a paper in Aircraft Engineering ${ }^{2}$. This is

$$
\begin{equation*}
\Sigma A_{n} \sin n \phi\left[\sin \phi+\frac{a_{0} c}{8 s} n\right]=-\sin \phi\left[\sum_{n}^{m} M-\frac{a_{0} c}{8 s}(\alpha-G \phi)\right] \ldots \tag{3}
\end{equation*}
$$

where a_{0} is the two-dimensional lift slope $d C_{L} / d \alpha, c$ is the chord, s the semispan, α the geometrical incidence at any section, $\Sigma m M$ and $\Sigma n M$ the sums of all the Multhopp functions used in the solution under consideration, and $G \phi$ the induced downwash due to the sum of all the Multhopp functions used.

It is usual to separate the symmetrical and anti-symmetrical solutions, and, for the solutions investigated here, the equations become:-
Symmetrical.

$$
\begin{align*}
& A_{1} \sin \phi_{\circ}\left[\sin \phi+\frac{a_{0} c}{8 s}\right]+A_{3} \sin 3 \phi\left[\sin \phi+\frac{3 a_{0} c}{8 s}\right] \\
& +A_{5} \sin 5 \phi\left[\sin \phi+\frac{5 a_{0} c}{8 s}\right]+A_{7} \sin 7 \phi\left[\sin \phi+\frac{7 a_{0} c}{8 s}\right] \\
& \quad=-\sin \phi\left[m_{1} M_{\mathrm{CF} 25}+m_{2} M_{\mathrm{CF50}}-\frac{a_{0} c}{8 s}(\alpha-G \phi)\right] \quad \ldots \quad \ldots \quad \ldots \tag{4}
\end{align*}
$$

where

$$
G \phi=m_{1}[\eta=0 \text { to } 0.25]+m_{2}\left[\eta_{1}=0 \text { to } 0.50\right] .
$$

Anti-symmetrical.

$$
\begin{aligned}
& A_{2} \sin 2 \phi\left[\sin \phi+\frac{2 a_{0} c}{8 s}\right]+A_{4} \sin 4 \phi\left[\sin \phi+\frac{4 a_{0} c}{8 s}\right] \\
& +A_{6} \sin 6 \phi\left[\sin \phi+\frac{6 a_{0} c}{8 s}\right]+A_{8} \sin 8 \phi\left[\sin \phi+\frac{8 a_{0} c}{8 s}\right] \\
& =-\sin \phi\left[n_{1} M_{\mathrm{TA} 25}+n_{2} M_{\mathrm{TA} 50}-\frac{a_{0} c}{8 s}(\alpha-G \phi)\right]
\end{aligned}
$$

where $\quad G \phi=n_{1}[\eta=0.25$ to 1$]+n_{2}[\eta=0.5$ to 1$]$.
By transferring to the left hand side the terms in m_{1} and m_{2} or n_{1} and n_{2}, the right hand side is left as $\frac{a_{0} c}{8 s} \alpha \sin \phi$, and there will be six unknowns, i.e., $A_{1}, A_{3}, A_{5}, A_{7}, m_{1}, m_{2}$ for the symmetrical solution and $A_{2}, A_{4}, A_{6}, A_{8}, n_{1}, n_{2}$ for the anti-symmetrical solution. The coefficient of m_{1} will be

$$
\begin{array}{ll}
\sin \phi\left[M_{\mathrm{CF} 25}+\frac{\dot{a}_{0} c}{8 s}\right] & \text { for } 0 \leqslant \eta \leqslant \eta_{\text {inner }}^{*} \text { and } \\
\sin \phi\left[M_{\mathrm{CF} 25}\right] & \text { for } \eta^{*}{ }_{\text {outer }} \leqslant \eta \leqslant 1,
\end{array}
$$

and there are similar expressions for m_{2}, n_{1}, and n_{2}.
An alternative expression to equation (1), which includes the function known as P which will be used to compensate for discontinuity of slope of leading or trailing edge, is

$$
\begin{equation*}
K / 4 s V=A_{1} \sin \phi+A_{3} \sin 3 \phi+A_{5} \sin 5 \phi+p P+m_{1} M_{\text {CF25 }}+m_{2} M_{\text {CF50 }} . . . \tag{6}
\end{equation*}
$$

4.1. Six equations would normally be sufficient to determine the six unknowns, but, in this work, it is usually advisable to take more than six equations and reduce by normalisation. One reason for this is that, unless the stabilising influence of a least squares solution is present, a solution containing Multhopp functions sometimes develops a tendency to oscillate. Another reason is that it is doubtful whether the wing can be represented adequately by six conditions only. It will be noted that at each point of discontinuity there will be two equations, corresponding to the inner and outer edges of the discontinuity respectively. There will be, in the present work, inner and outer values for a_{0} and $G \phi$ at $\eta^{*}=0 \cdot 25$, and inner and outer values for c and $G \phi$ at $\eta^{*}=0.5$.

Where there is a simple discontinuity of incidence only, the value of the corresponding m coefficient is known, being, in fact, unity per radian of discontinuity. Where other discontinuities are present the m coefficient is unknown, and in the present work, because of this unknown contribution and because a least squares solution is involved, all coefficients of the M functions have been taken as unknown.
5. General Formulae.-The lift coefficients and rolling moments due to Multhopp functions are defined in R. \& M. 2593 ${ }^{1}$, from which it is deduced that the total lift coefficient for the circulation (1) is

$$
\begin{equation*}
C_{L}=\frac{4 s^{2}}{S}\left[\pi A_{1}+m_{1}\left(\pi-2 \phi_{1}^{*}+\sin 2 \phi_{1}^{*}\right)+m_{2}\left(\pi-2 \phi_{2}^{*}+\sin 2 \phi_{2}^{*}\right)\right] \ldots \tag{7}
\end{equation*}
$$

where $\phi_{1}{ }^{*}$ and $\phi_{2}{ }^{*}$ are angular measures corresponding to $\eta^{*}=0.25$ and $\eta^{*}=0.50$ respectively.

The local lift coefficient for $C_{L}=: 1$ is related to the circulation thus:-

$$
\begin{equation*}
C_{L L}=\frac{4(K / 4 s V)}{(c / 2 s)\left(d C_{L} / d \alpha\right)} \cdot \quad . \quad . . \quad . \quad . \quad . . \quad . \quad . \quad . \tag{8}
\end{equation*}
$$

The rolling moment coefficient for the circulation (2) is

$$
\begin{equation*}
C_{l}=-\frac{s^{2}}{S}\left[\pi A_{2}+\frac{4}{3} n_{1}\left(1-\eta_{1}^{* 2}\right)^{3 / 2}+\frac{4}{3} n_{2}\left(1-\eta_{2}^{* 2}\right)^{3 / 2}\right] \tag{9}
\end{equation*}
$$

where $\eta_{1}{ }^{*}=0.25$ and $\eta_{2}{ }^{*}=0.50$.
The value of $C_{m 0}$, referred to the mean chord \bar{c}, is

$$
\begin{equation*}
-\frac{32 s^{4}}{S^{2}} \int_{-1}^{1} \frac{K}{4 s V} \frac{x_{g}}{2 s} d \eta \quad . . \quad . \tag{10}
\end{equation*}
$$

where $K / 4 s V$ is the circulation at zero lift, and $x_{g} / 2 s$ the distance back from datum of the local centre of pressure.

The general expression for induced drag is

$$
\begin{equation*}
C_{D i}=\frac{8 s^{2}}{S} \int_{-1}^{1}\left(\frac{w}{V}\right)\left(\frac{K}{4 s V}\right) d \eta, \quad \ldots \quad \quad . \quad . \quad . \quad . \quad . \quad . \tag{11}
\end{equation*}
$$

and for induced yawing moment

$$
\begin{equation*}
C_{n}=\frac{4 s^{2}}{S} \int_{-1}^{1}\left(\frac{w}{V}\right)\left(\frac{K}{4 s V}\right) \eta d \eta . \quad . \quad . . \quad . \quad . \quad . . \quad . . \tag{12}
\end{equation*}
$$

The formula for w / V due to the Fourier terms is

$$
w / V=\frac{\sum n A_{n} \sin n \phi}{\sin \phi} .
$$

The evaluation of $C_{m 0}$ will usually require numerical integration because of irregularities in x_{g}, but it is possible to avoid this process for $C_{D i}$ and C_{n} by expressing the integrals in terms of functions derived from the Multhopp functions by integration. These functions are being calculated and will be published as soon as possible, but, as no new principle will be involved, examples are now given of how the drag and yawing moment are derived directly by numerical integration.
5.1. Lifting-line solutions are based on the treatment of each strip as if the relative chordwise distribution were purely two-dimensional. The geometrical incidence to be used in the formation of the equations when deflected flaps are under consideration is therefore the incidence of the equivalent straight line aerofoil with the same lift. This equivalent incidence per radian flap deflection is the quantity a_{2} / a_{1}, given by Glauert in R. \& M. 1095 :-

$$
\begin{equation*}
a_{2} / a_{1}=1-2 / \pi\left[\cos ^{-1} \sqrt{ } E-\sqrt{ }(E(1-E))\right] \tag{13}
\end{equation*}
$$

where E is the flap/chord ratio.
The location of the local centre of pressure (C.P.) on the chord follows from the same potential theory.

The two-dimensional lift is

$$
\begin{equation*}
C_{L}=2 \pi\left(\alpha^{\prime}+R_{1} \eta^{\prime}\right) \quad . \quad . . \quad . \tag{14}
\end{equation*}
$$

and the moment about the leading edge

$$
\begin{equation*}
C_{m}=-\frac{\pi}{2} \alpha^{\prime}+R_{2} \eta^{\prime} \quad . \tag{15}
\end{equation*}
$$

where α^{\prime} is the incidence of the main wing profile, η^{\prime} the deflection of the flap, and

$$
\begin{align*}
& R_{\mathbf{1}}=1-\frac{\theta^{*}}{\pi}+\frac{\sin \theta^{*}}{\pi} \ldots \tag{16}
\end{align*} . \cdots .
$$

and
θ^{*} being the angular measure at the hinge, related to the flap/chord ratio E by

$$
\begin{equation*}
E=0 \cdot 5\left(1+\cos \theta^{*}\right) \tag{18}
\end{equation*}
$$

For the three-dimensional wing, the circulation would first be calculated for a given flap deflection, usually per radian, from which it would follow that

$$
\begin{equation*}
C_{L L}=\frac{\text { Lift }}{\frac{1}{2} \rho V^{2} c}=\frac{8 s}{c} \frac{K}{4 s V} . \quad . \quad . \quad . . \quad . . \quad . \quad . \quad . \tag{19}
\end{equation*}
$$

The position of the local C.P. on the section is $-C_{m} / C_{L L}$, which, after substituting the relations (14) and (15) reduces to

$$
\begin{align*}
& 0.25+\frac{R_{5} \eta^{\prime}}{C_{L L}} \text { or } \\
& 0.25+\frac{R_{5} \eta^{\prime}}{4(K / 4 s V)} \frac{c}{2 s} \quad . \tag{20}\\
& R_{5}=\frac{1}{2} \sin \theta^{*}-\frac{1}{4} \sin 2 \theta^{*} . \tag{21}
\end{align*}
$$

where
If η^{\prime} were zero, the local C.P. would be at $0 \cdot 25$ chord. Since $R_{5}=\frac{1}{2} \sin \theta^{*}\left(1-\cos \theta^{*}\right)$, which is positive for $0 \leqslant \theta^{*} \leqslant \pi$; the local C.P. for positive lift coupled with positive flap deflection is always to the rear of 0.25 chord.

The value of $C_{m 0}$ can be calculated either by the direct use of relation (10), in which $x_{g} / 2 \mathrm{~s}$ is the distance of the local C.P. behind datum, or, alternatively, by separating the loading into two components. The loading on any section can be regarded as made up of $C_{m 0}$, the local moment coefficient for zero local lift, together with the local lift force acting at 0.25 chord. The alternative calculation for overall $C_{m 0}$, is, therefore, by the use of relation (10), $x_{g} / 2 s$ being taken as the distance of the quarter chord behind datum, with the addition of the integral of the local moments for zero local lift. Now it can easily be shown from relations (14) and (15), or (20), that the local moment coefficient $C_{m 0}=M_{0} / \frac{1}{2} \rho V^{2} c^{2}=-R_{5} \eta^{\prime}$ and it follows that the

$$
\text { additional } C_{m 0}=M / \frac{1}{2} \rho V^{2} \bar{c} S=\frac{1}{\bar{c} S} \int_{-s}^{s}-R_{5} \eta^{\prime} c^{2} d y \quad \text { or }
$$

$$
\begin{equation*}
C_{m 0}=-\frac{8 s^{4}}{S^{2}} \int_{-1}^{1} R_{5} \eta^{\prime}(c / 2 s)^{2} \cdot d \eta . \quad . \tag{22}
\end{equation*}
$$

As the centre of pressure of any additional loading due to incidence is also at the quarter-chord, it follows that the loading system under any conditions can be represented by applying the local lift force at the quarter-chord, and adding the moment defined by equation (22).
6. Equations.-The constants for the wing derived from the specification of section 3 are given in Table 1 and it will be noted that there are inner and outer values for $a_{0} c / 8 s$ at $\eta^{*}=0.25$ and 0.50 . Three sets of equations are required, i.e., (a) symmetrical equations for incidence (b) symmetrical equations for zero lift and (c) anti-symmetrical equations. The derivation of these is from the formulae of section 4, the values of the Multhopp functions being taken from R. \& M. 2593^{1}, and the values of sines of multiple angles from Table 1.

The equations are formed for $\eta=0,0.15,0.25(2), 0.35,0.5(2), 0.7$ and 0.9 , giving a total of nine for six variables.
The symmetrical equations for the plain incidence solution are given in Table 4 before and after normalisation by the process of which an example is given in Table 8 of R. \& M. 2591^{4}.

The symmetrical equations for wing twist, which are given in Table 5, are derived from the previous equations by substituting the condition for zero lift. This condition, that the right hand of relation (7) must be zero, reduces to

$$
A_{1}+0.31496 m_{1}+0.60900 m_{2}=0 .
$$

Hence, to convert the incidence equations to zero lift, the following transformations are used:-

$$
\begin{aligned}
& A_{1} \text { omitted: } \\
& A_{3}, A_{5}, A_{7}, \text { as before: } \\
& m_{1} \text { (zero lift) }=m_{1}-0 \cdot 31496 A_{1}: \\
& m_{2} \text { (zero lift) }=m_{2}-0 \cdot 60900 A_{1}
\end{aligned}
$$

The revised incidence is α_{0} plus wing twist. Hence the α_{0} column is the same as for the original constant column, and the new constant column will be $-\left(a_{0} c / 8 s\right) \sin \phi \times$ (twist). In Table 5, the twist used in calculating the constant column refers to the $c \theta$ linear figures of Table 2.

The anti-symmetrical equations of Table 6 are derived from relation (2), and the constant column refers to the solution for uniform roll, for which the geometrical incidence for $V / w s$ unity at the tip is η.
7. Solutions.-The three sets of equations described are all that are necessary for the solution of any straight flight problem. Once they have been normalised and solved by elimination, by the process described in R. \& M. 2591^{4} the solution for any other problem which involves a change in the constant column can easily be obtained by the process described also in the same report.

We now proceed to describe the representative solutions which have been obtained, together with the derivation of the corresponding constant column.
7.1. Plain Wing, Incidence Solution.-This solution is given in Table 7. The symmetrical equations of Table 4 are used, the constant column being - ($\left.a_{0} c / 8 s\right) \sin \phi$. The circulation per radian (column 2) is calculated from the sines of multiple angles given in Table 1, and the Multhopp functions given in R. \& M. 2593^{1}. The quantity in column 3 is the distance back of the quarter-chord from datum in terms of the span. The aerodynamic centre is obtained by dividing the integral of column 4 by the integral of column 2. Because of irregularities in the circulation, the standard Simpson factors are not applicable, and the integrating column 5 is built up from the components described in Appendix 1. The local lift coefficient is derived from relation (8), and the geometrical mean quarter chord from an integration of columns 6 and 8.

The induced drag is calculated by the process given in Table 8. The three separate components of the induced downwash are tabulated, the two corresponding to centre flaps being derived from
the coefficients m_{1} and m_{2} given by the solution of the equations. That part of the induced downwash due to the Fourier terms is calculated from $w / V=\Sigma n A_{n} \sin n \phi / \sin \phi$ using Table 1. The total w / V is obtained by summation and the induced drag obtained by integrating $(w / V)(K / 4 s V)$ as in relation (11). The same integrating factors are used as in Table 7, and, after the result is divided by $C_{L}{ }^{2}$ per radian, lead to $C_{D i}=0.0608 C_{L}{ }^{2}$, the minimum being $0.0601 C_{L}{ }^{2}$.
7.2. Symmetrical Wing Twist, Linear Product of Chord and Twist.-This solution is given in Table 9, the equations used being the symmetrical equations for zero lift of Table 5, the constant column being - $\left(a_{0} c / 8 s\right) \sin \phi \times$ twist. In the Table are given the circulation per radian twist at the tip; the integral of the product of circulation and distance back of quarter chord from datum, which, after a suitable factor defined in relation. 10 , gives $C_{m 0}$ per radian; and the local lift coefficient obtained as previously.
7.3. Fifty per cent Span Flaps: Zero Lift.-This solution, given in Table 10, applies to hinged flaps or their equivalent. The symmetrical equations for zero lift of Table 5 are used, the constant column being - $\left(a_{2} / a_{1}\right)\left(a_{0} c / 8 s\right) \sin \phi$ from $\eta=0$ to 0.5 inner, and zero from 0.5 outer to tip. The ratio a_{2} / a_{1} is given by formula (13), numerical values being included in Table 2 . Since the flap/chord ratio is a constant $0 \cdot 25, a_{2} / a_{1}=0 \cdot 60900$. The solution follows the same lines as previously, excepting that, because of the deflected flap, the local C.P. is no longer at 0.25 chord. The position of the local C.P. on the chord is given by relation 20 , leading to $[(0 \cdot 25+0 \cdot 16238 c / 2 s) /(K / 4 s V)]$ chord over the flap span.
7.4. Discontinuity of Incidence at $\eta=0 \cdot 25$.-This solution is given in Table 11 and follows the same pattern as previous solutions. It should be noted that the coefficient m_{1}, which should be unity for one radian discontinuity, solves by the least squares process to 0.9833 .
7.5. Uniform roll.-The solution for uniform roll applicable to $V / w s=$ unity at the tip, given in Table 12, is obtained by using the anti-symmetrical equations, Table 6, with constant column - $\left(a_{0} c / 8 s\right) \eta \sin \phi$. The solution gives rolling moment, circulation, and the local lift coefficient for unit $\left(-C_{l}\right)$.
7.6. Aileron from $\eta=0.5$ to 1.0 , Wing at Zero Incidence. -This solution is given in Table 13, the anti-symmetrical equations of Table 6 being used with constant column zero from $\eta=0$ to 0.5 inner, and $-\left(a_{2} / a_{1}\right)\left(a_{0} c / 8 s\right) \sin \phi$ from $\eta=0.5$ outer to tip. The value of flap/chord ratio E varies from $0 \cdot 25$ to $0 \cdot 33$ and the corresponding values of a_{2} / a_{1} are given in Table 2 . The solution is calculated in the same way as the previous solution.
7.7. Half span distributions of circulation for six of these solutions are plotted in Fig. 2.
8. Composite Solutions.-In order to demonstrate the method for finding a composite solution, the calculation of yawing moment, and a suitable specification of the wing loading for use in aeroelastic problems, a composite solution for flaps and ailerons at zero lift has been calculated. The specification is for 50 per cent span flaps with ΔC_{L} due to flaps $=1$, and 50 per cent ailerons deflected to give rolling moment coefficient $+0 \cdot 1$. It follows from the separate solutions that the incidence for zero lift is -0.2275 radians, the aileron deflection is -0.3138 radians, and the composite circulation is 0.6135 (flaps) minus 0.3138 (ailerons). In Table 14, the circulation for port and starboard half wings, chord, R_{5} for the flap/chord ratios from Table 2, and η^{\prime} the flap deflection, are given.

It has been shown in section 5.1 that the force system on any section is made up of the lift acting at the quarter-chord, with the addition of a moment defined by

$$
C_{m}=\frac{M d y}{\frac{1}{2} \rho V^{2} \bar{c} S}=-\frac{8 s^{4}}{S^{2}} R_{5} \eta^{\prime}(c / 2 s)^{2} d \eta
$$

The last column of Table 14 gives the numerical values of the local C_{m}.
9. Conclusion.-In conclusion, the writer acknowledges the valuable help received from Miss W. M. Tafe, who was responsible for computing the solutions given in the report.

REFERENCES

 R. \& M. 2591. September, 1947.

APPENDIX I
 Modified Simpson factors

The standard Simpson factors of $1,4,1$ require modification when the curve to be integrated has an infinite slope. It is shown in R. \& M. 2591^{4} that the factors $0 \cdot 800,4 \cdot 525,0 \cdot 675^{*}$ will give a reliable value for the integral when used over the intervals at the wing tip which include an infinite slope at the boundary, the starred value being used at the infinity.

In this report, since it is occasionally necessary to cover an odd number of intervals, the three-eighths rule is also used, factors $1 \cdot 125,3 \cdot 375,3 \cdot 375,1 \cdot 125$. A modification for infinite slope calculated by a similar method to the above gives $0 \cdot 655,4 \cdot 454,2 \cdot 520$, and $1 \cdot 371$.

At a discontinuity, the exact magnitudes of the factors are difficult to calculate exactly, and it has been found that mean values between the above sets give reliable results.

Hence, for any given integration, the factors are made up from a combination of the following to suit the positions of the discontinuities.

Case	Standard factors	Modified for infinite slope	Modified for discontinuity
Two	1	$0 \cdot 675^{*}$	$0.838 \dagger$
interval	4	4.525	4.262
	1	0.800	0.900
	$1 \cdot 125$	0.655^{*}	$0.89 \dagger \dagger$
Three	3.375	4.454	3.914
interval	$3 \cdot 375$	2.520	$2 \cdot 948$
	$1 \cdot 125$	1.371	1.248

[^0]TABLE 1
Sines of Multiple Angles for Regular Values of η

η	$\begin{gathered} \phi \\ \mathrm{deg} \end{gathered}$	$\underset{\text { radn }}{\phi}$	$\sin \phi$	$\sin 2 \phi$	$\sin 3 \phi$	$\sin 4 \phi$	$\sin 5 \phi$
0	$90 \cdot 000$	$1 \cdot 5708$	$1 \cdot 00000$	0	$-1 \cdot 00000$	0	$1 \cdot 00000$
$0 \cdot 05$	$87 \cdot 134$	$1 \cdot 5208$	0.99875	$0 \cdot 09987$	-0.98876	$-0 \cdot 19875$	0.96889
$0 \cdot 10$	$84 \cdot 261$	$1 \cdot 4706$	0.99499	$0 \cdot 19900$	-0.95519	-0.39004	0.87718
$0 \cdot 15$	$81 \cdot 373$	$1 \cdot 4202$	0.98869	$0 \cdot 29661$	-0.89970	- 0.56652	$0 \cdot 72975$
$0 \cdot 20$	$78 \cdot 463$	1 -3694	0.97980	$0 \cdot 39192$	-0.82303	-0.72113	$0 \cdot 53458$
$0 \cdot 25$	$75 \cdot 522$	$1 \cdot 3181$	0.96825	$0 \cdot 48412$	- 0.72618	-0.84722	$0 \cdot 30258$
$0 \cdot 30$	$72 \cdot 542$	1-2661	0.95394	0.57236	-0.61052	-0.93868	$0 \cdot 04732$
$0 \cdot 35$	$69 \cdot 513$	1-2132	0.93675	0:65572	-0.47774	-0.99014	-0.21536
$0 \cdot 40$	$66 \cdot 422$	1-1593	0.91652	0.73321	-0.32994	-0.99717	-0.46779
$0 \cdot 45$	$63 \cdot 256$	1-1040	$0 \cdot 89303$	$0 \cdot 80373$	$-0 \cdot 16968$	-0.95643	-0.69112
$0 \cdot 50$	$60 \cdot 000$	$1 \cdot 0472$. 0.86603	0.86603	$0 \cdot 00000$	- 0.86603	-0.86603
$0 \cdot 55$	$56 \cdot 633$	$0 \cdot 9884$	$0 \cdot 83516$	0.91868	$0 \cdot 17538$	-0.72576	-0.97372
$0 \cdot 60$	$53 \cdot 130$	0.9273	$0 \cdot 80000$	$0 \cdot 96000$	$0 \cdot 35200$	-0.53760	-0.97712
0.65	$49 \cdot 458$	$0 \cdot 8632$	0.75993	$0 \cdot 98791$	$0 \cdot 52436$	-0.30625	- 0.92248
$0 \cdot 70$	$45 \cdot 573$	$0 \cdot 7954$	$0 \cdot 71414$	0.99980	$0 \cdot 68558$	-0.03999	-0.74157
$0 \cdot 75$	$41 \cdot 410$	$0 \cdot 7227$	$0 \cdot 66144$	0.99216	$0 \cdot 82680$	$0 \cdot 24804$	- 0.45474
$0 \cdot 80$	36.870	$0 \cdot 6435$	$0 \cdot 60000$	0.96000	0.93600	$0 \cdot 53760$	-0.07584
$0 \cdot 85$	31.788	$0 \cdot 5548$	0.52678	$0 \cdot 89553$	0.99562	$0 \cdot 79702$	$0 \cdot 35932$
$0 \cdot 90$	$25 \cdot 842$	0.4510	0.43589	$0 \cdot 78460$	0.97639	$0 \cdot 97291$	$0 \cdot 77484$
0.95	$18 \cdot 195$	0.3176	$0 \cdot 31225$	$0 \cdot 59328$	0.81497	$0 \cdot 95517$	$0 \cdot 99986$
$1 \cdot 00$	0	0	0	0	0	0	0

η	$\sin 6 \phi$	$\sin 7 \phi$	$\sin 8 \phi$	$\sin 9 \phi$	$\sin 10 \phi$	$\sin 11 \phi$
0	0	-1.00000	0	1.00000	0	$-1 \cdot 00000$
0.05	0.29564	-0.93932	-0.38957	0.90037	0.47961	-0.85240
0.10	0.56547	-0.76409	-0.71829	0.62043	0.84238	-0.45195
0.15	0.78544	-0.49412	-0.93368	0.21401	0.99788	0.08535
0.20	0.93496	-0.16059	-0.99920	-0.23909	0.90356	0.60051
0.25	0.99850	0.19668	-0.90017	-0.64676	0.57679	0.93515
0.30	0.96706	0.53292	-0.64731	-0.92131	0.09452	0.97802
0.35	0.83939	0.80293	-0.27734	-0.99707	-0.42061	0.70264
0.40	0.62294	0.96614	0.14997	-0.84616	-0.82690	0.18464
0.45	0.33443	0.99210	0.55846	-0.48949	-0.99900	-0.40961
0.50	0.00000	0.86603	0.86603	0.00000	-0.86603	-0.86603
0.55	-0.34533	0.59385	0.99857	0.50458	-0.44354	-0.99247
0.60	-0.65894	0.20639	0.90661	0.88154	0.15124	-0.70005
0.65	-0.89298	-0.23838	0.58308	0.99638	0.71222	-0.07049
0.70	-0.99820	-0.65592	0.07992	0.76780	0.99500	0.62520
0.75	-0.93015	-0.94048	-0.48058	0.21962	0.81000	0.99539
0.80	-0.65894	-0.97847	-0.90661	-0.47210	0.15124	0.71409
0.85	-0.18618	-0.67582	-0.96272	-0.96080	-0.67064	-0.17929
0.90	0.42180	-0.01560	-0.44987	-0.79418	-0.97964	-0.96918
0.95	0.94455	0.79480	0.56556	0.27976	-0.03400	-0.34437
1.00	0	0	0	0	0	0
					0	

TABLE 2
Table of Constants for Wing

η	a_{0}	c/2s	$a_{0} c / 8 s$	Twist θ linear	Twist co linear
0	$7 \cdot 000$	$0 \cdot 2500$	$0 \cdot 43750$	0	0
$0 \cdot 15$	7.000	$0 \cdot 2275$	$0 \cdot 39812$	$0 \cdot 15$	0.06593
0.25 inner	$7 \cdot 000$	$0 \cdot 2125$	$0 \cdot 37188$	$0 \cdot 25$	0.11765
$0 \cdot 25$ outer	$5 \cdot 875$	$0 \cdot 2125$	$0 \cdot 31211$	$0 \cdot 25$	0.11765
$0 \cdot 35$	$5 \cdot 825$	$0 \cdot 1975$	$0 \cdot 28761$	$0 \cdot 35$	0.17722
0.50 inner	$5 \cdot 750$	0.1750	$0 \cdot 25156$	$0 \cdot 50$	0.28571
$0 \cdot 50$ outer	$5 \cdot 750$	$0 \cdot 2100$	$0 \cdot 30188$	$0 \cdot 50$	$0 \cdot 28571$
$0 \cdot 70$	$5 \cdot 650$	$0 \cdot 1740$	$0 \cdot 24578$	$0 \cdot 70$	$0 \cdot 48276$
$0 \cdot 90$	$5 \cdot 550$	0.1380	$0 \cdot 19148$	$0 \cdot 90$	$0 \cdot 78261$
$1 \cdot 00$	$5 \cdot 500$	$0 \cdot 1200$	0.16500	$1 \cdot 00$	$1 \cdot 00000$

Function	$\eta_{1}{ }^{*}(0 \cdot 25)$	$\eta_{2}{ }^{*}(0 \cdot 50)$
ϕ^{*} radians	$1 \cdot 318116$	1-047198
$\sin 2 \phi^{*}$	$0 \cdot 484123$	$0 \cdot 866025$
$\pi / 2-\phi^{*}+\frac{1}{2} \sin 2 \phi^{*}$	$0 \cdot 494742$	$0 \cdot 956611$
$4 / 3\left(1-\eta^{* 2}\right)^{\frac{3}{2}}$. \ldots	$1 \cdot 210307$	$0 \cdot 866025$

E	a_{2} / a_{1}	R_{5}
0.25	0.60900	0.64952
0.26		0.64918
0.27	0.63048	0.64818
0.28		0.64656
0.29	0.65090	0.64434
0.30		0.64156
0.31	0.67036	0.63824
0.32		0.63441
0.33	0.68892	0.63008
0.34		0.62530
0.35	0.70666	0.62006

Aspect ratio $=5 \cdot 298$
$64 s^{4} / S^{2}=112 \cdot 28 \quad \pi s^{2} / S=4 \cdot 161$
$E=$ flap/chord ratio
$\left.a_{2} / a_{1}=1-\frac{2}{\pi}\left[\cos ^{-1} \sqrt{ } E-\sqrt{(E(1-E)}\right)\right]$.

TABLE 3
Table of Distances for Wing in Terms of Span

	Datum to leading edge	chord
η	0	0.2500
0	0.0019	0.2425
0.05	0.0038	0.2350
0.10	0.0056	0.2275
0.15	0.0075	0.2200
0.20	0.0094	0.2125
0.25	0.0112	0.2050
0.30	0.0131	0.1975
0.35	0.0150	0.1900
0.40	0.0169	0.1825
0.45	0.0188	0.1750
0.50	0.0188	0.2100
0.50	0.0206	0.2010
0.55	0.0225	0.1920
0.60	0.0244	0.1830
0.65	0.0262	0.1740
0.70	0.0281	0.1650
0.75	0.0300	0.1560
0.80	0.0319	0.1470
0.85	0.0338	0.1380
0.90	0.0356	0.1290
0.95	0.0375	0.1200
1.00		

TABLE 4

Symmetrical Equations

Before normalisation

η	A_{1}	A_{3}	A_{5}	A_{7}	m_{1}	m_{2}	1	
0	1.4375	-2.3125	3.1875	-4.0625	0.9268	1.1900	-0.4375	
0.15	1.3711	-1.9641	2.1741	-1.8656	0.8461	1.1214	-0.3936	
0.25 i	1.2976	-1.5133	0.8556	0.7024	0.7245	1.0433	-0.3601	
0.250	1.2397	-1.3831	0.7652	0.6201	0.3644	0.9855	-0.3022	
0.35	1.1469	-0.8597	-0.5114	2.3687	0.2696	0.8839	-0.2694	
0.50 i	0.9679	0.0000	-1.8393	2.2750	0.1870	0.6589	-0.2179	
0.50 o	1.0114	0.0000	-2.0572	.2 .5800	0.1870	0.4411	-0.2614	
0.70	0.6855	0.9951	-1.4409	-1.5969	0.1036	0.2210	-0.1755	-0
0.90	0.2735	0.9865	1.0796	-0.0277	0.0328	0.0684	-0.0835	

After normalisation

A_{1}	A_{3}	A_{5}	A_{7}	m_{1}	m_{2}	1	
10.987	- 9.730	$4 \cdot 482$	- 0.292	$4 \cdot 644$	$8 \cdot 092$	-2.938	
-9.730	$16 \cdot 111$	- 13.924	7.485	$-5 \cdot 502$	-8.369	$2 \cdot 722$	
$4 \cdot 482$	-13.924	$27 \cdot 323$	$-24 \cdot 362$	$4 \cdot 712$	$5 \cdot 062$	-1.551	
-0.292	$7 \cdot 485$	- $24 \cdot 362$	$40 \cdot 856$	$-3 \cdot 229$	-1.207	$0 \cdot 546$	$=0$
$4 \cdot 644$	--5.502	$4 \cdot 712$	-3.229	$2 \cdot 387$	$3 \cdot 636$	-1.293	
$8 \cdot 092$	$-8 \cdot 369$	$5 \cdot 062$	$-1 \cdot 207$	$3 \cdot 636$	$6 \cdot 197$	$-2 \cdot 177$	

TABLE 5.
Symmetrical Equations. Zero Lift
Before normalisation

η	A_{3}	A_{5}	A_{7}	m_{1}	$m_{\mathbf{2}}$	α_{0}	1
0	-2.3125	3.1875	-4.0625	0.4740	0.3146	-0.4375	0
0.15	-1.9641	2.1741	-1.8656	0.4143	0.2864	-0.3936	-0.0260
0.25 i	-1.5133	0.8556	0.7024	0.3158	0.2531	-0.3601	-0.0424
0.250	-1.3831	0.7652	0.6201	-0.0261	0.2305	-0.3022	-0.0356
0.35	-0.8597	-0.514	2.3687	-0.0916	0.1854	-0.2694	-0.0477
0.50 i	0.0000	-1.8393	2.2750	-0.1178	0.0694	-0.2179	-0.0622
0.500	0.0000	-2.0572	2.5800	-0.1316	-0.1748	-0.2614	-0.0747
0.70	0.9951	-1.4409	-1.5969	-0.1123	-0.1965	-0.1755	-0.0847
0.90	0.9865	1.0796	-0.0277	-0.0533	-0.0982	-0.0835	-0.0653

After normalisation

A_{3}	A_{5}	A_{7}	m_{1}	m_{2}	α_{0}	1	
$16 \cdot 111$	$-13 \cdot 924$	$7 \cdot 485$	$-2: 437$	$-2 \cdot 444$	$2 \cdot 722$	$0 \cdot 0568$	
$-13 \cdot 924$	$27 \cdot 323$	$-24 \cdot 362$	$3 \cdot 300$	$2 \cdot 333$	-1.551	$0 \cdot 2240$	
$7 \cdot 485$	$-24 \cdot 362$	$40: 856$	$-3 \cdot 137$	-1.029	$0 \cdot 546$	-0.3135	
$-2 \cdot 437$	3.300	$-3 \cdot 137$	$0 \cdot 552$	0.367	-0.367	0.0113	$=0$
- $2 \cdot 444$	$2 \cdot 333$	- 1.029	$0 \cdot 367$	$0 \cdot 416$	- 0.388	-0.0034	
$2 \cdot 722$	-1.551	$0 \cdot 546$	- 0.367	-0.388	$0 \cdot 793$	$0 \cdot 1025$	

TABLE 6
Antisymmetrical Equations
Before normalisation

η	A_{2}	A_{4}	A_{6}	A_{8}	n_{1}	n_{2}	1	
0	0	0	0	0	0	0	0	
$0 \cdot 15$	$0 \cdot 5294$	-1.4623	$2 \cdot 6528$	$-3 \cdot 8968$	$0 \cdot 1093$	$0 \cdot 0435$	-0.0590	
$0 \cdot 25 \mathrm{i}$	0.8288	- 2.0806	$3 \cdot 1947$	--3.5496	0.2136	$0 \cdot 0742$	--0.0900	
$0 \cdot 25$ -	$0 \cdot 7710$	- 1.8780	$2 \cdot 8367$	$-3 \cdot 1192$	$0 \cdot 5158$	$0 \cdot 0742$	-0.0756	
$0 \cdot 35$	0.9914	-2.0666	$2 \cdot 2348$	- 0.8979	$0 \cdot 5708$	$0 \cdot 1082$	-0.0943	
0.50 i	1-1857	- 1.6214	$0 \cdot 0000$	2.4929	$0 \cdot 5495$	$0 \cdot 1911$	- 0.1089	$=0$
$0 \cdot 500$	1-2729	-1.7957	$0 \cdot 0000$	$2 \cdot 8415$	$0 \cdot 5931$	$0 \cdot 4525$	-0.1307	
$0 \cdot 70$	1-2055	- 0.0679	$-2 \cdot 1849$	$0 \cdot 2142$	$0 \cdot 4456$	$0 \cdot 3945$	-0.1229	
$0 \cdot 90$	$0 \cdot 6425$	1-1692	$0 \cdot 6685$	-0.8852	$0 \cdot 1958$	$0 \cdot 1819$	-0.0751	

After normalisation

A_{2}	A_{4}	A_{6}	A_{8}	n_{1}	n_{2}	1	
$7 \cdot 437$	$-9 \cdot 534$	$6 \cdot 251$	-2.038	$3 \cdot 268$	$1 \cdot 644$	$-0 \cdot 7495$	
-9.534	$21 \cdot 490$	- $19 \cdot 542$	$10 \cdot 603$	$-4 \cdot 510$	-1.517	0.9423	
$6 \cdot 251$. $-19 \cdot 542$	$35 \cdot 505$	$-33 \cdot 592$	$2 \cdot 869$	$0 \cdot 064$	-0.6510	$=0$
-2.038	$10 \cdot 603$	$-33 \cdot 592$	$53 \cdot 439$	-0.329	0.924	0.2671	$=0$
$3 \cdot 268$	-4.510	$2 \cdot 869$	-0.329	$1 \cdot 540$	$0 \cdot 705$	-0.3253	
$1 \cdot 644$	-1.517	$0 \cdot 064$	0.924	$0 \cdot 705$	$0 \cdot 455$	-0.1672	

TABLE 7

Plain Wing, Incidence Solution

Equations: Symmetrical, Table 4.
Constant column: -- $\left(a_{0} c / 8 s\right) \sin \phi$, as given in Table 4.
Solution:

$$
\begin{aligned}
K / 4 s V & =0.3207 \sin \phi-0.0077 \sin 3 \phi+0.0087 \sin 5 \phi \\
& +0.0003 \sin 7 \phi+0.1171 M_{\mathrm{CF} 25}-0.1536 M_{\mathrm{CF} 5} .
\end{aligned}
$$

Local aerodynamic centre 0.25 chord:

$$
d c_{L} / d \alpha=4 \cdot 395
$$

(1)	$\begin{gathered} (2) \\ K / 4 s V \end{gathered}$	$\begin{gathered} (3) \\ x_{g} / 2 s \end{gathered}$	$\stackrel{(4)}{\times(2)} \times(3)$	(5) Factors	$\begin{gathered} (6) \\ c / 2 s \end{gathered}$	$\stackrel{(7)}{C_{L L}}$	$(3) \stackrel{(8)}{\times} \stackrel{(6)}{ }$	(9) Factors
0	$0 \cdot 279$	$0 \cdot 0625$	$0 \cdot 0174$	1-125	$0 \cdot 2500$	$1 \cdot 02$	0.01562	1
0.05	$0 \cdot 278$	$0 \cdot 0625$	$0 \cdot 0174$	$3 \cdot 375$	$0 \cdot 2425$	1.04	$0 \cdot 01516$	4
$0 \cdot 10$	0.275	$0 \cdot 0626$	$0 \cdot 0172$	$3 \cdot 375$	$0 \cdot 2350$	1.07	$0 \cdot 01471$	2
$0 \cdot 15$	$0 \cdot 272$	$0 \cdot 0625$	$0 \cdot 0170$	$2 \cdot 025$	0.2275	1.09	$0 \cdot 01422$	4
$0 \cdot 20$	$0 \cdot 265$	$0 \cdot 0625$	$0 \cdot 0166$	$4 \cdot 262$	$0 \cdot 2200$	$1 \cdot 10$	0.01375	2
$0 \cdot 25$	0.254	$0 \cdot 0625$	$0 \cdot 0159$	1.676	$0 \cdot 2125$	$1 \cdot 09$	$0 \cdot 01328$	4
$0 \cdot 30$	$0 \cdot 244$	$0 \cdot 0624$	$0 \cdot 0152$	$4 \cdot 262$	$0 \cdot 2050$	1.08	0.01279	2
$0 \cdot 35$	$0 \cdot 236$	$0 \cdot 0625$	0.0148	$2 \cdot 148$	0.1975	1.09	0.01234	4
$0 \cdot 40$	$0 \cdot 227$	$0 \cdot 0625$	$0 \cdot 0142$	$2 \cdot 948$	0.1900	1.09	$0 \cdot 01188$	2
$0 \cdot 45$	$0 \cdot 220$	$0 \cdot 0625$	$0 \cdot 0138$	$3 \cdot 914$	$0 \cdot 1825$	$1 \cdot 10$	0.01141	4
$0 \cdot 50$	$0 \cdot 217$	$0 \cdot 0626$	$0 \cdot 0136$	0.890	$0 \cdot 1750$	1-13	0.01096	1
$0 \cdot 50$	$0 \cdot 217$	$0 \cdot 0713$	$0 \cdot 0155$	0.838	$0 \cdot 2100$	$0 \cdot 94$	0.01497	1
$0 \cdot 55$	$0 \cdot 213$	0.0708	$0 \cdot 0151$	$4 \cdot 262$	$0 \cdot 2010$	$0 \cdot 96$	0.01423	4
$0 \cdot 60$	$0 \cdot 206$	0.0705	$0 \cdot 0145$	1.9	$0 \cdot 1920$	$0 \cdot 98$	0.01354	2
$0 \cdot 65$	$0 \cdot 197$	$0 \cdot 0702$	$0 \cdot 0138$	4	$0 \cdot 1830$	$0 \cdot 98$	0.01285	4
$0 \cdot 70$	0.186	$0 \cdot 0697$	$0 \cdot 0130$	2	$0 \cdot 1740$	0.97	0.01213	2
$0 \cdot 75$	0.175	$0 \cdot 0694$	$0 \cdot 0121$	4	$0 \cdot 1650$	0.97	0.01145	4
$0 \cdot 80$	$0 \cdot 161$	$0 \cdot 0690$	$0 \cdot 0111$	2	$0 \cdot 1560$	$0 \cdot 94$	0.01076	2
$0 \cdot 85$	$0 \cdot 145$	$0 \cdot 0686$	$0 \cdot 0099$	4	$0 \cdot 1470$	0.90	0.01008	4
$0 \cdot 90$	$0 \cdot 124$	$0 \cdot 0683$	$0 \cdot 0085$	1.8	$0 \cdot 1380$	$0 \cdot 82$	$0 \cdot 00943$	2
0.95	$0 \cdot 092$	$0 \cdot 0678$	$0 \cdot 0062$	$4 \cdot 525$	$0 \cdot 1290$	$0 \cdot 65$	$0 \cdot 00875$	4
$1 \cdot 00$	0	$0 \cdot 0675$	0	$0 \cdot 675$	$0 \cdot 1200$	0	$0 \cdot 00810$	1

Aerodynamic centre $=\int$ column 4/ $\operatorname{column} 2=0.06531$ span behind datum $=0.346 \bar{c}$ behind datum.
Geometrical mean quarter-chord $=\int$ column $8 / \int$ column 6

$$
=0.06558 \text { span behind datum }=0.347 \bar{c} \text { behind datum. }
$$

TABLE 8

Plain Wing, Induced Drag

η	K/4sV	$\begin{aligned} & r e / V \\ & M_{\mathrm{CF} 25} \end{aligned}$	$\stackrel{w / V}{M_{\mathrm{CF} 50}}$	$20 / V$ Fourier	Total $20 / V$	$\left(\frac{w}{V}\right)\left(\frac{K}{4 s V}\right)$	Factors
0	$0 \cdot 279$	$0 \cdot 1171$	$-0 \cdot 1536$	$0 \cdot 3852$	$0 \cdot 3487$	$0 \cdot 0973$	1-125
$0 \cdot 05$	$0 \cdot 278$	$0 \cdot 1171$	-0.1536	$0 \cdot 3838$	$0 \cdot 3473$	$0 \cdot 0965$	3-375
$0 \cdot 10$	$0 \cdot 275$	$0 \cdot 1171$	-0.1536	$0 \cdot 3796$	$0 \cdot 3431$	$0 \cdot 0944$	$3 \cdot 375$
$0 \cdot 15$	$0 \cdot 272$	$0 \cdot 1171$	-0.1536	$0 \cdot 3728$	$0 \cdot 3363$	0.0915	$2 \cdot 025$
$0 \cdot 20$	0. 265	$0 \cdot 1171$	-0.1536	$0 \cdot 3635$	$0 \cdot 3270$	$0 \cdot 0867$	$4 \cdot 262$
$0 \cdot 25$	$0 \cdot 254$	$0 \cdot 1171$	-0.1536	$0 \cdot 3520$	$0 \cdot 3155$	$0 \cdot 0801$	$0 \cdot 838$
$0 \cdot 25$	$0 \cdot 254$	0	-0.1536	$0 \cdot 3520$	0.1984	$0 \cdot 0504$	$0 \cdot 838$
$0 \cdot 30$	$0 \cdot 244$	0	-0.1536	$0 \cdot 3388$	0.1852	$0 \cdot 0452$	$4 \cdot 262$
$0 \cdot 35$	$0 \cdot 236$	0	-0.1536	$0 \cdot 3243$	0-1707	$0 \cdot 0403$	$2 \cdot 148$
$0 \cdot 40$	$0 \cdot 227$	0	-0.1536	$0 \cdot 3090$	0-1554	0.0353	$2 \cdot 948$
$0 \cdot 45$	$0 \cdot 220$	0	$-0 \cdot 1536$	$0 \cdot 2938$	0.1402	$0 \cdot 0308$	$3 \cdot 914$
$0 \cdot 50$	$0 \cdot 217$	0	-0.1536	$0 \cdot 2793$	$0 \cdot 1257$	$0 \cdot 0273$	$0 \cdot 890$
$0 \cdot 50$	$0 \cdot 217$	0	0	0.2793	$0 \cdot 2793$	$0 \cdot 0606$	$0 \cdot 838$
$0 \cdot 55$	$0 \cdot 213$	0	0	$0 \cdot 2666$	$0 \cdot 2666$	$0 \cdot 0568$	$4 \cdot 262$
$0 \cdot 60$	$0 \cdot 206$	0	0	0.2569	$0 \cdot 2569$	$0 \cdot 0529$	1.9
$0 \cdot 65$	0. 197	0	0	$0 \cdot 2513$	0.2513	$0 \cdot 0495$	4
$0 \cdot 70$	$0 \cdot 186$	0	0	$0 \cdot 2514$	0.2514	$0 \cdot 0468$	2
0.75	$0 \cdot 175$	0	0	$0 \cdot 2589$	$0 \cdot 2589$	$0 \cdot 0453$	4
$0 \cdot 80$	$0 \cdot 161$	0	0	$0 \cdot 2757$	0.2757	$0 \cdot 0444$	2
0.85	$0 \cdot 145$	0	0	$0 \cdot 3040$	$0 \cdot 3040$	$0 \cdot 0441$	
0.90	0.124	0	0	$0 \cdot 3462$	$0 \cdot 3462$	$0 \cdot 0429$	1.8
0.95	$0 \cdot 092$	0	0	$0 \cdot 4050$	$0 \cdot 4050$	$0 \cdot 0373$	$4 \cdot 525$
$1 \cdot 00$	0		0	$0 \cdot 4836$	0.4836	0	$0 \cdot 675$

$$
\begin{aligned}
C_{D i} & =\frac{21 \cdot 19}{(4 \cdot 395)^{2}} \frac{3 \cdot 323}{60} C_{L}^{2}=0 \cdot 0608 C_{L}^{2} \\
\frac{1}{\pi A} & =0 \cdot 0601 .
\end{aligned}
$$

TABLE 9

Symmetrical Wing Troist, Chord \times Twist Linear

Equations: Symmetrical, zero lift, Table 5.
Constant column: $-\left(a_{0} c / 8 s\right) \sin \phi \times$ twist, Table 2.
Solution:

$$
\begin{aligned}
K / 4 s V & =-0.0086 \sin \phi+0.0441 \sin 3 \phi+0.0018 \sin 5 \phi \\
& +0.0043 \sin 7 \phi-0.0061 M_{\text {CF25 }}+0.0172 M_{\text {CF50 }} .
\end{aligned}
$$

. $\alpha_{0}=-0 \cdot 2745$.

(1)	$\begin{gathered} (\stackrel{(2)}{K} \\ K / 4 s V \\ \text { per radn } \end{gathered}$	$\begin{gathered} (3) \\ x_{g} / 2 s \end{gathered}$	$(2) \stackrel{(4)}{\times}$	(5) Factors	$\begin{gathered} (6) \\ c / 2 s \end{gathered}$	(7) $C_{L L}$ per radn
0	-0.0452	$0 \cdot 0625$	-0.00282	$1 \cdot 125$	$0 \cdot 2500$.	-0.723
$0 \cdot 05$	-0.0445	$0 \cdot 0625$	-0.00278	$3 \cdot 375$	$0 \cdot 2425$	-0.734
$0 \cdot 10$	-0.0425	$0 \cdot 0626$	-0.00266	$3 \cdot 375$	$0 \cdot 2350$	-0.723
$0 \cdot 15$	-0.0391	$0 \cdot 0625$	-0.00244	$2 \cdot 025$	$0 \cdot 2275$	-0.688
$0 \cdot 20$	-0.0346	$0 \cdot 0625$	-0.00216	$4 \cdot 262$	$0 \cdot 2200$	-0.629
$0 \cdot 25$	- 0.0291	$0 \cdot 0625$	-0.00182	$1 \cdot 676$	$0 \cdot 2125$	-0.548
$0 \cdot 30$	-0.0230	$0 \cdot 0624$	-0.00144	$4 \cdot 262$	$0 \cdot 2050$	- 0.449
$0 \cdot 35$	-0.0165	$0 \cdot 0625$	-0.00103	$2 \cdot 148$	0.1975	-0.334
$0 \cdot 40$	-0.0100	$0 \cdot 0625$	-0.00062	$2 \cdot 948$	0.1900	- 0.210
$0 \cdot 45$	-0.0037	$0 \cdot 0625$	-0.00023	$3 \cdot 914$	$0 \cdot 1825$	-0.081
$0 \cdot 50$	$0 \cdot 0022$	$0 \cdot 0626$	$0 \cdot 00014$	0.890	$0 \cdot 1750$	$0 \cdot 050$
$0 \cdot 50$	$0 \cdot 0022$	$0 \cdot 0713$	$0 \cdot 00016$	$0 \cdot 838$	$0 \cdot 2100$	$0 \cdot 042$
0.55	$0 \cdot 0077$	$0 \cdot 0708$	$0 \cdot 00055$	$4 \cdot 262$	$0 \cdot 2010$	$0 \cdot 153$
$0 \cdot 60$	$0 \cdot 0134$	0.0705	$0 \cdot 00094$	$1 \cdot 9$	0-1920	$0 \cdot 279$
$0 \cdot 65$	$0 \cdot 0189$	$0 \cdot 0702$	$0 \cdot 00133$	4	$0 \cdot 1830$	0.413
$0 \cdot 70$	$0 \cdot 0244$	$0 \cdot 0697$	$0 \cdot 00170$	2	$0 \cdot 1740$	$0 \cdot 561$
0.75	$0 \cdot 0298$	-0.0694	$0 \cdot 00207$	4	$0 \cdot 1650$	$0 \cdot 722$
$0 \cdot 80$	$0 \cdot 0351$	$0 \cdot 0690$	$0 \cdot 00242$	2	$0 \cdot 1560$	$0 \cdot 900$
$0 \cdot 85$	$0 \cdot 0399$	$0 \cdot 0686$	$0 \cdot 00274$	4	0.1470	1.086
0.90	$0 \cdot 0429$	$0 \cdot 0683$	$0 \cdot 00293$	1.8	$0 \cdot 1380$	1.244
0.95	$0 \cdot 0400$	0.0678	$0 \cdot 00271$	$4 \cdot 525$	$0 \cdot 1290$	$1 \cdot 240$
$1 \cdot 00$	0	0.0675	O	0.675	. $0 \cdot 1200$	0

$c_{m 0}=\frac{64 s^{4}}{S^{2}} \int$ column $4=-112 \cdot 28 \frac{0 \cdot 00492}{60}=-0 \cdot 0092$.

TABLE 10

Fifty per cent Span Flaps. Zero Lift
Equations: Symmetrical, zero lift, Table 5.
Constant column: - $\left(a_{2} / a_{1}\right)\left(a_{0} c / 8 s\right) \sin \phi$ from $\eta=0$ to 0.5 inner, and zero from 0.5 outer to tip: the flap/chord ratio is 0.25 for which $a_{2} / a_{1}=0.60900$ (see Table 2).

Solution:

$$
\begin{aligned}
K / 4 s V= & -0.3676 \sin \phi+0.0376 \sin 3 \phi-0.0095 \sin 5 \phi \\
& -0.0045 \sin 7 \phi+0.0293 M_{\mathrm{CF} 25}+0.5884 M_{\mathrm{CF} 50} .
\end{aligned}
$$

$\alpha_{0}=-0 \cdot 3708$.
$R_{5}=\frac{1}{2} \sin \Theta^{*}-\frac{1}{4} \sin 2 \Theta^{*}=0 \cdot 6495$.
Local centre of pressure $=\left[0 \cdot 25+\frac{0 \cdot 16238 c / 2 s}{K / 4 s V}\right]$ chord for $\eta=0$ to 0.5 inner.

(1) η	(2) $K / 4 s V$	(3) $c / 2 s$	(4) Local C.P.	(5) $x_{g} / 2 s$		(6) $(2) \times(5)$	(7) Eactors
0	0.0447	0.2500	1.158	0.290	0.01295	1.125	(8)
0.05	0.0445	0.2425	1.135	0.277	0.01233	3.375	0.715
0.10	0.0439	0.2350	1.119	0.267	0.01171	3.375	0.747
0.15	0.0428	0.2275	1.113	0.259	0.01108	2.025	0.752
0.20	0.0410	0.2200	1.121	0.254	0.01042	4.262	0.746
0.25	0.0381	0.2125	1.156	0.255	0.00972	1.676	0.717
0.30	0.0344	0.2050	1.218	0.261	0.00897	4.262	0.671
0.35	0.0301	0.1975	1.315	0.273	0.00821	2.148	0.610
0.40	0.0240	0.1900	1.536	0.307	0.00736	2.948	0.505
0.45	0.0141	0.1825	2.352	0.446	0.00629	3.914	0.309
0.50	-0.0078	0.1750	-3.393	-0.575	0.00448	0.890	-0.178
0.50	-0.0078	0.2100	0.25	0.071	-0.00056	0.838	-0.149
0.55	-0.0290	0.2010	0.25	0.071	-0.00205	4.262	-0.577
0.60	-0.0369	0.1920	0.25	0.070	-0.00260	1.9	-0.769
0.65	-0.0400	0.1830	0.25	0.070	-0.00281	4	-0.874
0.70	-0.0405	0.1740	0.25	0.070	-0.00282	2	-0.931
0.75	-0.0398	0.1650	0.25	0.069	-0.00276	4	-0.965
0.80	-0.0388	0.1560	0.25	0.069	-0.00268	2	-0.995
0.85	-0.0379	0.1470	0.20	0.069.	-0.00260	4	-1.031
0.90	-0.0365	0.1380	0.25	0.068	-0.00249	1.800	-1.058
0.95	-0.0321	0.1290	0.25	0.068	-0.00218	4.525	-0.995
1.00	0	0.1200	0.25	0.068	0	0.675	0

$$
c_{m 0}=-112 \cdot 28 \frac{0 \cdot 21284}{60}=-0 \cdot 3983
$$

TABLE 11

Discontinuity of Incidence at $\eta=0 \cdot 25$. Zero Lift
Equations: Symmetrical, zero lift, Table 5.
Constant column: -- $\left(a_{0} c / 8 s\right) \sin \phi$ from $\eta=0$ to 0.25 inner, and zero from 0.25 outer to tip.
Solution:

$$
\begin{aligned}
K / 4 s V= & -0.3372 \sin \phi+0.0486 \sin 3 \phi-0.0166 \sin 5 \phi \\
& +0.0069 \sin 7 \phi+0.9833 M_{\mathrm{CF} 25}+0.0452 M_{\mathrm{CF50}} .
\end{aligned}
$$

$\alpha_{0}=-0.3264 . \quad c_{m 0}=0.01416$.
Local centre of pressure 0.25 chord.

η	$K / 4 s V$	$C_{L L}$	η	$K / 4 s V$	$C_{L L}$
0	0.1048	1.68	0.50	-0.0359	-0.68
0.05	0.1034	1.71	0.55	-0.0390	-0.78
0.10	0.0988	1.68	0.60	-0.0406	-0.85
0.15	0.0899	1.58	0.65	-0.0418	-0.91
0.20	0.0736	1.34	0.70	-0.0425	-0.98
0.25	0.0361	0.68	0.75	-0.0425	-1.03
0.30	-0.0013	-0.03	0.80	-0.0413	-1.06
0.35	-0.0174	-0.35	0.85	-0.0378	-1.03
0.40	-0.0264	-0.56	0.90	-0.0313	-0.91
0.45	-0.0318	-0.70	0.95	-0.0207	-0.64
0.50	-0.0359	-0.82	1.00	0	0

TABLE 12
Uniform Roll: 1 Radian at Tip \equiv Unit V. $/ \omega \mathrm{s}$
Equations: Anti-symmetrical, Table 6.
Constant column: - $\left(a_{0} c / 8 s\right) \eta \sin \phi$.
Solution:

$$
\begin{aligned}
K / 4 s V= & 0.0986 \sin 2 \phi+0.0027 \sin 4 \phi+0.0035 \sin 6 \phi \\
& -0.0006 \sin 8 \phi-0.0210 M_{\mathrm{TA} 25}+0.0533 M_{\mathrm{TA} 50} .
\end{aligned}
$$

$C_{l}=-0 \cdot 438$.
Local centre of pressure 0.25 chord.

η	$K / 4 s V$ per radn	$C_{L L}$ per unit $\left(-C_{l}\right)$,η	$K / 4 s V$ per radn	$C_{L L}$ per unit $\left(-C_{l}\right)$
0	0	0	0.50	0.0859	3.74
0.05	0.0109	0.41	0.55	0.0924	4.20
0.10	0.0215	0.84	0.60	0.0971	4.62
0.15	0.0318	1.28	0.65	0.1007	5.03
0.20	0.0413	1.72	0.70	0.1031	5.42
0.25	0.0497	2.14	0.75	0.1041	5.76
0.30	0.0574	2.56	0.80	0.1030	6.03
0.35	0.0649	3.00	0.85	0.0988	6.14
0.40	0.0720	3.46	0.90	0.0893	5.91
0.45	0.0787	3.94	0.95	0.0697	4.94
0.50	0.0859	4.48	1.00	0	0

TABLE 13
Aileron from $\eta=0.5$ to 1.0 , Wing at Zero Incidence
Equations: Anti-symmetrical, Table 6.
Constant column: Zero from $\eta=0$ to 0.5 inner:
$-\left(a_{2} / a_{1}\right)\left(a_{0} c / 8 s\right) \sin \phi$ for $\eta=0.5$ outer to tip. The value of E varies from 0.25 at $\eta=0.5$ to 0.33 at $\eta=0.9$: the corresponding values of a_{2} / a_{1} are given in Table 1.

Solution:

$$
\begin{aligned}
K / 4 s V= & -0.1016 \sin 2 \phi-0.0006 \sin 4 \phi+0.0082 \sin 6 \phi \\
& -0.0015 \sin 8 \phi+0.0105 M_{\mathrm{TA} 25}+0.6317 M_{\mathrm{TA} 50}
\end{aligned}
$$

$$
C_{l}=-0.319
$$

η	$K / 4 s V$	$C_{L I}$ per unit $\left(-C_{l}\right)$	η	$K / 4 s V$	$C_{L L} \mathrm{per}$ unit $\left(-C_{l}\right)$
0	0	0	0.50	0.0541	3.23
0.05	0.0026	0.13	0.55	0.0760	4.75
0.10	0.0051	0.27	0.60	0.0839	5.49
0.15	0.0074	0.41	0.65	0.0871	5.97
0.20	0.0096	0.55	0.70	0.0875	6.31
0.25	0.0119	0.70	0.75	0.0860	6.54
0.30	0.0144	0.88	0.80	0.0829	6.67
0.35	0.0176	1.12	0.85	0.0775	6.62
0.40	0.0227	1.50	0.90	0.0686	6.24
0.45	0.0318	2.19	0.95	0.0525	5.11
0.50	0.0541	3.88	1.00	0	0

TABLE 14
Composite Leading for Flaps and Ailerons. Zero Lift

Specification: ΔC_{L} due to flaps $=1$.
Rolling moment due to ailerons $+0 \cdot 1$.
Incidence for zero lift: -0.2275 radn
Aileron deflection: - 0.3138 radn
Composite $K / 4 s V=0.6135$ (flaps) - 0.3138 (ailerons).
Local $C_{m}=\frac{M d y}{\frac{1}{2} \rho v^{2} \bar{c} \bar{S}}=-\frac{8 s^{4}}{S} R_{5} \eta^{\prime}\left(\frac{c}{2 s}\right)^{2} d \eta=B d \eta$.

η	$K / 4 s V$ starboard	$K / 4 s V$ port	$c / 2 s$	R_{5}	η^{\prime}	B
0	0.0274	0.0274	0.2500	0.6495	0.6135	-0.350
0.05	0.0265	0.0281	0.2425	0.6495	0.6135	-0.329
0.10	0.0253	0.0285	0.2350	0.6495	0.6135	-0.309
0.15	0.0240	0.0286	0.2275	0.6495	0.6135	-0.290
0.20	0.0222	0.0282	0.2200	0.6495	0.6135	-0.271
0.25	0.0197	0.0271	0.2125	0.6495	0.6135	-0.253
0.30	0.0166	0.0256	0.2050	0.6495	0.6135	-0.235
0.35	0.0130	0.0240	0.1975	0.6495	0.6135	-0.218
0.40	0.0076	0.0218	0.1900	0.6495	0.6135	-0.202
0.45	-0.0013	0.0187	0.1825	0.6495	0.6135	-0.186
0.50	-0.0218	0.0122	0.1750	0.6495	0.6135	-0.171
0.50	-0.0218	0.0122	0.2100.	0.6495	± 0.3138	∓ 0.126
0.55	-0.0416	0.0060	0.2010	0.6492	± 0.3138	∓ 0.116
0.60	-0.0489	0.0037	0.1920	0.6482	± 0.3138	∓ 0.105
0.65	-0.0518	0.0028	0.1830	0.6466	± 0.3138	∓ 0.095
0.70	-0.0523	0.0027	0.1740	0.6443	± 0.3138	∓ 0.086
0.75	-0.0514	0.0026	0.1650	0.6416	± 0.3138	∓ 0.077
0.80	-0.0498	0.0022	0.1560	0.6382	± 0.3138	∓ 0.068
0.85	-0.0476	0.0010	0.1470	0.6344	± 0.3138	∓ 0.060
0.90	-0.0439	-0.0009	0.1380	0.6301	± 0.3138	∓ 0.053
0.95	-0.0362	-0.0032	0.1290	0.6253	± 0.3138	∓ 0.046
1.00	0	0	0.1200	0.6201	± 0.3138	∓ 0.039

TABLE 15
Yawing Moment with Deflected Flaps and Ailerons. Zero Lift

η	$K / 4 s V$ Symml.	w / V Antisymmetrical				$\left(\frac{w}{V}\right)\left(\frac{K}{4 s \bar{V}}\right)$	$K / 4 s V$ Antisymml	w / V Symmetrical				$\left(\frac{w}{V}\right)\left(\frac{K}{4 s V}\right)$	Integrating Factors
		$M_{\text {TA25 }}$	$M_{\text {TA50 }}$	Fourier	Total			$M_{\text {CF25 }}$	$M_{\text {CF50 }}$	Fourier	Total		
0	$0 \cdot 0274$	0	0	0	0	0	0	0.0180	0.3610.	-0.3045	0.0745	0	0
$0 \cdot 05$	$0 \cdot 0273$	0	0	$0 \cdot 0002$	$0 \cdot 0002$	$0 \cdot 00001$	-0.0008	$0 \cdot 0180$	$0 \cdot 3610$	-0.3041	0.0749	-0.00006	$0 \cdot 169$
$0 \cdot 10$	$0 \cdot 0269$	0	0	$0 \cdot 0010$	$0 \cdot 0010$	$0 \cdot 00003$	-0.0016	$0 \cdot 0180$	$0 \cdot 3610$	-0.3028	0.0762	-0.00012	$0 \cdot 338$
$0 \cdot 15$	$0 \cdot 0263$	0	0	$0 \cdot 0029$	$0 \cdot 0029$	$0 \cdot 00008$	-0.0023	0.0180	$0 \cdot 3610$	-0.3003	$0 \cdot 0787$	-0.00018	$0 \cdot 304$
$0 \cdot 20$	$0 \cdot 0252$	0	0	$0 \cdot 0064$	$0 \cdot 0064$	$0 \cdot 00016$	-0.0030	0.0180	$0 \cdot 3610$	-0.2963	0.0827	-0.00025	0.852
$0 \cdot 25$	$0 \cdot 0234$	0	0	0.0118	$0 \cdot 0118$	$0 \cdot 00028$	-0.0037	$0 \cdot 0180$	$0 \cdot 3610$	-0.2904	0.0886	-0.00033	0.210
$0 \cdot 25$	$0 \cdot 0234$	-0.0033	0	0.0118	$0 \cdot 0085$	$0 \cdot 00020$	-0.0037	0	$0 \cdot 3610$	-0.2904	$0 \cdot 0706$	-0.00026	0.210
$0 \cdot 30$	0.0211	-0.0033	0	0.0193	$0 \cdot 0160$	$0 \cdot 00034$	-0.0045	0	$0 \cdot 3610$	-0.2820	$0 \cdot 0790$	-0.00036	1.279
$0 \cdot 35$	0.0185	-0.0033	0	0.0289	$0 \cdot 0256$	$0 \cdot 00047$	-0.0055	0	0.3610	--0.2706	0.0904	-0.00050	0.752
$0 \cdot 40$ 0.45	0.0147 0.0087	-0.0033	0	0.0403	0.0370	$0 \cdot 00054$	-0.0071	0	$0 \cdot 3610$	-0.2559	$0 \cdot 1051$	-0.00075	1-179
$0 \cdot 45$	0.0087	-0.0033	0	0.0532	$0 \cdot 0499$	$0 \cdot 00043$	-0.0100	0	$0 \cdot 3610$	-0.2376	$0 \cdot 1234$	-0.00123	1.761
$0 \cdot 50$	-0.0048	-0.0033	0	0.0668	$0 \cdot 0635$	-0.00030	-0.0170	0	0.3610	-0.2157	$0 \cdot 1453$	-0.00247	$0 \cdot 445$
$0 \cdot 50$	-0.0048	-0.0033	-0.1982	0.0668	-0.1347	$0 \cdot 00065$	-0.0170	0	0	-0.2157	-0.2157	$0 \cdot 00367$	$0 \cdot 419$
$0 \cdot 55$	-0.0178	-0.0033	-0.1982	$0 \cdot 0804$	-0.1211	$0 \cdot 00216$	-0.0238	0	0	-0.1908	-0.1908	$0 \cdot 00454$	$2 \cdot 344$
$0 \cdot 60$	-0.0226	-0.0033	-0.1982	0.0930	-0.1085	$0 \cdot 00245$	-0.0263	0	0	-0.1638	-0.1638	$0 \cdot 00431$	1.140
$0 \cdot 65$	-0.0245	-0.0033	-0.1982	$0 \cdot 1036$	-0.0979	$0 \cdot 00240$	-0.0273	0	0	-0.1364	-0.1364	$0 \cdot 00372$	$2 \cdot 600$
$0 \cdot 70$	-0.0248	-0.0033	-0.1982	$0 \cdot 1112$	-0.0903	$0 \cdot 00224$	-0.0275	0	0	-0.1111	-0.1111	$0 \cdot 00306$	1-400
$0 \cdot 75$	-0.0244	-0.0033	-0.1982	$0 \cdot 1149$	-0.0866	$0 \cdot 00211$	-0.0270	0	0	-0.0916	-0.0916	$0 \cdot 00247$	$3 \cdot 000$
$0 \cdot 80$	-0.0238	-0.0033	-0.1982	0.1139	-0.0876	$0 \cdot 00208$	-0.0260	0	0	-0.0824	-0.0824	$0 \cdot 00214$	$1 \cdot 600$
0.85	-0.0233	-0.0033	-0.1982	$0 \cdot 1081$	-0.0934	0.00218	-0.0243	0	0	-0.0898	-0.0898	$0 \cdot 00218$	$3 \cdot 400$
0.90	-0.0224	-0.0033	-0.1982	$0 \cdot 0976$	-0.1039	$0 \cdot 00233$	-0.0215	0	0	$-0 \cdot 1215$	-0.1215	$0 \cdot 00261$	$1 \cdot 620$
0.95	-0.0197	-0.0033	-0.1982	$0 \cdot 0836$	-0.1179	$0 \cdot 00232$	-0.0165	0	0	-0.1872	-0.1872	$0 \cdot 00309$	$4 \cdot 299$
$1 \cdot 00$	0	-0.0033	-0.1982	$0 \cdot 0680$	-0.1335	0	0	0	0	-0.2985	-0.2985	0	$0 \cdot 675$

$$
\begin{aligned}
C_{n}: \text { First part } 10 \cdot 596 \frac{0 \cdot 05064}{60} & =0.00894 \\
\text { Second part } 10.596 \frac{0.06138}{60} & =0.01084
\end{aligned}
$$

Fig. 1.

- Ineidence solution
x Symmatrical wing twist, chord x
twise linear zero lift
- 50 per cont span flaps, 0.25 flap/chord ratio zero lift
+ Diseontinuity of incidance at
$7=0.25$ zero lift
a Uniform roll
Δ Ailerons, 0.25 to 0.35 flap/ehord ratio

Fig. 2. Half span distribution of circulation for various solutions.

Fig. 3. Moment coefficient about quarter-chord. Deflected flaps and ailerons.

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)-
1934-35 Vol. I. Aerodynamics. Out of print.
Vol. II. Seaplanes, Structures, Engines, Materials, etc. $40 \mathrm{~s} .(40 \mathrm{~s}, 8 \mathrm{~d}$.)
1935-36 Vol. I. Aerodynamics. 30s. (30s. 7d.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)
1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 9d.)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 50s. (50s. 10d.)
1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40 s . (40 s .10 d .)
Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.)
1938 Vol. I. Aerodynamics General, Performance, Airscrews. 50s. (51s.)
Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)
1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50 s. (50s. 11d.)
Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64s. 2d.)
1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (51s.)
Certain other reports proper to the 1940 volume will subsequently be included in a separate volume.

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-1933-34 . 1s. 6d. (1s. 8d.) 1934-35 1s. 6d. (1s. 8d.)
April 1, 1935 to December 31, 1936. 4s. (4s. 4d.)
1937 2s. (2s. 2d.)
1938 1s. 6d. (1s. 8d.) 1939-48 . 3s. (3s. 2d.)
INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-
April, 1950
R. \& M. No. 2600. 2s. 6d. (2s. 7d d.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

December 1, 1936 - June 30, 1939.
July 1, 1939 - June 30, 1945.
July 1, 1945 - June 30, 1946.
July 1, 1946 - December 31, 1946.
January 1, 1947 - June 30, 1947.
R. \& M. No. 1850 . 1s. $3 d$. (1s. $\left.4 \frac{1}{2} \mathrm{~d}.\right)$
R. \& M. No. 1950. 1s. (1s. $1 \frac{1}{2}$ d.)
R. \& M. No. 2050. 1s. (1s. $1 \frac{1}{2} d$.)
R. \& M. No. 2150. 1s. 3d. (1s. $\left.4 \frac{1}{2} d.\right)$
R. \& M. No. 2250 . 1s. $3 d$. (1s. $\left.4 \frac{1}{2} d.\right)$

Prices in brackets include postage.
Obtainable from
HER MAJESTY'S STATIONERY OFFICE
York House, Kingsway, london, w.c. 2423 Oxford Street, london, w. 1
P.O. Box 569, London, S.E. 1

13 a Castle Street, edinburgh, 2 St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or through any bookseller.

[^0]: * To be used at the infinity.
 \dagger To be used at the discontinuity.

