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Summary 

This Report considers the stress analysis of elastic plates with polar orthotropic properties. The analysis is 
applicable to fibre reinforced composites in the form of an annulus or curved strip with circumferential fibres. 
For certain simple loading conditions, including those of pressure, moment and shear, curves are presented 
which give the maximum stresses for a wide range of composite geometries and elastic properties. 
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1. Introduction 

It is well known that certain fibres have exceptional longitudinal strength and stiffness properties. 'When 
such fibres are embedded in a matrix to form a 'fibre reinforced composite' they can be used in a structural 
context. The present and increasing use of such composites is paralleled by research aimed at solving the 
associated structural problems. Considerable progress has been made, for example, in determining the 
stiffness and stability characteristics of rectangular composite plates 1'2, and in determining the optimum layout 
of fibres to resist specified loads 3'4. 

The present paper focusses attention on composites with curved fibres. Specifically, the analysis relates to an 
elastic plate with polar orthotropy such that under conditions of plane stress or plane strain there are constant, 
but generally differing, values of the Young's moduli in the radial and circumferential directions Er and Eo, a 
constant value of the shear modulus G,o and constant values of the Poisson's ratios pro and vo,. In practice this 
means that the analysis is applicable to fibre reinforced composites in the form of an annulus or curved strip 
with circumferential fibres whose density, or fibre volume fraction, is constant. There may also be radial fibres 
but the requirement of constant density means that such fibres should, strictly speaking, be of varying lengths 
to accommodate increasing numbers with increasing radial distance. Alternatively, the circumferential fibres 
may be bonded to an isotropic plate which, itself, may be composed of fibre reinforced laminates in a 
pseudo-isotropic array (e.g. 0 degrees, +60 degrees). The analysis does not cater for bending of the plate, so 
that where such bonding occurs the arrangement should be symmetrical about the mid-thickness plane. Also, 
if there are thickness changes in the plate there will be restrictions arising from the inherent assumptions of 
plane stress conditions; furthermore, such restrictions will be more stringent 5 than those in the corresponding 
isotropic case because of the relatively low value of the transverse shear modulus G~.z. Finally, in the context of 
plane strain, the analysis is applicable to a thick-walled circular cylinder with circumferential fibre reinforce- 
ment or to a unidirectional fibre reinforced plate formed into a sector of a cylinder, e.g. as shown in Fig. 10. In 
such applications the modulus E,, for example, refers to the Young's modulus through the thickness. The 
multi-laminate case can also be considered provided the number of laminates is sufficiently large to justify the 
assumption of average values of the moduli through the thickness. 

The analysis first considers the simplest stress states, namely those due to internal or external pressure 
applied to an annular ring or thick-walled circular cylinder. This is followed by the pure bending of a curved 
strip. The general form of the stress function is next derived and subsequently used for the analysis of the 
stresses in a curved strip subjected to a shear force, and for a problem of load transfer via a semicircular ring. 
All but this last problem have, indeed, been formally solved by various elasticians of the Russian school 
including, in particular, Lekhnitskii whose book z contains a comprehensive list of references. The motivation 
behind the present (independent) treatment was to provide an engineering insight into the behaviour of 
composites with polar orthotropy. The treatment accordingly differs from earlier work in the extent of the 
numerical results presented. Furthermore, in the derivation of the general form of the stress function certain 
differential operators are introduced which markedly simplify the subsequent analysis. 

2. Symmetrical Loading of Ring 

We consider first the simple case of a ring or annular plate subjected to an arbitrary combination of internal 
and external pressure as shown in Fig. 1. The ring exhibits polar orthotropic properties, as discussed in the 
Introduction, so that the stress-strain relations are given by 

e r = E r r -  l'J Or ~ o  ' 

and (1) 

o r  o O" r 

8O = ~ - -  VrO~,  

where, from the Reciprocal Theorem. 

gtOr = ?Jr._00 
E," • (2) 
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For more general types of loading we later require the further relation 

Tr0 

7to = Gro" (3) 

Now if fro is zero and o',, o-0 are independent of 0, as in the present problem, the equation of (radial) 
equilibrium is 

d 
0"o -- -d-~r(rO'r) = O, (4) 

which can be satisfied by the introduction of a stress function ~ such that 

t and (5) 

d. } 
O" 0 ~- ---~-r o 

By the same token, if the tangential displacement v is zero, as in the present problem, the direct strains can be 
expressed simply in terms of the radial displacement u: 

du, 
Er = d r  

and 

U 
~o 0 = - - .  

r 

(6) 

The equation of compatibility is therefore given by 

d 
e~=--~r(reo), (7) 

which can be expressed in terms of • in virtue of equations (1), (2), (5): 

2 - d ~  2d2~t r ] 
a XF-r--~-r-r --~r2 =0,  

where l (8) 

a 2 = Eo/Er. 

It may be confirmed that equation (8) is satisfied by terms proportional to r ±~, and it follows that the stresses 
can be expressed in the form 

A 
O" r : ---d~+ Bp ~-1, 

P 

and 

a A  
oo = - - - - d ~  + o~Bp ~'- ~, 

P 

(9) 



where p is a nondimensional measure of the radius given by 

p = r/rl. (10) 

2.1. Internal Pressure 

For the case of uniform internal pressure pl,  say, the constants A, B are to be chosen to satisfy the conditions 

[O'r]°=l = --Pl' } 

and (11) 

= o ,  

where 

Thus 

t~ = r2/rl. (12) 

[ 11~ 2'~ "~ 
A = -plk2--y~_l  ], 

Pl B 
=/z  2" - 1" 

Of particular interest is the maximum value of the hoop stress which occurs at the inner boundary 

[iz2" + l \  
[ O ' o ] o = l = O l P l k ~ ) .  

(13) 

(14) 

As/z ~ 1 the hoop stresses increase very rapidly and in Fig. 2 it has been found convenient to express [o-0 ]p = 1 as 
a multiple of the nominal hoop stress (rlpl/(r2-rO), i.e. the average hoop stress required to equilibrate the 
internal pressure. This stress ratio can therefore be regarded as a stress concentration factor and, for the fibre 
reinforced composite, it will be seen that for given values of r2/rl this stress concentration factor can markedly 
exceed that for an isotropic material. 

2.2. External Pressure 

The case of uniform external pressure P2, say, may likewise be considered. In particular the hoop stresses at 
the inner and outer  boundaries are given by 

and 

. ~x+l - 

[ t£  2°t "[- 1'~ 
E oL=. 

(15) 

In the isotropic case the maximum stress occurs at the inner boundary, but for the fibre reinforced composite 
it can occur at either boundary depending on the values of Eo/Er and r2/rl. The maximum stress has been 
plotted in Fig. 3 as a multiple of the nominal hoop stress (-r2p2/(r2- rO). When the maximum occurs at the 
inner boundary the corresponding curve is shown as a broken line: when at the outer boundary as a full line. 
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For the fibre reinforced composite it will be seen that for given values of rz/rl  the maximum hoop stress, which 
generally occurs at the outer boundary, can be markedly greater than that in an isotropic material. 

2.3. Equal Internal and External Pressure 

The case of combined internal and external pressures can, of course, be obtained by superposition of the 
results of Sections 2.1 and 2.2. It is difficult to visualise a practical situation where this might occur but the 
results for the case of equal internal and external pressure p, say, though largely of academic interest, do 
highlight the differences between the isotropic and fibre reinforced material. In the isotropic material the hoop 
and radial stresses are constant throughout and equal to -p,  but for the fibre reinforced material (with E0 # Er) 
this constancy of stresses only occurs for the cut ring. For the continuous ring it may be shown that 

/tz2~-2tz~+x+ 1" t 
), 

and (16) 

[Oro ]p =/x = --i~p~' ~-~I'~ T ) ,  

These results are shown in Fig. 4 which not only indicates high stress concentrations but also shows that the 
hoop stress at the inner boundary becomes tensile for quite modest values of r2/rl and Eo/Er. The reason for 
this change of sign and the high stress concentrations in this and the previous problems is readily understood by 
a consideration of the limiting case in which Er "-> O. Then the applied pressure is solely resisted by the adjacent 
circumferential fibres which are necessarily very highly stressed. 

3. Pure Bending of Ring 

The pure bending of a cut ring or curved strip, as shown in Fig. 1, is also characterised by zero shear stress r,o, 
and hoop and radial stresses which are independent of 0. But the tangential displacement v is no longer zero 
and the equation of compatibility must be derived from the general relationships between strain and 
displacement. Timoshenko 6 shows that these are 

OU 
E r -  -- O"-r' (a) 

u 1 Ov 
eo =-+- -- (b) 

r r aO' 

10U+rO (v) 
Y~° = r "-~ ~ \r/ (c) 

(17) 

In the present problem yro is zero and hence, from equation (17(c)), 

r 2 002  = OrO0 
(18) 

by virtue of equation (17(b)). The resulting equation from which v has been eliminated may now be combined 
with equation (17(a)) to eliminate u and thus derive the equation of compatibility: 

ao 2 Or Or r2  ---- O. (19) 
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Substitution of equations (1), (2) and (5) into equation (19) enables us to express this in terms of the stress 
function ~ :  

2[~ r dW\ d2W 2d3ay~ t 
+2r-aT/  + r  - g F  = 0. (20) 

It may be confirmed that equation (20) is satisfied by terms proportional to r ±~ (as before) and r. Thus the 
stresses can be expressed in the form 

and 

A +,-, a - l +  o', = --7~ ~P C, 
P 

aA + o~-1 O'o = ---g-or aBp + C. 
P 

(21) 

and 

For the case of pure bending the constants A, B, C must be chosen to satisfy the following conditions, 

[~,10=1 = E ~ . ] . = ~  = 0 ,  

i£ 2 = _ M ,  ro-odr 

where M is the moment per unit length. Hence we obtain 

M F .  (/~ z~ _ t~+l)  

and 

where 

(22) 

~-~7~{ a ( / z 2 ~ - t ~ + l )  } O'o = p~+~ 4-a(/, ~'+x- 1)p ~-x - /x  z~ + 1 , (23) 

2(a 2 -1 )  
F = 2a{(/z2 + 1)(/z2 . + 1 ) -  4~ "+1} - ( a 2 +  1)(t, z -  1)(/, 2" - 1)" 

By taking the limit as a -+ 1 it may be shown that these results agree with those for the isotropic case 6. The 
maximum tensile and compressive hoop stresses occur at the inner and outer boundaries, and these are shown 
in Fig. 5. The stresses are expressed as multiples of 6M/(r2-  rl) 2, the nominal maximum stress assuming a 
linear hoop stress distribution. This form of presentation enables the ordinate in Fig. 5 to be interpreted as a 
stress concentration factor. It will be seen that the fibre reinforced material exhibits greater stress concentra- 
tions than the isotropic material but the increases are much smaller than those which occur in a continuous ring 
under internal or external pressure. What is surprising is the fact that while the maximum hoop stress always 
occurs at the inner boundary as in the isotropic ease, the hoop stress at the outer boundary exceeds the nominal 
value when Eo/Er and r2/rl exceed certain critical values. The reason for this becomes clearer if we look at Fig. 
6 which shows the radial distribution of hoop stress in rings in which rz/rl = 2 and Eo/E, = i or 50. (Results for 
intermediate values of Eo/Er are adequately given by linear interpolation.) Compared to the hoop stresses in 
the isotropic ring those in the fibre reinforced ring exhibit a superimposed S-ing distribution which accentuates 
the stresses near the inner and outer boundaries at the expense of those towards the mid-thickness. 



The radial stress reaches a maximum value at a radius specified by 

O0"r  : 0 ' 

Op 

whence, from equation (23), 

p = p*, say 

- [ \ a - 1 ] \  ~7.+i_ i  ]J " 

(24) 

(25) 

The maximum radial stress * o-,, say, given by equations (23) and (25), is shown in Fig. 7 as a multiple of 
6M/(r2- rl)2[(/z ~ - 1)/(# ½ + 1)]. The introduction of the additional factor [(tz ~ - 1)/(/~ ~ + 1)] means that o-* is 
expressed as a multiple of the nominal maximum assuming a linear hoop stress distribution. [Briefly, if 

O'r  = - -  O" o a l p ,  
P 

- ' (  
# - 1  / x + l - p -  , 

it follows from equation (4) that 

whose maximum value is [(tz ~ - 1)/t/z ~ + 1)].] 
It will be seen that the maximum radial stress is somewhat less in the fibre reinforced case, though the 
reduction is very small when r2/r, < 1.5. 

3.1. Fibre Failure versus Interlanfinar Failure 

In a ring under pure moment the maximum value of the radial stress is much smaller than the maximum 
hoop stress, and in an isotropic material the radial stress has no bearing on failure or the onset of plasticity. 
However, in a fibre reinforced material with circumferential reinforcement alone the radial stress necessary to 
cause failure of the matrix or bond is much smaller than the hoop stress necessary to cause failure of the fibres. 
Thus it is of interest to determine, for example, the critical dividing line between such modes of failure. 

The ratio of the maximum hoop stress [~r0]o=l, denoted by o-*, to the maximum radial stress or* is shown in 
Fig. 8 for various values of rz/r, and Eo/Er. For unidirectional CFRP, for example, typical values for the ratio 
of the failing stresses under longitudinal and transverse tension lie in the range 20-30. If we confine attention 

~r0/o', in this range it is seen that the influence of the modulus ratio to values of r2/r, which yield values of * * 
Eo/Er is very small. In particular, if the ratio of failing stresses is 20, say, it follows from Fig. 8 that interlaminar 
tensile failure will occur before tensile fibre failure if r2/rl> 1.25, while if the ratio is 30, say, the 
corresponding range is r2/rl > 1.15. 

3.2. The Flexural Rigidity of the Ring 

We conclude our discussion of the pure bending of a cut ring with a determination of the effective flexural 
rigidity. In this connection it is convenient to express this as a multiple of the flexural rigidity of a straight beam 
of modulus Eo, depth (r2- rl) and unit width, the length of this straight beam being ½(rl + r2)O. 

The simplest way to determine the effective flexural rigidity is via the displacement v, which is the only 
displacement component which contributes to a rotation of sections. By the same token it follows from Section 
2 that the A and B components of the stresses in equation (21) do not contribute to the rotation and we are left, 
somewhat surprisingly, with the constant stress component 6". The ensuing analysis is accordingly simpler than 
that for the isotropic case! 
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If the index c is introduced to identify this constant stress component we can write 

¢ ¢ _ _  
O" r = OrO - -  C ~  (26) 

and equation (1) shows that the corresponding strain components e ~ and e ~ are constants, and hence equations 
(17) may be readily integrated to yield 

v = rO(e~o-e 0 + rigid body terms. (27) 

Now the rotation D of a section at 0 is given by 

or, I 
n = -~r [ (28) 

= 0(~, -  ~ O, ; 
and hence the change in curvature of the mid-thickness line, whose length is spedfied by s = ½(rx + r2)O, is given 
by 

dO_ 2(e%e;) ] 
ds rl+r2 ' 

2C(a 2 -  1), / i (29) 

Eo(r~ + r2) J 

in virtue of equations (1) and (26). Also, in terms of an effective flexural rigidity 3", say, engineers' theory of 
bending gives 

df l  M 
ds J '  (30) 

and hence from equations (23), (29), 

where 

J 6(1+/x) 
Eo/ F( /z -1)3(az-1) (1- /z  2~) 

I=~---~(rE-rl) 3. 

(31) 

The variation of J/EoI with r2/rl for various values of Eo/E, is shown in Fig. 9. It is seen that for the isotropic 
case the effective flexural rigidity is adequately given by E I  for. values of r2/rl up to about 3. In contrast, the 
fibre reinforced case shows a marked reduction in Y for all bU~ the smallest values of r2/rl. 

4. General Loading of Ring 

The loadings considered so far have been characterised by the vanishing of one, or both, of the terms fro and 
v, and this has resulted in simplified equations of equilibrium and compatibility. In the general case the 
equations of equilibrium are 6 

00"r+l O~'ro+ o'r --O'o 
= O, Or r O0 r 

and 

1 &to t.OrrO+2rrO= 
O, 

r O0 Or r 

(32) 



and these are satisfied by the introduction of a stress function • such that 

1 00 1 020 

020 (33) 
O'o = Or----2, 

0 (1 00~ 
"rO =--Tr X; 

As for the equation of compatibility, it may be confirmed by substitution that the general strain displacement 
relations of equation (17) satisfy the equation 

O lr2(Oeo 1 Oer O2er _ 
r - r-~'r +-0-~ =o" (34/ 

The equation satisfied by the stress function • is obtained by substitution of equations (1), (3) and (33) into 
equation (34). This stress function equation is best expressed in a compact form by introducing the following 
differential operators defined by: 

and (35) 

0 z 

It may now be shown that 

[K A, 4 + 2B A, 2 A0 + A02 - (1 + K + 2B)  A~]O = 0, 

where 

x = Er/Eo (36) 

and 

Er 
B = - v,o. 

2Gro 

Note that for the isotropic case 

X = /3=1 ,  

and the differential operator in equation (36) factorises to give 

[ A2 + Ao 5: 2Ar]O = 0, (37) 

whence 

• = O1 + 02, say 
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where 

and V201 = O, [ 

J 002 1 2 2 
02-r-~-r+-~r  V 02- -0 ,  

and we recover the biharmonic equation, albeit in a separated and unusual form. 

4.1. General Form of the Stress Function 

A general expression for • can readily be obtained in the form of a series 

r~=O 

where 

(38) 

(39) 

4 

On = Y. (a,ir q' cos nO + b , f '  sin nO), (40) 
i = l  

where the ant and b,~ are constants and the indices qi are determined below. Substitution of equation (40) into 
equations (35) and (36) shows that 

(41) and 

A,On = ( q -  1)on, 

AoO. = ( 1 -  n 2)On, 

and it follows that for any given value of n there are, in general, four values of q (denoted by q~) determined by 
the equation 

r (q - 1) 4 -  (q - 1)2(1 + x + 2fin 2) + (n 2_ 1)2 = 0. (42) 

When either q or n equals unity equation (42) results in repeated roots and further analysis is required. Thus if 
q = 1 we must consider the general expression 

• = rf(O). (43) 

Substitution into equations (35) and (36) shows that 

ArO = O, 

so that 

which may be integrated to give 

A~f= 0, 

f(O) = a10 sin 0 +b~O cos 0 + (terms proportional to sin 0 and cos 0, which do not contribute to the stresses). 
(44) 

By the same token, if n = 1 we consider 

01 = g(r)(~ns) 0. (45) 
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Substitution into equation (35) shows that 

A0dPl = 0, 

and hence equation (36) may be expressed in the form 

g(r) = gl(r) + g2(r), 

where 

and 

[x h~ - (1 + x + 2f l ) ]g l  = O, 

(46) 

(47) 

A2g2 = 0. (48) 

Equation (47) admits of a solution consistent with equation (40), while equation (48) may be integrated to give 

g2(r) = cr In r + (a term proportional to r which does not contribute to the stresses). (49) 

Finally, consideration of the limiting case in which n = 0 leads us to the solution 

Do = aol + boa 0 + (ao2 --k bo20)r I+~ + (ao3 + bo30)r 1-'* + (a04 + bo40)r 2, (50) 

where a is as defined in equation (8). In this expression for Do the term aol does not contribute to the stresses, 
while the terms ident|fied by ao2, ao3 and ao4 correspond to the stress function • of Sections 2, 3. 

[Note that each of the solutions derived in this section has its counterpart in the general stress function for 
the isotropic case which was first derived by Michell 7 and is reproduced in Ref. 6. The present analysis, 
however, shows that two solutions were overlooked in this earlier work, namely 

cb = AO In r + BOr 2 In r.] 

2. Shear Force  appl ied to  Curved Strip 

The pure bending of a cut ring or curved strip was considered in Section 3. This analysis is augmented here 
by a consideration of the stresses in a curved strip subjected to shear. A situation in which this would be 
relevant is shown in Fig. 10 which depicts a section through the edge region of a fibre reinforced plate A where 
it is attached to another member B at right angles. The edge of the plate has been formed to include an annular 
quadrant and any transverse loads/pressures acting on the plate may be resolved at section C into a moment M 
per unit length and a shear force S per unit length. At section D the shear force S is resisted by a moment and a 
force S which is now parallel to the fibres; the solutions for a moment and shear force can therefore be 
combined to yield also the solution for a force applied in any direction. 

The stresses due to the shear force S may be derived from the stress function of equation (45) which, for 
convenience, we express in the form 

a2 q2 In p}, qbl=r~sin O { ( q - ~ _ l ) p q l + ( q 2 _ l ) p  +a3p 

where 

qa.2 = l+oJ, (51) 

and 

' 
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The derived stresses are given by 

o-r = p-2 sin O(alpq~+azpq2+aap), 

tro= p-2 sin O(qlaxp ql + q2a2p q2 + a3p), 

and 

Zro = _p-2 cos O(axp ql + a2p % + a3p), 

and it is to be noted that 

-- tr,/sin 0 = -fro~cos O. 

The boundary conditions along the curved edges are that 

[O r = "fro = O]r= rl,r2:, 

while equilibrium at section C requires that 

~ r 2 

S = - fro dr. 
1 

Equations (54) and (55) suffice to determine the constants ai which are given by 

s 5 
a l = r l  K ,  a 2  = a n d a 3 =  S ( / z ' + l )  

r lK  ' 

where 

K = 2 ( / z ' -  1) ( ~ '  + 1) in/x. 

(52) 

(53) 

(54) 

(55) 

(56) 

It is seen from equation (56) that the elastic properties affect the stresses only insofar as they affect the 
parameter o. More directly it is seen that the governing parameter is given by 

1+2t~ ] 
~7, say = - - ~ - -  

1 1 1 
(57) 

where the factor 1/3 has been introduced so that 7/= 1 in the isotropic case. 
The variation of the hoop and shear stresses through the thickness of the curved sheet (or beam) is shown in 

Figs. 11, 12 for the case in which r2/rl = 2 and r /=  1 or 50. If the hoop stresses are compared with those in Fig. 
6, which relates to an applied moment, it is seen that for equal values of Eo/Er and r / the  hoop stresses in the 
fibre reinforced case exhibit a greater degree of S-ing due to an applied shear force. This is reflected in Fig. 12 
in a flatter distribution of the shear stress. 

The maximum value of the hoop stress occurs at 0 = ½~r, r = rl, and is given by 

s~(1 -g~)  (58) 
O r e ' m a x  = r lK  ' 

which is shown in Fig. 13 where O-o,m~, has been expressed as a multiple of rzS/(r2-  rl) 2 in order to flatten the 
curve for the isotropic case and so high-light the influence of anisotropy. 
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The shear stress and the radial stress reach maximum values at a radius specified by 

2(o9 + 1) ,~:/o, 
p**, say=/z  (/.,, +1)2+4/  .,(toZ_l)}½ +/z,, +1 ] , (59) 

and Fig. 14 shows the corresponding values of Zro . . . .  expressed as a multiple of - S / ( r z -  r,). It is seen that as 
r2/r~ ~ 1 this stress ratio approaches 1.5 which is the value appropriate to a parabolic distribution of shear. 
Deviations from this value are comparatively modest. Fig. 14 is, of course, also applicable to o's, max in virtue of 
equation (53). 

4.3. Load Transfer via Ser~-drcular Ring 

As a further example in the use of the general stress function we consider a purely circumferentially fibre 
reinforced semi-circular ring with contiguous fibre-reinforced parallel strips as shown in Fig. 15a. A force P 
per unit length is applied along the line 0 = 0, via a pin of radius rl, and is resisted by loads of magnitude 1p in 
each of the strips. Strictly speaking this is a difficult contact problem which requires a knowledge of the 
clearance and frictional properties between pin and ring, and the elasticity and support conditions of the pin, 
etc. As such it is outside the scope of the present paper but the essential features may, nevertheless, be 
reproduced. Thus, to simplify the problems we will assume that along the interface between pin and ring the 
radial stress varies as cos 2 0, so that 

and 

while across the sections at 0 = 4- ½~, 

3P(1 
[o',],=rl- ~rl +cos20) ,  

[~'rO]r=r~ = 0, 

(60) 

[v]o=±~,, = 0, ] 

and l (61) 

[rr0]o=±~,~ = 0.  

These boundary conditions are the same as those in a complete ring subjected to 'mirror image' loads as shown 
in Fig. 15b. The solution corresponding to the constant stress component in equation (60) is given in Section 
2.1 while the solution for the part which varies as cos 20 can be obtained from the stress function 

4 

qb2 = r 2 cos 20 Y, a~p q', (62) 
i = 1  

where the indices q~ are the roots of the equation 

tc(q - 1)4- (q - 1)2(1 +K +8/3)+9 = 0, (63) 

and, for convenience, we have reintroduced the nondimensional term p (= r/r1). 
Substitution of equation (62) into equation (33) gives 

and 

o'r = cos 20 Y. (qi -4)aiP q'-2, 
i 

tro = cos 20 ~ qi(ql - 1)a/P q'-2, 
i 

~',o = sin 20 ~ (qi - 1)aip q'-2. 
i 

(64) 
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The boundary conditions of equation (61) are automatically satisfied by the expression for (I)2, while the 
vanishing of o'r and ~'r0 at r = r2 (i.e. p =/~) implies that 

and 

Y. ai/x ~' = 0, 
i 

( q i  - -  1 ) a l / z  q '  = 0 .  

(65) 

Similarly equations (60) can be combined to yield 

and 

P 
~ . a i  = 
i 8&' 

• ~. (qi - 1 ) a i  = O .  
i 

(66) 

Equations (65) and (66) suffice to determine the coefficients a~ and hence the maximum value of o-o, which 
occurs at the points r = rl, 0 = +½~r, can be determined from the relation 

o'*, say = ~ q~(qi - 1)ai. (67) 

As for the constant stress component in equation (60) it will be seen by comparison with equations (11) and 
(14) that the maximum value of o'o is given by 

3aP{lz  2~ + 1~ 
tr**, say =--~rl\2--Tff-~_l]. (68) 

Thus, in the problem under consideration the maximum value of o'a is given by 

- -  ~ .J_ ~ : ~ : ~  
Or0,max - -  t,,O . t J  0 . (69) 

Calculations have been made for the following elastic parameters: 

/~=0 .5 ,1  and x = 1 / 3 0 .  

The values chosen for /~ are effectively lower and upper bounds for all unidirectional fibre reinforced 
composites, while the value chosen for K is typical of CFRP. Table 1 below shows for various values of r2/rl, 
the corresponding values of tro . . . .  expressed as a multiple of the nominal hoop stress P/2(r2 - rl). These stress 
ratios can therefore be regarded as stress concentration factors. 

TABLE 1 

Values of o'e . . . .  / ( 2 ( r P & ) )  

r2/rl = 1.25 1.5 2.0 

/~ = 0.5, K = 1/30 9.69 8.51 10.83 

/3 = 1, K = 1/30 10.34 9.51 12.07 
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Before discussing these results it is important to remember that they apply strictly to the load system depicted 
in Fig. 15b. Some general conclusions will now be drawn: The stress concentration factors are high but vary 
with r:/rl by relatively small amounts; this is because as r2/rl increases the component of the stress 
concentration factor due to the constant pressure term or** increases, while that due to the bending component 
o-* decreases. Also, as fl varies from 0.5 to 1 there is an increase in the stress concentration factor of about 10 
per cent. Some such increase is to be expected because this change in the value of/3, with x constant, implies a 
reduction of about 50 per cent in the shear modulus Grs. 

Note that recent work suggests that the pressure distribution between the pin and rin~ is approximately 
constant. If this is so, it can be shown that the stress concentration factor increases monotonically with r2/rl, 
and at r2/rl = 2.0, K = 1/30, for example, it is equal to about 4.0. 

5. Conclusions 

This Report considers the stress analysis of elastic plates with polar orthotropic properties. It is applicable to 
fibre reinforced composites in the form of an annulus or curved strip with circumferential fibres; in some 
circumstances it is also applicable to a multi-laminate composite. The simple loading conditions of pressure, 
moment and shear have been considered in detail and curves are presented which give the maximum stresses 
and other features for a wide range of composite geometries and elastic properties. As a general rule the stress 
concentration factors in the composite are higher than those in the corresponding isotropic case, though there 
are minor exceptions. In the derivation of the general form of the stress function certain differential operators 
are introduced which markedly simplify the subsequent analysis. 

Acknowledgment 

The author is much indebted to Miss Doreen Best for the computation. 

16 



LIST OF SYMBOLS 

E,,Eo, G~o 
I 
J 

M 
P 
P 
q 

r,O 
rl ,  1"2 

S 
U, V 

oz, [3, K, a~, ~l 

At, Ao 
Er, EO, %0 

l'JrO~ POr 
p 

Or, 0"0, TrO 
f~ 

Elastic moduli 
(r2- r03/12 
Effective flexural rigidity 
Moment per unit length 
Pressure 
Applied force per unit length 
Index 
Polar coordinates 
Inner and outer radii 
Shear force per unit length 
Radial and tangential displacements 
Parameters defined by equations (8), (36), (51), (57) 
Differential operators defined by equation (35) 
Direct and shear strains 
Stress functions defined by equations (5), (33) 
r 2 / r l  
Poisson's ratios 
r/rl 
Direct and shear stresses 
Rotation of section. 

17 



No. Author(s) 

1 S.G. Lekhnitskii . . . . . . . . . . . . . . . . . .  

2 J .E.  Ashton and J. M. Whitney. . . . . .  

3 W.S. Hemp . . . . . . . . . . . . . . . . . . . . . .  

4 P. Bartholomew and G. Z. Harris . . . .  

5 E .H.  Mansfield and D. R. Best . . . . . .  

6 S.P. Timoshenko and J. N. Goodier. 

7 J.H. Michell . . . . . . . . . . . . . . . . . . . . . .  

REFERENCES 

Title, etc. 

Anisotropic Plates. Translated from the second Russian edition 
by S. W. Tsai and T. Cheron. Gordon and Breach, 1968 

Theory o)¢Laminated Plates. Progress in Materials Science Series, 
Vol. IV. Technomic, 1970 

Optimum Structures. Clarendon Press, Oxford, 1973 

Optimum fibre-reinforced sheets for two alternative loadings. 
Int. J. mech. Sci., 15, pp. 1011-1025, 1973 

The concept of load diffusion length in fibre reinforced compo- 
sites. 

A.R.C.C.P. 1338, 1975. 

Theory of Elasticity. 3rd edition, McGraw-Hill (1970) 

Proc. Lond. math. Soc., Vol. 31, p. 100, 1899 

18 



o'e ~Ee 

2~'O'r, Er 

;to 

r" 

I 

/ / 

FIo. 1. Diagram showing notation. 

19 



82 

| 0  

9 

L 

7 
6 

!.. 

5 ~  
a .  
o 
o 
r- 

E 4 ~  

E 
o ~  

x 
0 3 m  

2 1 1 m  

EelEr = s o  

20 

IO 

5 

0 
9"5 2 

ra/r, 
2 . 5  

FIG. 2. Stress concentrations due to internal pressure pl. 

20 



5 

4 1 - -  

0 
b 
u) 
(D 

L 
. ,J 
0"} 
42. 
0 
0 r" 

E 
;3 
E 
>( 
0 :E 

3 1 - -  

~ I - - - -  

E 0 / E  r = 5( 

. . . _  L . . . . . - -  - - - - -  

5 

I0 

I 
1"5 

I"2 / Pl 

2 ' 5  3 

FIG. 3. Stress concentrations due to externalpressurep2. 

21 



7 

E e i E r = 4 0  

5 3 0  

O. 

W 
(n 
~.. 

o 
o 

.JE 

E 

E 
x 
G 

4 P~---- 

3 F - - 1  

2 

I 

0 

- I  

1 2  

- 3  

- - 4  

- 5  

2 0  

I 0  

I 

5 
i 

i o  

z o  

3 0  

L 
[I 

r" 

.9 
L 
e 
c 
c 

I .  
0 

"o 
r 
:I 
0 

l .  

3 
0 

- 6  4 0  

- - 7  

I 
1"5  2 ; ! . 5  

r2/r, 
3 

FIG. 4. Stress concentrations due to internal and external pressure p. 

22 



L 

Ul 

n 
0 
0 

r 

E 

E 
x 
0 

2 - 0  

1"9  

1 " 8 1 - -  

1 - 7 1 - -  

I ' ( = 1 - -  

1 " 5 ! - -  

1 ' 4  

1 . 3 - -  

1 . 2 - -  

I . I  - -  

1 . 0  

0 . 9  

0 . 8 1 - -  

0 , 7  

I I I 

I 
I - 5  

E 0 / Er = 5 0  

5 0  

4 0  

3O 

2 0  

I 0  

I I 
2 

rz/n 
2 . 5  

iO 

I 

I 

t .  
0 

"0  
r 
:3 
0 

n 

L 
I:I 
£ 
£ 

L 
t~ "O 
r- 

3 
o 

n 

I .  

.+J 
"s 

o 

FI~. 5. Stress concentrations due to pure moment  M. 

23 



2 

F. e / E  r = I 

5O 

r 
rl 

i 

b~ 
4~ 

I 
--I -0 

I 
--0.5 O.S 

~0 _ rl 

I 
I - O  

I 
m ' 5  

FIG. 6. Variation of hoop stress through thickness (r2/rl = 2). 



I.I 

.y 
1.0 

~n 

L 

13 
"t3 
0 / 

E 

E 
X 
0 ~r 

= r 2 / r  I 
E e / E  r : 

5 

I0 

2O 

30  

50 

0-9 I f 
1.5 2 

r 2 / r l  

2-5  3 

FIG. 7. Maximum radial stress due to pure moment  M. 

25 



4 0  

b 

*b~ ao 
gJ 

L. 

g) 

E 
3 2 0  
E 

o 
E 

0 

0 

¢v' 

0 
- 0  

E e / E  r = 3 0  

i ! I 
I - I  1 .2  I - 3  I - 4  

f'2 / I'1 
1.5  

FIG. 8. Hoop to radial stress ratio under pure moment. 

26 



I 'O 

0.9  L . . . -  

O.B 

0"7 

t d  
~ 0 " 6  

,+,J 

"o 0.5 
° ~  

r 

1 

o.4 
Z~ 

c~ 

I t .  

0"3 

0.2 

0.! 

0 I I 
1"5 2 

r z/rl 

= Ee/E r 

IO 

2 0  

3 0  

5 0  

2"S 3 

FIG. 9. Effective flexural rigidity of cut ring. 

27 



M pc--,, 
IA,S 

A 

C 

- - D  .sO 

15 

F:G. 10. Shear force applied to curved plate. 

28 



~D 

{(+ - E e + 

- I 0  - 5  

Z 

r 
r I 

5 

T 
f 

I 0  15 

/(~ ,,° ,,~ 
~ -  cre r I } 

S 

I 
2 O  

I 
2 5  

FIG. 11. Variation of hoop stress through thickness (r2/rl = 2). 



2 

F 
rl 

iO= g E 0 

O 0 - 5  I ' 0  

r- I 

1"5 

FIo. 12. Variation of shear stress through thickness (r2/rl = 2). 

30 



161---- 

x 
u 

E. I ~  

b 

t/l 
g) 

L 

o I0~ 
0 
t-" 

:2 

X 
O 
5: 

8 

- -5 

~0 

t( 

G 

I I 
1"5 

r 2 / r l  

I 
2"6 3 

FIG. 13. Maximum hoop stress due to shear force. 

31 



(/~ I 

x 
o 
E 

P 

L 

L 
0 

.¢: 

E 

E 

o 

1.7 

I -6  

I - 5  

1.4  

I I I 

1 . 5  

[ .[ 
a z . s  

r"z / PI 
3 

FIG. 14. Maximum shear stress in curved beam. 

32 



I ~p %-':---q 

~ ' p  

CI 

b 

FIG. 15a & b. Load transfer via semi-circular ring. 

Printed in England for Her Majesty's Stationery Office by J. W. Arrowsmith Ltd., Bristol BS3 2NT 
Dd. 290278 K.5.2/77. 

33 



R, & M, No, 3796  

© Crown copyright 1977 

HER MAJESTY'S STATIONERY OFFICE 

Government Bookshops 

49 High Holborn, London WCIV 6HB 
13a Castle Street, Edinburgh EH2 3AR 

41 The Hayes, CardiffCF1 IJW 
Brazennose Street, Manchester M60 8AS 

Southey House, Wine Street, Bristol BSI 2BQ 
258 Broad Street, Birmingham BI 2HE 
80 Chichester Street, Belfast BT1 4JY 

Government Publications are also available 
through booksellers 

R° & M° No° 3796  

ISBN 0 11 470967 X 


