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Summary 

The previous work of the author in which the subcritical flow past ellipsoids was calculated is extended to 
supercritical flows. The same ellipsoidal coordinate system is used, the body-surface boundary-condition is 
then applied exactly (in the numerical sense). By means of a transformation of one of the coordinates, the 
infinite flow field is brought into a finite space for the calculation. 

The complete continuity equation is approximated by the usual central differencing in the elliptic 
(subcfitical) regions, whilst in the hyperbolic (supercritical) regions, the combination of central and 
non-central differencing as suggested by Albone and Jameson is used, in order to model the absence of 
upstream propagation of disturbances. 

Although shock waves appear in the calculations, their shape and position is only approximately determined 
(as e.g. in transonic small perturbation theory) since the difference scheme only ensures continuity of the 
potential across the shock, the Rankine-Hugoniot equations not being satisfied. A number of results is 
presented, for flows aligned along the major and second axes, and also yawed relative to these two axes. 

The work reported here was done in connection with the link between the R.A.E. and the University of 
Southampton. 

* Now at the Department of Mathematics, Imperial College. 
t Replaces R.A.E. Technical Report 75087--A.R.C. 36 304. 
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1. Introduction 

The development of powerful electronic computers in the last few years has enabled numerical techniques 
to be developed to deal with the problemof transonic flow past two-dimensional aerofoil sections, and more 
recently past three-dimensional bodies. 

Magnus and Yoshihara 1 overcame the difficulty of the presence of both subcritical and supercritical regions 
within the flow, by considering the steady-state solution to be the limit of a non-steady solution, and thereby 
ensured a fully hyperbolic system, at the expense of introducing into the problem a further dimension, namely 
time. 

Murman and Cole 2 introduced the mixed finite difference scheme. This approximates derivatives in elliptic 
regions in the usual way, by central differences, whilst in hyperbolic regions, derivatives in one of the 
coordinate directions (the one most closely aligned with the flow) are approximated using backward 
differencing (with respect to the flow direction). Other derivatives are centrally differenced. Physically this 
scheme is an attempt to model the absence of upstream propagation of the flow information in the supersonic 
zones, disturbances at a point being transmitted solely within the downstream Mach cone which has its apex at 
that point. 

This method was also applied successfully by Garabedian and Korn 3 for two-dimensional aerofoils. 
However if the local velocity in the supersonic region departs appreciably from one of the coordinate 
directions, numerical instability can occur. To overcome this problem, Albone 4 and Jameson 5 have suggested 
transforming the principal part of the potential equation, in hyperbolic regions, into a new coordinate system, 
with one axis aligned along the local flow direction. Second derivatives in the direction of the flow are then 
differenced backwardly, whilst other derivatives are centrally differenced. Elliptic regions are treated in the 
usual way. 

This report is an extension of the work on subcritical flow past ellipsoids of Duck 6. The flow around 
ellipsoids without circulation is considered (implying no trailing vortex sheets) using the full equations of 
motion and the ellipsoidal coordinate system, which facilitates the exact implementation of the body-surface 
boundary-condition. Further, by means of a simple transformation, the infinite physical flow field is brought 
into a finite working space. In the supersonic regions, the proportion of retarded differencing suggestedin 
Refs. 4 and 5 is used. 

Attention is restricted to local Mach numbers only slightly in excess of unity since a velocity potential is used, 
ignoring any changes in entropy, and any rotation in the flow. 

2. Equations of Mot ion  

Throughout we shall use the ellipsoidal coordinate system (¢1, ¢2, ¢3) where 

x = [1%(s¢:1)2] ½ dn ¢2 g-fi (3, 

y = [o" + (¢~)2]~ cn ¢2 ~ ¢3 

and 

z = ¢1 sn ¢2 fffi ¢2, 

where, for conciseness, we write 

sn ¢2 = sn (Ca, ,ff~) 

and 

g-6 ¢3 - s n  (¢3, 41 -or) 

(and similarly for the other Jacobian elliptic functions). 
o" is a parameter that partly determines the ratio of axes of the ellipsoid, such that 

O < c r < l .  
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Generally 

and 

- 2 K  ~< (z ~< 2K 

- 2 K '  ~< ~:3 ~< 2K', 

where K ( K ' )  is the (complementary) complete elliptic integral of the first kind, viz 

f 
'rr/2 dO 

K =  
J0 [1 -o-s in  20] ½ 

and 

and 

where 

and 

f 
~/2 

K '  = dO 

J0 [1 - (1 - o-) sin 20] ~ 

It is convenient to inffoduce the transformation 

= ( 1 .  

This transformation translates the infinite physical flow field into a finite working field since 

0 ~ < ~ < K  ' as  0 ~ 1 ~  00. 

The curvilinear metrics of this new (~ ,  (2, ~:3) system may be written as 

A 1 = B2B3. 

A 2  = B I B 3  

A3=BIB2, 

B1 = [o" en 2 s¢2 + (1 -o-) e-fi 2 (3]~, 

Bz = [(~:1)2 +dnn: ~:3]~ 

B3 = [(~1)2 + Or s n  z ~2]~. 



The continuity equation in the transformed e11ipsoidal system is now 

1 69~ 1 6922 
A l L  z - i l a  J A 2 L  A 2 a  .I 

1 r "1 2691692 2691693 - 2692693 - 
+-7~[1-  ~T_z|6933---2--2 26912-~2,t2.,2(lh3 A ~ 2 @ 2 3  

A 3 L  A 3 a  J z"l 1.,"1- 2 a . ~  1-.'-x 3 t~ 

69~ [691 a 2 692 0 2 693 0 2 +~LA~ 0--~(A 1) +~222 3~2(A 1) +~33 ~-5(A 1)] 

692 [691  O 2 692 0 2 693 19 2 
+ ~ [ ~ - - ~  0-~(A2)+~2 0-~(a2) +~--~s2 ~-~(a2)] 

0--~(a 3) + ~ 2  0 - ~ ( a 3 )  +~--~ 0-~-5(A3)] = 0 ,  

where 

69i ~ o£i, f~l ~ - ~ ,  f~ii = 0 ( ¢ i ) 2 ,  (I)11 = Oq(~'l)2 

O2(I ) 02(I) 
f~i] ~ O~i O~ j , f~l] -- O ~  a£ i '  i, j = 2, 3. 

Further, in order to determine the speed of sound a, we use the Bernoulli energy equation 

The flow speed is expressed by 

a 2 I 2 
y -  1 +2q = constant. 

2 2 
q 2  691 di)2 6932 

= --/-~ +--~ 4 
A1 Aa A~ 

To complete our description of the ellipsoid, on which the boundary condition is satisfied we set 

which yields 

~:1 = ~1 (a constant) 

X 2 y 2  Z 2 

1 + (~0~) 2 ~ - 1. o- + ¢ 

On this surface we apply the body-surface boundary-condition 

691=0. 

Since we are concerned, throughout, with bodies without circulation, the boundary condition at infinity is 

69 = 69~o at ~ = K ' ( f  1 = ao), 

here 69o0 is the undisturbed (freestream) velocity potential. 

(1) 



In this coordinate system, along the hyperbolae ~2 = +K, ~3 = +K' ,  we have B1 = 0, implying a vanishing 
Jacobian of the transformation. It was shown by Duck 6 that along these lines the potential equation reduces 
simply to 

ff*~22 "1- 1~33 = 0 ,  (2) 

and the flow velocity is given by 

q2 _ ~2 2 2 
~22 + ~23 

o'(1 - o')[o" + (~:a) 2] 

t~23 q- 1ff~33 

- [tr + (~:1)=]2 + o'(1 - o-)[o" + (sea)2)" 

A fuller description of the ellipsoidal coordinate system is given in Ref. 6. 

3. Numerical Techniques 

3.1. Finite Differences Equation 

We follow the example of Albone 4 and Jameson 5 by rearranging the principal part (that is all terms involving 
second derivatives) of the potential equation (1) into canonical form, in the following way: 

(1 - M2)d&s + vz~b - ~ss 

where 

= L I "  .2  r~ .2 __ U 2 __ 2UlU2_ 2UlU3- 2U2U3__ "1 
1 + -22 + A-- -12 + + ' 

V2 (~TD ~. (I) 11-1- " - ~  (ID 2 2 -'[- - ~  (I) 3 3 ' 
.t-x 2 r x  3 

and M = q/a  is the local Mach number. 
The first order derivatives of (1) remain unchanged. 
For the purposes of computation, the total potential qb is now split up in the form 

qS=qS~+4,, 

where q~o~ denotes the freestream (undisturbed) potential, and is a known quantity, with a singularity at 
infinity--we solve only for ~b, the perturbation (unknown) potential. 

The partial differential equation is now ready to be differenced. 
Assuming l., + 1, mm + 1, nm+ 1 points in the (1, se2 and ~:3 directions respectively, then the cell dimensions 

in the differenced system (for the general case), are given by 

A(1 = ( K ' -  g ) / l . , ,  

A~ 2 = 4K/mm 

and 

A~ 3 = 2K'/nm. 

The coefficients of K and K '  in the above expressions for A~ 2 and A~ :3 may be reduced if any symmetry is 
present in the problem. 



All first derivatives of ¢ are differenced centrally throughout the entire flow field, for example 

4't,,, , , , ,+,- 4't . . . .  -~ ~_ O ( ( a ( 3 ) 2 )  
(q~3)t . . . .  = 2A~3 

(where I, m, n identify the point in the field). 
Second derivatives of ¢ contained within V269-69= are also centrally differenced, for example 

~bt . . . .  + 1 -  2,;bl . . . .  + ~bt . . . .  -1 +_ O((A~¢)2) 

and 

(¢23) l . rn ,  n = ~ t ) l 'm+l 'n+l  - -  ~) l , m - l , n + l  - -  ~ l ,  rn+l ,n--1 "]- ¢ l , m - - l , n - - 1  .q. O ((A~2)2+(A~73)2). 
4A~2A~ 3 

For elliptic (subcritical) points the second derivatives of ~b contained within (1-M2)69= are differenced 
centrally, as above. However for hyperbolic (supercritical) points, the differencing is non-central, for example 

Ct . . . .  - 2 ¢ t  . . . .  ~ 1 + ¢ t  . . . .  - , -2+O(A~:3),  
( ~ 3 3 ) l , m , n  = (A¢3)2 

~,here the positive (negative) sign is taken for 693 negative (positive). 
Similarly 

s i n  "69 69 , ~ b t ~ , , - ~ b t , . ± l  , , - ~ b t  . . . .  ±l+(~l, rn±l,n±l .t_ O(A~2 .l_ A~3) 
(q~23)~ . . . .  = g t 2 3) . . . .  ~ : 2 z X ¢ 3  

where the signs are chosen depending on the signs of 69z and d93. 
Along the singular lines, we use equation (2), which is elliptic, for both subcritical and supercritical points, 

central differencing always being applied to this equation. Points on either side of these singular points, in the 
(2 and ~:3 directions are in fact equivalent, due to the periodicity of the working space (see Fig. 1). 

Symmetry arguments may be invoked (if present) in order to reduce both computer time and store 
requirements. For flows with freestream velocities aligned along one of the axes of the ellipsoid, two quadrants 
are required for supercritical calculations (the fore and aft anti-symmetry of subcritical cases is no longer 
present). 

Referring to Fig. 1, if 69oo = x, any adjacent combination of quadrants A and B (or C and D) may be used. 
Symmetry may then be invoked along the perimeter of each plane ~a = constant, because of the up and down, 
and side to side symmetry present. If 69oo = y, any adjacent combination of quadrants A and C (or B and D) may 
ased. In addition to symmetry considerations, the periodicity of the working space must be taken into account. 
As an example, consider the plane ~ = constant over the region 

0~<~:2~<K 

0 ~< ~:3 ~< 2K' 

as shown hatched in Fig. 1. Symmetry may be invoked along OQRSO, but not along OTO. But because of 
9eriodicity, a point such as V, described in ellipsoidal coordinates by (~n, K + A~ :2, ~:3) maps to the same point 
n cartesian (physical) space as the point (~,  K - A (  2, 2K ' - (3 )  in the working space. Similar arguments apply 
~0 other combinations of B and D (or A and C). 

For yawed cases, more quadrants must be brought into the calculations, with arguments similar to those 
given above invoked in order to 'close' the working space. 

Finally we apply the body surface boundary condition by means of reflection. 
If ff~<~x ~<K' as 1 ~<I<< l m + 1 then 



i 

This then gives values of ~b for the set of points situated just inside the body that are required in the difference 
equation. 

3.2. Solution of Difference Equation 

The difference equation may now be expressed in a form suitable for line relaxation. For solution along lines 
~:2, ~:3 = constant (spokes), the difference equation may be expressed in standard tridiagonal form 

bt$l+l . . . .  +ctqbt . . . .  + d l ( b l - 1  . . . .  = a l  for l~</~</,,(~b/m+ 1 .... =0) 

where bt~ = 0 and dx = 0. 
As many terms as possible are placed on t~ae left-hand side of the above equation, the remainder, including 

all the second order derivatives of the freestream contribution to the potential and also most of the 
contributions in the difference equation from other mesh points, being placed on the right-hand side. 

The resulting matrix equation for ~b may be solved using the well known Choleski method (see for example 
Varga7). 

Having solved for ~b in this way, we apply relaxation to update the old value of ~b 

~b ee> + ( 1  ,-,  ~ 2-  ( N - l )  
l , m , n ~ t o ~ l , m , n  ,, --t . , . . ,]t l~l,m,n , 

~b~ ... .  being obtained from the block inversion described above, and superscript (N) denotes the value 
obtained (after relaxation) from the Nth iteration. 

The relaxation parameter, to, was usually set at 1.8 in elliptic regions, and 0.96 in hyperbolic regions at the 
start of the computation, and was reduced if instability occurred. Frequently the computation would undergo a 
period of instability, during which the relaxation parameters were reduced. The numerical process would then 
become stable again, and the relaxation parameters could then be increased without further instability. 

The direction of 'sweeping' of the lines along which the solution was obtained was varied, including 
following the flow and directly opposed to the flow, with identical results. 

The region close to the shock was usually very slow to convergence during the iteration process. Often the 
solution in this region would still be changing markedly, whilst in the rest of the flow field, the solution had 
settled down. For this reason convergence was usually assumed when the maximum change in potential, 
anywhere within the field was less than 1 × 10 -6 per iteration. This implies convergence of Mach number of 
approximately 5 x 10 -5 per iteration. 

The shock region also appears the most sensitive to changes in mesh size as shown in the example in Table 1 
which refers to the case illustrated in Figs. 2 to 6--presumably this is a result of the large gradients of the 
potential around the shock (situated near y = 0.45). Table 1 indicates that accuracy requires a particularly 
large number of points in the s e2 direction which approximately corresponds to the direction normal to the 
shock. Most calculations for the unyawed cases were performed using a 21 x 21 × 41 mesh in the ~ ,  s e2 and ~:3 
directions respectively, whilst those for yawed cases were made on a 21 × 41 × 41 mesh. With these two grids, 
the Mach numbers appear in general accurate to within about ½ per cent. 

To reduce computation time, the calculation was started on a coarse grid and continued on a medium grid (of 
half the original cell dimensions), before being transferred to a fine grid (of a quarter the original cell 
dimensions). Supercritical examples take about 10 times the number of iterations, and about 20 times the 
computer time of comparable subcritical examples. A typical unyawed, supercritical case takes about 19 
minutes on a CDC 7600 computer, with 100 iterations on the two coarse grids, and 600 on the fine grid. Yawed 
supercritical cases take about double the number of iterations and four times the computer time of comparable 
unyawed examples. 

4. Results 

By means of a number of linear interpolation routines, the converged solutions were used to produce 
various Mach number distributions in cartesian (x, y, z) space, both on the body, and also out into the flow 
field. Several of these distributions are presented in Figs. 2 to 33 (as shown listed in Table 2). It should be 
realised that, because of the nature of the interpolation, the distributions away from the body, in particular, 
should be treated with a certain amount of caution, because of the lower density of points as infinity is 
approached in the physical field. 

Figs. 2 to 11 show distributions of Mach number around two different bodies, with flows aligned along the 
second major axis (qboo=y). The first body (hereafter referred to as body I) has a ratio of axes 
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1 : 0.7089 : 0.0709 in the x: y" z directions respectively, whilst the second body (referred to as body II) has a 
corresponding ratio of axes of 1 : 0.2010 : 0.0200. Figs. 12 to 16 show the flow around body I with a free- 
stream flow aligned along the major axis (d~oo = x). For all these examples, it appears that the Mach number 
across the maximum 'span' of the body is approximately constant, although the examples of higher aspect ratio 
exhibit a slight increase in Mach number in the region of the tips (see Figs. 4, 9, 14). The exact incompressible 
solution predicts constant flow speed across the maximum 'span' of the ellipsoid. For the high-aspect-ratio 
body (Fig. 8) there appears to be a tendency for the position of the maximum Mach number to move away from 
the plane of symmetry and consequently there may be an increase in shock strength as the 'tips' are 
approached. For the low-aspect-ratio body (Fig. 13) the opposite occurs and away from the plane of symmetry 
the shock wave appears to disperse progressively into a distributed compression. Figs. 6, 11, 16 show the flow 
field in depth in the plane of symmetry and emphasize the increasing departure of the flow from fore-and-aft 
symmetry as the freestream Mach number increases. Further the shocks appear to meet the body surface 
approximately perpendicularly. Figs. 3, 13 indicate, in the strongest regions of the shock, after an initial rapid 
compression, a very weak expansion, followed by a second compression. (This effect is most marked in the 
example of Fig. 13.) For reference, the positions of the grid points along the centreline are shown in these 
figures. All other results were obtained by interpolation. Along the centre line the shock is smeared over two 
or three mesh points. It is expected that, because of the more favourable distribution of 'calculating' points for 
the qboo = x example (the shock occurs in the region of one of the singular points on the body, a region in which 
there is a natural 'bunching' of mesh points in the x-direction) the shock definition is rather better than in the 

other examples. 
Downstream of the shock, the Mach number distributions appear to almost 'regain' the symmetry of 

subcritical flows, the Mach number at a position behind and away from the shock matching closely with that at 
the corresponding position upstream of the shock. Details of subcritical flows past unyawed ellipsoids are 
given in Ref. 6. 

Distribution of Mach numbers for flows around body I, with the freestream flow inclined at 45 degrees to the 
x and y axes (qboo= (x +y)/~,/2) are shown in Figs. 17 to 26. Figs. 17 to 19 are for a subcritical example 
(Moo = 0.8), for comparison with a supercritical case (Moo = 0.945), details of which are given in Figs. 20 to 26. 

The structure of the shock for this supercritical example is similar to that of the unyawed examples discussed 

previously. 
The acceleration following the rapid compression this time results in a second (just) supersonic zone, before 

the second compression (see Fig. 21). 
The position of the stagnation points, in comparison with the subcritical case appear little changed, in spite 

of the appearance of a shock. Again, well away from the shock, the flow appears to regain the symmetry of 
Mach number distribution present in the subcritical example (Figs. 17 and20). 

Figs. 27 to 33 refer to the flow around body II with freestream flow inclined at 45 degrees to the x and y axes, 
with Moo = 0.97. 

The main characteristic of these figures is the absence of any noticeable shock, the flow appearing still to 
have the symmetry associated with totally subcritical flows. 

Finally, it should be stressed that, since the Rankine-Hugoniot relations have not been satisfied across any 
shock (only continuity of potential is satisfied) then the actual structure and position of any shocks arising from 
these calculations should be treated with caution. 

5. Conclusions 

It has been shown that numerical solutions may be obtained for the supercritical flow around ellipsoids 
without circulation and under steady, inviscid conditions. 

Although the Rankine-Hugoniot equations have not been applied, the full equations of motion (in 
ellipsoidal coordinate form) have been used and the boundary condition on the surface of the ellipsoid has 
been applied as exactly as the differencing schemes allow. Using a transformation of one of the coordinates, 
the entire flow field has been brought into a finite computation space. Shocks appear in the converged 
solutions, generally smeared over two or three grid points. 

The numerical scheme, using the proportion of central and non-central differencing as suggested by 
Albone 4 and Jameson 5 has generally been reliable with only intermittent outbreaks of instability. Computa- 
tion times, however, are still appreciably longer than their subcritical counterparts, primarily because of the 
stow convergence at points in the neighbourhood of the shock. 
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TABLE. 1 

Variation of Maeh Number on Body Surface with Mesh Size Along 
x = o, ¢Poo = y, Moo= 0 .92 ,  ~r = 0.5  

~ sh 

y \ 

- 0 . 7107  
-0 .5685  
- 0 . 4 2 6 4  
-0284 3  
-0 .1421  

0 
+0.1421 
+0.2843 
+0.4264 
+0.5685 
+0.7107 

2 1 x 2 1 x 4 1  

0.0000 
0.9925 
1.0439 
1.0758 
1.1028 
1.1299 
1.1604 
1.1991 
1.1388 
0.9881 
0.0000 

15 x 15 x 29 

0.0000 
0.9916 
1.0422 
1.0740 
1.1011 
1.1285 
1.1599 
1.1998 
1.1212 
0.9867 
0.0000 

1 5 x 2 1 x 4 1  

0.0000 
0.9913 
1.0427 
1.0747 
1.1017 
1.1288 
1.1593 
1.1980 
1.1326 
0.9872 
0.0000 

2 1 x 1 5 x 4 1  

0.0000 
0.9929 
1.0435 
1.0752 
1.1024 
1.1299 
1.1613 
1.2014 
1.1264 
0.9873 
0.0000 

2 1 x 2 1 x 2 9  

0.0000 
0.9925 
1.0439 
1.0757 
1.1026 
1.1296 
1.1601 
1.1990 
1.1381 
0.9883 
0.0000 

T A B L E  2 

Details of Calculations Presented 

Figures 

2-6 
7-11 

12-16 
17-19 
20-26 
27-33 

BodyI :  0 -=0 .5  ~o=0 '1  

Ratio of axes: 1 : 0.7089 : 0.0707 

Body l I :  o -=0 .04  ~o=0"1 

Ratio of axes: 1 : 0.2010 : 0.0200 

Body Freestream conditions 

I qboo = y Moo = 0.92 
II qboo = y Moo = 0.88 
I qboo = x Moo = 0.97 
I a, oo=(  Moo= 0.80 
I qboo = (x + y ) / 4 2  Moo = 0.945 

II q5oo= (x + y ) / 4 ~  Moo = 0.97 
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