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Summary 

A simple analytical technique is presented for obtaining lower bounds to the effective moduli of unidirec- 
tional fibre-reinforced composites with any repetitive array of fibres. The analysis depends upon a direct 
method involving stress-equilibrium and strain-continuity considerations, and thus it differs from the type of 
analysis due to Hashin and Hill (and others) involving variational methods. The composite is envisaged as 
being sliced along all 1,2 planes so that conditions of plane stress exist throughout and the stiffness properties 
of each vanishingly thin slice are readily determined in terms of the constituent properties of the fibre and 
matrix. The effective elastic m0duli are obtained by suitable integration of such slice properties over a 
repeating fibre/matrix pattern. Comparison with known accurate values of the longitudinal shear modulus 
shows that the technique underestimates the modulus by factors of about 1.1 for the square array and 1.2 for 
the hexagonal array, depending on the fibre volume fraction and fibre/matrix stiffness ratio. By judicious use 
of such correction factors it should be possible to estimate the longitudinal shear modulus over a wide range of 
design parameters to within about 5 per cent; for the square and hexagonal arrays Symm's accurate but limited 
values have been augmented by new results which have an accuracy of 0.3 per cent. New results are also 
presented for the transverse modulus. 

* Replaces R.A.E. Technical Report 74106 - -  A.R.C. 35 647 
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1. Introduction 

Unidirectional fibre-reinforced composite (FRC) may be used in a structural context for carrying unidirec- 
tional loads, as in the manner of a strut or reinforcing stringer, or as one of a number of laminates in a built-up 
sheet for carrying multi-directional loads. In either case there is the problem of load transfer into the member 
via end fittings. A knowledge of the effective longitudinal, transverse and shear moduli of the member is an 
essential preliminary to the efficient design of such fittings. 

In the multi-laminate sheet it is customary to have at least three distinct alignments for the fibres so that the 
effective moduli are dominated by the stiffness of the fibres rather than the matrix, and are adequately and 
simply given by 'netting analysis'.1 However, in a unidirectional FRC member the transverse and shear moduli 
are primarily dependent on the stiffness of the matrix rather than the fibre. Theoretical and numerical 
techniques 2-7 are available for predicting these moduli assuming that the fibres are spaced in regular arrays and 
a limited number of accurate numerical results for hexagonal and square arrays are given by Symm. 6 There are 
also techniques available for deriving upper and lower bounds to the effective moduli for what are called 
random arrays of fibres. 8 

Here we present a technique for obtaining lower bounds to the effective moduli in unidirectional FRC with 
any specified repetitive array. Comparisons with Symm's accurate results for the longitudinal shear modulus of 
FRC with hexagonal and square arrays show that the technique under-estimates the true value by about 20 per 
cent for the hexagonal array and 10 per cent for the square array depending on the fibre volume fraction v I and 
the fibre/matrix stiffness ratio. In comparison with Hashin's 8 'best lower bound' the present technique is more 
accurate only at high values of v r, namely v r > 0.85 for the hexagonal array and v I > 0-60 for the square array. 
Such an improvement, however limited, is to be expected because Hashin's model requires the presence of 
fibres with ever-decreasing diameter, which cannot adequately represent a composite with fibres of constant 
diameter--particularly near the limits of maximum fibre packing. But the main advantages of the present 
method are (i) its simplicity, (ii) its generality, and (iii) the fact that all known accurate values of the effective 
moduli are under-estimated by amounts which vary only slightly with v r and the fibre/matrix stiffness ratio, 
thus enabling the method to augment the range of accurate results for hexagonal and square arrays. Finally, 
(iv) the method enables results for the effective longitudinal shear modulus to be used to derive results for the 
effective transverse modulus of unidirectional FRC. 

2. Method of Analysis (see Fig. 1 for notation) 

The method of analysis is approximate but simple. It is based on the following closely related facts. First, 
under an applied longitudinal shear stress r*2, the dominant stresses in the matrix and fibre are the longitudinal 
shear stresses r~"~ and ~2 in the plane of the applied shear stress: the longitudinal shear stresses in a normal 
plane, r~'~ and ~3, are significantly less. Second, under an applied transverse stress o-* the normal stresses in 
the matrix and fibre, o-~ and o'~ are small in comparison with the transverse stresses o-~ and o-~. 

The present method ignores these normal shear and direct stresses by adopting a slicing technique in which 
the composite is envisaged as being sliced along all 1, 2 planes (like a pack of cards), thus ensuring conditions of 
plane stress throughout. It is to be noted that this technique introduces an artificial degree of flexibility into the 
composite so that the resulting values of the composite moduli are lower limits to the true values. The degree to 
which this technique under-estimates the true moduli is determined by comparison with some known exact 
solutions and appropriate compensating factors are introduced. 

The slicing technique greatly simplifies the theoretical determination of the longitudinal shear and 
transverse moduli of unidirectional FRC with any repetitive array of fibres. In such an FRC the cross-section 
may be covered by contiguous and equal rectangles containing identical fibre patterns. The sides of the 
rectangles may cut through individual fibres and the rectangles themselves may be staggered, as shown in Fig. 
3. The effective elastic moduli of such an FRC are the same as for the individual strips of rectangular section 
whose faces are displaced by fixed amounts. The effective elastic moduli of an individual strip are determined 
by integration (through the height h) of the effective moduli of the constituent slices of width w bounded by 
vanishingly close planes at z, z + 8z. 

The matrix is assumed to be isotropic with shear modulus G m, Young's modulus E "  and Poisson's ratio v". 
The fibre material is assumed to have a longitudinal shear modulus G s and orthotropic direct stiffness 
characteristics with longitudinal and transverse Young's moduli E{ and E~ and corresponding Poisson's ratios 
V~l and v{2. (For numerical purposes we later take v{2 = v m as this considerably simplifies the analysis without 
significantly affecting results.) Average or effective values of the moduli and stresses for the composite are 



denoted by an asterisk. The overall volume fractions are denoted by vm and v I (v,, + v r = 1), while the volume 
fractions appropriate to a slice at z are denoted by vm (z) and vt(z). We adopt the notation (f(z)} to indicate the 
average value of f(z) through the height h of the repeating rectangle, i.e. 

and we note in passing that, for example, 

lfo ( / ( z ) ) = g  f(z) dz 

(vt(z)> = yr. 

Fig. 2 shows average and local stresses in a typical slice. 

2.1. The Longitudinal Shear Modulus of Unidirecfionaa FRC 

The stress-strain relations in shear for the matrix and fibre material are 

while from equilibrium considerations 

v~  = r~%lG", } 
v{~ = r{21G r, (1) 

r*2(z) = r~'z(z) = Z{z(Z). (2) 

The average shear strain in a typical lamina at z is given by 

v*2 = v.,(z)w%(z) + vr(z)v{2(z), (3) 

and accordingly the effective longitudinal shear modulus is given by 

G*2(z) = ~*~(z )l vT2 

{vm(z) +~i(z)~-' 
= \  G m GI ] , (4) 

and it is convenient to re-write this in the form 

G*2(z)/G" = S*(z), say 

={1 - ( 1 -  n)vs(z)} -1 (5) 

where r) = G " / G  I. 

Finally, by integrating through the height h of the repeating rectangle we obtain 

G*2/G" = (S*(z)). (6) 

The above analysis can readily be extended to include an FRC containing fibres with differing moduli. An 
example is given in Section 6. 

2.2. The Longitudinal and Transverse Modufi of Unidirectional FRC 

The direct stress-strain relations in the matrix and fibre material are given by 

e 7  = ( , ~ 7 -  v%-~)lE% 
m m rr l  m r n  

E 2 =(O" 2 --/"  0" 1 ) / E  , 

e{=o-{ /E{-  * t * (7) lt2i 0"2/E2,  

~ = 4 / e r 2 -  * , , /"12O'l/E1, 
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where, for example, /'{2 is the ratio (transverse contraction of fibre)/(longitudinal extension) due to a 
longitudinal stress. For an elastic material--as the fibres are assumed to be- - i t  follows from the Reciprocal 
Theorem that 

f f f f ~'El~E2 =/'12/E1. (8) 

Equilibrium of average direct stresses with component  stresses in a typical slice gives 

and 
o*(z) = v,.(z)0.?(z) + vt(z)0.{(z ) 

J 0.*(z) = 0.7(z) = ~ ( z ) ,  
(9) 

while the average direct strains are related to the component strains by 

l 
and e*(z) = v,,,(z)e2 (z)+ vt(z)Jz(z ). J 

Equations (7) to (10) enable us to relate the average direct strains to the average direct stresses in a typical 
slice: 

where 

E*(z) = 0.*(z) /E~(z)- / '* ,(z)0.*(z) /E*(z) ,  

e * ( z )  = o-*(z)/E*(z) -/ '*2(z)o'*(z)/E*(z),  

/ '*,(z)/E*(z) =/'*2(z)/E*(z). 

(I1) 

Finally, for the composite as a whole, we are now in a position to relate the average direct strains to the average 
direct stresses: 

where 

-- 0.1 ~ E l  -- / '210" 2 / E z ,  

E ~ - -  ca * * * * -- 0 " 2 / E 2  - / ' 1 2 0 . 1 / E l ,  

• ca__ * ca 
/ ' 2 1 / E 2  - / ' 1 2 / E 1 .  

(12) 

Now in determining E*  and E*  it is not, in general, simply a matter of integrating E*(z) and E*(z) through 
the height h because we must ensure that both the average direct strains s*(z) and e*(z) are the same for all 
slices. This problem did not arise for the case of shear because y*2(z) was the only non-zero strain. However,  
for the modulus E* a simple integration of E*(z) is valid if 

/ "  =/'{2 =/ ' ,  say. (13) 

This is because under an applied stress 0.*(z) the average strains are now such that 

e*(z) = - / ' e*(z )  (14) 

so that equality of longitudinal strains in all slices necessarily implies equality of transverse strains and, in 
particular, 

,,1"2 =/'. (15) 

With this simplifying assumption it may be confirmed that 

E*(z ) = vm(z )E m + vt(z )E { 

which may legitimately be integrated to recover the well-known result: 

E* ,, i = vinE +vtE1. (16) 



The simplest way to derive E* is via the plane strain modulus 

making use of the relation 

which yields 

F,*=E*/(1 * * -- I]121/21) ~ 

(17) 

(18) 

/ 1 v2\ -I 
E*=i-~2+-~l  ) , (19) 

in virtue of equation (15) and the last of equation (12). 
Now under conditions of plane strain (e* = 0) it may readily be verified that 

/ ~ * , ,  [v~'(z) +vt(z)V ' } 

where /~" = Era~(1 - uz), (20) 

~ = e ~ / ( l -  ~ r b'12~21). 

This result has much in common with equation (4) for the shear modulus and it is convenient to express it in like 
form: 

~*(z)/~. m = S*(z) 
= { 1  - (1 - n')vt(z)} -1 (21) 

where ~'=/~m//~tz. 

Finally, by integrating through the height h of the repeating rectangle we obtain 

E * / E  m = (S*(z)), (22) 

which is formally identical to equation (6) apart from the replacement of "q by "q'. 
From a numerical standpoint the determination of G*2,/~2", and hence E*, thus requires the evaluation of 

the same function, namely (S*(z)), but with differing values of the constants ~, ~'. 

2.3. Evaluation of (S*(z)) 

The numerical value of (S*(z)) for any given FRC array may, of course, be determined from S*(z) by simple 
graphical integration. Analytical or computer-programmed integration requires a functional expression for 
vt(z) and hence expressions for the chord length c.(z) of a fibre cross-section cut by a section at z. Such 
expressions for fibres of circular, but not necessarily equal, cross-section are given below. 

The equation for a circle of radius r. whose centre is at y., z. is given by 

(y _ y,)Z + (z - z,) 2 = rZ,, (23) 

and accordingly at a typical section z, 

y - y, = +{rZ~ - (z -z,)2}~-' 

and hence 

c.(z) 2 { r ] - ( z  z = - z . )  }2 .  



Note that this expression, and hence (S*(z)), is independent of the value of y, ;  this is a direct consequence of 
- -  Z n )  ~ rn,  the inherent approximation involved in the 'slicing technique'. It is also tacitly assumed that (z 2 2 

otherwise there is no intersection and c . ( z )  is zero. This possibility can be catered for simply by writing 

c . ( z ) =  2 ~ { r Z . - ( z  - z . )  2 '-}2, (24) 

where ~ stands for 'the real part of'. 
The width of the repeating rectangular element is w and the volume fraction v i ( z )  is thus given by 

vr(z) =lx c.(z) 
W n 

= 2 E ~{r~ - (z - z.)2} ½, (25) 
W n 

where the summation extends over all effective values of n; effective, because any segments of circles cut by the 
sides of the rectangle at y = 0, w can be combined to form a complete segment for purposes of calculation. 

3. Comparisons with Known Solutions 

We now turn out attention to comparisons with Symm's 6 accurate values of G * 2 / G "  for hexagonal and 
square arrays of fibres of equal circular cross-section. In this connection we note that for v I < 0.4 (which is 
generally outside the practical range of interest) the fibres are sufficiently sparse for the interaction effect 
between fibres to be so small that the distinction between G*2 for the hexagonal and square arrays is negligible 
and both are adequately given by Hashin's 8 simple model and formula: 

O*2 _ (1 + v t) + ~(1 - v t ) 
G "  ( 1 -  vt) + rt(l + vr)" 

(26) 

3.1. The Hexagonal Array 

A suitable rectangular repeating element for the hexagonal array is identified by the corner points O A B C  in 
the y, z plane in Fig. 4, where 

w = fibre pitch ] 

and t (27) 

h = --~- w. 

In terms of the fibre volume fraction v s the radius r is given by 

r = { 4 - J  
w ~2-~vrJ " (28) 

[It is convenient at this point to take w = 1, so that r, h, z are expressed as proportions of the fibre pitch.] The 
circles centred on O and A can be combined to form a single effective circle, as previously described, so that 
equation (25) becomes 

v f ( z )  = 2 ~ [ ( r 2 -  z2) ½ + {r z -  (z  - h)Z}k]. 
w 

(29) 

When r ~< lh, which corresponds to the range 

vr ~<----ff-- = 0.68 , (30) 



no single z-section cuts both upper and lower circles, and the two terms in square brackets in equation (29) do 
not exist simultaneously. The expression for vr(z) accordingly splits up into the following simple components: 

2 2 ~ 
v t ( z ) = - - ( r  - z  )~, 

W 

= 0  

= 2{r2--  (Z - h)2} ~ 
W 

over the range 0 < z < r, / 

over the range r < z < (h - r), 

over the range (h - r) < z < h. 

(31) 

The corresponding values of S*(z), given by equation (5), lend themselves to closed form integration to yield 

G*2 1 2a 1 , -- / -Tr+ 4 
c = 

( I + P @ /  
- -  tan-1 \1---~1 /' 

where a = , - 7 -  */ 

and ~ = A (1 - ~). 

(32) 

For values of vf greater than that given by equation (30), G*2/G m has been obtained by a simple computer 
program. 

The factors K by which the present values of G * 2 /G "  must be multiplied to bring them into agreement 
with Symm's accurate values are shown in Fig. 5. It is seen that K varies with v t and Gr/G '~ in a slight and 
smooth manner everywhere. The relatively large magnitude of K is a reflection of the fact that the slicing 
technique, which ignores the shear stresses %> cannot adequately represent those lines of shear which, in the 
hexagonal array, zigzag between adjacent rows of fibres. Markedly smaller values of K are to be expected for 
the square array where, from symmetry, there are no lines of shear which cross from row to row. 

3.2.  The  Square Array 

The analysis for the square array has much in common with that for the hexagonal array and accordingly the 
details will be omitted. Suffice it to say that the following closed form expression exists for all values of vi: 

G m= ( 1 - T / ) t  2 ~ t a n - l ~ l - p /  J' 

/ 4  
where K = ~-~ vf] (33) 

and p = K(1 - 77). 

The factors K by which these values must be multiplied to bring them into agreement with Symm's accurate 
values are shown in Fig. 6. 

4. Extension of Known Accurate Values for G~2/ G m 

In this section use is made of the present technique and the smoothly varying nature of the correction factors 
K to extend Symm's 6 results, which correspond to the circles in Figs. 5 and 6, to the following additional values 
of vf: 0.45, 0.50, 0-60, 0-65, 0.75. The method permits an accuracy of about 0.3 per cent. 

While the values of G*a/G"  given by Symm have been described as accurate, it is only fair to point out, as 
Symm has done, that the collocation procedure he adopted did not converge for certain values of v r and 
G t / G  ''. For the hexagonal array nonconvergence occurred at v t = 0.9 for Gr/G '' = 120, ~ ,  while for the 
square array nonconvergence occurred at v t=0 .7 8  for G r/G  m= 12, 20, 120, ~ .  The value of G*z/G "~ 
derived for the last combination cited is clearly in error as it is less (by about 1.1 per cent) than the present 
lower limit. The other values tend to show irregular variations in the factors K. Because of the resulting 
uncertainty these values are queried in Table 1 and omitted altogether from Table 2. 



5. The Transverse Modulus Ratio E ~ / E  m 

The transverse modulus E* is given by equation (19), in which E* is given by equation (16). Thus we find 

E ~ [. (/~2*/E ,'~) ~- 1 - v f + v f ( E ~ / E  m) (34) 

where a lower limit to/~* is given by equation (22). 
Now we have seen in Section 2.2 that the slicing technique yields a lower limit for the plane strain modulus 

ra t io/~. / /~m which is formally identical to equation (6) for the longitudinal shear modulus ratio G*2/G m. 
Accurate values for G*2/G m are also known and it is tempting to assume that, for given values of r/, -,/', the 
lower limits for G*2/G" and /~,//~m under-estimate the true values by the same amounts. With this 
assumption we can use Table 1 to determine 'corrected' values of E*/E  ~ and hence (presumably) more 
accurate values for E * / E  m. This has been done in Table 3 for the hexagonal array, making the further 
assumption that 

v =0"25, (35) 

and 

E~ / E m =/~r2//~m, (36) 

so that the fibres are effectively isotropic. For the particular case in which Er2/E m = 20, Chen and Cheng 3 
obtained numerical results for the hexagonal array which are based on a classical elasticity solution. Their 
derived variation of E* with v I is in excellent agreement with values obtained from Table 3, although their 
graphical method of presentation does not permit much accuracy. 

As for the influence of fibre anisotropy, it is clear that the transverse modulus of FRC depends more on the 
transverse modulus of the fibres E~ than on the more readily measured longitudinal modulus El .  The use of 
Table 3 requires a knowledge of EY2 (or more precisely/~I2//~m) and the derived values of E* differ little from 
those appropriate to anisotropic fibres with values of E l  which do not satisfy equation (36). An example is 
considered in Section 6. 

6. Examples 

The following examples illustrate accurate methods of interpolation in the tables of elastic moduli ratios, the 
influence of fibre anisotropy and the use of the slicing technique to investigate an FRC containing two different 
types of fibre. 

(1) Determine G*2/G m for an FRC in which v I = 0.65 and Gr/G '' (= 1/~/) =50.  
Equation (26) suggests that the following group of terms 

hereafter denoted by ~b(r/), will vary smoothly with "0. A simple calculation from Table 1 shows that as r/ 
assumes successive values of 1/6, 1/12, 1/20, 1/120, 0, the function qb(~) equals 1.038, 1.024, 1.020, 1.014, 
1.014 respectively. A plot of qb(~/) against r/indicates that q)(1/50) = 1.016, and hence 

G~*2 _ 1.016 

~ 1--~vJ 50 

=4.38.  

(2) Determine the influence of fibre anisotropy on the transverse modulus of an FRC in which 

v i = 0.65, /~/ /~m = 20, u = 0.25. 



If Et l /E  " =/~t2//~" the transverse modulus is given by Table 3: 

E * / E  ~ =4.07.  

However, if E t / E  " =  kU~/ff,,,, say, where k is a measure of the fibre anisotropy, it may be shown from 
equation (34) that as k increases from 1 to ~ the ratio E * / E "  increases from 4.07 to 4.14, an increase of less 
than 2 per cent. 

(3)' Determine G * 2 / G "  for an FRC containing fibres with differing moduli and volume fractions, identified 
by suffices 1 and 2, specified by 

and 

v,, =0.35 
1 

vrt = ~vt2, 

G~I'/ G " = 6 

Gf2 / G m = 5 0 .  

(so that vr~ + vt2 = 0.65), 

The fibres are of the same size and in an hexagonal array as shown in Fig. 7. 
Application of the slicing technique over the repeating rectangle shown dotted in Fig. 7 shows that over the 

range 0 < z < ½h the FRC has a longitudinal shear modulus appropriate to that determined in example (1): 

m 
[ G , z / G  ]o<z<½h =4"38. 

Over the range ½h < z < h, equation (4) becomes 

o 2(z) - {om(z) + vr,(z) + vr2(z)]- '  
- \ G "  G I1 G t2 ] 

where Gtn is the harmonic mean of G yl and G I2, i.e. 

(37) 

(38) 

G~ef 1[1 1 \ -1  

= 10.72. (39) 

Applying the interpolation technique of example (1) gives 

~(1/10.72)  ~ 1-025 

and hence, 

t r l  
[ G , 2 / G  ]½h<z<h= 3"36. (40) 

Finally, according to the slicing technique the overall value of G*2/G m is the arithmetic mean of equations 
(37) and (40): 

G*2/G m = 3.87. (41) 

This value is some 10 per cent less than that obtained by representing the FRC by one with fibres of equal 
stiffness calculated on a simple 'rule of mixtures' in which G f / G  " = 39. 
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7. Conclusions 

A simple analytical technique has been presented for obtaining lower bounds to the effective elastic moduli 
of unidirectional fibre reinforced composite (FRC) with any repetitive array of fibres. The unidirectional FRC 
is envisaged as being sliced along all 1,2 planes so that conditions of plane stress exist throughout and the 
stiffness properties of each vanishingly thin slice are readily determined in terms of the constituent properties 
of the fibre and matrix. The effective elastic moduli of the unidirectional FRC are obtained by suitable 
integration of such slice properties over a repeating fibre/matrix pattern. The lower bound for the transverse 
modulus is shown to depend on a similar function of the section properties as does the longitudinal shear 
modulus. Comparison with known accurate values of the longitudinal shear modulus shows that the technique 
under-estimates the modulus by factors of about 1.1 for the square array and 1-2 for the hexagonal array, 
depending on the fibre volume fraction and fibre/matrix stiffness ratio. By judicious use of such correction 
factors it should be possible to estimate the longitudinal shear modulus over a wide range of design parameters 
to within about 5 per cent; for the square and hexagonal arrays Symm's accurate but limited values have been 
augmented by new results which have an accuracy of 0.3 per cent. New results are also presented for the 
transverse modulus. 
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LIST OF SYMBOLS 

Chord length of fibre cut by section at z 

Young's modulus 

Plane strain modulus, see equations (17), (20) 

Shear modulus 

Height of repeating rectangle in fibre array 

Correction factors for longitudinal shear modulus 

Radius of nth fibre 

Defined by equation (5) or (21) 

Volume fraction 

Width of repeating rectangle in fibre array 

Cartesian coordinates, 0x in fibre direction, 0y, 0z parallel to w, h 

Coordinates of centre of nth fibre of circular section 

3' Shear strain 

e Direct strain 

• (~) Introduced in Section 6 

rl, rf  G " i  G I, F, ml E,~ respectively 

v Poisson's ratio 

o- Direct stress 

r Shear stress 

1fo  <...> -£ . . . d z  

Suffices or indices m, f refer to matrix or fibre 

Suffices l ,  2, 3 refer to cartesian axes x, y, z respectively 

Asterisk * refers to average or effective values 
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TABLE 1 

Values of G*2/G m for Hexagonal Array 

v t G t / G  ~ = 6 12 20 120 oo 

0-40 1.80 2"02 2.14 2-30 2"33 
0.45 1.95 2.23 2"37 2.59 2.64 
0.50 2.11 2.47 2-65 2"94 3-00 
0"55 2-30 2"75 2-99 3"37 3.46 
0-60 2"50 3'08 3"39 3.91 4"03 
0-65 2.74 3"47 3"89 4.61 4"78 
0.70 3"02 3"95 4-53 5"55 5"81 
0.75 3"34 4.57 5"38 6"93 7.35 
0-80 3.73 5.39 6"60 9.18 9"96 
0.85 4-22 6.58 8"54 13.70 15.70 
0.90 4.87 8.63 12.80 35"3? 56.2? 

TABLE 2 

Values of G*2/Gm [or Square Array 

v t G Q G  m = 6 12 20 120 oo 

0.40 1-81 2.03 2.15 2-31 2.35 
0.45 1.96 2.24 2.39 2.62 2.67 
0.50 2.13 2.50 2.70 3-00 3.08 
0.55 2.33 2.81 3-08 3.51 3.61 
0.60 2-56 3.19 3.56 4-19 4.35 
0.65 2.83 3.69 4.23 5.20 5.46 
0.70 3.17 4.38 5.21 6.93 7.43 
0.75 3-62 5.47 7.00 11.20 12.80 

TABLE 3 

Values o[ E*/E m for Hexagonal Array (v = 0.25) 

E ~ / E  m =6 12 20 120 eo 

0.40 1.84 2.10 2.25 2.45 2.49 
0.45 2.00 2-32 2.49 2.76 2.82 
0.50 2.16 2.57 2.78 3.12 3.20 
0.55 2.35 2.86 3.13 3.58 3.69 
0.60 2.56 3.20 3.55 4.15 4.30 
0-65 2.80 3.60 4.07 4.90 5.10 
0-70 3.09 4.08 4.73 5.88 6.20 
0.75 3.40 4.71 5.62 7.36 7~84 
0-80 3.80 5.56 6.85 9.71 10.60 
0.85 4-27 6.73 8.77 14.50 16.80 
0.90 4.90 8.75 13-00 36.9? 60.0? 
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FIG. 4. Repeating rectangle for hexagonal array 
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