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Summary 

Part I of the report exposes the dependence of asymptotic numerical convergence upon the eigenvalues of 
a perturbation matrix which is a function of the principal equation of motion for the calculation of two- 
dimensional flows in turbomachines. The mechanism of damping factor and its limitations are thereby exposed 
and presented graphically. The interpretation of convergence criterion is discussed and proposals made to 
improve the numerical solution by extrapolation. 

Part II discusses the convergence of solutions for prescribed $2 surface flows and axi-symmetric flows and 
shows that these are strongly influenced by the density-streamfunction relationship, leading to a Mach number 
limitation but being also dependent upon streamsurface twist. The principles of Part I and the theory of Part II 
are illustrated by numerical examples. 

Part III applies and illustrates the principles of Part I to prescribed S1 streamsurfaces of revolution. It is 
demonstrated that a density-streamfunction relationship similar to that of Part II controls convergence 
behaviour of these flows but that lack of streamsurface twist conveys superior properties which are only 
Mach number limited. 

In all cases the Mach number limitation coincides with the elliptic-hyperbolic boundary of the analytic 
problem. 

* Now at N.G.J.E. India. 
t Replaces A.R.C. 35 099. 
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PART I 

The Mechanism of Damping Factor 

by C. Bosman and M. J. Hill 

I. Introduction 

Finite difference solutions using fixed grids to compute the flow detail on S1 or $2 surfaces 1 in turbomachines 
usually derive from an equation of motion combined with the continuity equation leading to a second order 
partial differential equation for the streamfunction ~k. This equation together with suitable boundary conditions, 
when expressed in finite difference form and applied to each point of the grid, leads to a set of quasi-linear 
equations which may be represented after Marsh. 2 

Mff = C)(~b) (I-la) 

where M is a matrix of constant coefficients,/~ is the solution vector of streamfunction values at the grid points 
and C)(~) is a non-linear vector function of the $'s. Marsh, 2 Bosman 3 and Perkins 4 have developed schemes 
employing the form (I-la) as a basis of solution for $2 surfaces while Stanitz, 5 Smith, 6 Katsanis 7 and Hill a 
have developed similar schemes for $1 surfaces of revolution. In the numerical calculation the solution is 
obtained by working with the form 

= M-I~)(O) = ~(0), (I-lb) 

where the inversion of M is not carried out explicitly but some numerical equivalent is performed. 
The solution to equations (I-1)_is sought by an iterative scheme which adopts an arbitrary initial value To 

to develop a sequence of vectors ~ ,  from equations (I-1), given by 

~ , +  1 = t?(~,) (I-2) 

If as r ~ ~ ~ ,  ~ ~, then the scheme converges to the solution ~ and in practice the sequence is terminated 
when some arbitrary convergence criterion concerning ~ ,  is satisfied, the terminal vector of the sequence being 
accepted as a sufficient approximation to the solution. It is shown subsequently that the usual convergence 
criteria by themselves offer no guide to the proximity o f ~ ,  to the solution. The behaviour of the iterates may 
alternatively diverge until, if unrestrained, the temperature becomes negative leading to imaginary fluid 
densities or they may oscillate about a point which may or may not be the solution. 

Defining a difference vector ~r as 

r:,+, = ~ , + ,  - ~ ,  (I-3) 

then by equation (1-2) 

(I-4) 

and since the c's are continuous analytic functions of~,  then the Taylor expansions about the point of solution 

- C -  
~(~,)  = ~(~) + c ( $ ,  - ~ )  + : ( ~ ,  - $)~ + . . .  

Z !  
(I-5a) 

C m 

z !  
(1-5b) 

when differenced give by equations (I-2) and (I-3) 

~:r+ 1 = C~:r (I-6) 



neglecting second order  and higher terms, where 

c3c~(~) (I-7) 
C = Cij  = c ~ j  

Thus equation (I-6) provides a relationship between successive difference vectors ~ in the ne ighbourhood of 
the solution 

and 

~ r - ,  -- ~ "~ O. 

It is shown in the theory of matrix eigenfunctions 9"~°'~ ~ that if 2c, is distinct, then as r ~ ~ equat ion (I-6) 
approaches 

~:~+ l = 2of:r, (I-8a) 

where 2c~ is the eigenvalue of C having greatest modulus i.e. dominant  eigenvalue of C. The ~: and 2c, may be 
complex, in which case they occur as the sum of a conjugate pair when equation (l-Sa) leads to 

~:,+ l = 2pcbj  cos (to + ~bj) (I-8b) 

where 

and p~, the spectral radius of C, is defined as 

~r = b j  COS q~j (I-9) 

pc ~ 12cil (I-10) 

It can be seen from equations (I-8) and (I-10) that the condit ion for convergence, ~: ~ 0 as r ~ oo, is 

Pc < 1. (I-11) 

2. The Effect of Damping Factor 

When successive iterates ~:~ show no tendency to converge or when the rate of convergence is slow, it has 
been found in practice that sometimes convergence can be obtained, or its rate increased, by modifying the 
scheme given by equat ion (I-2) in the following way. A further equation is introduced which allows the change 
in two successive vectors ~ , ,  ~r+ l to be increased or decreased by a factor d in the following manner,  

and 

~'~ = ~(~)  (I-12) 

~ r + l  = ~r "F d ( ~ r -  ~r). (I-13) 

It can be seen that as ~ ,  + 1 ~ ~ r  then ~'r ~ ~ r  ~ ~ r -  ~ and equation (I-2) is satisfied. Equat ions (I-12) and (I-13) 
lead to 

~ r + l  ~--~ ~r  -F d(C(~r) -- ~r) (I-14) 

when by equations (I-3), (I-4) and (I-5) 

r:r+ 1 = r:r + d ( C  - I)~:r, 
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(where I = unit matrix) which may be written 

where 

~r+ 1 = D~r 

D - I + d(C - I)  

and the condition for convergence is now (cf equation (I-11)) 

pD < 1. 

The eigenvalues are defined by the conditions 1° 

I C - I 2 J  = 0 

and 

(I-16) 

(I-17) 

(I-18) 

(I-19) 

ID - 1401 = 0, (I-20) 

SO that substitution of expression (I-17) in condition (I-19) and rearrangement gives 

ID - l(d2c + (1 - d))l = O, (I-21) 

when comparison with condition (I-19) shows that the 4o are the linear transformation 

40 = d2c + (1 - d) (I-22) 

of the 2 c. Regarding the 2c as vectors in the complex plane, the transformation scales them by the factor d and 
displaces them to the right by the (1 - d). If then the 2 c all lie on and within the circular domain C of Fig. 1 
then the 40 all lie on and within the circular domain D for some 0 < d < 1. All possible circles, tangent to the 
lines shown in Fig. 1, are transformations of the domainC?for some value ofd  ( -  oo < d < oo), some ranges of 
d being indicated on the figure. For the circular domains shown (Fig. 1) the transformation may be written 

X o = dX~ + (1 - d) (I-23) 

and 

R o = d R  c. (I-24) 

The following important  observations are immediate:  

(i) for d = 0, any domain C contracts to the point D = A where all 4o = 1, 
(ii) if d < 0 then domains C and D lie on opposite sides of the point A and 

(iii) if the 2 c lie, some  to the  r ight  and  some  to the left o f  A so that the  domain C encompasses A essentially, 
then all transformed domains Dr-retain this same property. 

3. Convergence Behaviour 

The condition (I-18) for convergence is a statement that all the 2 D must lie within the unit circle p = 1 of 
the complex plane (Fig. 2). It follows immediately from (ii) above that if the domain C lies to the left of A then 
there is some range of d > 0 for which convergence of expression (I-12) will occur and if the domain C lies 
to the right of A then there is some range of d < 0 for which convergence will occur. From (iii) above it follows 
that if the 2c lie, some to the right and some to the left of A, then there is no value of d for which convergence 
is possible. 



If the circular domain  C (Fig. 1) is defined so that  it has a min imum radius R c which the whole spect rum 
2c lies on and within, then OE forms a convenient  upper  bound for Pc i.e. 

OE >~ 12c~1 = Pc. (I-25) 

In the two t ransformed examples  of Fig. 2 

(XD <~ O)po <~ OE and (XD >~ O)pD <~ OF. 

Hereforward p will indicate this upper  bound  unless the contrary  is indicated. 
Three special cases arise: 

(i) the limiting values o f d  for which convergence is possible i.e. d = dl (Fig. 3a), when 

- XD, + Ro, = - -  1 ,  ( I - 2 6 )  

(ii) the value of d which minimises Po i.e. d = din, when convergence rate is a m a x i m u m  (for this case the 
upper  bound and the true spectral radius coincide) when (Fig. 3b), 

X o = 0 (I-27) 

Ro,, = PDm = sin c~, (I-28) 

(iii) the value d = 0 which forms the opposi te  limiting value for convergence, when (Fig. 3c) 

R o = 0 (I-29) 

X o = 1. (I-30) 

It follows from the t ransformat ions  (I-23), (I-24) and the above that  where 

X o>~0 and d m > ~ d / > 0 ,  (I-31) 

Po = 1 + dl - ' 

and when 

X o<<.0 and d~>dm, (1-33) 

2 _  d 
Po = dl - 1, (1-34) 

which are plotted on Fig. 4. 
Repeated appl icat ion of equat ion (l-8a) for s i terations gives 

~r+s = 2 ~ : ,  0-35) 

for the t ransformed domain  D and using the upper  bound Po for 2oi, the number  of i terations s to obtain a 
given reduction ratio in the difference vectors g is by equat ion (I-35) 

s = ( log~'~+' l /  lOgpD, (I-36) 
F.r I I  

which is plotted in Fig. 5 for ~,+~/~, = 10 -3 .  Since Po is an upper  bound  for 2D~ then s must  be regarded as 
an upper  bound  on the number  of i terations required. In Parts  I1 and III  plots of s vs d where the earlier 
difference vectors ~,, g,+ 1 etc. are not in the ne ighbourhood  of the solution but cor respond to start ing with an 
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arbitrary initial value fro, are shown for turbomachine flows on prescribed S1 and 521 surfaces and for axi- 
symmetric flow. In all cases the form of Fig. 5 is apparent. 

In Fig. 5 the left-hand branches derive from the locus of F (Fig. 3b) while the right-hand branch derives 
from the locus of E, both of which are real. If in fact the 20 spectrum is such that Po always corresponds to 
the complex conjugate pair 2oi, at G and H (Fig. 3b) then repeated application of equation (I-8b) gives 

r ,+ ,  = (G+,)j = p~COS(cos + q~j) (I-37) 
COS ~j 

which shows a cyclic decay with s. However a standardised measure of the convergence rate may be obtained 
by choosing the initial vector (equation (I-9)) such that cos ~bj = cos (cos + ~bj) when by equation (I-37) 

as for ~o~ real (see equation (I-36)). 
In this instance 

where 

and 

Po = x /R  2 + X~ (I-39) 

dl) 
Ro = ~- 2 - dmm (1-40) 

X D = 1 d/d1 
dl/d m, (I-41) 

and the function is continuous. For a given domain of 2 c, the Po corresponding to F(X n >>. O) and E(X n <~ O) 
form an upper bound, while the Po corresponding to G, H form a lower bound. The bounds for s with d/dl 
are shown in Fig. 6 for ~ = 23-6 degrees. 

4. Extrapolating the Solution 

According to equation (I-35), the difference vectors g are in geometric progression in the neighbourhood 
of the solution when 20~ is real, so that the solution ¢/is available for a given g, if 2ol can be determined. It 
follows from equation (I-3) that 

~Dl~v = ~ ,  + - -  (1-42) 
1 - 2D1" 

Similarly when Po corresponds to a complex conjugate pair (2ol, 2b,), then 

(I-43) 

and as s ~ ~ the solution is given by 

*i = (*r)j + 2bj ~ cos (y + (~j) (I-44) 



where (i = ~ - 1 )  

• J'oi 
e l~' _ 

1 - -  ~ 'D i '  

6 e-i~ _ 2~, 
1 - -  Ao ,  

(I-45a) 

(I-45b) 

and 

gj + ihj = bj e i°~. (I-46) 

The 2 v may  be determined by any s tandard method  9'12 for example,  f rom the de terminants  

(real2m)l~";r ~"~'+'12o, =0 (I-47) 

o r  

ADI ) (~'r ~r) (~tr ~r+ 1) (~r ~r+ 2) 

(complex (~'r + 1 ~r) (~;Pr + i ~r + !) (~lr+ | ~r +2) 

1 2o, 2~, 
= 0. (I-48) 

It is also necessary to retain two successive est imates of 2o, in order  to determine whether  the real or complex 
case is appropr ia te  and addit ional  compute r  store for the three difference vectors ~,, ~,+ l, ~,+ 2. 

The convergence criterion normal ly  used to te rminate  the iterates * r  is of the form 

(L) j  - ( L -  (I-49) 

where c is an arbi t rary  small value. The f u n c t i o n f m a y  be the s t reamfunct ion itself ~b or some function of it 
e.g. velocity W or density p. 

If 2o, is real and f = ~ then the criterion becomes 

[ %)J ] < c (1-50) 
( ~ r ) j  i f  or all j 

and from equat ion (I-42), the depar ture  of ~ r  from the solution is given by 

~J - (~')J = pvc  (I-51) 
( % ) j  1 - PD 

which if Po ~, 1 is very large whereas if Po ~ 0 is very small. Clearly the criterion c itself is no guide to the 
proximity of ~ ,  to the solution and the convergence rate indicated by Po should also be taken into account.  
The above ext rapola t ion  procedure  effectively circumvents  this difficulty. 
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FIG. 1. The effect of damping factor d on the transformation of the domain of the 2c to 2~. 
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FIG. 2. Two typical domains of 20 for which the spectral radius p is less than unity. 

9 



FIG. 3a. 
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The doma in  of 20 for the l imit ing case of  convergence d = d I . 

FIG. 3b. 
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The d o m a i n  of 20 for which convergence is most  rapid,  when d = d,,. 
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The d o m a i n  of 20 cont rac ted  to the poin t  A for l imit ing convergence,  when d = 0. 
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The variation of the transformed spectral radius Po with normalised damping factor d/d~. 
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PART II 

Meridional Flow Calculations 

by C. Bosman 

1. Introduction 

General experience of inviscid flow calculations for a perfect gas have shown a clear dependence of con- 
vergence behaviour upon flow Mach number. Such experience has not of itself resulted in any significant 
contribution to an understanding of the relationship between Mach number and convergence behaviour, 
while the choice a priori of a damping factor for any particular calculation is even now arbitrary and based 
on user experience. Johnson and Bullock 14 reported the approach to convergence failure of schemes of the 
type (I-la) as Mach number approached unity while Geider,13 examining the irrotational, continuous problem, 
suggests that this type of scheme is liable to diverge if the maximum Mach number exceeds ~ .  

2. Analysis 

In equation (l-la), M represents the Laplace operator and some downstream boundary condition, being in 
the discrete problem a function of the flow passage and grid geometry only. Q may be written as an explicit 
function of p, ff and grid geometry in the cases of flow for which 

grad I = 0 = grad s (II-1) 

hence by equation (I-7) 

(II-2) 

Writing 

Dr - ~ r  ~ = k~,tp, (II-3a) 

and 

(8~p) = (II-3b) 
D z - ~ z  r k z , ~ i  

where the k's are derivative coefficients in the numerical operator, then for a perfect gas, p is determined from 

= ----1D , (I|-4a) 

- 1  
W~ = --7;-, D,, (II-4b) 

p t  

w ~ = w ,  ~ + w o  ~ + Wz ~, (Ii-5) 

(irrotational flow) (I4/0 + U ) r  = K ,  (II-6a) 

(rotational axi-symmetric flow) ( W  o + U)r = f(O), (II-6b) 

(prescribed surface flow) W o = - ( W r n  r + Wznz ) /n  o, (II-6c) 

(I1-7) 

14 



and 

L = /T / l /k -1  (II-8) 

Pl 17"11 

Equations (II-7) and (II-8) when subject to condition (II-1) lead to 

1 
p/a,/ ,d = k-2-f /Y~]d 

since U :~ function of if j, this is written in the abbreviated form 

dp - W d W  
- -  = - -  ( I I - 9 )  

p k R T  ' 

whereby equations (I1-4) and (II-5) using similar abbreviations and remembering that t' :~ function of ff~, 
lead to 

(irrotational flow) 

WdW _ M~dp + 
V ~  p 

D~dDr + D= dDz (II-10a) 
(kRT)(pt,)2 ' 

(rotational axi-symmetric flow) 

Dr dD r + D z dD z dd~ W d W _  M~ + + W o d~, (II-lOb) 
k R T  (kRT)(pt') 2 

(prescribed surface) 

WdW _ M 2dp + 1 dD~ + 1 
- -  - -  g - -  

k R T  p (kRT)(pt') 2 W~no] W~n~)D'dO~ 
(II-10c) 

where 

M 2 = W2 + W2 (II-11) 
k R T  

is the meridional Mach number squared and 

W 2 
M 2 - (II-12) 

k R T  

is the square of the relative Mach number. 
From equations (11-9) and (II-10) 

(irrotational flow) 

Op 1 1 fDr oD~ D ~3Dz~ 
a7 = M~ - 1 kRr(pC)2(  a~, + ~TdJ'  

(lI-13a) 

(rotational axi-symmetric flow) 

¢3p 1 [ OO~ ~={ 21 
M=--  1 kRT(pt')21D*-~ - 
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(prescribed surface flow) 

00  - M 2 -  1 k R T ( p t ' )  2 1 -  ~ r n % } D ~  + 1 - W~no I , ~ ) .  
(II-13c) 

It will be observed that for plane flow where 

Wo=O, no = 1 nr = 0 : n~ 

and 

M,, = M, 

the three cases above coincide. 
From equations (lI-13a) and (II-13b) it can be seen that for axi-symmetric flow (rotational or irrotational) 

]~p/?~91 ~ ~v as M~ -~ 1 while for prescribed surface flows equation (II-13c), Idp/?Ol ~ ~ as M ~ 1. These 
conditions coincide with the boundary separating elliptic from hyperbolic flows ~ and confirm Gelder's 13 
statement that the spectral radius tends to unity, usually as the problem becomes parabolic. Equation (ILl 3b) 
suggests that high swirl (W0) or strong gradients of absolute angular momentum (dr/dO) are likely to cause 
increasing I?p/?~bl in axi-symmetric flows, while increasing amounts of streamsurface twist for which n o ~ 0 

will produce similar effects in prescribed surface flows. 
Unlike the term ?~p/~?~, the terms (~Q/?~p)~, and (?Q/?O)p (see equation (II-2)) contain no singularities so that 

although they will influence C~ and hence ultimate convergence rate, they do not indicate an upper stability 
limit for M or a lower stability limit for no. 

3. Discussion 

Fig. I b depicts the convergence behaviour of a calculation of the type in equation (I-1 a) with various damping 
factors, for the inviscid flow of a perfect gas through the annular shaped nozzle of Fig. la, using the conformal 
grid there shown. Each curve shows the convergence behaviour for a streamsurface of given twist, the different 
streamsurfaces being prescribed in shape such that n r = 0, and twisted helically according to a formula 

0 = O(z only). 

These streamsurfaces may be regarded as part of a flow between closely spaced guide vanes where in general 
the flow has swirl and since the upstream gas state and meridional velocity are the same in all cases, the Mach 
number increases with the rate of twist as shown in Fig. 3 where only Mma~ is plotted. The general features of 
Fig. 5, Part I are evident in Fig. lb where it may be anticipated from equation (11-13c) that the coupled effect 
of increasing M with decreasing n o (i.e. higher rates of twist) will cause a rapid deterioration of convergence 
rate, requiring decreasing damping factors to be applied and producing a decreasing range of convergence with 
decreasing optimum rates. Since however each curve is for a different flow problem while the initial value is 
the same for all, the number of iterates to satisfy the given convergence criterion is not a certain measure of 
mean convergence rate and may only reflect an increasing departure of the initial value from the solution. 

The common convergence criterion c (equation (I-49)) for these flows is based on velocity W with a value 
of 10 -~ . Fig. 2 shows that the range of streamsurface twist for which solutions are possible using the undamped 
scheme is small, with a maximum throat helix angle of 40 degrees and corresponding maximum Mach number 
of 0.48. Reducing damping factor (Fig. lb) makes solutions possible for increasing amounts of streamsurface 
twist (see Table I). At a twist of 0.170 (rad/axial station) the solutions obtained at the damping factors 0-4 and 
0.5 differ in the region of maximum Mach number for the convergence criterion used (i.e. 10- 2). With increasingly 
fine convergence criteria Mma X decreases towards unity as agreement is approached for different damping 
factors. Refining the grid also produces a reducing Mm, x and suggests that attention should be paid to both 
these points if accurate detail at high Mach number is required. 

Damping factors in the range 0-44).5 would best serve these calculations from a point of view of maximum 
flow range with optimal convergence but this is an a posteriori observation and could not be concluded from 
the analysis of Part I and Section 2. The critical effect on maximum Mach number of increasing the twist can be 
seen from Fig. 3. a s  M m a  x --> 1, suggesting that slight disturbances of the calculation (e.g. round-off errors) 
will be increasingly amplified at points of high Mach number so that reducing convergence stability might be 
anticipated on these grounds alone. Fig. lb suggests that the 2(c) spectrum (see Part I) for these flows remains 
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within a region in the complex plane defined by ~ < 45 degrees (Fig. 3, Part I) since (dm/d~) is approximately 
constant until Mmax = 1 is closely approached but that the 2(c) domain is moving to the left thus requiring 
reducing damping factors. Clearly Mma . = 1 is not the limiting factor for convergence of the undamped cal- 
culation but M and n o are coupled in limiting the convergence at a subsonic M m a  x a s  equation (II-13c) would 
suggest. While the convergence l im i t  is associated with the singularity at M m a  x = 1 the apparent shift of the 
2(c) spectrum to the left appears to be associated with the surface twist through decreasing n o and W z (for these 
surfaces n~ = 0) and increasing values of W0 and nz (see  equation (II-13c)). This is strongly indicated by the fact 
that when the surface is plane (i.e. n o = 1, n,  = 0 = nz) the 2(c) remain less than unity for M < 1 until M ~ 1 
very closely. This is reflected in Fig. 4 which shows little change in the convergence behaviour for d = 1 with 
increasing Mach number. For plane and axi-symmetric flows generally it is a common feature that convergence 
can be obtained for M,, ~ 1 with d = 1. 

In the case of fully developed, axi-symmetric, irrotational, swirling flow in a parallel annulus, individual 
streamsurfaces may be calculated simply, thereby permitting identical solutions to be calculated either as 
twisted, prescribed surface flows governed by equation (II-13c) or as axi-symmetric flows governed by equation 
(II-13a). Fig. 5 shows for the undamped scheme the comparative behaviour of these alternative calculations 
in terms of the number of iterates (s) to satisfy a given convergence criterion and the amount of prewhirl (rV0) 
imposed. Because the initial value is so close to the solution at low prewhirls the very fine convergence criterion 
of 10 -6 (based on W) was necessary to show significant variation in s. The upstream gas state and meridional 
velocity were maintained constant throughout these examples. 

Both alternative calculations show similar excellent convergence behaviour at zero prewhirl. As with the 
previous annular nozzle flow the surface twist limits convergence at a very low M m a x (  = 0.310) corresponding 
to a prewhirl of = 60 m2/s. Streamsurfaces in this flow are not unique and are generated by the paths of particles 
passing through any arbitrary upstream contour that crosses the stream. The values of no depend upon the 
choice of this arbitrary upstream contour, for a particular flow case. The upstream contour in all cases was 
taken as a radial straight line. 

When the solution is calculated as an axi-symmetric flow, Fig. 5 shows that convergence is not limited by 
Mma x = 1 and is in fact still obtained at M m a  x = 1.94. In all these cases the meridional Mach number is 0-262 
which is far below the value of unity that equation (II-13a) suggests would limit convergence. 

Both the analytical and numerical results here presented are at variance with the conclusions of Gelder's ~ 3 
analysis which suggests a convergence limit for d = 1 of Mma x = , ~ / ~ .  

4. Conclusions 

Meridional, compressible flow calculations using a fixed grid and streamfunction as the variable are capable 
of converging to a solution using an unmodified scheme of calculation (i.e. d = l) up to a limit of unit rner id iona l  

Mach number for plane prescribed flow. Similar calculations for axi-symmetric irrotational flow continue to 
converge for true Mach numbers well in excess of unity when the meridional Mach number is subsonic. In 
both cases, theory suggests that the limit is at unity meridional Mach number and is associated with a singularity 
in (Op/a~k) at this condition which is not removed by the use of damping factor. 

Flow calculations on a prescribed surface with twist may not converge to a solution when using the un- 
modified scheme even for very low subsonic maximum Mach numbers. The limit in these circumstances is 
associated with the amount of surface twist but can be extended until the maximum Mach number is unity by 
a suitable choice of damping factor. As in the previous case a singularity now occurs in (Op/O~b) which is not 
removed by the use of damping factor. The theory presented, whilst indicating the convergence limit due to 
Mach number and dependence of convergence behaviour upon surface twist, offers no guidance as to a suitable 
choice of value for damping factor. However, general experience suggests that the range 0.4 to 0.6 will generally 
lead to convergence at near optimum rate. 

The Mach number limits of convergence behaviour coincide in all cases with the conditions which separate 
elliptic from hyperbolic flow. 
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TABLE I 

Iterates s to satisfy convergence criterion c ( w )  = 10 - z  vs damping factor d for the 
flow given at Fig. la 

Legend of Twist per axial Maximum helix 
Fig. la station (rad) Mma x angle (deg) 

0 0.340 0 
0 0-100 0.534 49.0 
A 0-150 0.815 59.8 
V 0.170 1-14, 1-20 62.9 

(0.4), (0.5) 
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PART III 

Blade-to-Blade Flow Calculations 

by C. Bosman, R. B. Deshpande and M. J. Hill 

1. Introduction 

In general, blade-to-blade flow calculations assume a prescribed streamsurface that is a surface of revolution 
and that outside the blade row the side boundary conditions are periodic.' Since it is assumed that the com- 
ponent of vorticity normal to the streamsurface is zero, the flow is often termed irrotational and Gelder's 13 
analysis applies to these cases. This type of streamsurface is curved but not twisted, as it often is in meridional 
flows (Part II), while the grid may be (as for meridional flows) conformal with the blade surfaces, 6 Fig. la, 
regular with blade surfaces as boundaries, 7"15 Fig. lb, or regular with regular boundaries, 16 Fig. lc. 

2. Analysis 

These flows are usually subject to the conditions 

g r a d I  = 0 = g r a d s  (llI-1) 

so that the analysis proceeds similarly to that in Part II for the prescribed streamsurface case but with the 
especially simple surface description 

n o = 0 (III-2a) 

and 

2 2 1. (III-2b) r / r  + Fl z = 

The velocity components are usually expressed in terms"of the meridional, (m) and tangential, (0) co-ordinate 
directions where 

W2m = W, 2 + W~, (III-3) 

so that from equation (I-lb) 

and writing 

C,j = M -  ~ Op,] ,~-~j + /a¢j]~ / , 
(III-4) 

Oq,) = k,,.~i D m -  ~m 0 Do =-- ; (III-5) 

then 

Wm = - 1 D  p-~- o, 

1 
wo 

W 2 _ U2) 

(llI-6a) 

(III-6b) 

(III-7) 
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and 

P~ (III-8) 

Equations (III-7) and (III-8) lead to 

since U ¢ function of ~bj, this is written in the abbreviated form 

dp Wd W 

p k R T  
(II1-9) 

where 

W 2 = W m  z + W02, (1II-10) 

hence by equations (lII-6), using similar abbreviations and remembering that t :~ function if ~bj leads to 

W d W  do 1 
- M 2 ' ~  + {D,,dDm + DodDo}, (1II-11) 

k R T  p (p t )2kRT 

when by equation (11I-9), 

O~ = M z - 1 kRT(pt)2 ( , ~  + D ° ~ "  (III-12) 

As the maximum relative Mach number M m a  x --~ 1, [?p/?~b[ ~ cz, as for meridional prescribed streamsurfaces 
but here there is no additional complication due to streamsurface shape (~f equation (II-13c)). It might be 
anticipated then that these flow calculations will possess superior convergence properties similar to axi- 
symmetric and plane meridional flows (Part II) and that the upper limit of convergence will be M .... = 1. 

3. Discussion 

Using a computat ion scheme of type in equation (I-la) and a grid as shown in Fig. lb, the flow through 
the turbine stator cascade of Fig. 2a reported by Whitney et a117 has been solved at zero incidence and an 
exit flow angle of - 67 .0  degrees for upstream Mach numbers of 0.184 and 0-231 (corresponding maximum 
Mach number of 0-59 and 0.86 respectively) over a range of damping factors. The same initial value has been 
used in both cases with a convergence criterion of 10 -3 based on density as used by Katsanis. 7 The number 
of iterates s to satisfy the convergence criterion can be seen in Fig. 2b where the form of Fig. 6 Part I is apparent 
and for the lower Mach number (dm/d 1 = 0-6) ~ = 36 degrees while at the upper level (dm/d 1 > 0.75) ~ > 50 
degrees. The reducing range of d for which convergence is possible is evident from Fig. 2b, which further shows 
that the undamped scheme (d = 1) is limited to solutions with Mm~ x < 0-59. In order to overcome this limitation, 
Katsanis 7 modified this type of program 18 to fit a patch streamline curvature solution in local areas of high 
Mach number which then also makes transonic solutions possible, it is however possible to proceed up to 
Mm, × = 1 merely by introducing a damping factor as in equation (I-13). 

Flow through this same cascade has been solved by using the same computation scheme but the alternative 
grid ~6 of Fig. lc. The flow conditions and convergence criterion are identical to those obtaining in Fig. 2b. 
The similarity of numerical behaviour using the different grids is apparent, the difference being mainly in the 
useful ranges of damping factor. Fortuitously it would seem, Fig. 3 shows that the grid of Fig. lc makes solutions 
up to Mm~× = 0-86 possible with the unmodified numerical scheme (i.e. d = 1) of equation (I-l) and subsequent 
calculations show that all flows through this blading up to Mm~x = 1 are possible with this grid for d = 1. Not  
only does d = 1 make these solutions possible but it also appears to be about an opt imum value for rapid 
convergence. However, Fig. 2b shows that the grid of Fig. lb offers similar opt imum convergence rates to that 
of Fig. lc for an appropriate choice of damping factor and further calculations show that all solutions up to 
Mmax = 1 are possible so that neither type of grid can claim superiority. 

24 



Because each term of equation (II1-4) is a complicated square matrix of values, the effect of alternative grids 
upon Cij is not predictable in any concise terms. However the similarity of Figs. 2b and 3 with regard to d,,/d~ 
and p,, (see Fig. 1.4) for a given flow, indicates that 

Pm = Pc d + (1 - d) (III-13a) 

= p'cd' + (1 - d') (III-13b) 

where Pc refers to one grid and P'c to the other, hence 

P'c = Pc + 1 - , (III-14) 

so that the effect of different grids upon the spectral radius of C is one of linear transformation by a single 
parameter (did') having the same form as that effected by the application of damping factor. This is to say that 
the two grids behave similarly with respect to convergence for a given Mma x when plotted against (d/d~). At 
low Mmax, d 1 = d~/2. 

The general form of the convergence behaviour for both the above cases is similar to that suggested by the 
analysis of Part I. As for meridional flows on a prescribed streamsurface (see Part II), increasing Mma x increases 
the spectral radius Po and for both types of grid the calculations fail to converge at Mm, X = 1 for any damping 
factor, as suggested by the analysis of Section 2. These observations are in keeping with those of Johnsen and 
Bullock 14 but contrary to the conclusions of Gelder's 13 continuous analysis which suggested a convergence 
limit of Mmax = l/v/2. As Gelder comments, his analysis is not strictly valid for the schemes here employed 
which are not discretised by a variational method, however the weakening of his conditions implied in this 
application would suggest that the value of the upper convergence limit o n  Mma x would probably be lowered 
rather than raised. 

Fig. 4a shows the rotor blade shape in the m - 0 plane of a radial inflow turbine with axial outlet (i.e. V,2 = 0). 
The convergence behaviour of flow calculated through this rotor using a grid of the type shown in Fig. lb 
can be seen in Fig. 4b. The flow has zero incidence with upstream Mach number of 0.28, approximately zero 
deviation and a n  Mma x of 0.58. The general level of Mach number and the maximum value are similar to those 
of the previous axial flow turbine stator. The convergence behaviour too shows remarkable similarity (cf. 
Fig. 2b) corresponding to similar values of ~. Experience has shown that generally for flows that are well 
subsonic, this form of grid has an upper limit of d in the region of unity with an optimum value in the region 
of 0.6 in contrast to grids of the type shown in Fig. lc which generally have an optimum d in the region of 
unity. The former type of grid generally requires considerable reduction in d for optimum convergence at 
increasing M . . . .  whereas generally the latter type of grid has an optimum d which remains relatively constant 
for increasing M . . . .  solutions being possible for all Mma x < 1 with d = 1. 

4. Conclusions 

The convergence behaviour of blade-to-blade (S1 surface) flow calculations with respect to damping factor 
is of the form predicted in Part I. The further analysis of Section 2 suggests an upper convergence limit of 
Mma x = 1 where M is the Mach number relative to the blades, which is borne out by numerical experiments. 
The deterioration of optimum convergence rate with increasing Mm,x(< 1) is at best slight and the apparent 
reduction may only reflect on increasing departure of the initial value from the solution. Similar observations 
were made for meridional flows without surface twist, where the limiting condition is determined by a similar 
expression. 

Alternative grid systems have a decisive effect on usable range of damping factor but the convergence be- 
haviour is closely similar if plotted in terms of d/d x . Undamped schemes and grids of the type used by Katsanis 7 
have a convergence limit at low subsonic Mma x which can be raised to unity by the introduction of damping 
factor. This upper limit of Mm, x = 1 is as observed by Johnson and Bullock ~4 but at variance with the value 
of ~ suggested by Gelder. 
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(a) 
o 

>, in  

s1 surface grid as used by D. J. L. Smith. 

(b) 

S1 surface grid as used by Katsanis, Deshpande. 

(c)  

o 

t 
S1 surface grid as used by M. J. Hill. 

FIG. 1. Various S1 surface grids used by different workers. 

26 



8.01 
Upstream 

boundary  > 

6'0 
c o n d i t i o n s  > 
T o = 2 8 8  = K Vz  

po = 1.255kg/m ~ > z,.0 

V e = O'0m/s ---->- 
2.0" 

Vz = 71.6 m/s 

9(deg) 

Radius of 

s t reamsheet  = 0"33 m 

-0.1 ( 

Gas c o n s t a n t { R l = 2 8 ? m = / s Z * C  

l sen t rop ic  index(k ]= 1"/, 

F low assumed i sen t rop i c  

0"2 \0"3 0-5 0-6 

\ \ 
\ \  \ 

0.8 z(t,4 xl0) 

Flow d i rec t i on  

imposed on 

downs t ream 

boundary  

Bout = - 67 0 ° 

FIG. 2a. Computat ion grid and flow conditions for axial turbine stator. 

20 

15 

S 

10 

1.o 

X 

c{ o) = I0 

X " X j 

- ~....x ~ 

i ,I i i I 

0"2 0.t. d 0"6 0 .8  ! .0  

FIG. 2b. Iterates s to satisfy convergence criterion c(p) = 10 -3 vS damping factor d for the flow and grid 
given at Fig. 2a. 

27 



Upstream 
boundary 
condit ions 

To=2 B8 ° K 

Po=1.255 kg/m s 

Ve= 0.0 m/s 

Vz= 71.6 m/s 

Vz 
>-  

60. 

2'0" 

" - ' - r - -  

- 0 2  - 0 . 1  

O(deg) 

0'2 \03 04 05 

\ 
\ 
\ 
\ 

Ftow di rect ion 
imposed on 
downstream 
boundary 

/3ou t = -67.0 ° 

06 z(Mxl0) 

Gas constant (R)=287m2/s2°C 

Isent rop ic  index (k) =14 

Ftow assumed isent rop ic  

Radius  of 

s t reamsheet=  033m 

FIG. 3a. Computat ion grid and flow conditions for axial turbine stator. 

5O 

40 

30 

S 

20 

1 0 -  

t ip}: 10 -3 

(0 

IJo 

% 

Ii 

I I I I 

0 05 1"0 15 2"0 
d 

FIG. 3b. Iterates s to satisfy convergence criterion c(p) = 10 -3 vs damping factor d for the flow and grid 
given at Fig. 3a. 

28 



O(rad) 

-0"1 

-0 .2  

FIG. 4a. 

I I 
0-01 0"02 

m ( f t )  

Geometrical details of radial inflow rotor blade. 

I 
0-03 

25 

20 

S 

15 

10 

t c(P)=l°- ; 
O 

I I r I I 
0"2 O't. 0.6 0 8  1"0 

d 

FIG. 4b. Iterates s to satisfy convergence criterion c(p) = 10- 3 vs damping factor d. Grid is of the type shown 
at Fig. lb. 

29 



b 

C 

d,d' 

dl 

dm 

e 

f 
g 

grad 

h 

i 

k 

kr,, k.,, k,,,, ko, 

F/r, Y/O, F/z 

r 

t 

t '  

C, Cij 

Cp 

D 

D~, D~, D.,. D o 

1 

K 

M 

M,. 

Mmax 

Q 

R 

T,T, 

U 

W 

X 

~,~'~ 

LIST OF SYMBOLS 

Modulus of complex number (see eq. (I-46)) 

M -  1Q r.h.s, of equations (see eq. (I-lb)) 

Convergence criterion 

Damping factors 

Limiting damping factor for convergence (see Fig. I-3a) 

Damping factor for minimum spectral radius (see Fig. I-3b) 

Mathematical constant (2-718) 

A function 

Real part of complex number (see eq. (I-46)) 

Vector operator (gradient) = V 

Imaginary part of complex number (see eq. (I-46)) 

lsentropic index of gas 

Numerical derivative operator coefficients for directions r, z, m, 0 (see subscripts) 

Components of streamsurface unit normal. Vector in directions, r, O, z (see subscripts) 

Radius 

Normal thickness of streamsheet 

Tangential thickness of streamsheet 

Derivative matrix of vector ? (see eq. (I-7)) 

Gas specific heat at constant pressure 

Domain of transformed eigenvalues (see Fig. I. 1) 

Space derivatives of ~, in directions r, z, m, 0 (see eqs. (1I-3) and (III-5)) 

Unit matrix 

A constant (prewhirl) 

L.h.s. operator matrix (see eq. (1-1)), relative Mach number 

Meridional Mach number 

Maximum relative Mach number 

R.h.s. of equation (l-la) 

Radius of spectral domain (Pt. I. Figs. 1, 2), gas constant (Parts I1, II1) 

Static temperature, temperature at arbitrary location 

Blade speed 

Relative speed of fluid 

(see Fig. 1.1) 

Angle subtended by spectral domain (see Fig. 1.3) 

Argument of complex number 

Modulus of complex number 

Difference vector of ff at rth iterate, and its transpose (see eq. (I-3)) 
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2c, 20 

P 

Pc, PD 

~j 

oJ 

LIST OF SYMBOLS (continued) 

Eigenvalue, and its conjugate 

Eigenvalues in domains c and D 

Spectral radius, gas density 

Spectral radii of domains c and D 

Argument of g:, (see eq. (I-9)) 

Streamfunction 

Part of argument ofgr+ 1 (see eq. (I-8b)) 

Subscripts 

0 

1 

C, D 

i,j 

r 

r, O~ z, m 

s 

Initial value 

Arbitrary value 

Spectral domains (undamped and damped) 

Tensor subscripts 

rth iterate 

Radial, tangential, axial, meridional components 

sth iterate 
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