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Summary 

The downwash induced by planar vorticity distributions has been computed by exact linear theory and by 
the R.A.E. Standard Method to examine the accuracy of the approximate method. The results on wings of 
infinite span with load distributions which are uniform across the span are used to derive a modification of 
the downwash equation of the approximate method. It is shown that this modification can explain some of the 
difference between the exact and the approximate results for the spanwise CL distribution of a plane wing of 
infinite span at an angle of incidence. The downwash distributions on finite wings of constant chord, unswept 
and sweptback by 45 degrees, with given load distributions, computed by the exact and the approximate method 
are compared. The lift distribution for wings of given shape derived by the approximate method is also com- 
pared with more accurate results. 

* Replaces R.A.E. Technical Report 73044-A.R.C. 34 766 
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1. Introduction 

The 'R.A.E. Standard Method '1'2 used for the design of swept wings with subsonic attached flow is based on 
linear theory; some non-linear effects are taken into account using specific theoretical twodimensional and 

threedimensional results. 
In the original framework, developed at a time when fast" electronic computers were not yet available, the 

velocity field predicted by linear theory was not determined by exact computation but some approximations 
were introduced. Recently, computer programs have been written, see e.g. Refs. 3 and 4, for evaluating the 
velocity field induced by given planar singularity distributions. We are, therefore, now able to examine the 
validity of the approximations made in the Standard Method. We use in these notes the label 'R.A.E. Standard 
Method'  for the original approximate solution of lifting-surface theory, based on Kiichemann's work. 2'5 The 
framework of the R.A.E. Standard Method can, of course, be retained when the velocity fields from planar 
singularity distributions are computed exactly. In this Report, we compare downwash distributions calculated 
by the approximate method with those calculated by exact linear theory; we also examine the accuracy of the 
approximate method when it is used to solve the direct lifting-surface problem (to find the load distribution for 
a given downwash distribution). 

The Standard Method makes use of the downwash induced by distributions of infinite swept vortices which 
are of constant strength along the span. In the past, the induced downwash distribution away from the centre 
section has not been computed exactly but only an approximation has been used. For the first two Birnbaum 
distributions of the vorticity along the chord, we have therefore computed the downwash at various spanwise 
stations for angles of sweep of 30, 45 and 60 degrees. These results are discussed in Section 2. 

To evaluate the downwash on finite wings of given load distribution, we have used the computer program 
developed by Sells. a The accuracy of the numerical results from the Sells program is such that, for the purpose 
of the present study, we may call them 'exact'. The results from Sells' program have least accuracy near the 
tip, but we shall see that there the difference between the approximate results and those from Sells' program 
are so large that small inaccuracies in the results from Sells' program do not affect the comparison. 

We consider two planforms: 
(i) an unswept rectangular wing of aspect ratio 6, 

(ii) a swept wing, q~ = 45 degrees, of constant chord and aspect ratio 6. 
The chosen load distributions are such that the type of chordwise distribution is the same along the span but 

CL varies spanwise. We have chosen two types of chordwise load distribution, namely, the first and second 
Birnbaum distribution, and two spanwise CL distributions, namely, the elliptic distribution and one where CL 
is constant over the inner 80 per cent of the semi-span and where CL decreases elliptically over the outer part of 
the wing, see Table 1. (With the second type of C L distribution, i.e. for the load distributions (3) and (4), the 
second spanwise derivative ~32/(~, ~)/~/,]2 is discontinuous at 11 = 0-8. The Sells program is written for load 
distributions for which the derivative ~2/(~, ~/)/~3r/2 is a continuous function. The discontinuity is important only 
when computing the downwash at the position of the discontinuity. For the load distributions (3) and (4), we 
do not therefore consider the downwash at the spanwise station r /=  0.8.) 

The downwash which these load distributions induce in the wing plane, z = 0, has been computed at the 
nine chordwise stations 

x - lYl tan ~b 1 - cos 0 
c 2 ' 

with 0 = ng/8, n = 0, 1 . . . . .  8, at various spanwise stations. The centre section, ~/ = 0, has not been considered 
since, for the chosen load distributions, the downwash for the swept wing in the p!ane z = 0 would be logarith- 
mically infinite. 

The formulae used in the Standard Method to derive approximate values of the downwash are given in 
Section 3.1. Numerical values from the approximate method are compared with the exact values, for the rec- 
tangular wings in Section 3.2 and for the swept wings in Section 3.3. 

The results obtained in Section 2, for wings of infinite span and uniform spanwise load distributions, suggest 
a modification to the original basic downwash equation of the Standard Method. This modification entails also 
a modification to the sectional lift slope used in the Standard Method in the derivation of the spanwise C L 
distribution. These modifications are discussed in Sections 4.1 and 4.2. 

For the special case of an uncambered wing of infinite span, sweptback by 45 degrees, at an angle of incidence, 
Hui 6 has calculated the span.wise CL distribution by solving the downwash equation of lifting-surface theory. 
Away from the centre section, Hui's values for CL are appreciably smaller than those of the Standard Method. 
In Section 4.3, we examine the cause of this difference. 



In Section 4.4, we consider how much the difference between the downwash from the exact and the approxi-  
mate method affects the results for the inverse problem of finding the load distribution for a given wing, in 
particular the spanwise C L distribution. For  this purpose, we use the load distributions derived by Sells (Ref. 10 
and unpublished work) by means of an iterative procedure,  in which the accuracy of a load distribution is 
checked by computing the downwash using the program of Ref. 3. We have also studied wings which are 
warped such that the chordwise slope is equal to the difference between the approximate  and the exact down-  
wash induced by the load distributions (1) and (2) of Section 3. 

We stress again that we examine in this Report  the downwash only at spanwise stations away from the centre 
section and only in the plane of the singularity distributions. We restrict the discussion to wings of constant  
chord. 

2. Downwash Induced on Swept Wings of Infinite Span by Load Distributions which are Uniform across the 
Span 

We use a system of rectangular coordinates x, y, z ; the plane z = 0 is the wing da tum plane, the line y = z = 0 
the centre section of a swept wing and the point x = y = z = 0 the apex of the wing. ~b denotes the angle of 
sweep. We consider the velocity component  v z parallel to the z-axis; G is positive if the velocity vector is 
directed upwards. We denote the downwash - G ( x ,  y, z) by w(x, y, z). 

The value of the downwash which is induced by a single swept vortex through x = y = 0 in the plane z = 0 
of strength F is given by the equation 

w(x,  y, z) - - -  F { x + ytan~b I1 _ ycos  ~b - x sin ~bl 

z 2 ~ - 2  +-)S + z  ? j + 4n~os~b ( x + y t a n ¢ ) 2  + _ _ _  
c o t  2 q~ 

+ x - y tan ~b 

(x - y t a n  ~ ) 2  ..1_ _ _  
Z 2 

cos 2 4 

y cos q~ + x sin ~b]'[ 
1 +  

For y ~> 0, we introduce the coordinate  ~, where 

(1) 

x = y tan ~b + 4, (2) 
and obtain 

w(x,  y, z) -- - -  

+ 

zZ 1 + 4ncos~b C z + _ _  
COS 2 q~ 

2y tan ~b + 4 I- 
z2 ,  [ 1 -  

(2y tan ~b + 4) 1 + - -  
COS 2 q~ 

y + ~sin~bcosq5 ] + 

x /y  2 + 2~y sin q5 cos ~b + ¢2 cos 2 4) + z 2 cos 2 ~b / 

Y(C°SZ ~b - sin2 q~) - ~ sin q5 c°s q5 ] }  

x / y  z + 2 4 y s i n  ~bcos q5 + 41 cos 2 q5 + z 2 cos 2 ~b " 
(3) 

For y ~ oo, we obtain from equation (3) the value for the downwash of the infinite sheared vortex;  w2o(~ , z)" 

w 2 o ( ~ , z )  - - -  
Z 2 2 n c o s ~ b ~ 2 + _ _  

COS 2 q~ 

For the centre section y = 0, we obtain from equations (3) and (4): 

(4) 

wG 0, z )  - w 2 o ( ¢ ,  z )  - - -  

For  y -¢ 0, z = 0, we obtain 

F sin ~b~ 2 

[ z2 ]v/~ + z2 2~ cos 4~ ~2 + c°~-4'J 
(5) 

w(~,y ,  0) -- WZD(~,0)= 
F tan q~ 

2n cos ~b ~[2y tan ~b + ~] 
x [x/y 2 + 2y~ sin q~ cos 4~ + ~2 cos 2 ~b - y]. (6) 
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We consider wings of constant  chord (which we choose as unity) and infinite span in a mainstream of velocity 
V 0` We choose Vo = 1 so that in the following w denotes the ratio w / V  o between the downwash and the velocity 
of  the free stream. We assume that the strength of the load distribution is constant along the span, i .e. /(x,  y) = 
- ACv(x ,  y) = l(0. The vorticity is related to the pressure difference by the relation 

l(O = cos 952~(0, (7) 

so that  the strength of an elemental strip of vortices, which are parallel to the leading edge, is 

7(¢) dn = 7(4) cos 95 de = ½1(4) d~, 

where dn is a length measured normal  'to the leading edge of the wing. Integration of equations (5) and (6) gives 
for the downwash the equat ions:  

sin 95 fo L 
w(4, O, z) - w20(4,  z) = ~ y(~') I( ~ _ ¢32 

(¢ _ ¢,)2 d4' 

+ Zco--U~ 1 ~/(¢ - ¢')~ + z ~ 
(8) 

and 

w(~, y ,  O) - w2o(~,  O) = 

1 f o  Y(4')(¢ tan 95 
= ~ - ~')[2ytan 95 + ~ - ¢'] x 

× [x /y  2 + 2y(4 - 4')sin ¢ cos 95 + (~ - 3') 2 cos2 95 - y] de'. (9) 

For  large values of y and 95 ~ 0, we may expand the integrand of equat ion (9) in terms of powers of (¢ - ~')/y 
and we obtain 

w(~, y, O) - w2D(~, O) -- 

sin coS,fo { _¢, } = 4try 3'(~') 1 - sin ~b cos 95~ ~y cos 2 95(1 - 2 sin 2 95) + . . .  d~' 

sin 295 1 - sin 2~ - cos 2 95 cos 295 + y(~') d~' + 
= 8zty ~yy "'" 

} + sin 295 + -~2 cos 2 95 cos 2~b + . . .  ¢'7(~') de' + . . .  
Y 

= sin 295(18rty [ ~-4y¢CP sin 295 + ... }f/7(¢,) de,, (10) 

where ¢c~, = j'~ ~'7(¢') d¢'/.[~ 7(¢') de' is the posit ion of the centre of pressure of the load distribution l(O. 
Equat ion  (10) shows that  for large values of y the difference between the downwash from a distribution of 

swept vortices and that of the corresponding infinite sheared distribution is to a large degree independent  of 
the chordwise distribution of vorticity and depends mainly on the total  circulation, j'o j ~(¢') de', as would be 
expected. Equat ion  (1 0) shows further that, for a given distribution ?~)  and large y, the term w(¢, y, 0) - w2o(¢, O) 
is largest for 95 = 45 degrees. 

For  the first and second Birnbaum distributions, ~(¢) = 2x /O  - ¢)/¢ and 7(¢) = 8 x / ~  - ¢), we have 
calculated values of w((, y, 0) - w20(¢, 0) by equat ion (9). For  95 = 45 degrees, some values are plotted in 
Fig. 1. We note  that, for y > 0.6 say, the values of w - w2n do not depend a great deal on the distribution 
Y(O; they are very similar to the approximate  values given by equat ion (10) for large y, shown by the dotted 
lines. The chordwise distribution of w - w2o is the more  dependent  on the distribution of y(¢) the closer the 
station is to the centre section. We have added in Fig. 1 values for w - w2o at the centre section y = 0 at 
the distance z = 0.04. Since the values of w(4, 0, z) - w2o(~, z) tend logarithmically to infinity for z ~ 0, the 
values of w - W2D vary rapidly with z. Therefore,  the values at z = 0.04 are only to indicate the type of down- 
wash induced at the surface of a wing with finite thickness. 



In Fig. 2, we have plotted values of w - w2D for various angles of sweep. We have mentioned before that it 
follows from" equation (10) that, with given 7(0 ( i .e .  given w 2 o ( O  but not fixed l(0, s e e  equation (7)) and large 
values of y, the term w - w 2 o  is largest for ~b = 45 degrees; Fig. 2 shows that this is true for y >~ 0.4. For small 
values of y, the value of (b for which w - w 2 o  reaches a maximum depends on the values of ~ and z and on the 
distribution Y(O. To illustrate this, we quote from Ref. 7 the approximate relation for the additional downwash 
at the centre section, w(~, 0, z) - w2D(¢, z), when 7(~) = A + B~ and z is small compared with ~, 1 - ~ and 1 : 

w(¢, O, z) - w2o(~, z) . . . .  s i n q ~ { ( A + B 0 1 o g 4 ¢ ( 1 - 0  } 1 l + s i n ~  
2~ z2 + B(1 - 2 0  + (A + B 0 1 O g l _ s i n ~ b .  (11) 

For ~ = 0.5, the maximum value of w - W2D is reached when cos 4) = I - l o g  z] -½. With z = 0.04 this gives 
~b ~ 56 degrees. We note that the value of ~b increases with decreasing z. Fig. 3 shows for 7(0 = 2,,/O - ~)/~ 
how w - w2v at the centre section at z = 0.04 varies with q~. 

It follows from equations (8) and (9) that the function [~b/l~bl][w - w2D] is independent of the sign of ~b for 
y = 0 but not for y ~ 0. To demonstrate how much the function depends on the sign of q~, we have plotted in 
Fig. 4 some values of w - w z o  for th = 45 degrees and for 4) = - 4 5  degrees. 

We consider now how the results given above compare with those obtained from the approximate downwash 
equation suggested by Kiichemann. The latter reads 

l fo~ , d~' wK(~, y, z) = ~ 7(~', Yl-~--Z~ + ½ tan (2(y)4~)7(~ ; y). (12) 

(Within linear theory, this equation has been suggested for values of z appropriate to the surface of the wing 
or (for y 4: 0) also for z = 0.) For the special case considered above, w - w2 t )  is thus approximated at the centre 
section and at y :~ 0 by the function 

wK - w2o = ½ tan (;ffy)~b)7(O (13) 

where 

/ 1  + [4 tanq~ / 2 ,, tan~b 
2(y) 

x /  
- (14) 

This implies that the function WK(~,  y ,  O) - W2D(~, 0) has the same shape for all values of y. We note from Figs. 1 
and 2 that this is a rather crude approximation for y > 0.1. A comparison of values for w - w z o  from equation 
(9) with those from equation (13) is made in Fig. 5. Some of the resulting changes to the twodimensional wing 
shape -, 

i 
1 

Az(~, y) -- [w(~', y, 0) - w2D(~', 0)] d~' (15) 

are shown in Fig. 6. We note that (for both chordwise load distributions), for q~ = 45 degrees, the approximate 
equation (13) produces less twist than the exact equation (9). For the first Birnbaum distribution, the exact 
camber lines for y = const, and y ~> 0.1 are very nearly circular arcs whilst the approximate camber lines 
(which are of the type m = 0.5 given in Fig. 4 of Ref. 8) have the maximum ordinate further forward, at ~ = 0.29. 
To appreciate the difference in camber sha~e, we quote the ty, p__e of twodimensional load distribution related 
to the camber lines" for the approximate camber line it is x/(1 - - ~ - ~ l o g  [(1 - ~)/~], whilst it is x / ~  ~ - ~  
for the circular arc. 

The spanwise variation of the twist, 

;0 Aa(y) = [w(~, y, 0) - w2/,(~, 0)] d~, 

is shown in Fig. 7, together with 

Aar(y) = 2 tan (2(y)~b). 

(16) 

(17) 



We note that A~K(y) predicts the type of distribution quite well, but does not give the actual values of A~ accur- 
ately. For the function 2(y) not only the formula given by equation (14) has been used but also a function which 
is independent of q~, namely the limit for 4) ~ 0 of the expression given by equation (14)" 

X(y) = ~/1 + (2xy) 2 - 2xy. (18) 

We have, therefore, plotted the values of Aa K for both formulae for 2. Fig. 7 may suggest that it is preferable 
to use for ;t(y) the values given by equation (18). This would however not be advisable for ~b > 60 degrees say, 
because equations (17) and (18) produce values for A~ K which increase monotonically with increasing 4) whilst 
we have learnt that, for large y, the exact A~ has a maximum value at ~b = 45 degrees. For small y, Fig. 2 sug- 
gests that A~ has the maximum value for ~b smaller than 90 degrees. We note further that the values of w - w2D 
for y = 0, z = 0.04, plotted in Fig. 3, do not show the large increase with increasing ~b as given by the term 
½ tan ~bT(~). 

3. Comparison of Downwash Distributions on Finite Wings with Given Load Distribution Computed by the 
R.A.E. Standard Method with those from Exact Linear Theory 

3.1. Prediction of the Downwash by the Standard Method 

For an unswept wing of large aspect ratio, the Standard Method is identical with Prandtl's theory of a lifting 
wing. The vorticity vector is split into the spanwise and streamwise components. The downwash at a point 
x, y produced by the spanwise vortices is approximated by the downwash induced by a twodimensional dis- 
tribution of vorticity which has the same strength as the threedimensional distribution at the spanwise station y. 
The contribution to the downwash which is induced by the chordwise component of the vorticity over the 
wing and by the trailing vortices behind the wing is assumed to be nearly constant over the chord of the wing 
and equal to half the downwash induced far behind the wing, i.e. in the Trefftz plane. 

Thus for an unswept wing with a given load distribution l(x, y) = 2y(x, y), the downwash w(x, y) is approxi- 
mated by the sum W2D(X, y) + ~i0(Y) where 

and 

1 C~'T~(Y)I(x,,y) dx' (19) w2dx, y) = ~ ,,x,.~(, x - x----; 

O~io(y) = ½w(x = o9, y) 

l l f  +l(x,,y,)a x, dy' 
8~ y - y'" 

w i n g  area 

(20) 

This approximation can be derived from the exact equation of linear theory : 

(y = W  + J ( x  - - 
S 

- 8 r ~ S y  y - y  L + . . . . . .  X - - X '  dx 'dy ' .  
s 

When this equation is approximated by 

fgf  fiX' , , r -  1 g ~tx, y ;]1 
w(x' Y' O) ~ U n ~  Y - Y ' L  + -  

the downwash can be written as the sum of two terms 

ly -ly'l I dx' dy', 
X X' _] 

(21) 

(22) 

f f  ' ' 1 I x~( ,  ,ix' 1 ~ ~ dx' dy' + ~ l(x', y) x-- 
w(x, y, O) ~ - ~  ~y y - y 4x Jx~ty) x - 

S 

amy) + w2o(x, y). (23) 



The Standard Method introduces some modifications to equation (23), but they are negligible for wings of 
aspect ratio 6 : we, therefore, ignore them here (they are of importance only for wings of small aspect ratio). 

For a swept wing, the Standard Method derives an approximate value of the downwash by splitting the 
vorticity vector again into a spanwise component and a chordwise component;  spanwise means here parallel 
to the leading edge. (For a tapered wing a mean sweep angle is chosen.) The downwash induced by the spanwise 
vorticity is again approximated by the downwash of a system of infinite kinked vortices for which the strength 
does not vary along the span and is determined by the chordwise load distribution at the station under con- 
sideration. The downwash from the chordwise vorticity (which includes the trailing vortices behind the wing) 
is again approximated by half the downwash far behind the wing. (For this contribution to the downwash 
Ktichemann z has proposed the use of 2n~e~o which, for wings of large aspect ratio, is equal to e~o. In Ref. 1 
the use of 2n(y)e~o has been suggested, but it is shown below (see Section 4.4) that this does not necessarily 
improve matters. In this Report, we have used 2n~eio = eio.) 

We have mentioned in Section 2 that Ktichemann has proposed to approximate the downwash induced by 
a distribution of infinite kinked vortices, of constant strength along the span, by the term given in equation (12). 
He has further suggested that, for a wing of finite span, the downwash from the spanwise vortices near the tip 
is similar to that near the centre of a swept forward wing. For a wing of finite span~ it has therefore been sug- 
gested that for Z(y) in equation (12) the relation 

(24) 

should be used, where s is the semispan and c the local wing chord. 
A load distribution which near the centre section is constant along the span produces at the centre section, 

y = 0, an infinite downwash in the plane z = 0, but finite values for z 4= 0. The relation (12) has been suggested 
as an approximation to the finite downwash at the surface of a wing with finite thickness. In this Report, we 
want to compare only values of the downwash .in the plane z = 0; we therefore exclude comparisons at the 
station y = 0. 

When we use relation (7) between ~(~, y) and l(~., y) we obtain for the approximate values of the downwash on 
a swept wing the equation: 

w(~, y) 4n cos 4~ 1(4', y) + tan (Z(y)~b) . . . .  = -g + e i0 (y) .  (25) 

We note also that for a swept wing where the bound vortices are unswept at the centre section, as e.g. for a 
plane wing at an angle of incidence, the following modification to equation (25) has been suggested in Ref. 2 : 

1 t L d~' , tan (Z(y)~p)l( ~ 
w(~, y) - 4n cos 4)v(Y) ,Jo I(~', y ) ~  + 4 cos 4v(y) ' y) + eio(y), 

(26) 

with 

cos ~b 
cos ~p~,(y) - cos (2(y)(b)' (27) 

This relation implies that the term W2D is derived from a system of vortices with a sweep angle 4v, 
As stated in the introduction, we have chosen four load distributions, (1) to (4) (see Table 1), and have com- 

puted for these the approximate downwash from equation (25). For the load distributions (1) and (2), which 
involve an elliptic spanwise variation of CL, e~0 = n/2A ; for the load distributions (3) and (4), a formula for 
ago(q) is derived in the Appendix. 

3.2. Discussion of Results for the Rectangular Wings 

For the four load distributions considered in this Report, the values of the twodimensional contribution 
W2D(X, y) and values of eio(Y) are quoted in Table 1, so that for the rectangular planform the values of w(x, y) 
according to the approximate equation (23) is known. The exact values of w(x, y) computed from equation (21) 
are given in Table 2. 



We may mention that, for the rectangular planform and the load distributions (1) and (2), Ray and Miller 9 
have computed values of the downwash by a more accurate method than the Sells program, the agreement 
between the results of the two methods is excellent except very close to the tip. 

In Fig. 8, we have plotted some exact downwash distributions together with the corresponding approximate 
distributions. We learn from Fig. 8a that, for the load distribution (1), the difference between the approximate 
and the exact downwash over the inner part of the wing, I~/I ~< 0.5, is at most 7 per cent of the local downwash, 
but at the outboard station r/ = 0-9, the maximum difference increases to 23 per cent. For the load distribution 
(3), the corresponding values are 4 per cent and 29 per cent. 

We note from Fig. 8b that, for the load distributions (2) and (4), the difference between the exact and the 
approximate downwash is again small over the inner wing and larger on the outer wing. The exact downwash 
is zero at certain points of the wing so that we cannot express the difference as a percentage of the exact value. 

The aim of a threedimensional wing theory is to estimate the threedimensional effects, i.e. the difference 
between the downwash on the finite wing and the local twodimensional downwash. For a general wing, the 
latter is the downwash of an infinite sheared wing with the sweep and the chordwise load distribution of the 
spanwise station under consideration. In the following we therefore examine the difference between the down- 
wash on the wing, w(x, y), and the twodimensional value, WEo(X, y). When we examine the error in the three- 
dimensional effect, i.e. the term w - w2o - ~o ,  then we have of course to remember that the error in the actual 
pressure distribution on the wing caused by the error of the camber shape is related to w - Wan - Cqo measured 
in terms of w and not in terms of w - WzD. In Fig. 9, we have plotted the ratio between the difference w(x, y) - 
wzo(x,  y) and Cqo(y). In the Standard Method this ratio is taken as equal to one. We note that near the centre 
of pressure of the load distributions (Xce = 0.25 for the distributions (1) and (3), Xcv = 0.5 for the distributions 
(2) and (4)) the approximate results are close to the exact results. The chordwise distributions of (w(x, y) - 
w2o(x, y))/Cqo(y ) for the load distributions (1) and (3) (and for the distributions (2) and (4)) are surprisingly 
similar even though the spanwise distributions of Cqo for the load distributions (3) and (4) (some values of ~0 
are quoted in Fig. 8 and in Table 1) differ a great deal from the constant value of cq0 which corresponds to the 

distributions (1) and (2). 
Since the downwash upstream of the wing tends to zero and downstream tends to 2~io, it is to be expected 

that the term w(x, y) - w2o(x, y) increases along the chord. The chordwise variation of(w(x, y) - w2o(x, Y))/~io(Y) 
is stronger on the outboard part of the wing than on the inboard part. To explain this, we consider a single 
bound vortex at x = 0.25, - s  < y < s of strength F(y). The related trailing vortex sheet induces at x, y the 

downwash 

1 fs OF ( x - O . 2 5 ) d y '  
w(x, y) = w(x = 0.25, y) + ~ j_~  Oy' (y - y ' ) x / ( x  ~ 0~25)~ + (y - y,)2 (28) 

• Values of 2w(x, y) /w(x  = oo, y) are plotted in Fig. 10 for the elliptic distribution F(y) = ~ - yZ and for the 
distribution F(y) = const. We note the similarity of the curves for the two rather different distributions of 

F(y). 
For  the load distribution (I) (or (2)) where the chordwise distribution is of the same type across the span, we 

can use the results derived for an isolated bound vortex (equation (28) and Fig. 10) and determine by integration 
with respect to x the value of the downwash, Wsrn v ,  induced by the streamwise vorticity component related to 
l(x, y). For the load distribution (1) and r /=  0-5 and t / =  0.9, we have found that Iw - w2o - WSrR Vl is less than 
0.05, whilst w - w2o - cq0 = 0.21 for r/ = 0.9 and ~ = 1. These results and the general similarity between the 
curves of Fig. 10 aridthose of Fig. 9 suggest that, for the load distributions considered, the difference between 
the exact downwa~h and the downwash computed by the approximate equation (23) is due mainly to an 
inaccurate approximation of the part of the downwash which is induced by the chordwise vorticity and is due 
less to an inaccurate approximation of the part of the downwash which is induced by the spanwise vorticity. 
The figures suggest that for a rectangular wing we may improve the Standard Method by modifying the term 
which is related to the chordwise vorticity by taking instead of g~o(r/) a term of the form 

~io(r/)[1 + f (q  ; A)g(x)], 

so that equation (23) would be replaced by the approximation 

w(x, y) = wz~(x, y) + ct~0(y)[1 + f(r/, A)g(x)]. (29) 

Even though a comparison of Figs. 9a and 9b shows that the function (w - WZD)/~0 is somewhat dependent on 
the type of chordwise load distribution, one may expect that, with the same function g(x), equation (29) would 



give an improvement on equation (23). Such an improvement was demonstrated by Sells, 1° when he solved 
the inverse problem of calculating the load distribution of a rectangular wing of given shape. Sells has used for 
g(x) the function 

g(x)  = -0 .5  + 2.5x - x 2. (30) 

One can expect some benefit from varying the function f ( r  1, A) with the aspect ratio A of the wing. Sells 1° 
has suggested the function 

f ( q ,  A)  = 
1 4- A(1 -InD" (31) 

Some further guidance for the variation off(r/, A) may be obtained from the distribution of 2w(x ,  y ) /w(x  = :~,  y) 
given by equation (28) for the distribution F(y) = const. ; this reads 

1 + r~ (x  - Xcp)/s 1 - 11 (x  - Xcp)/s 2w(x,y) - 1 + + _ _  

+ (1 - r/)2 + (1 + r/)2 

(32) 

We have mentioned above that the values of w - W2D differ somewhat from those for Wsr R v. This is of course 
due to the fact that the spanwise vortices are not infinitely long and that their strength varies along the span. 
We have to remember that the results discussed refer only to load distributions where the chordwise distribu- 
tions are of the same type across the span. For load distributions where the type of chordwise distribution 
varies fairly rapidly along the span, we may expect that the twodimensional downwash is not such a good 
approximation to the downwash from the spanwise vortices. 

3.3. Discussion of the Downwash Distribution on the 45 degree Swept Wings 

For the swept wings, some exact downwash distributions are plotted in Fig. 11 (see also Table 3) together 
with the approximate results from equations (25) and (24). If we compare Fig. I 1 with the corresponding figure 
for the unswept wing, Fig. 8, then we note that the approximate method represents the sweep effect over the 
inner wing fairly well. 

To examine the threedimensional effects in more detail, we have again plotted the difference w(~, y) - w2n(~, y), 
see Figs. 12 to 14, where for a spanwise station y 

1 ( '  , d~' 
w2D(~;Y;0) - 4re c o s ~  Jo  l(~ ;y)~ _ ~' (33) 

is the downwash of an infinite sheared wing with the sweep angle ~b and a load distribution which is uniform 
across the span and varies chordwise as the distribution 1(¢ ; y) of the station considered. 

Fig. 12 shows that, for the inboard part of the wing, the additional downwash for the swept wing is larger 
than for the unswept wing and that the mean value is fairly well predicted by the approximate method; but 
the chordwise distribution of the additional downwash is not so well represented. ~ 

The difference between the exact and the approximate values for w - w2D, at the inboard station q = 0.1, 
i.e. y / c  = 0.3, Fig. 12, shows a strong resemblance to the corresponding term for the wing of infinite aspect 
ratio, see Figs. 5 and 1. We have therefore determined the difference 

n) = (w - w2o)A = 6  
CL(y, A = 6), 

t w  - w 2 o ) A  = 

= w ( ~ , y ; A  = 6) C L ( y ; A  = 6 )  
Ct.(A = oo) w(~, y; A = oo), (34) 

i.e. the difference between the downwash on the finite wing and the downwash on a swept wing of infinite 
aspect ratio with uniform load distribution across the span which is the same as the chordwise load distribution 
of the finite wing at the spanwise station q under consideration. For  the unswept wing the function F(~, q) is, 
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of course, the same as w - w2o. We have plotted some values of the function F(~ ,  rl) = w - w ( A  = m) in Fig. 
15. According to the approximate method, the values of the function F(~, r/) for the inboard part of the wing, 
0 < lYl < 0.5, are expected to be approximately equal to e~o(r/), both for the swept wings and the unswept wings. 
We have therefore plotted in Fig. 16 values of the ratio between F(~, q) and Cqo(~/). 

Let us consider first the results for the inner part of the swept wings with the load distributions (3) and (4), 
plotted in Figs. 15a and 16. We note that the values of the function F(~ ,  rl) = w - w ( A  = o~) for q~ = 45 degrees 
are much smaller than Otto, in contrast to the values for tk = 0, shown in Fig. 9. For Irtl ~< 0.5, the ratio between 
the values of F(¢, q ; ~b = 45 degrees) and those of F(¢, r/; ~b = 0) varies between 0.31 and 0-38. 

The fact that the values of F for q5 = 45 degrees are consistently smaller than those for tk = 0 is mainly 
due to the fact that on the swept wing the trailing vortices are staggered (i.e. they start at different x-values). 
This does not affect the downwash far downstream, i.e. w ( x  = ~ ,  y) = 2e~o(y), but it has an effect on the down- 
wash at the wing. To demonstrate this, we have determined the downwash from the trailing vortices which 
originate from one swept bound vortex at ~ = 0.25, - s  < y < s of strength F(y). In Fig. 17, we have plotted 
2w(~, rl)/w(~ = ~ ,  y)  for the two cases F(y) = ~/s 2 - y 2  and F(y) = const. For r /=  0-5, we have added the 
curves from Fig. 10 for the unswept bound vortex. A comparison of the corresponding curves in Figs. 10 and 
17 shows that the trailing vortices produce a smaller downwash on the swept wing than on the unswept wing. 
For the constant F(y) distribution, the ratio between the values of w(~, q) for q~ = 45 degrees and ~b = 0 is 
about 0-3 for ~/= 0 and 0.4 for r /=  0.5. These values thus explain the dependence of the function F(~, r/; q S) 
on the angle of sweep for the load distributions (3) and (4). The curves in Fig. 17, for F(y) = const., suggest 
also that, as for the unswept wing, the downwash from the chordwise vortices increases with ¢ and with [r/h 

(see  also Table 1 for ~o(r/)). 
We consider now the values of the function F(~, r/) for the load distributions (1) and (2). The trailing vortex 

sheet which originates from a single swept bound vortex with the load distribution F(y) = x/1 - r/2 pro- 
duces near ~ = 0-25 an upwash which is logarithmically infinite at ~ = 0.25. This infinity disappears, of course, 
when we deal with a chordwise distribution of bound vortices. When we consider a chordwise distribution 
of bound vortices for which the strength varies as ~/(1 - ¢)/~ and use the values of 2w(~, rl)/w(~ = ~ ,  rl) 

given in Fig. 17 for F(y) = x/1 - 112, then we can compute values of that part of the downwash which is pro- 
duced by the streamwise vorticity (the chordwise and trailing vortices), W s r R v ,  of the load distribution (1). 
Some values of WSTR V are plotted in Fig. 18. 

Before we discuss the results given in F!g. 18, let us draw some general conclusions from Fig. 17. We have 
mentioned already that the trailing vortex sheet which originates from a single swept bound vortex of strength 
F(y) = x/1 - r/2 produces an upwash near ¢ = 0.25 (the position of the bound vortex), the magnitude of which 
increases with the angle of sweep and with increasing values of I~1. This fact has several consequences with 
respect to the downwash Wsr R v from the streamwise vorticity of the load distributions (1) and (2): (i) the reduc- 
tion in the downwash from the streamwise vortices due to the sweep of the spanwise vortices is larger for the 
elliptic spanwise load distribution than for the constant spanwise distribution, (ii) for the elliptic spanwise 
load distribution, the variation of the downwash W s r  R v with ~ is stronger for the swept wing than for the un- 
swept wing, (iii) for the elliptic spanwise load distribution and larger values of r/, an upwash is produced at 
the values of ~ where the strength of the spanwise vortices is large, which does not happen for the constant 
spanwise load distribution (for ~ > 0.6 say, the downwash of the trailing vortices originating from a single 
bound vortex increases with I~1 and this effect reduces to some degree the effect of the increasing magnitude of 
the upwash with increasing I~ti). The dependence of the downwash from the streamwise vorticity, WsT R v ,  on 
the angle of sweep and the type of load distribution explains to a large degree the variation of the function 
F(~,  ~l) = w - w ( A  = ~ )  with ~ and r/, with the angle of sweep and with the type of load distribution. 

Fig. 18 shows that the values of F(~, r/) and WsT R v differ somewhat and that the difference increases with the 
angle of sweep and with [r/[. This difference is produced by the spanwise decrease of the strength of the spanwise 
vortices. We note that, for the swept wing with load distribution (1), the spanwise variation of the spanwise 
vortices produces an upwash. To explain this, we compare, at a point 4, r/, the load distribution of a section 
normal to the leading edge with the chordwise distribution at r /=  const, and find that the values of ~ forward 
of the point considered are reduced and those rearward are increased. The twodimensional downwash related 
to the load distribution of the section normal to the leading edge is smaller than the downwash for the load 
distribution of the section I~1 = const. For wings of given aspect ratio, this effect becomes larger with increasing 

values of ~b. 
In the Standard Method, the tip of a swept wing is treated as if it had an effect on the downwash similar to 

that of the centre of a swept forward wing. Some justification for this may be derived from Fig. 15 where it is 
shown that the behaviour of F(~, r/) on the outboard part of the wing is somewhat similar to that of w - w z o  

for swept forward wings of infinite aspect ratio with the centre section at the tip of the finite wing, see  Fig. 4. 
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In the Standard Method, no explicit account is taken of the fact that the downwash at the wing, induced by 
the streamwise vortices, depends on the angle of sweep. Thus, for a swept wing and an unswept wing with the 
same load distribution l(~, ~/), the total downwash is expected to differ by (1/cos ~b - 1)w2n(¢ , ~/; ~b = 0) and 
a term proportional to the local load I(¢, r/); for a wing of constant chord, the Standard Method assumes that 
the factor to l(~, q) in the second term changes sign at mid semispan, q = 0.5. 

To show how far the latter term does arise in practice, and how it varies along the span, we have plotted 
in Fig. 19 the term 

k(~, q) = [w(~, r/) - w20(¢ , r/)],~=45o - [w(~, q) - w2o(( , t/)]o=o. (35) 

The figure shows that the distribution of k(~, t/) over the outer wing is similar to that on the inner wing with 
the sign reversed. We are not surprised that the chordwise distribution of k(~, q) does not resemble strongly 
the distribution of/(( ,  ~/). For the part of the wing near the centre section, the term k(~, r/) is mainly produced 
by the central kink of the spanwise vortices and we have seen in Figs. 1 and 5, for the wing with infinite aspect 
ratio, that, at least for r/:~ 0, the term w - wzo does not vary as strongly along the chord as the load distribu- 
tion, 1(4, q). 

Finally, we have plotted in Fig. 20 the mean value 

fo J~(r/) --- k(~, t/) d~ 

= Aa(r/; ~b) - Aa(r/; q5 = 0), (36) 

derived from the exact values of w together with the approximate term from equation (25), 
tan (2(y)ep)CL(~l)/4 cos ~b. We may note that for the present examples the approximate value of/~ at the centre 
section has the value k(r/= 0) = 2.1; the exact value (derived from the downwash in z = 0) is logarithmically 
infinite. Fig. 20 shows that over the inner part of the wing the exact value of k varies in a way similar to the 
approximate curve; the similarity is stronger for the load distribution (3) than for the load distribution (1). 
We have mentioned above, see Fig. 17, that, by ignoring the fact that the trailing vortices are staggered, the 
approximate method derives for the swept wing too large a downwash from the trailing vortices. This error is 
partly cancelled, at least over the inner wing, by the fact that the approximate downwash equation ([2) produces 
for the spanwise vortices a smaller value of Aa than the downwash from equation (9), see Fig. 7. The use of the 
exact equation (9) for the spanwise vortices with the approximate value alo(r/) for the downwash from the trailing 
vortices would thus increase the error in ~(r/), at least for the calculated examples. 

4. The Load Distribution on Uncambered Wings at an Angle of Incidence 

4.1. A Modified Approximate Downwash Equation 

The Standard Method deals also with the task of determining the load distribution on a wing of given shape, 
in particular with the task of determining the spanwise C L distribution. The method is based on equation (26). 
We have seen for the wing of infinite aspect ratio with uniform spanwise load distribution that the downwash 
given by the approximate equation (12) differs appreciably from the exact values, in particular near the trailing 
edge. We know that in inviscid flow the slope of the wing near the trailing edge is decisive in determining the 
circulation past a section. We would, therefore, like to assess the importance of this difference. In the following, 
we want to examine how the C L distribution derived by Ktichemann's method would change if we were to use 
instead of equation (12) a different downwash equation. 

We therefore retain Ktichemann's approach and approximate the downwash, produced by the spanwise 
vorticity of a load distribution which varies along the span, by the downwash produced by a distribution 
which is constant along the span and has the same chordwise distribution as the varying distribution has at 
the station considered. 

A procedure of similar simplicity to Ktichemann's method can be obtained from an approximation of the 
form : 

;ol w(~, y, O) = ~n Y(~" y) -- + f ( y '  c~)7(~' y) + [g(y' qS) -- (~ - ~ce)h(y, ~b)] y(~', y) d~', (37) 

where the functionsf(y, ~b), g(y, ~b), h(y, ~) do not depend on 4. Equation (37) is an approximation to the values 
of the downwash given by equation (9). A possible set of values for the functions f, g, h have been derived from 
the exact values of w, computed for Y = 2x/~ - ~)/~ and 7 = 8 x / ~  - ~) for y/c t> 0.1. These values have 
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been extrapolated to y = 0. Some values are given in Table 4. A comparison of the approximate values for the 
downwash from equation (37) with the exact ones and with the values from equation (12) (which corresponds 
tof(y, 05) = ½ tan (2(y)05), g = 0, h = 0) is made in Fig. 5. Equation (37) can still give a poor approximation near 
the leading edge: for the first Birnbaum distribution, the exact w(~, y :~ 0, 0) is finite for ~ = 0 whilst equation 
(37) gives an infinite value. To improve the approximation, we would at least have to substitute for f(y, 05) a 
function which depends also on ~. With given downwash, the equation for the unknown y(~, y) would still be 
of the type studied by Carleman, ~1 so that a solution in closed form could be obtained. But this procedure 
would be too complex for the present purpose. 

4.2. Solution of the Approximate Downwash Equation (37) for Constant Downwash along the Chord 

With the aim of determining the load distribution of an uncambered swept wing at an angle of incidence, 
we want to derive a solution of the downwash equation (37) for the case when w(~, y, 0) is independent of ~. 

Whenf(y,  05) does not depend on ~, then equation (37) is of the form 

2-~ ~(~') - + ½tan 05"y(~) = F(¢) (38) 

where 05* is defined by i tan 05* = f(y, 4)) and 

F(¢) = w(¢, y, 0) - [g - (3 - ~cp)h] f [  7(¢', Y) de'. 

The solution of this equation, for which the Kutta condition at ~ = 1 is satisfied, reads (see equations (3.4), 
(3.6), (3.10) of Ref. 12): 

(¢' I"' (39) 

with 

n* =½ 1 - - ~  . (40) 

For F(~) = A + B~ (which implies that w is also linear in ~), the solution is 

y(~) = 2[A + B(~ + n*)] cos 05* ~41) 

For this 

fo r y(~) d~ = [2A + B(1 + n*)]n*n (42) 

and 

fo ~7(~) d~ = [A + B-~(1 + n*)]n*(1 - n*)Tr (43) 

so that 

~CP 
f f  ~(~)d~ 1 n* + B21 

+ n* 
A 

- 3 

f~,(¢) d~ 2 A B 1 + n___~*" + 
2 

(44) 
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When w(¢, y, 0) = 1, then we obtain from equations (37) to (44): 

f ' l  

A = I - [g + ~ c ~ h ] j o  ?(~) d~ 

= I - g[2A + B(1 + n*)]n*n - h[A + B~(1 + n*)]n*(1 - n*)n, 

and 

B = h J o  ~(~) de 

= h[2A + B(1 + n*)]n*n. 

From these equations we obtain 

A = 1 - (1 + n*)n*hn 
1 + 2n*gn - 2n*ZhnE1 - ~(1 - n*Z)hn] 

and 

B = 
2n*hn 

(45) 

1 + 2n*gn - 2n*Zhn[1 - ~(1 - n*2)hn]" (46) 

When we insert equations (45) and (46) into equations (42) and (44) then we obtain the relations: 

and 

~ 2n*n 
?(~)d¢ = 1 + 2n*gn - 2n*2hn[1 - 61-(1 - n*2)h~ (47) 

1 - -  / ' /~  
ice - ~ [ 1  + ½n*(l + n*)hn]. (48) 

With the values off,  ng and nh quoted in Table 4, we have evaluated n*, from equation (40) with ~b* = t an -  1 2f, 
and calculated j'o 1 7(4, y;  ~b)d~ and ice(Y; c~). Some results are plotted in Figs. 21 to 23. It should be pointed 
out that the ratio j'~ ~?(~) d~/~ 7(0 d~ is the same as the centre of pressure if the sweep angle of the vorticity 
vector is constant along the chord. In the following, we shall make this assumption. For  the particular case 
which we consider, when w(~, q, 0) = l, which represents a plane wing at an angle of incidence, the centre of 
pressure is also the aerodynamic  centre. We have, therefore, plotted the values from equation (48) as values for 
the position of the aerodynamic  centre. 

We have also plotted in Figs. 21 to 23 the values from equation (12), i.e. 

and 

7~(~) d~ = 2n(y) = 1 - 2(y) (49) 

- 4 1 + 2(y) . (50) 

Figs. 21 and 22 show that with increasing y the term l/nf~ ° ?(~ ,y)d(  approaches the value of unity for the 
sheared wing at a slower rate when equation (37) is used than when the downwash equation (12) is used, this 
is the case whether 2(y) is obtained from equation (14) or from equation (18). For  ~ = 45 degrees and y > 1 
we obtain from equation (37), 

~(~,y) d~=l ~ + 0  (51) 
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and from equations (12) and (14) 

7(4, Y) d ~ =  1 - ~ y + O  . (52) 

Fig. 23 shows that the chordwise centre of the vorticity distribution 7(~., y) approaches the value of the sheared 
wing at a faster rate when ~(~, y) is derived from equation (37) than when it is derived from equation (12). 

To obtain from the vorticity distribution 7(~, y) the load distribution l(~, y), we use the same approximate 
procedure as Ktichemann and approximate the angle of sweep of the vorticity vector by a value ~b~(y) which 
is taken as constant along the chord. Ktichemann's suggestion for ~bo, equation (27), was to be an approxima- 
tion to the sweep of the curve of the aerodynamic-centre position. The use of a function ~b~(y) constant along 
the chord is only a crude approximation; therefore, Kiichemann has suggested the use of the simpler expression 
given in equation (27) instead of ~bo derived from the aerodynamic-centre position. A crude relation between 
~(~, q) and l(~, t/) seems justified for the present purpose, where we want only to explain, in Section 4.3, some 
differences in the spanwise CL distribution computed by the Standard Method and a more exact method. 
We do not intend to derive here a general improvement to the Standard Method, because the results of Section 
3.3 suggest that it is not likely that, for a general load distribution, one can devise a simple method for deter- 
mining a reasonably accurate approximation to the downwash from the chordwise and trailing vortices. 

Using the approximate relation 

l(~, y) = cos ~v(y)27(~, y), (53) 

we obtain for the lift coefficient CL(Y) the relation 

Cz(y ) = 2 cos q~v(Y) y(~, y) d~. 

~/(~) in equation (47) has been derived for the special case w(~, y) = c~e(y) = 1. Thus we obtain for the sectional 

lift slope 

CL(Y) 4n*(y)~ cos qS~(y) (54) 
a(y) = Ne(Y) - -  1 + 2n*g(y)Tt -- 2n*2h(y)Tz[1 - 61-(1 - n*2)hTz] ' 

For the infinite sheared wing (for which n* = 0.5, g = h = 0, q~o = 4) equation (54) gives the well-known 

result 

a~o = 2n cos q~. (55) 

If we were to use the aerodynamic-centre position to determine cos ~b~(y), then we would find that the down- 
wash equation (37) leads (for y > 0.1) to slightly smaller values of cos q5 v than equation (12). In the following, 
we use with both downwash equations the same function for cos 4~Jcos 4, namely the one used in the Standard 
Method, 1/cos 04b), with 2(y) from equation (18); this means that for the values ofa(y)/a~o we somewhat moderate 
the difference between the two downwash equations. 

Values of a/a® derived from the downwash equation (37) are plotted in Fig. 24 together with the values 
of the Standard Method, 2n/sin rcn. The curve derived from equation (37) has not been extrapolated to y ~ 0, 
because the procedure of this Report cannot give reliable values for y = 0, since the downwash equation (37) 
is derived from values in z = 0 for vortices of constant strength and sweep angle for which the downwash in 
y = 0, z = 0 is infinite. We shall examine in the next section how important the difference of the values for 
a/aoo may be when one computes the spanwise CL distribution. 

4.3. The Spanwise Lift Distribution of an Uncambered 45 degree Swept Wing of Infinite Span at an Angle of 
Incidence; Comparison of Various Results 

The case considered in this section differs from the one of the previous section in that we have to include 
also the effect of trailing vorticity. 

Hui 6 has determined the load distribution for an uncambered 45 degree sweptback wing of infinite aspect 
ratio at an angle of incidence by solving the integral equation of lifting-surface theory, equation (21), by an 
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iteration procedure. Values of the lift coefficient CL(y), obtained by Hui, are plotted in Fig. 25. We have also 
plotted the values obtained by Kfichemann (taken from Fig. 14 of Ref. 5). We notice that Hui's values are every- 
where lower than Kiichemann's values. We are here not interested in the differences in the values near y = 0, 
where it is known that Hui's values are not reliable, but we are interested in the values at y > 1 say. 

There existed some uncertainty about the accuracy of Hui's results, since he has satisfied the boundary 
condition at relatively few spanwise stations on the outer wing. To determine the accuracy we have used 
Sells' program 3 and have calculated for a load distribution, similar to Hui's, the downwash at certain spanwise 
stations. For this purpose, we have taken the computed values of l(¢, y), CL(y ), ¢,~(y), kindly given to us by Hui. 
We have found that it is possible to approximate Hui's values of l(¢, y) (except for y = 0) by 

l(~,y) = 4CL(Y) I(I - 2 ~ a c ) ~  q-2(4~ac- l ) ~ l  q-f(y)f(~), (56) 

where 

and 

fo ' F(~) d~ = 0 

fo ~F(~)d~ = O. 

Based on Hui's results, we have determined numerical values for the functions f (y)  and F(~), modified Hui's 
values for CL(y), as shown by curve II in Fig. 25, and similarly derived smooth values for ~,c(Y)- With these 
smooth values of 1(~, y), we have computed by Sells' program 3 the downwash at the spanwise stations y = 1, 2, 3. 
(For these calculations we have used equation (56) also for the neighbourhood of the centre section, because 
we wanted to ensure that the derivatives of I(~, y) are smooth functions and a local error in 1(~, y) has no im- 
portant effect on the downwash sufficiently far away.) The results, plotted in Fig. 26, suggest that the values 
of C L, given by curve II of Fig. 25, for y >/ 1 say, are correct to about 1 per cent and, therefore, that the values 
from the Standard Method are too high. 

Part of this error is probably a consequence of the difference between the values of the sectional lift slope 
derived from the original downwash equation, (12), and from the modified equation, (37), shown in Fig. 24. 

We have added in Fig. 25 the values of a/a~ derived from equation (37). To examine whether the difference 
between CI./CL~ and a/a~, for y > 1. can be explained by the downwash induced by the chordwise and trail- 
ing vortices, we have derived approximate values for Wsz R v. For this purpose, we have computed the downwash 
produced by a trailing vortex sheet starting from one bound vortex at x = lYl tan q~, - ~ < y < ~ of strength 

r(y) = r~oCL(y)/C,~ = 7r cos OCL(y)/CL~ 

with CL(y)/CL~ given by curve 1I of Fig. 25. The chordwise distribution of the downwash for the spanwise 
stations y = 1.5 and y = 3 is plotted in Fig. 27. The figure shows that :%(y) = ½w(~ = or, y) is an under- 
estimate for the downwash from the trailing vortices. To derive an approximate value for the downwash 
from the streamwise vorticity of the load distribution/(~, y) of equation (56), we have considered a chordwise 
distribution of bound vortices of strength F(y)(2/n)_~.~ - ~)/~ (the fact that we have ignored the difference 
between l(~, y) from equation (56) and (2/1r)CL(y)~/(1 - ~ ) / ~  implies of course that the related downwash is 
in error for small values of y). Approximate values for the downwash from the streamwise vortices are given 
in Fig. 28 ; we quote also values of ~o(Y) and values for the difference between a/a~ and CL/CLo ~ . We note that 
the magnitude of WST R V is comparable to the values of a/a~ - CL/CL.  (The agreement is somewhat improved, 
if we take account of the fact that the total downwash computed for the load distribution of equation (56) 
differs somewhat from one, see Fig. 26.) 

4.4. The Spanwise Lift Distribution of Finite Wings 

The wing of infinite span is a rather special case, so that it is difficult to draw a conclusion about the error 
in CL(y) for the plane swept wing of finite span from the results for the wing of infinite span. This is due to the 
different systems of trailing vortices; the trailing vortices on the finite wing are, at least for most of the outer 
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part of the wing, of opposite sign and of greater strength than those for the wing with infinite span. The effect 
of ignoring the stagger of the trailing vortices varies with the aspect ratio of the wing and the spanwise station 
considered. We can, therefore, not expect to obtain a generally applicable estimate about the error in the CL 
distribution derived by the Standard Method. 

In the present Report, we examine only the CL distribution of the plane wings of constant chord and aspect 
ratio 6 at an angle of incidence. The fact that we do not yet have a solution for the thin lifting swept wing, 
which is correct at the centre section and close to the tip, need not be too important for the present purpose. 

Using an approximation to the load distribution by a vortex lattice, Carr-Hill (unpublished work) has written 
a computer program for determining an approximation to the load distribution of a wing of given shape. 
Sells (unpublished work) has used this program and has derived a first approximation l~l~(x, y) to the load 
distribution of a plane wing of constant chord, aspect ratio 6, swept by 45 degrees. Using his computer program, 3 
Sells has then computed the downwash related to Ira(x, y) and thus derived values for the error in the down- 
wash, Aw(x. y), at the control stations. By means of the Carr-Hill program, a modification of Ira(x, y) can be 
found and the accuracy of lt2)(x,y) = Im(x,y)  + Al(x,y) can be checked by computing the downwash. Sells 
has used various arrangements of the chordwise and spanwise control stations. He found that two steps of the 
iteration were sufficient to produce the spanwise distributions of the lift coefficient and the chordwise position 
of the aerodynamic centre within an accuracy sufficient for the present purpose. (The various symbols in 
Figs, 30. and 31 refer to different arrangements of control stations; one particular symbol refers to one set of 
control stations.) 

We have already mentioned in Section 3.2 that, for wings of rectangular planform, Sells ~° has written a 
program to derive the load distribution for a wing of given shape, where he uses also an iterative method but 
wit'h a different technique for determining an approximate load distribution for a given downwash distribution. 
For a plane rectangular wing of aspect ratio 6, the spanwise C L distribution is given in Ref. 10. 

In Figs. 29 and 30, we compare the results obtained by Sells with those from the Standard Method. Fig. 29 
demonstrates the known fact that the Standard Method gives, for the unswept wing, values of CL which are 
everywhere too high. 

For the special case of a plane rectangular wing, Brebner ~a has shown that one can interpret the change 
in chordwise load distribution near the tip as becoming similar to that on wings of small aspect ratio. When the 
sectional lift slope, a, is locally modified, the Standard Method produces a C L distribution which is close to 
the exact one. 

We can derive the 'small,aspect-ratio effect' from the modified downwash equation (29). If we were to use 
equation (29) with 

g(x) = a + b x  + cx 2, (57) 

then we would obtain for the plane rectangular wing at an angle of incidence, ~ = 1, the load distribution 

l(x, y) = 4 / 1  -x x[1 - ~0(Y) " ccmf(Y)(a + ½b + ~c)] - 4 x / ~ -  - x)O~zof(b + ½c) - 4 x ~  - x)c%fc (58) 

with 

where 

Cr = 2nil - ~i0 - %of(a + 3b + ~c)], 

x.c = i - I - cho - Oqof(a + ¼b + ~c) ' 

(59) 

(60) 

1 f~ dCL(y') dy' 
°:~°(Y)=-~nJ_s dy' y - y '  

differs, of course, from, the "~0, derived with f ( y )  =_ O. For thefunction g(x) given by equation (30) we obtain 

X a ~ =  I - 1 - . i 0 ( 1  + 3 f )  " 
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This means that the aerodynamic centre is forward of the quarter chord similar to the position on a wing of 
small aspect ratio. 

For a wing of 45 degree sweep, A = 6, Fig. 30 shows that the Standard Method gives an overestimate of the 
lift over the inboard part of the wing and an underestimate over the outboard part of the wing. The difference 
between the approximate and the exact values of the lift coefficient over the inner part of the span is somewhat 
similar to that shown in Fig. 25 for the wing of infinite aspect ratio. The fact that the Standard Method pro- 
duces too low values for the lift coefficient over the outer part of the span can be explained by the fact (see for 
example Figs. 16 and 17) that the Standard Method assumes too large a contribution to the downwash from 
the trailing vortices of a swept wing. For the plane wing at an angle of incidence, the trailing vortices near 
the centre section may be of opposite sign to those on the outer wing, but their strength is so small that we can 
expect that ignoring the stagger of the trailing vortices produces too large a downwash, i.e. too small values 
of Cr for most of the span. It seems that one cannot generally improve matters by using instead of Ctlo(y) (or 
2n~io(y) as in Ref. 2) the term 2n(y)~io(y) (as suggested in Ref. l) since this would still further increase the down- 
wash from the streamwise vorticity near the wing tips. 

It is also doubtful whether one obtains for a wing of given shape an improved estimate of the CL(y) distri- 
bution if one replaces the sectional lift slope of the Standard Method by the term derived from the modified 
downwash equation (37) (i.e. from equations (54), (27), (18); see Fig. 24), because the error in a(y) has generally, 
at least inboards, an effect of opposite sign to the error in the downwash from the chordwise and trailing 
vortices. For the outer part of the wing, it is certainly not worthwhile to introduce a better estimate for the 
sectional lift slope of a swept forward wing without an improvement in the estimate of the downwash from the 
trailing vortices. 

To examine how well the Standard Method estimates the type of chordwise load distribution, we have 
plotted in Fig. 31 the chordwise position of the aerodynamic centre, ~c(Y), derived by the Standard Method 
and the values derived from the load distributions lt2)(x, y), computed by Sells. The agreement is good for the 
inner part of the span. For the outer part of the span, the aerodynamic centre is further forward than for the 
central part of a swept forward wing of infinite aspect ratio (which corresponds to the estimate of the Standard 
Method). This means a 'small-aspect-ratio effect' is again present near the tips of a swept wing, similar to the 
one mentioned above for the rectangular wing. 

When we modify the sectional lift slope a(y) near the tips of a swept wing to represent the small-aspect-ratio 
effect, then, on the outer wing, the difference between the exact CL(y) and the approximate CL(Y) is larger than 
without the modification, as shown in Fig. 30, in contrast to the beneficial effect of the modification for an 
unswept wing shown in Fig. 29. The discrepancy is of course affected by the poor estimate of the downwash 
from the chordwise and trailing vortices for a swept wing. This means again that we should refrain from modi- 
fying the sectional lift slope of the Standard Method without improving the estimate of the downwash from 
the trailing vortices. 

With the aim of giving some further examples for the magnitude of the possible error in the CL values derived 
by the Standard Method, we have considered the warped wings discussed in Section 3. We have determined 
the ACL(y) distributions of the wings which have the warp z(x, y) for which 

OZ(X, y) 
-- AW(X, y) 

Ox 

= Wex.c,(X, Y) -- W.pprox(X, Y) (62) 

with Wapprox given by equation (25). 
For determining the ACL(y) distributions we have used the approximate method, i.e. equation (25). (We 

have used equation (25) and not equation (26), i.e. used ~b~ = ~ because the load distributions (1) to (4) are such 
that at the centre section ~b~ = ok.) The unknown load distribution AI(~, y) is written as the sum of two terms 

~xt(~, y) = At,(~, y) + At . (~,  y). (63) 

The first term is the solution of the equation for the 'bound' (spanwise) vorticity (see equations (7) and (12)): 

1 J0 [ ' t  d ~ ,  tan (2(y)4,) . . . .  
4~ cos q~ Alz(~', y) + ~ a ~ g ,  y) = Aw(~, y) (64) 
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with 2(y) from equation (24). The solution of this equation is known, see equations (38) and (39). Using the 
relation 

/ ~ ]  x - x ' = s i n r c n  tan~zn 1 x ] ' (65) 

it is found that the lift coefficient related to AI r is 

ACL,(y) = 4 cos ~b cos 2~b A w ( ~ , y ) [ - i - ~ )  d~ (66) 

with 

~ I  2(y)~b] (67) 
n(y) = 1 ~/2 J" 

A1H(¢,y ) is the load distribution which satisfies equation (12) for wK(~,y)= -A~io(y). Using the relation 

it is found that the lift coefficient related to A/~(~, y) is 

ACL,,(y ) = - A~io(y)47zn(y) cos qS, (69) 

where Aa~o is related to the lift coefficient 

ACL(y) = ACL,(y) + ACL,~(y) 

by equation (20). To obtain ACL(y ) we have thus to solve the equation 

(70) 

1 ~ dACr.(y') dy' 
ACL(y ) = ACL,(y ) - 4~zn(y)cos ~b~-~ j_s  dy ~ Y _ y,. (71) 

(This equation differs somewhat from the corresponding relations of Ref. 2, (i) because we have ignored the 
effect of finite aspect ratio on n(y), i.e. the difference between no(y ) and n(y) of Ref. 2 ; (ii) because we have used 
equation (25) instead of equation (26). If we were to use equation (26) then ACL, and ACL, from equations 
(66) and (69) would be multiplied by cos ~(y)/cos ~b = cos (~.qS). The factor cos (2~b) is nearly one except close 
to the centre section and the tip.) Equation (71) has been solved by Multhopp's method (see, e.g. paragraph 
VIII.19 of Ref. 14). 

Values of ACL~(y)/2n are plotted in Fig. 32 for the rectangular wings of Section 3.2 and in Fig. 33 for the 
swept wings of Section 3.3 ; we have divided ACL~ by 2re since CL(r/ = 0) = 2re for the basic wings. To obtain 
values of ACL, close to the tip of the rectangular wings, we have used the exact values of w(x, y) at q = 0.95 and 
r / =  1 given in Ref. 9 for the load distributions (1) and (2). For the load distributions (3) and (4), we have refrained 
from extrapolating ACL, towards the tip because we have an insufficient number of values and because ACL, 
varies so rapidly on the outer wing, due to the rapid variation of the basic C L distribution. For the swept wings 
and load distributions (1) and (2), we have extrapolated ACL~ towards i / =  0 and r /=  1, as shown in Fig. 33. 
(We have not chosen the logarithmically infinite value at r /=  0 which would' correspond to the infinite values of 
w ....  t(~, r / =  0, z = 0) and Aw(~, r / =  0), because such infinite values would not arise for practical wings of 
given shape.) 

The values of ACL(r/), computed from equation (71), are also plotted in Figs. 32 and 33. 
Fig. 32 shows that, if we were to compute by the Standard Method the load distribution of the rectangular 

wing which has the exact downwash related to the load distributions (1) or (2), then we would obtain values of 
CL(r/) which are everywhere too high. The error is thus of the same sign as for the plane wing at an angle of inci- 
dence, see Fig. 29. For the cambered wings, the error varies less across the span than for the plane wing; the 
maximum value of ACL(q)/CL( q = 0) is largest for the plane wing where it is about 0.08 near ~/= 0.9. 
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For swept cambered wings, the C~, values derived by the Standard Method are too low for most of the wing, 
as is also the case for the plane wing at an angle of incidence, compare Figs. 30 and 33. The magnitude of the 
error over the outer wing is larger for the cambered wings ; this feature depends of course on the type of span- 
wise loading. 

5. Conclusion 

The comparisons made in this Report between the downwash computed by the Standard Method and 
results from exact linear theory suggest that the Standard Method represents the effects of sweep and finite 
aspect ratio qualitatively fairly well, but that it does not give the details with sufficient accuracy. We have not 
been able to suggest a modification of the simple procedure of the Standard Method except for the design 
of the inboard part of such wings, where the effect of the chordwise and trailing vortices is relatively small. 

In the preliminary stages of designing a swept wing, the Standard Method is thus useful for understanding 
the effects of changing the shape of a wing and for finding major errors in more elaborate computer programs ; 
in the later stages, it seems essential to compute the downwash produced by a given load distribution by a 
more accurate procedure, for example by Sells' program. 3 
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~ce 
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Vo 
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W 

W2D 

WSTR V 

C~io(y) 
Ae 

4v 

l(x, y) 

CL(y) 

ACL~ 

ACL 

a ~  

F 

n(y) 

v(~, ~) 

k(¢, n) 

LIST OF SYMBOLS 

Aspect ratio 

Wing chord, taken as unity 

Semispan 

Rectangular coordinate system, z-axis normal to wing plane 

= x - lYl tan ~b 

Position of aerodynamic centre 

Position of centre of pressure 

= y/s 

Velocity of free stream, taken as unity 

Component of perturbation velocity parallel to z-axis, positive upwards 

= - G, downwash 

Downwash in twodimensional flow 

Downwash induced by streamwise vorticity 

= ½w(x  = 0o,  y ,  z = O) 

See equation (16) 

Leading-edge sweep 

Angle of sweep of bound vortices 

= - ACp(x, y), coefficient of pressure difference across the wing 

Local lift coefficient 

See Section 4.4, equation (66) 

See Section 4.4, equations (69) and (70) 

Sectional lift slope 

Lift slope of infinite sheared wing 

Local strength of spanwise vorticity 

Circulation ¢ 

Interpolation function, see equations (12), (14) and (18) 

See equation (34), difference between the downwash of a finite swept wing and of a swept wing of 
infinite aspect ratio with uniform load distribution across the span and with the same chordwise 
load distribution as at the spanwise station y of the finite wing 

See equation (35) 

= I '  k(~, n) d~ 
3o 
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A P P E N D I X  

Induced Incidence for the Load Distributions (3) and (4) of Table 1 

The induced incidence aio(Y) is according to equation (20) given by 

1 ~ dCz(y'Ic(y') dy' 
~,,o(y) = ~ d_,  Ty'  y - y'" 

For a wing of constant  chord:  

1 ~-I dCLOf) dq' 
(~io(,) = ~ J -  1 d~' , - ~'" 

For  the load distributions (3) and (4) of Table 1 

C L = 2zt for 0 < I,I < 0.8 

=, 10=x /_  ,2 + 1.6}r/I _ 0.6 for 0.8 < I.I < 1. 

F rom equations (A-l) and (A-2) we obtain 

57E = 2 , + 0 . 8  , - o . q  , , '  
a,o(,) 2-A .8 r/ + ~/' " - " -] x / -  ,,2 + 1.6,' - 0.6 

Evaluation of the integral gives for {tll < 0-6: 

5 f 02 1 a;o(,) = ~ rc - x//~ff + 1.@ + 0.6 2 - sin-X 0-S + q 

- x / .  2 ~ -1~6~ + 0.6 2 - sin-1 0'S----~ 

for 0.6 <1.1 < 1: 

_ _ , {  . . . .  3+ 
~o(,)  ~ ~z x/q  2 + 1.6, + 0-6 0.8 + ,  

0.8 - 7/ log 10.8 - r/[ } 

+ , / - n  2 + 1 . 6 , t -  0.6 0.2 + ~/-,-2 + 1 . 6 , -  0.6 ' 

For A = 6, values of aio(r/) have been computed and are tabulated in Table 1. 

(A-l) 

(A-2) 
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(1) 

(2) 

T A B L E  1 

Load Distributions Considered 

Its, y) = 4V/F- ~ ~/1 - n = 

, / i  - r/2 
W 2 D  - -  

COS ~b 

~*o = - -  = 0.262 
2A 

l(x. y) = 1 6 ~ / ~  - 4)x/1 - r/~ 

2(2{ - 1)w/1 - r/2 
W2D ~- 

COS ~b 

~io = 0.262 

(3) t(x, y) = 4 ~ 1  ~___~ for 0 ~< [t/I < 0.8 

I(x' y) = 4 ~ / 1 - -  (Jr~J--0"8) 

1 
w2D cos ~b for 0 ~< [~/[ < 0.8 

WED = COS q~ - -  for I~/I > 0.8 

for [r/I > 0-8 

• io = see below. 

(4) l(x,y)= 1 6 x / ~ -  4) for0~<Jr/} < 0 . 8  

2 ( 2 ~ -  1) 
"%v - for 0 ~< Ir/{ < 0.8 

COS 

for I*/I > 0.8 

w2° = cos ~b ~ / 1  - ~ for I~/I > 0.8 

a m = see below. 

r/ 0-05 0.1 0-2 0.3 0.5 0.7 0-8 0,9 

for (3) 0-1750 0.1765 0-1826 0.1936 0.2436 0.3880 0-7020 1.0162 
and (4) 
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TABLE 2 

D o w n w a s h  o n  R e c t a n g u l a r  W i n g  C o m p u t e d  b y  S e l l s '  P r o g r a m  3 

t , J  

Load 
distribution 

{1) 

(2) 

(3) 

(4) 

0.05 
0.1 
0.2 
0.3 
0.5 
0-7 
0.8 
0.9 

0.1 
0.3 
0.5 
0-7 
0.9 

0.05 
0.1 
0.2 
0.3 
0-5 
0.7 
0.9 

0-05 
0.1 
0.2 
0.3 
0.5 
0-7 
0.9 

1-233 
1.229 
1.213 
1.186 
1-092 
0.925 
0.792 
0.582 

- 1.772 
- 1.694 
- 1.528 
- 1.250 
-0-786 

1.167 
1.168 
1.174 
1-183 
1.223 
1.333 
1.484 

- 1.834 
- 1.833 
- 1.829 
- 1.821 
- 1 . 7 8 8  

- 1.710 
- 1 . 3 4 8  

0-0381 

1.238 1-251 
1.234 1-247 
1.218 1-232 
1-191 1-205 
1.098 1.115 

0.1464 0.3087 

1-268 
1.265 
1.250 
1.224 
1-139 

0-934 
0.805 
0.606 

- 1.622 
- 1-550 
- 1.397 
-1-140 
-0-715 

1.168 
1.170 
1-175 
1.185 
1.226 
1.342 
1.567 

- 1.686 
- 1.684 
- 1.679 
- 1 - 6 7 1  

- 1.638 
-1 .555 
-1.191 

0.959 
0.840 
0-670 

-1 .183 
- 1.128 
- 1 - 0 1 1  

-0 .816 
- 0.498 

1.172 
1.173 
1.179 
1 . 1 9 0  

1.234 
1-365 
1-783 

- 1-251 
- 1-250 
- 1.245 
- 1-236 
- 1.199 
- 1 . 1 0 4  

-0.711 

0.992 
0.886 
0.746 

-0.523 
-0.493 
-0 .430 
-0 .325 
-0 .156 

1-177 
1.178 
1.185 
1.196 
1.246 
1.402 
2.051 

-0 .599 
-0 .597 
-0 .592 
-0 .582 
-0 .540 
-0 .423 

0.065 

0-5 

1.287 
1.284 
1-270 
1.245 
1-163 
1.027 
0.931 
0.813 

0.258 
0.258 
0-258 
0.259 
0-262 

1.183 
1-184 
1.191 
1-204 
1.260 
1.443 
2.295 

0.172 
0.173 
0-179 
0.190 
0-238 
0.384 
1.025 

0-6913 

1.304 
1-301 
1.287 
1-263 
1-185 
1.055 
0-966 
0-861 

1-041 
1-012 
0-949 
0-845 
0-681 

1.189 
1.190 
1-198 
1.212 
1.274 
1.480 
2.474 

0.944 
0-945 
0.952 
0-964 
1.018 
1.192 
1.986 

0.8536 

1.317 
1-314 
1.300 
1-277 
1.200 
1.075 
0-989 
0.889 

1.704 
1-649 
1.533 
1.337 
1.024 

1-194 
1.196 
1-204 
1.219 
1-285 
1-508 
2-582 

1.599 
1 . 6 0 1  

1.608 
1.622 
1.681 
1.876 
2-765 

0.9619 

1.325 
1.322 
1.308 
1.285 
1.210 
1-086 
1 - 0 0 1  

0.901 

2.150 
2.077 
1.924 
1.667 
1.244 

1.197 
1.199 
t.207 
1.223 
1.292 
1.524 
2.634 

2.040 
2-042 
2.049 
2-063 
2.126 
2-334 
3.252 

1-328 
1-324 
1.311 
1-288 
1.213 
1.089 
1.005 
0.905 

2.304 
2-226 
2.060 
1.780 
1.318 

1-198 
1.200 
1.209 
1.225 
1.294 
1.530 
2.648 

2.193 
2.195 
2.203 
2.217 
2.280 
2.492 
3.412 



TABLE 3 

Downwash  on 45 degree Swept  Wing  Computed  by Sel ls '  Program 3 

Load 
distribution 

(1) 

(2) 

(3) 

(4) 

0-05 
0.1 
0.2 
0-3 
0.5 
0.7 
0.8 
0.9 

0-1 
0.3 
0.5 
0.7 
0.9 

0-05 
0.1 
0.2 
0-3 
0.5 
0.7 
0.9 

0-05 
0.1 
0-2 
0-3 
0.5 
0.7 
0.9 

2-600 
2.084 
1.727 
1-543 
1-229 
0.819 
0.519 
0-046 

-2 .143  
-2 .442  
-2 .346  
-2 .051  
- 1.483 

2.587 
2.088 
1-786 
1.682 
1-611 
1-609 
0.912 

- 1-873 
-2-169 
-2-434  
-2 .544  
-2 -624  
-2 .636  
-2-423 

0-0381 

2.595 
2.081 
1.728 
1-547 
1.237 
0.833 
0.538 
0.081 

-1 .927  
-2-248 
-2-173 
- 1 - 9 1 5  
- 1 - 4 2 1  

2-580 
2.082 
1-784 
1-681 
1.611 
1.611 
0.991 

- 1.629 
- 1 . 9 5 1  
-2 .225  
-2-335 
-2 . 414  
-2-425 
-2 .266  

0.1464 

2.551 
2.066 
1.731 
1-557 
1-259 
0.871 
0.592 
0.179 

- 1.308 
-1 .678  
- 1.665 
- 1 - 5 1 2  
- 1 - 2 1 6  

0.3087 

2.451 
2.033 
1.732 
1.572 
1.29l 
0.927 
0.672 
0.323 

-0-398  
-0 -816  
--0-888 
-0 . 884  
-0-857  

0.5 

2.320 
1-986 
1-732 
1-589 
1.329 
0.992 
0.765 
0.483 

0.647 
0-212 
0.050 

-0-108 
-0 . 356  

0.6913 

2.191 
1-940 
1.732 
1.605 
1.365 
1.057 
0.856 
0.625 

1.672 
1.254 
1.009 
0-704 
0.221 

0.8536 

2.093 
1.907 
1-733 
1-619 
1.396 
1.110 
0.930 
0-732 

2-542 
2.147 
1-840 
1.420 
0.760 

0.9619 

2.039 
1.889 
1-735 
1.628 
1.416 
1.145 
0.977 
0.796 

3-132 
2.752 
2.406 
1.914 
1.144 

2.529 
2-060 
1.775 
1-678 
1.612 
1-619 
1.212 

- 0.940 
- 1.328 
- 1.621 
- 1-729 
- 1.805 
-1 .812  
- 1-776 

2-419 
2.015 
1.760 
1.672 
1.614 
1.632 
1.533 

0.036 
-0-416  
-0 -717  
-0-819  
-0-889  
-0 .887  
-0 .945  

2-277 
1.955 
1.743 
1.666 
1.617 
1.652 
1-886 

1.089 
0-627 
0.348 
0.256 
0.194 
0-208 
0.163 

2-137 
1.896 
1.726 
1.660 
1-620 
1.678 
2.193 

2.042 
1-646 
1.413 
1.332 
1-280 
1-309 
1.383 

2.030 
1.852 
1-713 
1-656 
1.624 
1-704 
2.413 

2-803 
2.509 
2.318 
2.247 
2.203 
2.250 
2.482 

1-970 
1.827 
1.705 
1-654 
1-627 
1.723 
2-541 

3.323 
3.093 
2.927 
2.863 
2-824 
2.884 
3-241 

2.023 
1-884 
1.735 
1.631 
1.423 
1.157 
0.993 
0-817 

3.338 
2-962 
2.604 
2.088 
1.284 

1-952 
1.819 
1.703 
1.653 
1.628 
1.730 
2.582 

3-507 
3-297 
3-139 
3.077 
3.039 
3-104 
3.508 



TABLE 4 

Coefficients in Equation (37) 

0 
0.05 
0.1 
0.15 
0.2 
0.3 
0.4 
0-5 
0-6 
0.8 
1.0 
1.5 
2.0 

f ng nh 

30 ° 45 ° 60 ° 30 ° 45 ° 60 ° 30 ° 45 ° 60 ° 

0.22 
0-141 
0,083 
0,053 
0.035 
0.017 
0,009 
0,005 
0,003 
0,001 
0 

0.3 
0-162 
0,090 
0,050 
0.030 
0-011 
0,004 
0,001 
0 

0.42 
0.17 
0-075 
0,034 
0.016 
0.004 
0 

0.5 
0.44 
0.39 
0,345 
0.315 
0,260 
0.218 
0.188 
0,163 
0,129 
0,106 
0-071 
0-054 

0.75 
0.65 
0.57 
0.50 
0.44 
0.355 
0,287 
0.239 
0,204 
0,155 
0,124 
0.083 
0.062 

0-9 
0.76 
0,645 
0.545 
0-465 
0.350 
0,270 
0.216 
0-180 
0.135 
0.108 
0.072 
0,054 

0.2 
0-181 
0,162 
0,145 
0.125 
0.099 
0,075 
0-058 
0,045 
0,029 
0,020 
0-010 
0.006 

0.3 
0,275 
0.25 
0.226 
0.205 
0.160 
0.120 
0-090 
0,068 
0,042 
0,028 
0.013 
0.008 

0-5 
0.42 
0.35 
0.29 
0.24 
0,165 
0,115 
0.081 
0-058 
0-035 
0,023 
0,010 
0.006 
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