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Summary 

The singular double integrals which arise in the calculation of the components of perturbation velocity due 
to a swept wing with given thickness distribution by linearised theory, have been evaluated by a numerical 
method. Two computer programs have been written, one for points on the wing planform and one for points 
off. 

Following the techniques adopted by Sells, the integral over the wing is constructed from the sum of analytic 
spanwise integrals taken along lines of local sweep. 

The results obtained were tested against calculations by Freestone for points on the wing planform for both 
sheared and tapered wings. Further comparisons for points on the wing surface were made with results by the 
method of A. M. O. Smith. 

* Replaces R.A.E. Technical Report 72176--A.R.C. 34 383 
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1. Introduction 

The basic equation of linearised theory for a thick, symmetrical, non-lifting wing in subsonic flow gives the 
perturbation potential at any point as a double integral of the surface slope over the wing planform. By differ- 
entiation, the three components of perturbation velocity may be determined, but to make this calculation, a 
very large number of double integral evaluations may have to be performed and the complex nature of the wing 
geometry will necessarily preclude any general attempt at an analytic analysis. 

We recognise that the objective of this work is to improve design methods for wings and wing-fuselage 
combinations, which will necessitate the prediction of the flow field produced by the wing, both on and off its 
surface. Within this general framework, the calculation of velocities due to thickness is but one stage and so we 
should seek a method which is compatible with an accurate and tested method of predicting velocities due to 
a given doublet (loading) distribution; in this case the method of Sells.1 

The existing methods of solving the thickness problem are tailored to predicting the velocity field in special 
regions of space, e.g. Freestone 2 for velocities on the wing planform (z = 0), A. M. O. Smith 6 for wing surface 
velocities; but we aim to be quite unrestrictive and have developed a method which will predict the velocity 
field everywhere (the only point of failure being the apex of a swept wing). 

The present method has some advantages in speed and accuracy over the method of Freestone, since we 
have avoided some of his difficulties by choosing (as with Sells1), a coordinate system matched to the wing 
planform so that a high level of numerical refinement in evaluating integrals near the leading and trailing edges 
is unnecessary. 

The program is written for incompressible flows and application to subsonic flows is made via the Prandtl- 
Glauert (Grthert) rule. 

Having thus calculated the compressible perturbation velocities to first order, it would then be desirable 
to make some allowance for higher-order compressibility effects by using empirical compressibility factors as 
in the R.A.E. standard method (see for example Ref. 7); in this way, reasonable accuracy for the velocity and 
pressure distribution on a typical moderately swept wing can be expected up to the critical Mach number, 
except possibly in the immediate vicinity of the central 'cranked' station (cf Ref. 8). 

It should be recognised that since the method provides a nominally exact means of calculating the velocity 
field of any planar source distribution (in incompressible flow), it can conveniently be used as a basis for second- 
order theory, as explained in Ref. 9. It is also proposed to use the method as an essential step in developing 
an analogous theory for wing-fuselage interference, thus generalising the procedure described in Ref. 10. 

2. Linear Theory 

Our objective is to estimate the velocity potential, and hence the components of perturbation velocity, 
induced by the presence of a symmetrical wing of small thickness-chord ratio at zero incidence in a subsonic 
flow. The calculations are performed assuming the flow to be incompressible, and the extension to the sub- 
sonic flow is then achieved by using the Prandtl-Glauert (Grthert) rule. 

Orthogonal Cartesian axes are taken, centred on the wing apex with Ox downstream, Oy to starboard and 
Oz upwards, so that the wing mean plane is z = O. 

Now let the perturbation potential be ~, giving rise to a perturbation velocity field u = V@, superposed on 
the uniform free stream (U~o , 0, 0). The governing equation is then 

V2~ = 0 

subject to the boundary condition that the body is a stream surface, giving 

(1) 

dx dy dz 
Uoo + ~  - v w (2) 

on the wing surface, where (u, v, w) are the three components of the vector u. 
We may regard u as the velocity induced by a planar distribution of sources on the plane z = O, of strength 

q(x, y) per unit area; u is regular except at some points on z = O. Then we may write 

w(z  = z,) = w(z  = O) + 0 (~)  (3) 



where z = zt(x, y) is i~he equation of the wing surface, and we assume 

Zt)max z -  <<1. 
C 

Now w(x, y, O) = +½q(x, y) on z = +__0; hence, using equations (2) and (3) together with the approximation 

u =  Uo~ +zua  + . . . )  

V --~ "CV 1 - I - . . .  

W =  "CW 1 + . . .  

(4) 

where 

0~ 0~ 0~ 
ul = ~ x '  vl  - ~ y ,  wl  = ~ z  (5) 

we obtain, to first order 

. .  & , ( x ,  y) 
q(x, y) = ZU~o -~x (6) 

where 2z,(x, y) is the thickness of the (symmetrical) wing section. 
Now, for a source of strength q(x', y') per unit area at a point (x', y'), the velocity potential at a point (x, y, z) 

is the solution of Laplace's equation given by 

d*(x, y) = d~) = - l q ( x ' ,  Y')! dx' dy', (7) 

w h e r e  r 2 = ( x  - x ' )  2 -~- (y  - y , )2  + zZ. 

Hence, for the whole wing 

1if , ~(x,y,z)  = --~-~ q(x' ,Y)rdX dy', 
g=O 

where q = 2U~ dzt/dx. 
Since, of course, q(x, y) is zero off the wing planform, the integration may be restricted to this area only. 
The three components of perturbation velocity are given by 

(8) 

1 f f  , , ( x - x ' )  u(x,y,z) = + ~  q ( x ' , y ) ~ r - ~ - d x ' d y ' ,  
wing 

(9) 

and 

iff v(x, y, z) = + -~u q(x', y') dx' dy' 
wing 

w(x, y, z) = +-~u q(x', y ) ~ dx dy. 
wing 

(lO) 

(11) 



3. Transformation of Coordinates 

When the planform and surface slope of the wing are given, we wish to evaluate equations (9), (10) and (11) 
for z both zero and non-zero. We will usually be dealing with wings having sections with rounded leading edges, 
hence the kernel of the integrals above will have an inverse square root singularity and, in addition, there will 
generally be a pole of order two at the field point (x, y, 0). 

Also, when z is small (c f  Sells1), the integral will not be well-behaved numerically near y = y'. We aim to 
obviate these difficulties by dividing the wing up into thin chordwise strips (see Fig. 1), across which a simple 
quadratic representation of the source function will be sufficiently accurate, enabling a spanwise analytic 
integration to be performed following the local swee p. This leaves the chordwise integration to be done 
numerically. 

The surface slopes are specified as data along the partition lines y = constant, which are chosen subject to 
the following conditions. 

(1) The centreline shall be the first partition line. 
(2) With the integration being carried out, in general, across three lines, the control line (see Figs. 1 and 2) 

should fall strictly between the two bounding partition lines. 
(3) Near the root where, on many wings, there is a rapid variation of thickness with spanwise displacement 

necessitated by aerodynamic and structural considerations, the partition lines should be grouped more 
closely in order to obtain a better definition of the spanwise variation. 

(4) In the vicinity of a rounded tip, the last outboard partition strip should be made as small as possible 
to avoid errors associated with a spanwise variation of surface slope like O(i - r/2) ~ as r/--, _+ 1, which, 
for accurate treatment, would entail the use of elliptic integrals which we propose to avoid, in order 
to minimise computing times. 

Firstly, we introduce a new chordwise variable, ~b (as in Ref. 1), to replace x, so that the new coordinate 
system is tailored to the wing planform by making the leading and trailing edges into coordinate lines. 

The transformation is 

x' = xl(y' ) + ½c(y')(1 - cos q6) (12) 

and is used in the R.A.E. standard method. The leading edge corresponds to ~b = 0 and the trailing edge to 
q~ = 7"C. 

Then, from equation (8), 

O(q~,y,z) = - ~  ~ ½dfb Q(dp, y ' ) l  dy ', (13) 
all  s t r ips  t r i p  r 

where Q(~b, y') = q(x', y')c(y') sin 4~. 
Near the leading edge (~b = 0), 

sin q~ ~-,(x' - xt) ~ (14) 

and 

q(x', y') ~ (x' - xt) ~, (15) 

so that Q(q~, y') is bounded at the leading edge. 
Furthermore, at the trailing edge (q~ = 7r), Q(q~, y') is finite (and zero) and well-behaved at ~b = ~r, for zero 

or finite q(x', y') so that Q(~r, y') can be used in a computer program. 
For the spanwise integration, we shift the origin to the control point (x, y, z) and define a new variable 

r /=  y' - y (16) 

and adjust the limits of integration accordingly across the typical strip. 
On this typical integration strip, bounded by r /=  q+ and ~/= q_ (see Fig. 2), we choose a reference line 

y' = y* and on each line ~b = constant, we replace Q by its three term Taylor expansion about this line, thus 

Q = G* + (y' - y*)G* + (y' - y*)2G* (17) 



where G*, G* and G* are evaluated on the reference line and thus depend only on quantities not related to the 
control point. To obtain a representation of Q valid in the strip r/_ <~ r/~< r/+ (Fig. 2) we rearrange equation (16) 

thus 

y ' - - y * = q  +Y- -Y* .  

Inserting (18) into (17), we obtain 

Q =  G~ +(17 + y -  y*)G* + (~l + y -  y*) 2G* 

= [G~ + (y - y*)G* + (y - y*)ZG~] + rl[G~ + 2(y - y*)G~] + rl2G~ 

= Go + qGx + t/2G2 

(18) 

(19) 

(20) 

where 

Go = Go* + (y - y*)6~* + (y - y * ) 2 6 ~ ,  

G1 = G* + 2(y - y*)G* 

(21) 

(22) 

and 
G2 = G~. (23) 

Now Q = Q(~b, y') from equation (13), so that GO*, G* and G~ are functions of ~b. Hence, from equations (21) 
to (23) G O and GI are functions of q~ and y, and G 2 is a function of q~ alone. 

Hence for the kernel function in equation (13), we may write 

Q(q~, y') = Go(qS, y) + r/G,(~, y) + q2G2(~b) (24) 

valid on the strip q_ ~< q ~< r/+, even though the strip does not in general include the point q = 0 (Sells1). 
We now introduce the local section coordinate ~, defined by 

x' = x~(y') + ~c(y') (25) 

where ~ = E1 - cos q~) and from this we see that the variation of (x' - x,) across a strip depends only on 
x,(y') and c(y'), and the true variation of x~(y') and c(y') within a strip is approximated by a linear variation in 
order to make the analytic integration possible. For a more detailed discussion of this point, see Ref. 1. In 
addition, for wings with straight leading and trailing edges, x* and c* are respectively the values of the leading- 
edge coordinate and local chord at the control line. 

If r/* is the reference point for the range It/_, q+], we have 

l~x,l 
x , ( y )  = + (26) 

where 

1 
x~' = Ix ,  

We can write 

x' - x = h + rta, (27) 

where a is independent of r/for a given strip, but varies with { along the chord and 

h = x* + c*{ - x, (see Fig. 3) 

,Oc\ 
(28) 

(29) 
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and 

ax, Cac 
a = ~ y ,  + Oy ,= t anA~ ,  

where A t is the angle of sweep of the line ~ = constant. 
We may now write 

~(x, y, z) = -4--n ¢ ~ _ ~  dck[l]~+-' 

[~-,~+1 

where 

and 

and 

Here, 

and 

I = GoJ o + G1J 1 + GzJ 2 

(30) 

(31) 

(32) 

J0 = f -rl dr/ , (33) 

J1 = f q-r dr/ (34) 

t" 
• 12 = J / r dr/. (35) 

r 2 = (h + at/) 2 + r/2 + z 2 

= b2r/2 + 2harl + h 2 + z 2 

b = ~ + a 2) = sec A~. 

(36) 

4. Spanwise Integration 

We now evaluate the integrals (33), (34) and (35) and from these obtain equivalent expressions for the three 
orthogonal components of perturbation velocity which we seek. 

From (33) 

(37) 

from (34) 

and from (35) 

J l = ~ r - ~ - ~ l n  r + b r / +  (38) 

Jz = 2b 2 2b 4r + {( 2a2 - 1) h2 - -  bZa2} × In r + br /+ . (39) 



Recalling equations (16) and (27), we obtain by differentiation 

and 

0 _ 3 (40) 
Ox Oh' 

0 0 0 
oy - a-~ 

(41) 

~3 _ 0 (42) 
az Oz" 

We note in passing that when these new operators are applied to (37), a and b are independent of x and y and 
hence their derivatives with respect to h and rl are zero, so that no terms depending on c and dc/dy appear in 
our formulae. Using (32) with (40), we find that the perturbation streamwash is given by 

1 A - -  

1 

- 47r st~ps 
[ V - , r / + ]  

1 

- 47z st~ps 
[ r / _ , ~  + ] 

1 

- 4 ~  s t r i p s  
[ ~ _ , t / + ]  

1 0 "a I r / ;  

1 ;~  4~ [0_~ ( )1 '1+ d GoJo + G1J1 + G2J2 n- 

1 ~ z ~aG,,j. OJ.]-] n+ 

1 

4re st~ps ~ f ] d ~ [ - . = ~ o  cqd"-["+ G~-J,,_ 
[ n - , n + l  

(43) 

by (31) (44) 

by (40) (45) 

(46) 

where, after some manipulation using equations (37), (38) and (39) we find that the term in equation (46) con- 
tained in the square brackets reduces to 

1 ht l - az 2} + 
Go h 2 + bZz 2 r 

{a  ( ha) l b2z2i[a(2h2+bZz2)t l+h(hZ+z2)]}+ +G1 ~gln r + btl + - -  - bZr(h2 + 

1 a(h 2 + bZz2)t/2 + ~-g x + G  2 ( 1 - 2 a  2) ln r + brl + + bZr(h2 + b2zZ ) 

x {h3 (5a2-1 )+h(4a  2 1)bEz2}tl+a(3h2+2bZzZ)(hZ+za)l}b a 

= Z, say (47) 

In a similar way, the formula for the sidewash v(x, y, z) is obtained from 

3~ 
V m 

~y 

_ 1 

4~ tr~i p ~ dc~ (GoJ o -I- GtJ 1 + GEJz) by (31) 
s ' s q -  

[rl - ,~  + ] 

= - 4 - ~  ~t~p~ 2 dd? ~=o G. a~h &l ] + J"-~Y~3._" 

(48) 

(49) 



Now, differentiating equations (21), (22) and (23) with respect to y, 

and 

OGo 
~y 

OG1 
Oy 

~G 2 
~y 

- -  = G~ + 20 ,  - y* )a '~  = G1(49, Y) ,  

- - =  2G* = 2Gz(~b, y) 

- - ~ 0 .  

(50) 

(51) 

(52) 

Substituting these expressions into (49), we obtain 

1 1 r~ l- 2 ( OJ. 

[tt-,tt+ ] 

</ ]"+ 
- - - -  aq I + G1J° + 2G2J1 ~- (53) 

where the term in (53) in square brackets is 

1 ahrl + h ~ + Z 2 } -- + 
Go h z -b b2z 2 r 

{b3 ( 1  In brl + ~ lb2z2)r[ (h2(a2-1) -b2z2)r l+ha(h2+z2)]}+ + G1 r + -~ bZ(h 2 + 

{ ~ ( ha) 1 [- 2 2 h202h2+ 1}  + G  2 - in r + brl + - -  +-~-;r[b rl + 5harl + 2(h 2 + z  a) b2z2(ahrl + h 2 + z 2) 

= A, say. (54) 

The upwash, w(x, y, z) due to the displacement effect is given by 

~qb 
W ~ - -  & 

1 
- ' 

D-,n+l 

where 

~3I z b2z2) { - Go(h a + b2rl ) + Gl(har 1 + h2 + z2)} _ Oz r(h 2 + 

- G  2 In r + ~ + - -  + b2r(h 2 + b2z 2) 
{(h2(a 2 - 1) - b2z2)~/+ ha(h 2 + z2)}l. (55) 

The formulae (43) to (55) are now used on each strip in turn and by summation the integral for the whole 
wing is built up. These formulae are evaluated at every chordwise station on each strip, and moreover, at each 
interpolated chordwise station near the control strip, in order to improve the accuracy there. 

5. The Classical Case z = 0, y ~ 0 

Since we are only concerned with symmetrical wings in this report, the upwash due to thickness, on the wing 
planform (z = 0 + )  is ½q(x, y), and so we are only required to compute u(x, y, 0) and v(x, y, 0). 

For the reasons put forward by Sells 1 we proceed as follows in the evaluation of (47) and (54) for z = 0. The 
finite part of the singular spanwise integral is obtained by retaining z ~ 0, carrying out the crucial spanwise 
integration across the control strip, and then letting z -o 0. 

9 



where 

If we put z = 0 in (47), we obtain, for the integrand in the expression for the streamwise perturbation velocity, 

c~I = rl + G l a +  G2 ( 1 -  2a 2) In r o + b t /+  - 
(Z)z=°= -~-h ~=o G°hr---o 

1 1 { 2 bh_~(5a 2 3ah2 l 
- G,~T~ro(2ar I + h) + Gz~-~r ° arl + l)r/ + ~ - T j  (56) 

r 2 ----- ( h  -t- ar l)  2 + t /2.  (57)  

The expression (56) contains two singularities which must be removed before any numerical chordwise 
integration can be attempted. The first singularity is associated with the term Got#hro and appears on the control 
strip where h = 0 (i.e. at the control point itself). 

If we write 

and use the fact that q* = 0 in equation (26), we find that ~ is given by 

xl(y) + c(y)~ = x (59) 

when h - O, and since by equation (28), h varies linearly with ~, the integral 

i: z,  o dc~ (60) 

has a simple Cauchy principal value. 
At this juncture, it is appropriate to mention that the wellknown result for infinite swept wings may be ob- 

tained as a direct consequence of the integral (60). We wish to show that the increment in velocity perpendicular 
to the sweep on a sheared wing is the same as that on the corresponding two-dimensional wing. 

Using equation (20) with G1 = G 2  ~ 0,  

Q(¢, y') = Q(¢) = Go(C) (61) 

and inserting the limits q+ = +0% r/_ = - o o  in equation (58); 

lim [ ~ l  '+ = __2 (62) 
,-~® khroJn_ bh" 

So, combining equation (46) and integral (60) and reverting to (x, y) coordinates, we find that the increment 
in velocity perpendicular to the sweep is 

Us = l_ fX~" dz dx i (63) 
U~ rcdxz dx' x - x' 

which is the familiar two-dimensional result. 
We now continue with the business of integrating equation (58) across the chord for any general strip on 

which Go = Go(C). If we look first at 

Oo(~b ) = 0 say, (64) 
L o J . _  

10 



it is apparent that this function has a value at the control point which is given by 

lim 8 = 0¢ = Go(4)¢)b ~ 1 ( s g n  g +  - s g n  g _ ) ,  
h---, 0 

(65) 

where b~ = sec A¢. 
For  the control strip q+ > 0 and g_ < 0, so that 

8c - -  2G°~ 
b~ ' (66) 

but on any other integration strip ~9c = 0. With this in mind, we proceed with the chordwise integration using 
the function 

1 oc)  Xlo- Oc=( - (67) 

which is seen to be regular at the control point and has a value there which may be found by the application 
of de l 'Hospital's rule. 

- -  . m  
h-,o L hro _l,_ ,-.o 

3h t r o  ] [  = 1 i m 8 8  

g(h) 
(68) 

Using the result 

 ro(c) 
ro~-ff = ga 1 + g ~  

we find that the limit works out as 

at h = 0 (Sells 1) (69) 

a,9 FdGo(~b) 1 1 a dc/dg I {G [a l_l_l"÷" ~ 
= L d,~ b ½c* sin ~b - G°(~b)b -x ~ J ~ = ~ c  (sgn g+ - sgn q-)  - o(~b) ~ IglJ._J,= j (70) 

The first term in this expression vanishes on all strips except the one containing the control point, since it 
involves the factor (sgn q+ - sgn r/_), hut the second term appears on all the integration strips. In general, we 
will employ equation (70) in preference to equation (67) whenever h becomes smaller than some pre~pecified 
value. 

In addition, we must remember to subtract the extra contribution to the integral which this formula implies, 
viz. 

fi : 2Go~ ddp 
b c h "  (71) 

On the control strip, since h = ½c(cos ~b c - cos ~b), the integral vanishes, and as it is not evaluated on any 
other integration strip, it makes no contribution at all to the integration process. 

We now come to deal with the weaker logarithmic singularity which is of the same form as that encountered 
in the downwash due to a doublet distribution (cf Ref. 1) and we can apply Sells' arguments directly. 

The singularity is actually associated with the term 

 (aO, + 2a2,02) ln(ro + +  72, 
On the port side of the control line, g < 0 and since r o ~ big[ as h ~ 0, r o + b,_ + ha/b --* 0 as h ~ 0 (on 

g = g_) so the term (72) becomes logarithmically singular there. To deal with this, following Ref. 1, we use the 

11 



fact that 

r o + b ~ / + ~ -  r o - b r / -  =b- ~ (73) 

so that the expression 

~(aG~ + ( 1 - 2 a Z ) ~ G z ) ( s g n ~ ) l n [ r o + ( s g n ~ l ) ( b ~ l + ~ )  1 (74) 

is identical with (72) for ~/ > 0 (on the starboard side of the control line) but differs from (72) by a function 
independent oft/, which may be ignored when we evaluate the definite integral, when r/ < 0. Thus the expression 
(72) may be used in the integrand for all strips on the wing. On the control strip (q_ < 0, I'/+ > 0) a further 
modification is necessary. Introducing the constant from the right side of (73), we obtain in place of (74) in 
the integrand, 

= ~3(aG1 + b~2(1- 2aZ)G2){I(sgnrl)ln { r o +  (sgnr/)(bq + hal ~l "+- 21n ([bh~[)}, (75) 
z~, b l j3 ._ 

where the last term in equation (75) is utilised only on the control strip, and in this case we must balance by 
adding 

- ~G~  lnlhl ddp = - ~G~ nln(¼c(y)) (76) 
~ = 4 , c  4 '=  4'c 

to the integral (Ref. 1). 
Collecting these expressions together, we obtain for equation (46) 

u(x,y,O) = - ~  s , d~([u°]~+- + ~[ul]) + hi (77) 

where 

~__~_o~ 60 
L ro 

~G,a ~25h(1 - 2a/)}(sgn r/)ln { % +  (sgnr/)(br/+ ~ ) } -  + l b 3  + 

GI G2 f z ~-2(5a z - 1)r/ + 3ah2~ 
b~ro(2ar/+ h) + ~ r 0  ].a, + --~--j 

(78) 

and 

u t = 2 ~gG 1 + ( 1 -  2a2)Gz { lnb- ln lhL}  + ~-G1 lnlh[, 

21 = - G 1 n In (¼c(y)), 
,~= 4,c 

6 = 1 for the control strip, and 6 = 0 elsewhere. 

(79) 

(80) 

When h - 0 by equation (70), the first term in equation (78) is replaced by 

(sgnr/) b½c*sinq~ G°(~b)b 3 c* ] ,=,o (81) 

12 



This completes the discussion of the formulation of the analytic spanwise integral for the streamwash 
perturbation. We now turn our attention to the sidewash component of perturbation velocity, v(x, y, 0). 

Proceeding in the same way as before, we first formally take the limit z ~ 0 in equation (54), whence we 
obtain 

{ l a r / + h }  1 {~ 3haG~ ( h_~) 
= + ~ -  2f In r o + b~/ + + (A)z=° Go h r 0 ~ 1 - -  

I t + G1 !a 2 - - 1 ) q  + hc~ + ah(5 a2)r] + b2ro ~ r o / b  t/ + - h2(2 -- a2)}. (82) 

As before, the expression (82) possesses a chordwise singularity on the control line associated with the first 
term and the integral across the chord has a simple Cauchy principal value. The second term contains a weaker 
logarithmic singularity which is of the same form as that encountered in the streamwash perturbation formula. 

Using similar arguments to those set down above, we replace the first term of the expression (82) by 

l fG arl + h [Coa I (sgnr/)~ 
- ~  o r-o / b 1~=4,~ J (83) 

which is well-behaved at the control point and may be used for chordwise integration on the control strip. 
The second term of the expression (82) which holds the logarithmic singularity is replaced by 

( G1 3ha \ 
(84) 

When h ,-, O, the term (83) is replaced by 

a dGo/dc ~ -(bn4 c*sin  Co Go f l  -lo+ I 
- -  + b 3 c-;- J + b 3 [IrtlJJ._/,:~o (85) 

Corporately, these results yield a formula to replace equation (54) on z = 0 

11st~p f ~ 2} I)(X, y ,  O) : - -  4"~'  . dq~([Vo]~_ + -I- ~ [ V l ]  ) -[- ~ , 
s 

(86) 

where 

- -  - + 

v° L ~ !  ~-b-J ~=~ h- + 

+ ~-~(G1- ~-Gz)(sgnq)ln {ro + (sgn~l)(bq + ha)} + 

+ Gl{!a 2 - 1 ) ~  + & ~  G2 • ~ 2 
-b-z~ro f + ~ o t b  ~ + (5 - a2)ha. + h~t2 - a2)) (87) 

and 

- ~ 2)( b - In Ihl) + ~--~-],=,o 

6 = 1 for the control strip and ~5 = 0 elsewhere. 

b 1.=*o nln {¼c(y)}. 

(88) 

(89) 
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6. Evaluation of the Streamwash* Perturbation Velocity on the Centreline 

We now come to the problem of evaluating u(x, 0, 0) for an aerofoil represented by a distribution of kinked 
= ~q( , 0) according source filaments in the plane z = 0. By symmetry,  v(x, 0, 0) 0 for all x and w(x, 0, 0 + )  = 1 x 

to linearised theory. Referring to Section 4, we need to evaluate equation (47) for r / =  z = 0, and formally 

taking the limit z = 0. 

u(x,y,O)=limo(- 1 ~ 1 U  011'1+" ~ 
~str~iPs~ J 0 d~[-Ohjrt_ j 

1 . +  

- 47r t~p ~ dq~ - s s rt- Pl-,q+) 

(90) 

where I o = GoJoo + G1J1o + G2J2o (see equat ion (24)). 
Using equat ion (44) with z = 0, 

and 

c~J0o ~ h  o q (91) 
- ('/" 0 )  = hydro' 

OJlo aJ~ a (  hb) bl_~r ° ~h ~h (~b, q, 0) = ~ In ro + b r / +  - -  - (2a~/+ h) (92) 

OJ2o 
ah 

~-(q~,q, 0) = (1 - 2a2)ln r o + b r / +  + 

1 z 3ah2~ 
+~T~ro{aq + ~ 2 ( 5 a 2 - - 1 )  ~/+ b 2 j  • (93) 

We may make use of these expressions for integration strips other than the first one outboard  when z -- 0, 
which needs be taken with q_ = 0, q+ > 0, in which case equations (91) and (92) break down. When the control  
point is on the centreline y = 0, equat ion (43) can be written as a sum over only half the wing, and by symmetry  : 

1 l i m l  r~ F ~I-1 ~÷ f /  F a1-1"+) Jod L- Jo + Z (94) hi(X, O, O) : -- ~ z--O { s tarboard  
stripsa r/->U 

Since our  aim is to perform the integration for kinked source lines at the centre section, an analysis parallel 
to Sells ~ will not be possible and we will need to evaluate Go(q~), Gl(rk), G2(q~) locally on the centreline. 

For  r/ = 0, we retain z ¢= 0 at first, and using Sells' notat ion,  we write 

rl  = [ r ] , :o  = x/(h 2 + z2). (95) 

Using equation (44) and taking the limits r / ~  0 and z ~ 0 in turn, we can calculate the contr ibut ion from the 
lower limit of the definite integral in the first term of equat ion (94). 

Taking the first two terms of equat ion (44), we have 

~im 0 (h 2 _f~2z2)r ] + G1 ~-~ln r~ + - -  - b2rl(h 2 + b2z2)] j • 

When this is inserted into equation (94), the first term to be evaluated becomes 

z-O Jo ( hz -~ bZz2)r~] dO. (97) 

*Streamwash is the streamwise componen t  of per turbat ion velocity. 
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This integral is well-behaved in the limit as z --* 0 (Sells 1) and takes the value 

4Go(¢.) 1 
c(O) sin ~bc b~ In (b~ + ac). (98) 

This in fact leads to the familiar term -4(Oz/ax) cos A~(1/n) In (1 + sin AJ1 - s i n  A¢) which appears in 
the formulae for the behaviour of u in the neighbourhood of a crank station on a swept wing. 5 

The first term in equation (94) evaluated at the upper limit is dealt with by using equation (91), although it 
still contains a 1/h singularity, so instead we use the function (Gorl/r o - Goc/b~)l/h and add j'~ Godb c d¢/h to 
the integral in a manner similar to Section 5. 

This latter term, however, is zero and so entails no extra contribution to the integral as a whole. 
For the second and third term of the integrand evaluated at the upper limit in equation (94), equations (92) 

and (93) contain a logarithmic singularity associated with the term: 

As h ~ 0, (99) yields 

{ G~a G2h(l _ 2a2)} {ln (ro + br 1 h___~) In (Ihl b ) } "  
b a + --~-- + - + (99) 

- [Glai In IhJ, (100) 

so we must add (Gla/ba)o=4,c In Ih I to the integrand to render it finite everywhere, and compensate for this by 
subtracting £/Gla/ 

-z5-- In Ihl de  (101) 
~b  ]e=e. 

from the integral. We remember that the expression (101) has the value 

[Gla t -2-5- ~ in (¼c) (see Sells' (44) to (46)). 
/ b ]e=~. 

Adding up all these contributions to the integral (94), we obtain 

f j  [ 8Io] ~ - 4G0(~b.) 1 ln(bc + a.)- [Glal nln(¼c) + 
de  - ~3h] ° c(O)sin~bcbc 1 ba ]~=~° 

q_f:d~{(1o. Gocll [GIa I p,a × 

b, l h + l b3 l o=e. ln lhl + [ b' + b' 

+ h l: 
[1 h,.., 3ah' qq 

+ G2 ~ .2 + ~t.a - I) + b2 JJoJ" (102) 

The integral (102)still contains two singularities, one due to the 1/h term and the other due to In (Ih I + ha~b), 
so we will be in trouble near the control point itself where h = 0. We deal with the 1/h singularity in the usual 
way, by the application of de l 'Hospital's rule 

where q > O. 

l im[G°q]n = limI-A/Go /]i 
h~oLhro/o h-,oLah I ro l 

1 dG o 1 G O a[(c'/c(O))r I + 1] 
b d~b ½c(O) sin ~b, b2r/ 

(103) 

(lO4) 
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The term In (Ihl + ha~b) - In [hL contains a jump discontinuity at h = 0, but the integral will be correctly 
handled by the trapezoidal rule, if the arithmetic mean of the two values on each 'side' of the jump is taken. 
Thus we replace 

( la I Ihl t 
b 3 ]4,=0~ In ([hi + ha~b] 

( Glal ± ( l n ( _ h h / b )  --~-] ,=4c 2 h 

= [  Gta] lnb 
t b3 14=~ 

in the integrand by 

a t h = 0 .  (105) 

At the control point, the remaining parts of the integrand contribute, 

2a) Gzml (106) 
G I ~  + b 3 

Hence, when h = 0, the integrand in equation (102) should be replaced by the function 

dq~ ½c(0)sin~bc ~/b31 + r / c ~  +bY- ln (2bZr / ) -  b ~ +  b3 /,=oc" 
(107) 

7. Surface Slope Representation 

7.1. Spanwise Integration 

The representation of the source distribution function of equation (17) is substantially the same as the 
loading representation of Ref. 1, and indeed the parabola fitting is carried out in an identical manner for the 
general integration strip contained by three partition lines (A', B', C' in Fig. 1). The arguments of Ref. 1 Section 
6.1 have, with suitable modifications to nomenclature, validity in the current problem. However, certain features 
are sufficiently important to bear repetition. Firstly, in order that the spanwise integrations may be performed 
for all the strips, the three spanwise coefficients are replaced by their expansions about ~/= 0, viz. 

Go = Q(B') - E~I* + E'r/.2, 

G1 = E -  2E'~* 

G2 = E'. 

The integration scheme now starts from the centreline y = 0 and proceeds outboard on the starboard side 
(Fig. 4), but at each stage, the contribution from the mirror image strip on the port wing is computed. When the 
control point lies on the centreline, we employ the fact that the wing is symmetrical and double the contribution 
from the starboard wing. 

The program can deal effectively with planforms having kink stations in their leading and trailing edges, 
but in this case the spanwise partitioning must be chosen carefully such that there is at least one partition line 
between any two crank stations or between the centreline and a crank station. 

Difficulties arise in the neighbourhood of the wing tips. There are two reasonable suppositions which we 

may make : 

(a) that there is sharp cut-off of the source lines at q = _+ 1 ; or 
(b) that Q(~b, r/) = O[(1 - ~/2)~] near r /=  4-_ 1. 

The first presents no additional problems in the integration routine but may lead to a distorted representation 
of the streamlines in the flow just outboard of the tip. On the other hand (b) reveals a finite value for 3Q/c%l at 
the tips--and we must fall back on the arguments of Ref. 1, Section 6.1 and seek a 'least squares' best fit over 
the last outboard interval. This entails a modification to the spanwise integration routine. In either case we 
would aim to minimise the errors incurred in this inadequate representation of the tip shape by choosing a 
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spanwise partitioning with as small a last outboard interval as possible. This approach will be satisfactory 
provided we do not require the velocity field in the immediate vicinity of the tip. 

7.2. Chordwise Integration 

In the neighbourhood of the control point, the singular nature of the double integral manifests itself in 
rapid variations which require accurate definition before any chordwise integration using the trapezoidal rule 
can be attempted. The chordwise refinement technique is described in Ref. 1. In general, a chord line will be 
split up into three distinct subranges one of which includes the cohtrol point, and in general different levels of 
refinement will be found necessary in each. If P' is the best number of subdivision points in a given refinement 
subrange, when the control point falls within P' points of the leading or trailing edge, one subrange will not 
appear and the integration will be over only two subranges per strip. 

We now consider the various possible methods of interpolating in the x direction for values of Q(~b, r/) in 
between datum values. Linear and quadratic schemes were found to be adequate for the program evaluating 
the velocity at field points well offthe planform. However, for calculations at field points where z /c  is small and 
on the wing planform itself, particularly on the centreline, variations of up to 5 per cent were obtained over 
the rear part of the chord using simple quadratic interpolation, i.e. interpolating between points p and p + 1 
using information at points p - 1, p and p + 1. This difficulty has been overcome by using a further suggestion 
of Sells' (Ref. 1) for a more elaborate scheme which does not possess the inherent defect of inducing small 
residual discontinuities in chordwise slope as does the quadratic scheme. This is a cubic interpolation scheme 
which is a weighted average of a forward and a backward difference scheme of the type mentioned above. 
This has the effect of reducing the errors found previously to about 1 per cent and the time taken for a 
typical calculation is also reduced by about a quarter, since the more accurate definition of the interpolated 
values of Q(B')  reduces the degree of refinement necessary in the trapezoidal integration. The time reduction is 
more important when calculating the streamwise perturbation velocity component, since the singularity 
(chordwise) at the control point is 'stronger' than for the sidewash and hence requires a more precise numerical 
definition to achieve the same degree of accuracy for the final integral. 

A special case arises when we wish to compute u(x ,  O, 0); and we must take care that the only information 
used comes from the starboard wing. For swept planforms, the source lines will be kinked at the centreline in 
the physical plane, and since we wish to preserve this feature, we make a parabolic interpolation between 
information at the centreline and the first and second outboard stations. G~ and G2 at the centreline may then 
be calculated from the first and second derivatives of the parabola there. We now have all the information 
necessary for a numerical chordwise integration of functions (102) and (107). 

8. Examples 

We now proceed to test all the features that have been incorporated in the programs whose structure has 
been described above. Firstly, in order to check the G o terms in our source function representation, a sheared 
wing of large aspect ratio was chosen, since G 1 and G 2 are identically zero in this case. With this test completed 
satisfactorily, the G1 terms may be checked from calculations made on R.A.E. wing 'A' for which only G 2 
is identically zero. A final test was made on a win.g having linear planform taper and linear thickness taper for 
which our three-term Taylor expansion representation of the source function (24) is exact. Since we have 
established the accuracy of the Go and G 1 terms by this time, this last wing will test the G z terms. 

Lastly a demonstration of the programs' function on a 'real' wing is given, together with comparative 
calculations using the method of Freestone and the R.A.E. standard method. 

8.1. Sheared Wing of Large Aspect Ratio 

The section shape was chosen to be 

zt = k v / ~ (  1 - O,  

and 

~max z = - - =  0-12 
C 

0 ~< ¢ <~ 1 (108) 

so that at the centre section, we have that 

u(x,  0, 0) = cos A S~l~(x) - - -  
cos A 

7~ 
(109) 
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where 

and 

S(1)(x ) _ 0.15589f~ 1 - 34 d~ 

2%t/~ X - -  

c3z___2 = 0.15589/1 - 3¢ / 

(110) 

( I I I )  

A = 45 °. (112) 

Far from the centre section, 

u(x, ~ ,  0) = cos A S(1)(x). (113) 

A numerical experiment, using a 45 degree swept wing of aspect ratio 8, was run, and the results at the centre 
section (y/s = 0) and mid-semispan (y/s = 0-5) are presented in Figs. 5 and 6 respectively. It is noted how 
closely the predictions of the z -- 0 program agree with the velocities on the infinite wing derived from formulae 
(109) and (113). The z = 0 program was run using as data information from 20 chordwise partition lines and 
4 spanwise partition lines. Where possible, the results for z = 0 were compared with calculations from Free- 
stone's program (30 x 20 grid) and we see that the agreement is very good to within the limits of graphical 
accuracy (three figures). In addition, the program for z -¢ 0 was also run at the same spanwise stations using 
z = 0.003 and 0.006 and it is clear (again from Figs. 5 and 6) that the velocity distribution for z = 0.003 lies 
midway between the distribution for z = 0.0 and that for z -- 0.006, except very close to the leading edge. This 
increases our confidence in the consistency of the two programs since the variation of velocity for small z is 
known to be linear near the wing planform. 

8.2. R.A.E. Wing 'A' 

The next step involves testing the programs on wings for which only G 2 is identically zero. Wing 'A' (of 
Ref. 11) is an obvious choice. It has an aspect ratio of 6, planform taper ratio of 1/3, but no thickness taper. 
The section shape is the 9 per cent thick R.A.E. 101, which may be defined to reasonable accuracy by the 
analytic formula 

Z 
- = (((((((- 1.4969364 + 6.36417)~ - 10.81622)~ + 9-14093)4 - 3.75674)~ + £ 

+ 0.551483)4 + 0.00886203)¢ + 0.00444314)~ + 0.1112074~/~(1 - ~). 

For unit semispan, the leading edge and chord are given by 

(i14) 

and 
x t = 0-7440168Y ] 

( 
c 0.5 - 0.3333333Y.I 

(115) 

where 0 ~< Y =  y/s 4 1 .  
A comparison with Freestone's results has been made on the wing planform z = 0 at and near the root for 

both u and v. The three spanwise stations chosen were r/-- 0, 0.04878 and 0.0976 which result from Freestone's 
choice of grid 50 (chordwise) x 20 (spanwise) points, where the partitioning (spanwise) of the wing is chosen 
such that there are 20 whole panels on the half wing plus half of the panel 'covering' the centre section (Y = 
0-04878 = 1/20.5). The results of the comparison are shown in Figs. 7 and 8. The agreement between the present 
method and Freestone's method is seen to be very good for u(Y = 0) but there is a slight tendency for Freestone's 
results to oscillate about those of the present method. 

In all these cases, the subsonic results have been obtained from the incompressible results by application 
of the Prandtl-Glauert  rule whereas Freestone, by using the equations for compressible subsonic flow, retains 
a factor fl(= ~fl  - M ~ )  throughout his computations which may lead to numerical differences with the 
present work for sufficiently high subsonic Mach numbers (and also involves more multiplications on the 
computer). 
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The z # 0 programs for v and w were also run at Moo = 0 and the results compared with those from the 
A. M. O. Smith program. Substantial differences between the present method and the method of A. M. O. 
Smith 6 occur since, in the latter method, the boundary conditions are applied on the wing surface, but in the 
present method they are taken on the wing planform. These discrepancies can be accounted for by second-order 
effects and estimates of the differences for both v and w are outlined in Appendix B and the results plotted in 
Figs. 9 and 10 for near mid-semispan stations, so chosen to minimize root and tip effects for a tapered planform. 

8.3. Wings with Thickness and Planform Taper 

In order to check the terms in (47), (54) and (55) involving the second spanwise coefficient G 2, a wing was 
devised having both linear planform taper and linear thickness taper across the span. Thus the source function 
Q sin q~ possesses a quadratic variation with q, and the parabolic fitting described in Section 7 will be exact. 

The leading and trailing edges of the wing planform are given by 

xl = 1,1875Y ], 

x t 0.5 + 0.8125YJ 
Y = y / s ,  0~< Y~< 1 (116) 

and the coordinates of the upper surface are given by 

z = 0,I,,,/~(I - ~)(i - Y). (,117) 
c(Y) 

The programs for z = 0 and z # 0 were run at three different spanwise stations q = 0.0, 0.1 and 0.5 using 
a 23 x 4 grid; the comparisons with the results of Freestone's program (z = 0 only) using a 40 x 40 mesh are 
shown in Fig. 11. The consistency of the values of u on z = 0 with linearly extrapolated values for small z is 
shown in Tables A1, A2 and A3, given in Appendix A. 

As a demonstration of the programs'  operation in computing u on a 'real '  wing, we choose a wing based on 
the wing 'A' planform and R.A.E. (N.P.L.) 5212 section but with some modification in the vicinity of the root 
so as to maintain a reasonably uniform isobar sweep pattern close to the centre section. The root section 
thickness distribution is sketched in Fig. 12, and an analytic formula which closely approximates this is 

- = cos 30 ° aox/~il  - ~) + ak4 k + 0,15x/~(1 ~)2(0"336 - 4) 1 + cos + 
C k = l  

+ 0 " 0 6 x / ~ ( 1 -  4) 1 + c o s  , (118) 

where the second term is included only when 

[Y[ < Y~ = 0.10 

and the third term is included only when 

also 

I YI ~ Y2 = 0.075 ; 

ao = 0.18022, 

ax = -~133906 ,  

a 2 = 0.734305, 

a3 = - 3.272930, 

a4 = 12.417360, 

a s = -29.201795, 

a 6 = 37.501670, 

a 7 = - - 2 4 . 2 5 5 8 9 5  
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and 

a 8 = 6-211191. 

The distributions of streamwash in the root, near-root and mid-semispan positions are shown in Figs. 13, 
14 and 15 together with the predictions of the Freestone method and the R.A.E. standard method.* As we 
would expect, the best agreement between the three methods occurs near mid-semispan where root and tip 
effects are least appreciable, whilst nearer to the root, the R.A.E. standard method predicts a much more rapid 
fall in the values of u near the leading edge than does the present method, which is in close proximity to the 
Freestone results. However, at the root station itself (Y = 0), the Freestone method clearly predicts the wrong 
trend near the leading edge but is in quite good agreement elsewhere. In this case, the R.A.E. standard method 
copes quite well with the situation and predicts the expected trend towards the leading edge and is fairly 
closely allied with the other two methods over the rest of the chord. 

8.4. Computation Times and Storage Requirements 

Throughout the numerical experiments described herein, an ICL 1907 computer was used and the calcula- 
tion times quoted refer to this machine alone. If we consider a typical case of computing u, v and w for a swept 
wing with uniform aerofoil section, using a grid of 20 chordwise partitions by 10 spanwise, the time taken to 
calculate u to an accuracy of three significant figures would be 3 seconds and for v and w about 2-5 seconds each. 
The reason for this is that the integrals in the formulae for v and w have less strong numerical chordwise 
singularities than that for u and hence they do not require such a high level of chordwise refinement to achieve 
the same degree of accuracy. 

If the number of partitions across the span is doubled then the computation time per point is doubled; 
however, this is not quite true for the same increase in datum points on a given chord line, for which the time 
increases to about 2.2 times the old time. 

The storage requirements of all the programs is very modest and well within the capacity of a small machine 
like the ICL 1907. For example, to compute all the velocity components on wing 'A' using a 23 x 23 grid 
would require 16K variables or 32K words of storage. No additional disc space is required. 

9. Concluding Remarks 

A method has been developed for computing the three components of perturbation velocity induced by a 
planar source distribution which represents a thick wing at zero incidence, both on and off the wing planform. 
In this respect, the method holds an advantage over Freestone's pioneer program, which is tailored to calcula- 
tions on z = 0. In addition, some increase in accuracy or saving of time required to achieve a given accuracy 
is claimed. Generally speaking, where direct comparisons are possible, Freestone's velocity distribution curves 
tend to oscillate slightly about the inherently smoother curves produced by the present method. As has been 
remarked previously (and in Ref. 1) this may be due to the fixed number of grid refinements employed and the 
lack of tailoring of the coordinate system to the wing planform which may produce errors near the edges 
especially at stations outboard of Y = 0-4, say, on swept, tapered planforms. The present method does not 
meet with these difficulties. 

The numerical techniques used are broadly those developed by Sells 1 for the computation of downwash 
due to a given doublet distribution, and enable an 'exact' treatment of the case u(x ,  0, 0) to be attempted, 
although the solution will be singular as x --* 0 (i.e. at the wing apex). 

In the problem of designing wing-body combinations for a given load distribution and thickness distribution, 
the present method should provide a valuable tool not only because of its efficiency but also on account of its 
compatibility with the method of Ref. 1. 

* The formula for evaluating u according to the R.A.E. standard method is the one described in Ref. 14 with 
A t being interpreted as the geometric sweep. 
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t/+, r/_ 

t/* 

Ax, A~ 

¢ 

Z 

Subscripts 

0 

LIST OF SYMBOLS 

Local sweep x} + c'~ 

x/(a 2 + 1) 

Chord 

dc(y)/dy 

Coefficients in the expansion of Q about the reference line (see Section 7.1) 

Coefficients in the three term Taylor expansion about the control line of Q; Q = Go(q~) + 
n2G2((~) 

x ' - x = h + r l a  

Indefinite integral over one spanwise strip (see equations (24)) 

I = GoJo + GIJ1 + G 2 J 2  

Free stream Mach number 

Point of chordwise subdivision 

First-order source function 2 8zt(x, y)/dx 

Second-order source function 

q(x, y)c(y) sin q5 

r E = (X '  - -  x) 2 d- (y' -- y)2 -b z 2 
= (h +//(/)2.3ff/,/2 + Z2 

Semispan (usually unity) 

Free stream velocity 

Components of perturbation velocity (u -- streamwash, v -- sidewash, w = upwash) 

Cartesian coordinates of the control point 

Cartesian coordinates of a point in the wing plane 

Coordinate of the leading edge 

Coordinate normalised with respect to semispan (= y/s) 

x/(1 - M E) 

a(t3I/~h) - 3I/&l 

y' - y; spanwise coordinate measured from the control line 

Limits of spanwise integration strip 

Reference point of expansion; ~/_ ~< r/* ~< r/+ 

Go(#a) (see equation (64)) 
L _it/- 

Loca l  sweep angle at x, { 

Local section coordinate; x' = x~(y') + {c(y') 

Chordwise coordinate; x' = xt(y') + 2!(i - cos ~)c{y') 

Velocity potential 

- a//Oh 

First subscript on r, or second subscript on I, values when z = 0 
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1 

c 

l 

s 

t 

LIST O F  SYMBOLS (continued) 

First subscript on r, value when r /=  0 

Values when h = 0 (control point) 

Leading edge 

Quantities whose direction is perpendicular to leading edge 

Thickness coordinate 

Free stream conditions at upstream infinity 
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APPENDIX A 

Comparative Values of  u on and off the Planform of  a Tapered Wiag  

Table A1 

y/s = 0 

0.0185 
0.0728 
0-1587 
0.2700 
0.3983 
0.5341 
0.6674 
0.7883 
0.8879 

z = 0  
(computed) 

- 0.0585 
0.0250 
0.0504 
0.0604 
0.0629 
0-0598 
0.0521 
0.0400 
0.0225 

z = O  
(linear extrapolation) 

-0-0597 
0.0257 
0.0509 
0.0609 
0.0629 
0-0596 
0.0523 
0.0400 
0.0225 

z = 0.0015 

-0.0870 
0.0206 
0.0490 
0.0599 
0-0622 
0-0591 
0-0517 
0.0397 
0.0222 

z = 0.003 

-0.1143 
0.0155 
0-0471 
0.0589 
0.0615 
0.0586 
0.0513 
0.0394 
0.0219 

Table A2 

y/s = 0.1 

0-0185 
0.0728 
0-1587 
0.2700 
0.3983 
0.5341 
0.6674 
0.7883 
0.8879 

z = O  
(computed) 

0.0745 
0.0732 
0-0710 
0.0672 
0-0608 
0.0513 
0-0379 
0.0197 

-0.0027 

z = 0  
(linear extrapolation) z = 0.0015 

0.0681 
0.0730 
0.0707 
0.0669 
0.0606 
0.0511 
0.0378 
0-0197 

-0-0027 

0.0452 
0.0686 
0.0692 
0.0660 
0.0600 
0.0507 
0.0374 
0.0194 

-0.0027 

z = 0.003 

0-0223 
0.0642 
0.0675 
0.0651 
0.0594 
0.0503 
0.0370 
0.0191 

-0-0027 

Table A3 

y/s = 0.5 

0.0185 
0.0728 
0.1587 
0.2700 
0.3983 
0-5341 
0.6674 
0-7883 
0.8879 

z = 0  
(computed) 

0.0481 
0.0458 
0-0422 
0.0372 
0.0311 
0.0238 
0.0156 
0-0061 

-0-0053 

z = 0  
(linear extrapolation) 

0.0391 
0.0454 
0.0417 
0.0370 
0-0309 
0.0238 
0.0156 

" 0.0061 

z = 0.0015 

0.0249 
0.0419 
0.0405 
0.0363 
0-0304 
0.0234 
0-0152 
0.0058 

-0.0052 --0.0053 

z = 0.003 

0.0107 
0.0384 
0-0392 
0.0356 
0.0299 
0.0230 
0.0148 
0.0055 

- 0.0054 
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APPENDIX B 

Second-Order Effects 

The differences between the present method and the A. M. O. Smith method for computing velocity com- 
ponents on the wing surface may be accounted for by second-order effects. Near the mid-semispan we may 
attempt an analytic estimate (on wing 'A') and by way of example we choose the cases: 

and 

A w  = W 2 - -  W 1 

A / )  ~ 7) 2 - -  / )1  

where the suffix 2 refers to the A. M. O. Smith calculation and 1 refers to the present method. 
Now, for the upwash calculation, we may write 

Aw = w(q(2)  ; X, y, z) - w(q(l); x, y, z) 

= w(q (1) + Aq; x, y,  z) - w(q(1); x, y,  z) 

= w(Aq ; x, y, z) 

~- w(Aq ; x, y, 0) + O(z 3) 

"~ ½Aq(x y) (/3-1) 

We would now like to express Aq(x, y) in terms of the tabulated function S")(x). Using the results of Ref. 9 
or Ref. 12 

AW = imq(x, y)= ~-~(ztu (1)) + ~-~(zto(1)), (B-2) 

which is obtained from the second-order boundary condition together with the equation of continuity. Near 
the mid-semispan, root and tip effects will be minimal, so we may write 

and 

where A = mid-chord sweep. 

where 

and 

u (1) ~- S (1) cos A (B-3) 

V (1)  "~  - -  S (1)  s i n  A (B-4) 

Inserting (B-3) and (B-4) in (B-2), we obtain 

A w =  cos Ad-~(zfl~l)(X),--, s i n A ~ ( z f l ~ l ' ( X ) )  (B-5) 

z t = c (y ) f (X)  (B-6) 

x - x -  x , ( y )  

c ( y )  ' 

so that f ( X )  is the section thickness normalised with respect to the local chord. Hence we find that 

(B-7) 

OX 1 Oz t 
Oy c(y) tan A,  ~x f ' ( X )  (B-8) 

25 



and 

dc 
T_ f (X )  -- f ' (X)  tan A. ay 

Inserting expressions (B-8) into (B-5) and neglecting taper effects, we find that 

Aw = sec AJ~(f(X)S(I)(X)) (B-9) 

so that 

Av = - tan AS~[f(X)Sta)(X)] (B-10) 

using the second-order source distribution. 

Evaluating (B-9) for a 9 per cent thick R.A.E. 101 section using the values of S~)(X) given in Ref. 13 for 
example, we obtain the following: 

X 

0.9619 
0.8536 
0.6913 
0.5000 
0.3087 
0.1464 
0.0381 

S~'~(X) 

-0.0503 
-0.0072 
+0.0329 

0.0819 
0-1302 
0.1332 
0.1333 

z,(X) 

0-0031 
0.0118 
0.0248 
0.0384 
0.0450 
0.0377 
0.02il 

S~1~( X)z,( X) 

-0.00015 
-0.00008 
+0-00082 

0-0031 
0.0059 
0.0050 
0.0028 

d 1 
d-~[s ~ ~(X)z,{X)] 

from graph ofsz t :X 

+0-0000 
-0 .0004 
-0.0086 
-0-0140 
-0-0054 
+0.0143 

0.0276 

d 
sec A dX 

.[S~'(X)z,(X)] 

+0.0000 
-0.0046 
-0.0065 
-0 .0162 
-0.0062 
+0.0165 

0.0319 

(B-9) 
Aw estimate 

from Fig. 9 

+0.0000 
-0.0045 
-0-0070 
-0.0160 
-0 .005 
+0.0160 

0.040 

Inspection of the last two columns of the above table gives us confidence in the accuracy of our method 
based on the first-order source distribution which together with suitable second-order corrections is in quite 
good agreement with the nominally exact method of A. M. O. Smith. The results near the mid-semispan are 
plotted in Fig. 9. 

We now evaluate (B-10) making use of the formula la 

N - 1  

s~ s', (x)L(x). (B:il) 
~ = 1  

The sum on the right hand side of (B-11) can be evaluated from tables using N = 8 (Ref. 13) which was 
regarded as giving sufficient accuracy for the purpose of this demonstration. The following table and Fig. i 1 
show that the present method together with correction formula (B-10) correlates well with A. M. O. Smith 
computations. 

X 

0.9619 
0.8536 
0.6913 
0.5000 
0-3087 
0.1464 
0-0381 

S~II(X)z,(X) 

-0-00015 
-0-00008 
+0.00082 

0.0031 
0.0059 
0.0050 
0.0028 

S~ ~ ~[ S~ ' ~( X)z,( X)] 

-0 .0094 
-0 .0064 
-0 .0047 
+0.0030 

0.0237 
0.0190 
0.0191 

- tan AS tl)[s~1~(X)z,(X)] 
( B - 1 0 )  

0.0054 
0.0037 

+0-0027 
-0.0017 
-0.0137 
-0.0109 
-0.0110 

Av estimate 
from Fig. 10 

0.004 
0.003 

+ 0.0025 
- 0.002 
-0 .013 
-0.0110 
- 0.008 
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