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Summary 

A calculation method has been developed which uses the compressible forms of the boundary-layer 
momentum integral"and entrainment equations in a general, curvilinear surface coordinate system in which 
the axes are not necessarily orthogonal. Both the Mager and Johnston representations of the crossflow 
velocity profile can be used. The set of equations used is hyperbolic and is solved numerically by a simple 
explicit finite difference method. In cases where the metric coefficients of the coordinate system used are not 
known analytically a method is given for obtaining them from the Cartesian coordinates of the surface. A 
method is also presented for determining the external velocity field from a given pressure distribution. Compari- 
sons are given of predictions of the boundary-layer method with the experimental results of Johnston, 
Vermeulen, East, van den Berg and Elsenaar, and Hall and Dickens. These results, involving five different 
coordinate systems, were all obtained using the same computer program. 
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* Replaces R.A.E. Technical Report 72228 A.R.C. 34 452. 
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I. Introduction 

Three-dimensional turbulent boundary layers are in all probability the most commonly occurring form of 
boundary-layer flows. They occur, for example, on swept wings and on bodies at incidence. Prediction of such 
flows is of considerable practical importance and here a method is given for the calculation of the three- 
dimensional compressible boundary-layer development over an insulated surface. 

Prediction methods for two-dimensional turbulent boundary layers are generally of two forms; finite 
difference methods in which the governing partial differential equations are solved numerically and integral 
methods in which the partial differential equations are reduced, by an integration in the direction normal to the 
surface, to a set of ordinary differential equations which are then solved numerically. Both forms involve con- 
siderable empiricism to render the equations used determinate. Integral methods are generally much faster. 

For three-dimensional flows these two forms remain, although in this case the integral methods involve 
partial differential equations but with only two independent variables, rather than the three of finite difference 
methods, so that the former's speed advantage should to some extent be retained. 

Integral prediction methods for three-dimensional turbulent boundary layers have usually made use of a 
streamline coordinate system which consists of two families of mutually-orthogonal curves on the body 
surface. One family is formed by the projections, onto the surface, of streamlines just external to the boundary 
layer. The direction of an external streamline is called the streamwise direction and boundary-layer flow normal 
to an external streamline and parallel to the surface is called crossflow. The assumption is then made that the 
streamwise flow is similar to that of a corresponding two-dimensional boundary layer. 

Myring 1 has shown, however, that we may make use of the observed similarities with two-dimensional flows 
even when an axis system is adopted which is not based on the external streamlines. The abandonment of the 
streamline coordinate system yields two considerable advantages; firstly, the coordinate system can remain 
unchanged despite changes in the external flow about the body and secondly, the axis system may be chosen 
to give an even coverage of the body surface. 

Myring developed a calculation method which used the momentum integral and entrainment equations in 
a general coordinate system. Here we extend this method to compressible flow over adiabatic walls and use a 
numerical method of solution which takes account of the hyperbolic nature of the equations involved. The 
method uses a non-orthogonal curvilinear coordinate system on the body surface. In cases where the metric 
coefficients of this coordinate system are not known a numerical technique is presented for obtaining them 
from the Cartesian coordinates of the surface. 

The use of a general coordinate system results in an extremely flexible computer program. The five compari- 
sons of the boundary-layer method with experimental results given here, which involved five different coordinate 
systems, were all obtained using the same computer program. In four of these cases the comparison with experi- 
mental results is encouraging, in the remaining case the discrepancies between experiment and calculation are 
unresolved. 

The boundary-layer method requires that the velocity external to the boundary layer be known. When, as 
is often the case, only a pressure distribution is available, the velocity components may be obtained from this 
by means of a calculation scheme which is given here. This calculation proceeds simultaneously with the 
boundary-layer calculation. 

2. Governing Equations 

2.1. Momentum Integral Equations 

The axis system used here is that introduced by Myring 1 and is shown in Fig. 1. The z-axis is normal to 
the surface and x and y form a non-orthogonal curvilinear mesh on the body surface. Velocities in the x, y and 
z directions are denoted by u, v and w respectively. An element of length ds on the body surface is given by 

ds 2 =h  2dx 2 + h~ dy 2 + 2g dxdy, (1) 

where g --- hlh 2 cos 2. 
The boundary-level momentum integral equations in this coordinate system are given by Myring as 
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h Z 0---~ + Or' hi u~ cox + q -~x~-~l I + k, + h-22 cO---f- 
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where M is the Mach number at the edge of the boundary layer and CI1 and C r 2 are the skin-friction coeffi- 
cients in the x and y directions respectively. The velocity components in the x, y directions at the edge of the 
boundary layer are denoted by u~, v I and the resultant velocity at the boundary-layer edge is denoted by ue 
where 

u~2 = u ~ + v  2 +2cos2uxv 1. (4) 

The various integral thicknesses appearing in equations (2) and (3) are defined in Appendix A together with 
the quantities kl, k2, k3,11,12, 13 and q. 

2.2. Entrainment Equation 

The entrainment or continuity integral equation is given by Myring as 

£)'o,q(v a_ l [u,  06 v, 86 
P,u,qLax[h* OY[h2 ' ~L~~x h 2 ay W1] = F, (5) 

where Pe is the density at the boundary-layer edge and 6 denotes the boundary layer thickness. F denotes the 
non-dimensional rate of change of mass flow in the boundary layer. The usefulness of equation (5) depends on 
the assumption that F can be prescribed as an empirical function of local boundary-layer properties. 

2.3. Displacement Thickness and the Equivalent Source Distribution 

Equation (5) may be rearranged as 

FL[Peq"i L?o ",II ~ f d Ipeq,eAll a [p~q,,A~ll 
w, = p,qLaxl h, I + ay~ h~ lJ + -~L~I~I  + Y y ~ I A  

(6) 

The first term on the right-hand side of this equation is that which would alone be present, at a distance 6 
from the surface, in the irrotational flow around the body. The second term is the additional outflow due to 
the boundary layer and is 'as if' there were a source distribution on the surface of strength rn per unit area 
where 

The irrotational flow past the body plus a displacement surface of local thickness ~5" yields, at z = 6, a value 
of w given by 

wl = -- P,q L~x~--V2-~ l + ay~ h2 I J + V~ -~x + h-22 O---y (8) 



Equating equations (6) and (8) we obtain 

L[pequlcS* I d_[peqv16* I O.._O_[pequeA11 O[p~queA2 I 
Ox~ hi I + Oyl h2 ] =Ox~ h 1 I + ' ~ y ~ I '  (9) 

which may be solved for 6* once A 1 and A2 have been determined. Equation (9) is Myring's equation (22) 
with an error in sign corrected. 

2A. Introduction of Streamwise Integral Quantities 

The equations (2), (3) and (5) form the basis of the calculation method, but to proceed further we must reduce 
the number of unknowns contained therein to three. This is done, as shown below, by using assumed forms of 
velocity profiles together with skin friction and entrainment relationships. Empirical knowledge of these 
parameters is restricted to the streamline coordinate system in which one family of a set of mutually orothogonal 
coordinate curves is formed by the projections, onto the surface, of streamlines just external to the boundary 
layer. The direction of an external streamline is called the streamwise direction and boundary-layer flow normal 
to an external streamline and parallel to the surface is called crossflow. It is convenient, therefore, to express 
all the integral thicknesses so far introduced in terms of the more familiar integral thicknesses in the streamwise 
and crossflow directions. Expressions relating ®ix, ®x2, ®21, A1 and A 2 in terms of 01t, 012, 021, 6i, c~2, 2 
and a are therefore given in Appendix B. Here lower case 0s and 6s denote the integral thicknesses in the stream- 
wise and crossflow direction, a is the angle between the x-axis and the external streamline and 2 is the angle 
between the x- and y-axes. 

3. Introduction of Empirical Relationships 

3.1. Streamwise Velocity Profiles 

We define the shape parameters H, H and HI as 

and 

H--- 61 
011'  

(~ - 6 0  
n 1 ~ - -  

011 

(lo) 

We now assume, as was done in Ref. 2, that the streamwise velocity profiles are of the form suggested by Spence 
for two-dimensional flow, that is 

where 

- = ( 1 1 )  
Ue 

Z =  - - d z  and Z 6 =  P--dz. 
0 Pe Pe 

Substitution of the velocity profile (11) into the definitions (10) yields 

and 

2H 
H ,  = H - 1 ( 1 2 )  

H = 2 n +  1, 



so that we may write the streamwise velocity profile as 

u A z d  • 
(13) 

3.2. Crossflow Velocity Profiles 

For incompressible flow Mager s has proposed the relationship 

( V 1 - tan (fl), 
U . 

where V is the crossflow velocity, U is the streamwise velocity and fl is the angle between the external stream- 
line and the corresponding limiting streamline on the surface of the body. For compressible flow we assume 
that the Mager profile may be generalised as 

= 1 - tan (fl). (14) 

As noted in Ref. 2, experimental support for the introduction of the correlating variable Z/Z~ in equation (14) 
consists solely of the observation by Hall and Dickens 4 that such a change of variable made an already poor 
agreement between measured and predicted velocity profiles no worse. 

With the assumption of the velocity profiles (13) and (14), all the crossflow integral thicknesses may be 
related to the streamwise momentum thickness 011by relations of the form 

021 : 011 tan  (fl)f21(R), 
012 = 011 tan (fl)f12(H), 

62 = 011 tan  (fl)f2(H) (15) 

and 

022 = 011 tan (fl)f2"2(H)- 

Theffunctions are listed in Appendix C and are identical to those derived by the present author 5 as functions 
of H for incompressible flow. 

An alternative crossflow velocity profile is that suggested for incompressible flow by Johnston, 6 for which 
in a thin layer adjacent to the wall 

V 
= tan (fl) (16) 

and over the rest of the boundary layer 

Ue 

We assume that equations (16) and (17) apply unchanged to compressible flow and that, as demonstrated by 
Johnston, we need only consider the relation (17) when evaluating the crossflow integral thicknesses. Using 
equations (17) and (13) we then derive the relationships 

o12 = o, iafl2(R),  

021 = OtlAf21(I~), 
022 = 011A2j~22(H) (18) 



S 2 = 

S.. 

and 

6 2 = 011Af2(R) 

where once more theffunct ions are defined in Appendix C. 
It will be noted that the relations (15) and (18) have a common form 

0,2 = 011 tan (y)f12(Er), 

021 = 011 tan (~)f21(R), 

0 2 2  = 0 1 1  tanZ(~)f22(g) 

and 

(19) 

62 = 011 tan (7)f2(R), 

where for Mager profiles y = p and for Johnston profiles tan (y) -= A. For the latter profiles we require a 
relationbetween A and/~ and this is derived in Appendix D and takes the form 

E 0-1 1] tan (8) = A [ Q  cos (8)(1 + 0.18M2)] ~ - ' (20) 

where C: is the skin-friction coefficient in the external flow direction. 

3.3. Skin-Friction Coefficients 

Myring has shown that the two components C:1 and C:2 along the x- and y-axes may be written in terms 
of C: and/3 as 

and 

Cfl = C : {  sin (2 - °0 - c°s (2 - c0 tan ( / / ) } s i n  2 

Cf2 = c:{ Sin (~) + c°s (~) tan (/3)} 

In the context of the present method, the skin-friction coefficient C: may be evaluated by any expression which 
yields C: in terms of 011, H and the external flow conditions. Here we use the Ludwieg-Tillmann relation 
modified for compressible flow according to Eckert's reference temperature concept. 7 This relationship is 

where T*/Te = 1 + 0.13M 2 for adiabatic flow in air and the viscosity/~* is evaluated at the temperature T* 
by using the power law relationship 

(.*) 
Z ~-~--~ / " (23) 

The power 0.89 in equation (23) is valid for air at temperatures in the range 90 K ~< T ~< 300 K. 

3.4. The Relationship between H and H 

Spence s has shown that the assumption, for adiabatic flow, of a quadratic temperature distribution through 
the boundary layer, produces the relationship 

m 
H 4- 1 = (H 4- 1)(1 4- 0.2rM 2) 



where r denotes the recovery factor. Green 9 has suggested that in the evaluation of the shape factor H, the 
recovery factor is. best taken as unity, since over the major portion of the boundary layer the total temperature 
is constant. We therefore use 

H + 1 = (H + 1)(1 + 0-2M2). (24) 

3.5. The Entrainment Coefficient 

For two-dimensional incompressible flow, Head l° postulated that the entrainment coefficient F is a unique 
function of the shape parameter Hi ,  and further, that H 1 is itself a unique function of H. Green has shown that 
we may combine these two assumptions and write F as a function of H as follows 

F = 0 . 0 2 5 H - 0 . 0 2 2 .  

Green further suggests that for compressible flow the transformed shape parameter H may be taken as the 
equivalent of the conventional shape parameter in incompressible flow. We now assume that an identical 
relationship between F and the shape parameter H holds in both two- and three-dimensional flows so that 
we may write 

F =  0.025/~ - 0.022. (25) 

3.6. Final Form of the Equations 

Using the trigonometric relationships contained in Appendix B and the empirical relationships of the 
previous section, we may write equations (2), (3) and (5) in the form 

0011 F OH 
Fll--f fZ x + 011 llW-~x + 0 1 1 F 1 1 ~  x = $1, 

O011 OR 0y 
F21~x  + 011F21H-~-- x + O l l F z i ~  x = $2 (26) 

and 
0011 0 OH 0y 

Jl--~-- x q- llJ1B~-~- x -F 011Jlr ~ - S 3 

where the F's, J 's and S's are defined in Appendix E. It should be noted that the x direction has been chosen 
as the direction of forward integration and that the y derivatives, which will be approximated by finite difference 
expressions, have been included in the S functions. 

When using Mager profiles y - ]~ but for Johnston profiles we find, as shown in Appendix D, that we may 
write y explicitly in terms of ]~ but not vice versa. For both forms of profile we therefore work in terms of ]~ 
rather than y and by the method of determinants (Cramer's rule) may rewrite equations (26) in the form 

and 

0011 ( 
0X = g l  0 1 1 ' R ' ] ~ ,  - -  

oR 
Ox gz(0a i etc.) 

op 
0~=g3(011 e tc . ) .  

0011 OH 01~ Oul Oul Ovl Ovl Ohx Ohl Oh 2 Oh z Og ~yy) 
Oy " Oy ' By' ul " °1' Ox ' Oy ' Ox ' Oy ' hi '  h2, g' ~X ' Oy ' 8---x" Oy ' ax" ' 

(27) 

For computational convenience we introduce a reference Reynolds number Ro~ = Uo~c/v~o, where U~o is 
a reference velocity, c a reference length and V~o a reference kinematic viscosity. We may then non-dimensionalise 
all lengths (011, hi ,  h 2 and gi) with respect to c and velocities (ul and vl) with respect to Uoo. The form of the 
equations remains unchanged. Given appropriate initial and boundary conditions these equations may be 
solved by the numerical method of the next section provided the metric coefficients (hi, h 2 and g) and the 
external velocity components u 1 and v 1 are known as functions ofx  and y. In many cases the metric coefficients 
may be specified analytically as functions of x and y, but in cases where this is not so a numerical method has 
been devised to obtain these functions from the Cartesian coordinates of the surface coordinate system. Full 
details are given in Ref. 11 and for completeness the method is outlined here in Appendix F. A method has 



also been devised for calculating the external velocity components from a given pressure distribution and this is 

described in Section 5. 

4. Numerical Method 

Myring has shown that the incompressible forms of equation (27) are hyperbolic and this is not altered by 
the introduction of compressibility, A feature of hyperbolic systems of equations is that they have characteristic 
directions which in turn define zones of influence and zones of dependence. The characteristics may be thought 
of as lines along which information is transported, so that for the equations used here, for which there are 
three characteristics, conditions at a point on the surface depend only upon the conditions in a wedge-shaped 
region extending upstream and bounded by the two outermost characteristics. In turn, conditions at the point 
can only influence conditions in a wedge-shaped region downstream. The existence of these zones of influence 
and dependence inplies certain constraints for any numerical method which is to be used in the solution of 
the equations. Clearly if fluid is entering the region of integration across any boundary of that region then 
boundary conditions must be supplied along that boundary. Also, the forward step size in any numerical 
procedure is limited by the requirement that the downstream point must lie within the zone of influence of 
the upstream point and its immediate neighbours. Finally, it seems reasonable to insist, that in the evaluation 
of derivatives some account is taken of the direction in which information is being transported. These points 
are dealt with in more detail below. 

The directions of the three characteristics of equations (27) all lie within the angle bounded by the external 
and limiting streamline directions. The characteristic of the 01 ~ equation lies close to the external streamline 
direction, the characteristic of the/3 equation lies close to the limiting streamline direction whilst the character- 
istic of the H equation lies between the other two. 

The calculation proceeds over a rectangular grid in the x, y plane as shown in Fig. 2. If at the point I, J all the 
quantities on the right-hand sides of equations (27) are known, we may evaluate the derivatives (a01 i/Ox)1,s, 
(OH/Ox)1,s and (O/3/Ox)i,s and extrapolate to the point I + 1, J by equations of the form 

(Oll)/+l,j ~-- (011)l,j "[- I"-~-X 11, d 

Here we seek to improve this approximation by first extrapolating a distance Ax/2 to (I + ½), evaluating 
(a011/ax)x+~.s at this point and then using 

AX[O0111 . (29) 
(011)I+1'J : (Oll)l 'J "]- I OX Ix+.,k,J 

The forward step length Ax is taken to be governed by the requirements (1) that the downstream point 
lies within the zone of influence of the upstream point and its immediate neighbours (the Courant Friedri'chs- 
Levy condition) and (ii) that Ax should be less than or equal to 10011 (i.e. Ax ~ tS). In calculating the zone of 
influence the characteristic directions are taken to be those of the limiting and external streamlines. This always 
produces a conservative estimate of the step length which may be used. 

In the evaluation of the y derivatives on the right-hand sides of equations (27) note is taken of the character- 
istic directions. Relative to the x-axis these are assumed to be given by the angles ~ and ~ +/3. If both ~ and 

+/~ are positive, a backward difference of the form 



The use of these equations implies that if fluid is entering the computational region through either of the 
side boundaries" then boundary conditions must be supplied along that boundary. In some cases this is not 
possible and the calculation is allowed to proceed by using, for example, a forward difference at the lower 
boundary if the boundary conditions have not been supplied there. This will have the effect of allowing errors 
to be propagated into the computational region but the spread of these will be confined to the zone of influence 
of the first point at which an incorrect difference expression is used. 

5. The External Velocity Field 

The solution of equations (27) requires that the external velocity distribution be known. Often, however, 
only a pressure distribution is available and so here a method for deriving the velocity distribution from this 
pressure distribution is described. 

When deriving the momentum integral equations, the pressure p was eliminated by the use of the forms 
taken by the boundary-layer equations at the outer edge of the layer: 

u Ou I v 1 3u 1 } cgp Op 
P~ -~1 ~ x  + hE O---ff + u~kl + v~kz + ulvlk3 = al ox + a2-~y (33) 

and 

{Ul Ov~ v~ 3vl } Op Op 
Pe hi  ~ "{- h2 ~ "~ u211 -}- v212 "~ u ' v l l 3 = b l "~x + b20y' (34) 

where pe is the density at the edge of the boundary layer and the coefficients k 1 , k2, k s, 11 , 12,13, al ,  a2, bl and b 2 
are given in Appendix A. We introduce the pressure coefficient C v defined as 

Cv - Pl - P~o2 
gp~ U~o 

and at the same time non-dimensionalise all velocities with respect to U~o. Equations (33) and (34) may then 
be written as 

I)1 3Ul ul OUl 1 poo[a o G, a OCvl u2kl - v2k2 - UlVlk3 h 2 0 y  
= 2  pe[ + 2 Oy] - 

(35) 

and 

u 1 av I 1 fl~[ OC v . OCp~ D 1 01) 1 
h, Ox =2p-~[bl - -~x + b2-~-y ] - UZll - V212 - ulvJ3 h2 3y (36) 

where 

P.  (~ + 0"2M212s 
(37) 

and 

M = ueM~° 
[1 + 0-2M2(1 - u~Z)] }" (38) 

Equations (35) and (36) are solved by a numerical method which is similar to that described in the previous 
section. In this case there is only one family of characteristics, the external streamlines, and so for the evaluation 
of the y derivatives a backward difference is used if 01 is positive or a forward difference is used if o 1 is negative. 
This solution may be obtained simultaneously with the solution of equations (27) or, of course, it may be 
obtained independently. Once again boundary conditions must be supplied along any boundary through which 
fluid enters the computational region. 
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6. Comparisons with Experiments 

6.1. Johnston's Impinging Jet Experiment 

Johnston 6 measured the boundary-layer development in incompressible flow on the roof of a test section 
in which a pressure distribution was produced by a jet impinging against the back wall of the test section. 
A sketch of the test section is given in Fig. 3 where the measuring stations are indicated by small circles. 
Unfortunately the pressure distribution was not measured in sufficient detail in this experiment and so for the 
purposes of calculation the external velocity field was assumed to be given by the potential flow solution for 
an impinging jet. Comparison between the experimental results and calculations using both Mager and Johnston 
velocity profiles are presented in Figs. 4, 5 and 6. A Cartesian coordinate system was used for these calculations 
and the integration started 45 inches from the back wall. On the plane of symmetry the agreement between 
experiment and calculation is excellent until very close to separation. Off the centre line comparison is rendered 
difficult by the asymmetry which is present in the experimental results. The calculated results remain symmetric 
because, as is mentioned above, a symmetric pressure distribution was used in the calculations. 

Pierce and Klinksiek 12 have recently presented a solution for this flow using streamline coordinates, 
momentum integral and entrainment equations and Mager profiles. Compared to the results of the present 
method, Pierce and Klinksiek's results for streamwise momentum thickness are in slightly worse agreement 
with experiment. Their results for shape factor are in significantly worse agreement, whilst predictions for the 
limiting streamline angle are about the same. The numerical method used by Pierce and Klinksiek appears to 
take no account of the hyperbolic nature of the equations used, and it is felt that it is this rather than the 
slightly different empirical relationships used in their method, which results in their failure to obtain such good 
agreement with experiment. 

6.2. Vermeulen's Curved Duct Experiments 

Vermeulen 13 measured the incompressible boundary-layer development on the roof of a 60 degree curved 
duct. Two sets of measurements were made, the first denoted as Series 1, had no pressure rise between duct 
inlet and outlet whilst in the Series 2 measurements a pressure rise was produced by introducing a baffle at 
the duct exit and venting the duct sidewalls. Fig. 7 shows a sketch of the Series 1 measuring positions together 
with the external and limiting streamlines deduced from the measurements by Vermeulen. Calculations were 
performed over a grid through the measuring stations. It will be seen from Fig. 7 that boundary-layer fluid 
is entering the computational region across the line through the measuring stations on the outside of the bend 
and so the measured boundary conditions for 011, H and ~ were imposed along this line. 

A feature of the coordinate system used in these calculations is the existence of discontinuities in the metric 
coefficient h 1 at the junctions between straight and curved portions of the duct. To investigate what effect 
this had upon the results two calculations were performed. In the first the metric coefficients were evaluated 
by the method described in Appendix F so that the discontinuity was numerically 'smoothed over'. In the 
second calculation the metric coefficients were used in their discontinuous form. No significant differences were 
detected between the results of the two calculations. 

Figs. 8 to 16 show comparisons between the measurements and calculations using both the Mager and 
Johnston crossflow models. It will be seen that the predictions for streamwise thickness depart fairly markedly 
from the measured values but that the streamwise shape factor and the limiting streamline angle are in much 
better agreement with experiment. The limiting streamline angle is better predicted by the use of the Mager 
rather than the Johnston crossflow model. The explanation for this discrepancy between experiment and cal- 
culation is not at present resolved. One possible explanation is that the crossflow velocity profiles used are not 
adequate for this case in which the dominant term in the streamwise momentum integral equation is the rate 
of change in the crosswise direction of the crosswise momentum thickness 012. Against this explanation we 
must set the results of calculations for this experiment by Wesseling which were presented at the recent Euromech 
Colloquium No. 33 on three-dimensional turbulent boundary layers. Wesseling made calculations using his 14 
three-dimensional version of Bradshaw's finite difference calculation method so that no velocity profile 
assumptions were involved. Wesseling's predictions also deviated significantly from the data and appeared 
to be in closer agreement with the present calculations. 

The result of calculations for the Series 2 measurements is shown in Figs. 17 to 26. As with the Series 1 
measurements the calculated streamwise momentum thickness does not agree with the measurements but the 
shape factor and limiting streamline angle are fairly well predicted over most of the length of the duct. 

12 



6.3. East's Hal f  Delta Experiment 

A sketch of the model used by East 15 is shown in Fig. 27. The tests were made at a velocity of 60 m/s and 
an incidence of approximately 11 degrees. Boundary-layer measurements were made at twenty-one points 
along a line inclined at 8 degrees to the vertical which intersected the tunnel floor at a distance of 5.53 m from 
the apex of the wing. The location of these measurements is shown as traverse position B in the figure. Measure- 
ments were also made 0-25 m upstream and downstream of this position to enable gradients of boundary 
layer and freestream quantities in the chordwise direction to be determined. These measurements indicated 
that the freestream flow approximated closely to conic conditions (i.e. variations along rays through the apex 
were small) whilst the streamwise momentum integral thickness appeared to vary almost linearly with distance 
from the apex. Calculations were therefore made, using polar coordinates, from a position 2 m upstream of 
the measuring station with starting values as follows--the streamwise momentum thickness was taken to be 
that at the measuring station scaled by the factor 3-53/5.53, the streamwise shape factor and limiting streamline 
angle were taken to be the measured values. No side boundary conditions were imposed since the lower 
boundary was assumed to be a plane of symmetry and fluid was leaving the computational region over the 
entire length of the upper boundary. Figs. 28 and 29 show the results of these calculations and it will be seen 
that the momentum thickness is very well predicted, the shape factor is well predicted and once again the use 
of Mager profiles gives better prediction of the limiting streamline angle than does the use of the Johnson 
profile. 

A feature of this flow is that the domain of dependence becomes progressively narrower as one moves 
upstream. A result of this is that the flow at the measuring station becomes less and less dependent upon the 
starting conditions the further upstream the calculation is started. To illustrate this feature calculations were 
also made starting both 3 and 4 m upstream of the measuring station with the same starting conditions as 
were used 2 m upstream (i.e. 011 scaled by 3.53/5.53, and not by 2.53/5.53 or 1.53/5-53). The results of these 
calculations only differed near the wing root and were identical in the region covered by the measurements. 

6.4 The Infinite Swept Wing of van den Berg and Elsenaar 16 

In this experiment considerable care was exercised in an attempt to simulate infinite swept wing conditions 
in incompressible flow. The test surface was a flat plate swept at 35 degrees and a pressure distribution was 
imposed upon this by a body also swept at 35 degrees. Boundary-layer measurements were made at the position 
shown in Fig. 30 and also at four other positions along the starting line of the calculation. These latter measure- 
ments confirmed that the boundary-layer quantities were invariant along the starting line. Two types of 
calculation have been performed for this case. In one the pressure distribution as measured over the calculation 
region was used and in the other infinite swept-wing conditions were assumed and the pressure distribution 
at all spanwise stations was taken to be that at the measurement plane. In both cases a coordinate system 
skewed at 35 degrees was used. 

No boundary conditions were needed along the line denoted by H in Fig. 30 since fluid was leaving the 
computational region over the whole length of this line. Along the line C boundary conditions should have 
been imposed. None were in fact available but the region of influence of the errors introduced by this does not 
cross the measurement plane until the separation line is reached. Experimentally separation was observed to 

_ occur between stations 8 and 9. The comparison between experiment and calculation for streamwise momentum 
thickness given in Fig. 31 shows that both types of calculation agree well with experiment up to statibn 6 

-after which the fully three-dimensional calculation lies a little closer to the experimental points than does the 
infinite yawed wing calculation. Some of the discrepancy between calculation and experiment may be due to 
the small static pressure variation through the layer downstream of station 7 which was observed experimen- 
tally. It will be seen that the fully three-dimensional calculation using Johnston profiles gives the better agree- 
ment with experiment in this case. The above remarks apply equally well to the comparison between measured 
and calculated streamwise shape factor development shown in Fig. 32. For both streamwise momentum 
thickness and shape factor the significant differences between experiment and calculation all occur within a 
distance of about five boundary-layer thicknesses from separation. The predictions for the limiting streamline 
angle are shown in Fig. 33 and it will be seen that the use of Johnston profiles tends to overestimate the 
limiting streamline angle whilst the converse is true for the use of Mager profiles. As a result of this the method 
predicts separation between stations 7 and 8 with Johnston profiles and does not predict separation with Mager 
profiles. As noted above, experimentally separation was observed between stations 8 and 9. 
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.... 
6.5. The Supersonic Nozzle of Hall and Dickens 4 

Hall and Dickens measured the boundary-layer development on the insulated side wall of a specially 
constructed supersonic nozzle. The measurements were made along three streamlines denoted by A, B and C 
in Fig. 34 which also shows the nozzle geometry and the Mach number distribution along streamline B. For 
the purposes of calculation a coordinate system consisting of the streamlines and lines of x = const was used. 
Here x denotes distance along the nozzle axis. Using the measured conditions along lines A and C as boundary 
conditions the results shown ir~ Figs. 35 and 36 were obtained along streamline B. It will be seen that the 
momentum thickness is well predicted but that the shape factor predictions are consistently below the experi- 
mental values. This discrepancy is thought to have been caused by the favourable pressure gradient which 
existed over the initial portion of the nozzle. The entrainment method in two dimensions performs less well in 
favourable pressure gradients. To check this a further calculation was made starting at x = 15 inches and the 
results are shown in Figs. 37 and 38. It will be seen that the momentum thickness predictions are still very good 
whilst the shape factor and limiting streamline angle predictions have improved. The crossflows in this experi- 
ment are small and as a result of this the zones of influence of the boundaries A and C do not cross the streamline 
B. To confirm that this property was also demonstrated by the numerical solutions, calculations were performed 
in which boundary conditions were not assumed along lines A and C. The results of these calculations gave 
results identical to those in Figs. 37 and 38. 

Shanebrook and Sumner 17 have recently presented the results of calculations using the momentum integral 
and entrainment equation together with the small crossflow assumption for this flow. The results for streamwise 
momentum thickness as predicted by Shanebrook and Sumner are very much worse than predictions obtained 
using the present method. The method of Ref. 17 gives an error of about 25 per cent in momentum thickness at 
the end of the test region, presumably because the small crossflow assumption is invalid there. The present 
method is about 2 per cent in error at this point. Shanebrook and Sumner use a crossflow velocity profile 
which is specifically designed to allow the crossflow to change sign through the boundary layer (neither the 
Mager nor Johnston profiles can allow for this) but contrary to expectations this does not appear to offer 
any improvement in prediction of the limiting streamline angle over that given by the present method for this 
case, even in those regions where the small crossflow assumption is valid. 

6.6. General 

With the exception of Vermeulen's curved duct, the comparisons with experiment given here show encouraging 
agreement with experiment. For those flows in which the crossflow changes sign (East, and Hall and Dickens) 
the Mager profile appears to givethe better predictions for limiting streamline angle. For the other flows the 
Johnston profile gives slightly the better results. 

The computer time required for the calculations varies linearly with the number of steps used in the x and 
y directions. It is given approximately by 

T = 0.008NxNy seconds 

on a CDC 6600 computer where N~ and N r are the number of steps in the x and y directions. On an ICL 4130 
computer the seconds in the above expression become minutes. 

7. Conclusions 

The boundary-layer prediction method of Myring which uses the momentum integral and entrainment 
equations in a general coordinate system has been extended here to compressible adiabatic flow. The numerical 
method which has been developed for the solution of these equations takes account of their hyperbolic nature 
in the choice of forward step size, the direction in which crosswise derivatives are evaluated and in the imposition 
of boundary values. For cases where the metric coefficients of the coordinate system used are not known 
analytically, a method has been developed for obtaining them approximately from the Cartesian coordinates 
of the surface. This results in an extremely flexible computer program which enabled all the results contained 
herein, involving five different coordinate systems, to be obtained with no changes to the program. Comparison 
with experiment, with the exception of Vermeulen's curved duct, is encouraging both in incompressible and 
compressible flow. The method requires that the velocity distribution external to the boundary layer be known 
but in many cases this is not so and only a pressure distribution is available. For these cases a method has 
been developed for calculating the velocity distribution from the given pressure distribution. This calculation 
is performed simultaneously with the boundary-layer calculation. 
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LIST OF SYMBOLS 

Variable in Johnston's crossflow profile 

Coefficients defined in Appendix A 

Reference length 

Skin-friction coefficient in external stream direction 

Skin-friction coefficient in x direction 

Skin-friction coefficient in y direction 

Pressure coefficient 

Entrainment coefficient 

Coefficients relating integral thickness in different coordinate systems. Defined in 
Appendix E 

Functions defined in Appendix C 

Metric coefficients of x, y coordinate system 

Shape factors defined in equation (10) 

Mach number 

Source strength 

Static pressure 

2 2 =_ x/hlh2 _ g2 

=- U®c/voo reference Reynolds number 

Recovery factor 

Defined in Appendix E 

Velocity components in streamline coordinates 

Velocity components along x, y, z respectively 

Resultant velocity in external flow 

Values of u, v, w in external flow 

Non-orthogonal curvilinear coordinates x, y in body surface, z normal to body surface 

Angle between x-axis and external streamline 

Angle between an external streamline and the corresponding streamline at the wall 

=/6 for Mager profiles, -= tan- 1 A for Johnston profiles boundary-layer thickness 

Boundary-layer thickness 

Boundary-layer displacement thickness 

integral thicknesses in x, y coordinates 

Integral thicknesses in streamline coordinates 

Angle between x and y coordinate directions cos (2) = g/(hlh2) 

Viscosity 

Density 

= ,alp kinematic viscosity 
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APPENDIX A 

C 

Definition of Integral Thicknesses 

The integral thicknesses are convenient velocity grouping integrals taken across the thickness of the boundary 
layer, and here two sets are defined corresponding to the two axis systems under consideration. 

For  the general non-orthogonal axes x and y, lower case u and v have been used to represent the respective 
velocities. These will now be associated with upper case symbols which represent the integral thicknesses. 
As used in equation (5), 6 represents the real boundary-layer thickness measured normal to the surface and 

a pu . 
Oil = fo ~u2~ (u~ - u)dz, 

t "~ pv 
O12 = | --:~.~(u~ - u)dz, 

,JO PeUe 

t "a pu 
O21 = Jo ~u2~ (v~ - v)dz, 

(~ pv (v 
022 = J0Pe u2 1 -- v) dz, 

A1 = f~ (Pe~ -- pu) dz, 
3o peUe 

A2 = fa  (Per1 __ pv) dz, 
Jo PeUe 

(A-l) 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

(A-6) 

where subscript 1 denotes conditions just external to the boundary layer and ue is the resultant external velocity 
given by 

2 u~ = u 2 + vl z + 2cos2ulv  1. (A-7) 

In the more familiar case of streamline coordinates s, n where s is measured along an external streamline and 
n normal to it, upper case U and V have been used as velocities along s and n. However, since the flow is 
independent of the axis system, the resultant external velocity must be the same as before and hence by definition 

ue = U,.  (A-8) 

With this system similar integral thicknesses may be defined, using lower case representative symbols, as 

0xl = f~ PTU.2(U1- U)dz, (A-9) 3o p~u~ 

0 , 2 = f ~ p ~ ( U 1 - U ) d z ,  (A-10) 

f ]  p U V  
021 = ~ dz, (A-11) 

PeUe 

022 = f f  -pV~2.2 (A-12) 

(~ (peU1 - pU) dz, 
61 = --75 

JO PeUe 
(A-13) 
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APPENDIX A---continued 

f /  _ p__ff_V dz, (A-14) 
8 2 = p e U e  

where U 1 has been retained for comparative purposes. 
The quantities k 1 , k 2, k 3 , l 1 , I 2, 13, a l ,  a2, bl,  b2 and q which appear in equations (2), (3), (33) and (34) are 

defined as the following functions of the metric coefficients h i , h 2 and g: 

= h l g ~ l O h  ~ g 3h 1 1 3g~ (A-15) 
kl q 2 [ h  i Oy + h 3 0 x  h 2 0x 3" 

hi fag ah2 g Oh2~, 
kz = q [ ~ Y  - h2~x x ~ -~-y~ (A-16) 

ka -- lh2 1 + h2h2 ] Oy - 2 g ~ x  ~, (A-17) 

= h g I1 q2[O x -- 1 0y h 1 0 x J  (A-18) 

= g h 2 ~ l  0h 2 0h 2 1 ~ }  (A-19) 
12 q2 [h2 ax + ~ - ~ y  h~ ' 

t3 = hlh 2 1 + h~2]-ffff x - zg-~y ; ,  (g-20) 

q2 2 2 g2.  
= h l h  2 - (A-21) 

hEhl 
al = q2 , (A-22) 

ghl 
a2 = q2,  (A-23) 

gh2 
bl = q2 (A-24) 

and 

h2 hE 
b2 - -  q2 " (A-25) 
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A P P E N D I X  B 

Relationships Between the Integral Thicknesses of the Two Axis Systems 

Fig. 1 shows  the  two  axis sys tems  a n d  by r e s o l u t i o n  

U 
U s i n ( 2  - a) - V c o s ( 2  - a) TT s in(2_--  ct) 

s i n 2  , ul  = ~ s i n 2  ' 

/) ~--- 
U sin a + V cos a sin a 

sin 2 ' Vl = U1 sin 2" 

H e n c e  

2 
p e u ~ @ l l  = pu (u  1 --  u) d z ,  

= p [ U l s i n ( 2  - ~ ) { U s i n ( 2  - a) - V c o s ( 2  - a)} - U z s in2(2  - a) 

d2 
+ 2 U V s i n  (4 - a) cos  (4 - a) - V z cos 2 (2 - a)] sin2 2 '  

a n d  thus  

Oi l  sin 2 (2 - a) - (012 + 021)sin (4 - a ) c o s  (2 - a) + 022 COS 2 (2 --  (X) 

@ l i  = sin 2 2 

Simi lar ly ,  

2 
peUe@12 = pV(U 1 --  U) dz, 

fo' = pEU1 s in (2  - a ) { U s i n a  + Vcos a } -  

dz 
-- U sin (2 - ct) - V c o s  (2 - ~)}{U sin ct + V c o s  a}] sin2 2 '  

a n d  hence ,  

O12 = [011 s i n .  s in (2 - a) + 012 sin (2 - a) cos  a - 02x cos (2 - a) sin a - 022 cos a cos (2 - a)] 

sin 2 2 

(B- l )  

(B-2) 

(B-3) 

This  p rocess  m a y  be  r epea t ed  for t he  r e m a i n i n g  t e rms  to  r e n d e r  

[011 sin a sin (2 - a) + 021 sin (2 - ct) cos  a - 012 cos  (2 - a) sin a - 022 cos  c~ cos (2 - a)] 
@21 = sin 2 2 ' (B-4) 

@22 

A 1 ~.~ 

[011 sin 2 a + (012 "~- 021 ) COS tX s i n  ~ + 022 COS 2 ~] 

sin 2 2 

61 sin (2 - a) - 62 cos (2 - a) 

sin $ 

(B-5) 

(B-6) 
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and 

A P P E N D I X  B---continued 

fi: sin ~ + 02 cos 0~ 
A2 = sin 2 (B-7) 

It is therefore clear that the integral thicknesses of one axis system are simply related to those of the other, 
and that one set completely determines the other. 

One advantage sometimes claimed for the use of streamline coordinates is that there exists an identity 

012 - 021 - ~52 (B-8) 

which reduces the number of unknowns. In fact (B-8) is merely a particular form of the general identity 

A sin (2 - ~) sin c~ (B-9) 
®12 - O21 - 2 s in2 + A l s in2 '  

which holds for any coordinate system. The angles 2 and • appearing in the above expressions are related to 
the metric coefficients of the coordinate system and the external flow as follows 

cos (2) = g hlhz (B-10) 

and 

sin (~) = °1 sin 2 

Ue 
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APPENDIX C 

Crossflow Profile Functions 

The functions f of equations (15) and (18) are listed in this Appendix. They are formally identical to those 
given by Myring as functions of H but have been rearranged into a form which is more convenient for computa- 
tion. For Mager profiles: 

2 
fzl  = ( H -  1 ) ( H + 2 ) '  

16H 
f2 = (H - 1)(H + 3)(H + 5)' 

?12 =L~ - L ,  

fzz = (Er + 3)(H + 4)' 

2(2H + 1) 
f~x = (H - 1)Z(H + 2) 2' 

(c-1) 

f'2 f2f'2, 48f21(_~ 2 + 5 H  + 5) 
= f21  '{- ( n  -[- 3)2( ~ -[- 5) 2 ' 

! -¢ 
f12 = f 2 1 - - f ~  

and 

f~2 = 12f~1 - f22 (2H + 7) 
(H + 3)(H + 4) 

For Johnston profiles: 

L 1  = - -  L 

f12 = H -  1, 

? h  = o, (c-2) 

f~2 = 1, 

f~  = - 1 ,  

and 

f~2 = - 1, 

where the dashes denote differentiation with respect to H. 
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APPENDIX D 

The Relationship between [~ and ~/for the Johnston Profile 

The Johnston profile as given by equations (16) and (17) is, near the wall 

V 
= tan (fl) (D-l) 

while over the rest of the boundary layer 

Ue 

Johnston postulated that the matching point for equations (D-l) and (D-2) occurred at a constant value of 
Ur/U ~ and chose this value to be 10x/~. Here U r denotes the resultant velocity in the boundary layer, i.e. 
([U 2 + V2] ~) and U~ is the friction velocity. 

Assuming that we may make use of this in compressible flow provided U~ is based on the density at the wall, 
we have at the matching point 

U--T-r = 10~/2 U~ = 1 0 / - ~  Cy (D-3) 
ue u~ cos  (/~) 

but U r = U sec (fl) and so (D-3) may be written as 

U / T  
I O . [ ~ C r  cos (fl) (D-4) 

Ue ~ / / e - -  

At the matching point we may equate (D-l) and (D-2) to yield 

tan (fl) = A ~ - 1 (D-5) 

and substituting equation (D-4) into (D-5) gives 

tan (fl) = A 0 . i  - l l .  (D-6) 

~/cs-~ cos (t~) J 
Taking the recovery factor to be equal to 0.9 so that Tw/T~ = 1 + 0.18M 2 and writing tan (7) - A 'we may 
express ~ explicitly in terms of fl as 

tan (fl) ~C_I cos (fl)(1 + _0-18M z) 
tan (7) = 0.10 - ~/Cf cos (fl)(1 + 0.18M2) ' (D-7) 
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A P P E N D I X  E 

Reduced Forms of  Integral Thicknesses 

T h e  coeff ic ients  of  e q u a t i o n s  (26) m a y  be  a s s e m b l e d  f rom e q u a t i o n s  (B-2) to  (C-2). T h e  c o m p l e t e  list of  r e q u i r e d  
func t ions  is n o w  r e a d i l y  s h o w n  to  b e :  
de f in ing  

t = t a n  ~, (E-l) 

F11 = [ sine (2 - a) - (f12 + fE1) s in  (2 - or) cos  (2 - a)t  + f22 cosE (~- --  a)tE]/sine 2, 

F12 = [s in a s in  (2 --  a) + {f12 cos  a sin (2 -- a) --  f21 sin o~ cos  (2 --  a)}t  --  f22 cos  a cos  (2 -- ct)tE]/sin 2 2, 

FE1 = [sin a s in  (2 --  a) + {f21 c o s .  s in  (2 -- a) --  f12 s i n .  cos  (2 --  a)}t  -- f22 cos  a cos(2 -- ~t)tE]/sin 2 2, 

F22 = [s in E o~ + (f12 + f21) s in  ot cos  a t  + f22 cos2 atE]/sin2 2, 

F 1 = [ H  s in  (2 - a) - f2 cos  (2 - a ) t ] / s in  2, 

F 2 = [ H  s in  a + f 2  cos  a t ] / s in  2, 

J1  : [H1  s in  (2 - ~) + fE COS (,'!, - -  a)t]/sin 2, 

J2 = [ H i  s in  a - fz  cos  a t ] / s in  2, 

F i l ~  = [ - ( f [ 2  + f [ 1 )  s in  (2 - a) cos  (2 - a)t  + f i e  COS2 (2 --  a) t2] /s in  2 2, 

F l  2n = [ { f~  2 cos  a s in  (2 --  a) --  f ~  1 s in  a cos  (2 --  a)}t - f [ 2  cos  a cos  (2 --  a) t2] /s in  ,~, 

F21H = [ { f [ 1  cos  a s in  (2 --  a) --  f ~ 2  sin a cos  (2 --  a)}t  -- f I E  COS a COS (2 -- a) t2] /s in  2 2, 

F22~ = [(f '12 + f [ l )  s in a cos  at + f '22 cos2 ctt2]/sin2 2, 

F i n  = [(1 + 0 -2M E) s in  (2 - a) - f ~  cos  (2 - a ) t ] / s in  2, 

FEn = [(1 + 0 -2M 2) s in  a + f [  cos  ctt]/sin 2, 

J a n  = [H~ s in  (2 - a) + f [  cos  (2 --  a ) t ] / s in  2, 

J2~7 = [n~  s in  a - f [  cos  a t ] / s in  2, 

F1 ~ = [2 cos  (2 - a) s in  (2 - a){fE2 t2 --  1} + { f i e  + f21)(2 COS2(2 --  a) --  1)t]/sin 2 2, 

/71E~ = [{COS a s in  (2 --  a) --  cos  (2 --  a) s in a} { 1 --  fzE t2} -- (f~ E + f2 ~) {COS a COS (2 --  a) + 

+ s in  a s in  (2 --  a)}t] /s in  2 2, 

..F21~ "~ ~ F~ i~.., 

• FE2~ = [2 s in  ¢ c o s  ct(1 --  f22t  2) + (f~2 + 2i)(  2 cos2~ --  1)t]/sinE2, 

Fl~ = --  [/-I".ebs- (2 - a) + f2 s in  (2 - ~)t] /sin 2, 
. /  

F2~ = [ H  cos  a = fE s in  a t ] / s in  2, 

J ~  = [ - -  n 1 cos  (2 - a) + f2 s in  (A - a) t ] /s in  2, 
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J2~ = [H~ cos a + f2 sin ~t]/sin 2, 

F l l r  = [ - ( f 1 2  + f21) sin (2 - ~ ) c o s ( 2  - ct) + 2f22 cos2 (2 - a)t] (1 + t2), 
s i ~  2- 

F12~ = [ f l2  sin (2 --  a) cos a - f21 cos (2 - . )  sin a - 2f22 cos ct cos (2 - a)t] (1 
+ t 2 ) 

sin 2 2 ' 

F21r = [ fz l  sin (2 - ~) cos a - f l2  cos (2 - a) sin a - 2f22 cos a cos (2 - a)t] ( 1 +  t z ) 

sin 2 '  

F22r = [(f12 + f21)s in  ct cos a + 2f22 cos 2 ctt] (1 +2 t2) 
sin 2 '  

d- t 2) 
Fir  -- [ - - f2  cos (2 - c0](lsin ~ . ,  

+ t 21 
F2~ = [f2 cos _ , 

sm 2 

Jl~ = - F i r ,  

J2r  = - F ~ r ,  

F11 a = - [F11~ + 2F11 cos 2/sin 2], 

F~2a = [cos (2 - a){sin  a + f l  2 cos at} + sin (2 - ~){f2~ cos at  + f2~ sin ~}t - 2F~2 sin 2 cos ;,]/sin ~ 2, 

F : ~  = [cos (2 - ~){sin a + f ~  cos ca) + sin (2 - a ) { f : 2  cos c~t + f~ ~ sin a}t - 2F2x sin ;t cos 2] /s in:  2, 

Fm~ = - 2 F ~ 2  cos ;,/sin 2, 

F~a = [ H  cos (2 - a) + f2 sin (2 - a)t - F~ cos 2]/sin 2, 

F~a = - Fz cos ;,/sin 2, 

J ~  = - J ~  - J~ cos  2/sin)~ a n d  

J2~ = - J2 cos  2/sin 2. 

The  S funct ions  con ta ined  in equa t ions  (26) are given by 

S1 = - -2-hi  - 011 Fll~t~X -'[" Flla~xx + F l l  --u, dx + q ~ x  ~'x ;+ ' " 

hllF12 0011 ~y ~T ~ot a2 
+ + e12  + el2  y + + + 

+ + kah2 + F1 -- + + 
Ue] 

+ 2 ~  u~ ay + k 2 h l -  + + F22k2hl 
~le lge] ' 

(E-2) 
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JA= = [Ha cos  ~ + f2 sin =t]/sin 2, 

FlX~ = [ - - ( f l 2  + f21) sin(A - ~) cos (2 - ~) + 2f2 2 COS 2 (A - -  ~)t] (1 + tz) 
s i ~ Z  ' 

FI2~ -- )cos - : 2 ,  -  )sin - 2 : .  c o s  oos A - s in (A  
s ln  A 

- f l  2 cos (2 - ~) sin ~ - 2f22 cos  ~ cos  (A - ~)t] (1-- 
t 2 ) [f~l s in  (A ~) cos  

sin 2 '  

F22~ = [(-/'12 + f z l ) s i n  a cos  a + 2f2 2 COS 2 ~t](l~-+ 2 
t 2 ) 

sin 2 '  

~)](1 + t 21 
Fl~ = [ - - f 2  cos  (A - : , 

s m  2 

cos  &](1 + t 2) 
FAr = I f 2  " s~n2 ' 

al~, = - F I ~ , ,  

J2~ = - F 2  r, 

F11 a = - [F11~ + 2F11 cos  A/sin A], 

F12a = [cos (2 - a ){s in  a + f l  2 cos at} + sin (2 - a){ f22 cos a t  + fA1 sin c¢}t - 2F~ 2 sin 2 cos A]/sin 2 2, 

F21~ = [cos (2 - a) {sin a + f21 cos  a t )  + sin (2 - ~){f22 cos  at + f~2 sin a}t  - 2F2~ sin ,l cos A]/sin 2 2, 

F22a = - 2 F 2 2  cos  A/sin 2, 

Fla  = [ H  cos  (2 - c~) + f2  sin (2 - a)t  - F~ cos A]/sin 2, 

FAa = - F  2 cos A/sin A, 

J~a = - J 1 ,  - J t  cos  A/sin A a n d  

J22 = - -  J2  cos  ),/sin 2. 

T h e  S func t ions  c o n t a i n e d  in e q u a t i o n s  (26) a re  g iven b y  

C:, I O~ c~)l ((2 - M2) au¢ 
s,  = -2-h, - 0~x F~xoG + v , ~ G  + F~, /,~ 0x ) + 7 0 x  ~ ,  ;+ :kihl + 

ha[ F12 O011 F OR 63 7 Oa 632 

+ F~ 2 ~(2 2 _  M2) 0% 
( u~ Oy + q ~ Y Y  h-22 + k a h 2  +F, ~ - x  + + 

ue] 

+ 2~h 2 u¢ 6~ + k2h~-- + + F22k2h 1 
He U e ] ' 

o 

\~. .hl 
\.%. :', I "Q./-.;: 

(E-2) 
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h~lF= oo., 

+ h2~011 Oy 
F OH Oy &~ 02 

- -  + 22.-~-y + V22,~yy + F22,~yy + F22a~y + 

u-. Oy + q~Y  -~2 +/2h2 + FI ~-~x + l,h,U' + + 
U e U e ] 

F. lh~lOv~ v~) ] 

I OOt 02 ht[J 2 001x j OH Oy Oo~ 02) 
y[hl  3[q l  (1 -- MZ) au~ I hlylh2 3[q I (1 - Me) au¢l] 

+ ' ~ q ~ l  + + ~ 1  + " 

(E-3) 

(E-4) 
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APPENDIX F 

Evaluation of  the Metric Coefficients of  the Surface Coordinate System i 

We assume that the Cartesian coordinates X, Y, Z of the surface are known and on the surface we have the 
curvilinear coordinate system x, y such that each point x, y defines a unique point X, Y, Z on the surface. Then 
there exists a transformation between the two coordinate systems which we may write as 

X = pdx, Y)'/ 

Y p2(x' Y)'I 

Z p3(x, y),J 

(F-l) 

and the metric coefficients hi,  h 2 and g of the curvilinear coordinate system are given by 

and 

h =/ pl/2 I 12  TZ/ + / ax / / 

g = m aPl tgPl ~P2 OP2 OP30P3 - - + - -  + - - _ _  
ax ay ax ay Ox Oy 

(F-2) 

Differentiating equations (F-2) with respect to x and y we obtain 

and 

~P2 32p2 hi ahl =OPl 02pl - t - - -  
Ox Ox Ox 2 Ox Ox 2 

__ aP2 ~2p2 hlOh__L=OPl a2P~ + 
ay Ox OxOy ax Oxay 

- -  + OP---~aO2p-'--~3 I OX OX 2 

ap3 02p3 ] 

- - +  OX OxOy 

(F-3) 

with similar expressions for ah2/t~x , ~h2/t~y , t~g/t~x and Og/Oy. In cases in which the functions Pl ~ Pa are 
known analytically it is thus simply a matter of algebra to obtain the metric coefficients and their derivatives 
with respect to x and y. In cases where these functions are not known and must be approximated it will be 
seen that the above expressions imply that if the metric coefficients are to have continuous derivatives then 
any approximating functions used for Pl, P2 and Pa must have at least continuous second derivatives. The 
technique we have adopted is described in Ref. 11 and is as follows. We assume that the Cartesian coordinates 
of the surface are known at the mesh points defined by the intersections of two families of curves x = const and 
y = const. We then approximate the functions Pl, P2 and Ps by three bicubic splines which have continuous 
second derivatives and agree with the known values at the mesh points. These approximate forms for pl, P2 
and Pa are then used in equations (F-2) and (F-3) to calculate the metric coefficients hi,  h2 and g together with 
their first derivatives with respect to.x and y. 
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coordinate system used are not known analytically a method is given 
for obtaining them from the cartesian coordinates of the surface. A 
method is also presented for determining the external velocity field 
from a given pressure distribution. Comparisons are given of predic- 
tions of the boundary-layer method with the experimental results of 
Johnston, Vermeulen, East, van den Berg and Elsenaar, and Hall and 
Dickens. These results, involving five different coordinate systems, 
were all obtained using the same computer program. 
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