
R.  & M .  N o .  3733  

...... "-L):' ~ . . . .  ,, ,j,... ? 

MINISTRY OF DEFENCE (PROCUREMENT EXECUTIVE) 

AERONAUTICAL RESEARCH COUNCIL 

REPORTS AND M E M O R A N D A  

Kron's Method" An Algorithm for the Eigenvalue 
Analysis of Large-Scale Structural Systems 

By A.  SIMPSON 

University of Bristol 

LONDON:  HER MAJESTY'S STATIONERY OFFICE 
1973 

PRICE 60p NET 



Kron's Method: An Algorithm for the Eigenvalue 
Analysis of Large-Scale Structural Systems 

By A. SIMPSON 

University of Bristol 

Reports and Memoranda No. 3733* 

November, 1972 

,Summary 

In this report, the Kron eigenvalue procedure is established by the application of Hamilton's principle to a 
constrained primitive Lagrangian, comprising the characteristics of the various sub-systems into which a 
composite system is 'torn' to facilitate analysis. The computational merits of the method are outlined-- 
particularly in relation to a scanning algorithm derived from a procedure developed by Wittrick and Williams. 

* Replaces A.R.C. 34 098. 
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I. Introduction 

When venturing to assess the history of piecewise analysis of large-scale engineering systems, many modern 
authors seem not to be aware of the profound contributions of G. Kron 1 in laying the foundations in this vast 
and expanding field. In particular, Kron's work on the solution of large network problems, involving the in- 
version of very large matrices at a time when only 'zeroth generation' digital computing facilities existed, has 
now been largely forgotten: probably because the modern breed of computers can cope with systems of 
considerable dimensionality on standard package programmes. 

However, there comes a time when the (n + 1) th - generation problems are to be solved on nth generation 
machines. When such problems have arisen in the past, one has only had to wait for the next generation of 
machines to arrive: in a nutshell, the problems have been solved by building bigger and better computers! 
One might rightly ask, 'Where does this stop?' In certain areas, there can be no doubt whatsoever that Kron's 
philosophy offers a means for the solution of this problem. It is a philosophy which enables existing facilities 
to be used to their utmost. 7 

In this report, the Kron method of solution of large-scale natural frequency eigenvalue problems is recon- 
sidered via a Lagrangian approach. 6 This method involves the tearing assunder of the composite system to 
form independent sub-systems--the size of the largest of which is, ideally, dictated by the standard capacity of 
the largest available computer. From the equations of sub-system solutions, the equations of composite system 
solutions are deduced by transformation, thus yielding a non-linear eigenvalue problem of relatively small 
order. The resulting determinantal equation is solved by frequency scanning--a procedure aided greatly by 
the canonical decomposition of the sub-systems. 

In recent years, the development of a scanning procedure incorporating Newton's method 2"3 has removed 
the hit and miss element from the conventional frequency scan. More recently, the powerful counting algorithm 
of Wittrick and Williams, 4 developed to deal with the scanning problem in the dynamic stiffness formulation, 
has been adapted for use with Kron's determinant 5 for systems with real eigenvalues. Undoubtedly the 
embellishment of Kron's method with this algorithm renders it most attractive from the viewpoint of general 
structural usage. 

It is hoped that the method will come into its own in the aeronautical context as the adoption of finite- 
element solutions for the various 'branches' increases greatly the dimensionality of the eigenvalue problems. 
Indeed, if full 'branch' solutions are available, the use of the method should enable the full normal modes 
solution to be undertaken in systems of very large order without the need for 'throwing away' branch modes. 

2. The Kron Determinant 

Consider a composite system which requires so many state variables to describe adequately its dynamical 
behaviour that the natural frequency eigenvalue problem exceeds the capacity of the largest computer available. 
Now tear the composite system assunder to yield 'u' independent, non-interacting, sub-systems--the largest 
of which, ideally, can just be coped with by use of standard programmes. Let the stiffness and inertia matrices 
of the ith sub-system be E i (symmetric, positive semi-definite) and A i (symmetric, positive definite) respectively 
relative to the sub-system state vector, Xi. The primitive matrices may now be defined : 

Ep = Comp Diag [EIEa.. .Eu],] 

Ap Comp Diag [ A1A E . . . A.] I " 

X~ {X1X2 .. . X . }  

Hence, the primitive Lagrangian* is 

I " P  ° 

Lp = T* - Up = ~XpApXp - ½X;EpXp 

(1) 

(2) 

T* being the primitive kinetic co-energy and Up the primitive potential energy. Use of Hamilton's principle 
now leads to the sub-system equations of motion, 

AiX i + EiX i = 0and i = 1 ,2 , . . . ,u .  (3) 

*A dual approach based on the co-Lagrangian is presented in Reference 6. 



Now from Xp select all those co-ordinates involved in connexion relations. These are known as 'tie' co- 
ordinates and may be stacked in vector X, such that 

X t ~ "I~p 

where T is a 'selection' matrix which isolates the 'tie' co-ordinates. The actual connexions (assumed holonomic) 
which re-constitute the composite system may be expressed as 

CX t = CTXp = 0, 

each row of this matrix relationship representing a single holonomic constraint upon the elements of Xp. 
Each constraint may be assigned a Lagrange multiplier, flj, and if [I = {flxfl2..- ft,} the Lagrangian for the 
composite system may be written 

L¢ = Lp q- ~'CTXp. 

Note that as L c has the units of work and Xp the units of generalised displacement, Ii has units of generalised 
force. Indeed, the flj are the forces within the married 'tie' co-ordinates. 

By Hamilton's principle 

6 L~ dt = 0, •Xp = 0 and 6 = 0 
l tl ltl 

the equations of motion of the composite system are found to be 

ApXp q- EpXp - T'C'[~ : 0]  

and I '  (8) 

CTXp = 0 

With D - d/dt, these become 

I ApD2 "~'- E p ' -  C'~ ~, - TtC'I I~Pl  : I :  1 (8A) 

While it is formally possible to treat equation (8A) as a matrix eigenvalue problem in the usual way, the order 
of the leading sub-matrix will in general be too large for this to be practically possible. (See Appendix I). 

Now the system matrix of the ith sub-system, A~- 1El, has the eigenvalues ~o21, ~o22,..., ~O~r and eigenvectors 
XI~ ~XI2~... X I ,  and hence the spectral and modal matrices are, 

and 

Ai = Diag [0)i10,)i2... OJir ] l .  

Mi i i . = [St1). . .  g(r)], IMi[ :/: 0 

Although some of the O)ij might be zero (rigid body modes of the ith sub-system), the matrix M i can always be 
chosen such that 

M'iAiM i = I and hence MIEiM i = A~. 

The primitive spectral and modal matrices 

and 

Ap = Comp Diag [A 1 . . .  Au] 1. 

Mp Comp Diag [M~ .. .  M.]J  



can now be defined and from equation (10) 

t t MpApMp = I and MpEpMp = Ap 2. (12) 

Thus, writing Xp = MpQp in equation (8A)and completing the transformation, one obtains (with 
F ' =  CTMp), 

I Apz + 1D2' - 0 F I  IQP] = [001. (13) 

Then with 0 2 replaced by - co 2, it is seen that 

Qp = [A~ - a~2I] - :FIi (14) 

F'EA~ - ~ 2 1 ] - 1 r  I] = 0 .  (14A) 

For non-trivial II 

IR41 -IF'DFI = 0, (15) 

where D = (Ap 2 - o~2I)- 1 __ diagonal matrix. This is Kron's determinantal frequency equation. The composite 
system eigenvalues are the zeros of IR4[ while the sub-system eigenvalues are clearly the poles. 

It should be noted that the case p = 0 is not necessarily a trivial solution of the composite system eigenvalue 
problem. In general, p = 0 will be associated with a composite system eigenvalue in those cases where the 
'tie' co-ordinates experience no forces upon re-connexion, implying a matching of sub-system and composite 
system eigenvalues as well, in many cases, as a geometrical symmetry requirement on the sub-systems. (See 
equation (8) where [1 = 0 implies Ap~:p + EpXp = 0, which is the sub-system result, along with CT Xp = 0, 
which in this context is a free compatibility requirement on the sub-system eigenvectors.). Under these condi- 
tions, it is clear that equation (15) will not yield the composite system eigenvalues associated with p = 0. Such 
cases are discussed briefly in Ref. 2 in particular relation to the problem of composite system rigid body modes, 
while Ref. 5 presents a method (see Section 3.4 below) which locates the composite system eigenvalues regardless 
of whether or not [~ is null. 

A salient feature of the above formulation is the central diagonal matrix, D. This feature is not shared by the 
stiffness formulation (Appendix II). It might also be noted that while the above formulation is in terms of 
stiffness, the ultimate Kron equation, (14A), is a force equation. (See Ref. 2 for a complete derivation of Kron's 
method via receptances). 

3. Numerical Methods 

The various published methods for obtaining solutions of equation (15) are now discussed :-- 

3.1. Frequency Scanning 

This is a 'brute force' method wherein a value of co 2 is assigned and ]R4] evaluated. The zeros of the IRJ/o~ 2 
plot are then obtained by interpolation. 

3.2. Scalar Frequency Scanning 

In equation (14A) partition I] = {flXPR} and F = [glFR], where/31 = 1, say, is scalar and gl is a column 
vector. Equation (14A) then gives 

PR = - [F~DFR]- 1FRDg 1 (16) 

f = g~[D - DFR(F[DFR)-IF~D]gl _-- g~Lgl = 0 (16A) 



The zeros of  IR4I and f are identical ; hence f may  be used as the basis  of  a frequency scan. The advantage  over  
the s t ra ightforward determinanta l  scan is that  the poles and zeros of  f alternate along the co 2 axis of  the f/~o 2 
plot. (See Ref. 2). 

3.3. Scalar Scanning Allied with Newton Iteration 

This technique was developed in Ref. 2. It provides  a powerfully convergent  substi tute for 'hit  and  miss '  
scanning. It is easy to show that  

df 
dco z - g'aLZgl (17) 

and hence that  if 0n 2 is an approx ima t ion  to a zero off ,  a bet ter  app rox ima t ion  will be 

g'lL(Co2)gl 2 
( D  b : CO a g , lL2(COa2)g l  ' 

This technique is extended to the complex eigenvalue p rob lem in Ref. 3. 

3.4. Adaptation of the Wittrick-Williams Counting Algorithm 

This powerful  a lgori thm 4 has recently been adapted  5 to deal with equat ion  (15). In the present  context,  thi~ 
method  represents successive applications,  to the primit ive system, of  the connexion constraints  jo ining thc 
sub-systems.  Par t i t ion F = [ g t g E . . . g , ] ,  so that  each co lumn represents one constraint .  Also let FI j  

= [ g t g z . . . g j ]  and 

mj = F ' l jDFl j  (19) 

so that  Ira j[ = mj is the j th  principal minor  of R4 (equation (15)). 
Clearly 

p 
mj + 1 = mjgj + 1 [D - D F  l jmj- 1 F, 1 jO]gj + 1 ~ mjgj + 1Ljgj + 1 ,  

defining a S tu rm sequence for the matr ix  R 4 in which one may  place m 0 = 1. Defining ij = mj /mj_ 1, the 
number  of  negative elements  in the sequence 11 , 12 . . . . .  i n defines the n u m b e r  of  negative eigenvalues 4"5 of  R 4 
at the par t icular  value of o) for which the lj are calculated. This number  is called the sign count ¢ of R 4 and is 
writ ten s[R4]. The sign count  does not  have to be calculated as indicated in equat ions  (19) and (20); indeed it 
is pointed out  in Ref. 4 that  the elements 11 , 12 . . . . .  1, are the diagonal  elements of  the upper  t r iangular  matr ix  
which results from R 4 o n  Gauss ian  t r iangulat ion without  row interchanges. This provides a rapid procedure 
for determining SIR4]. 

Differentiating 15 + 1 co.r.t, o~ 2 one obtains  f rom equat ion (20) 

dlj+ 1/d~2 , 2 = gj + 1Lj gj + 1 = (Ljgj + 1 )  (Ljgj + 1) >/ 0 

so that  the poles and zeros of  lj + 1 al ternate along the co 2 axis. Also, the zeros of  lj are the poles of lj + 1 since 
m f  i appears  in the Ij + 1 expression. The  zeros of  15 and lj + 1 are therefore interlaced 5 (See Fig. 1) and one may 

state 

I N u m b e r o f z e r o s o f  ] = [ N o .  ofpoles ,  Jj, o f l j ]  i f l j > 0 , 1 j +  > 0  

lj + 1 exceeded by ~ = c~ [_thus exceeded 1 

= [ J j -  1] i f l j l j + l < O  

= [J j - 2 ]  i f l j < 0 , 1 j + l < 0 .  

Thus,  by induction f rom entire sequence 

K(~)  = s[D(~)] - s[R4(c~)], 

6 



where K(~) is the number of composite system eigenvalues exceeded by ~ and s[D(~)] gives the number of 
sub-system eigenvalues thus exceeded. 

While the proof of equation (23) requires modification in cases where equal eigenvalues occur, equation (23) 
may be shown to hold good. 5 This equation gives the basis for the scanning algorithm. Using it, it is quite 
impossible to ',fiss' a composite system eigenvalue. There is no difficulty in combining this algorithm with 
the Newton method of Section 3.3 since 

1 n = m n / m . _  1 = g'oLn_lg n (24) 

which is the last term on the diagonal of the triangulated R4 matrix and which is equivalent to equation (16A) 
except that elimination has been performed along the last row and column instead of the first. 

From equation (21) 

dl°/d o92 = g'nL~- lgn (25) 

and the application of Newton's method to 1 n = 0 defines the composite system eigenvalues. 

3 .5 .  C o m m e n t s  

As a general eigenvalue algorithm, the use of equation (23), along with equations (24) and (25) to gwe 
quadratic convergence to the zeros of IR41, could hardly be bettered. However, evaluation of dln/dw 2 requires 
a matrix inversion of order n - 1, while 1 n can be obtained from triangulation of R 4. This might be construed 
as a difficulty, and if n is large it might be advisable to use equation (23) without the Newton refinement. One 
might note that while it is possible to use Newton iteration in the stiffness method, 4 the expressions for the 
derivatives are lengthy to the point of being unmanageable. 2 

4. A n  E x a m p l e  

The simplest example suffices to illustrate the principles of the method ; hence we consider the mass/spring 
system of Fig. 2. 

For sub-systems 1 and 3 : - - E  = 2, A = 1, M = 1, A 2 = 2. 
For sub-system 2: [11 i] 

E 2 =  - 1 2 - , A 2 = D i a g [ 1 , 2 , 1 ]  

0 - 1  

I1/2 l /x/2 1/21 

M 2 =  11/2 0 - 1 / 2  / , 

[_1/2 - 1/x/~ 1/23 

Az = Diag [0, 1, 2]. 

Thus from equation (11) 

A~ = Diag [2, 0, 1, 2, 2] 

I 1 - 1  1 1 1 ] .  
D = D i a g  2 - 2 '  2 ' 1 - 2 ' 2 - 2 ' 2 - 2  ' 

2 = w  2. 



Also 

Mp ~ - -  

1 0 0 

0 1/2 1/x/~ 

0 1/2 0 

o 1/2 - 1 / , / 5  

0 0 0 

0 

1/2 

-- 1/2 

1/2 

0 

. 

0 

0 

0 

1 

and from equations (4), (5): 

1 1 ° ° ° ! 1  E 
0 1 0 0 1 - 1  0 

T =  C =  . 
0 0 0 1 ' 0 0 1 - 

0 0 0 0 

Hence from equation (13), 

F ' =  I~ -1/2 - i/'v/2 - ' / 2  ~1 = [g'l 1 
1/2 - l/x//2 1/2 - LglJ 

From equation (I 5), 

1 
R4 = 

5 2 1  1 
2 - 2 + 1 - 2  2' 2 - 2 + 1---~ + 

1 2 1 5 2 
- 2 - - ~  + ~ - ~  + ~, 2 _ Z + ]  - 

Forgetting the factor 1/4, we have from equation (20) 

5 2 1 
11 = - - +  

2 - 2  1 - 2  2 

and 

5 2 
1 2 = 2 - 2 + 1 - 2  2 

1 + 1---s7 + 
5 2 1 - - +  

2 - 2  1 - 2  2 

It is seen that 11 has zeros at 2 = (3 _+ w/5)/4 and poles at 0, 1, 2; while 12 has zeros at )t = ~,t ~,3 and 2 and 
poles at (3 + w/5)/4 and 2 (twice). Fig. 3 illustrates the implementation of equation (23) at seven frequency points. 

5. Kron's Method versus 'Branch Modes' 

The branch mode method is restricted to that topologically-special class of systems with branch-like connec- 
tivity. It can, of course, be 'bent' to fit special circumstances, though such 'distortion' will usually be reflected 
in the proliferation of coupling terms in the characteristic matrices defining normal-mode frequencies. In its 
unadulterated form, the branch mode method will give a diagonal stiffness matrix and a relatively lightly 
coupled mass matrix. The 'branches' are normally of the fixed-free type and must, in effect, be 'released' after 
solution. It is the process of releasing the branches which leads to mass coupling terms. 

The ultimate stiffness and inertia matrices in the branch mode formulation will usually be of large order. 
In order to reduce the dimensionality, it is.common practice to 'throw-out' ceItain of the high frequency 
branch modes. While this is done in the light of practical experience, it is a procedure which must be regarded 



as generally unsatisfactory. The sparse nature of the ultimate dynamical matrix renders it amenable to solution 
by the standard 'rotation' procedures. 

On the other hand, Kron's method is unrestricted in the topological sense and, indeed, is topologically 
superior to the stiffness method. ~'5 Sub-systems are usually of the free-free type (the exceptions being those 
with natural earthing) and must be analysed as such. Hence, the sub-systems of Kron's method may be larger 
than the corresponding branch-mode 'branches' to the extent of six rigid body freedoms. The order of the Kron 
determinant is usually quite small, being equal to the number of connexion relations, n. This number might be 
as low as six for, say, the symmetric modes of a conventional aeroplane, but the number of degrees of freedom 
might well be 1000 plus. 

The computationally efficient form 2 of the ultimate determinantal equation, (15), renders it unnecessary to 
'prune' the number of degrees of freedom at any stage. As a result, extremely accurate eigenvalue estimates 
can be made. When the composite eigenvalues have been found, the associated vectors can be obtained from 
the relation given in equation (14) since 

Xp = MpQp = MpDF~ (26) 

wherein D is evaluated at the eigenvalue in question, and p is found from equation (16). Note that since Mp 
is 'composite diagonal', the eigenvector calculation can be performed piecewise too. 

It is clear that use of the algorithm in equation (23) enables eigenvalues to be calculated within any specified 
range. The number of resonance frequencies in the range may be deduced immediately by calculating K(o)I) 
and K(o)2) for the extreme frequencies, ~ol and m2, of the range and subtracting to give 

v = F/Number of composite system natural/-] = K(~o2) _ K(~ol)- 

kfrequencies between (.D 1 and 0) 2 U 

This device was first noted by Wittrick and Williams 4 in relation to the stiffness formulation. It provides an 
advantage not shared by the standard computational methods. 

6. Conclusions 

An outline of the Kron eigenvalue procedure has been given with a view to airing its potential with regard 
to the vibration problems of aeronautical engineering. The method is seen to present an attractive alternative 
to branch modes calculations--being able to cope with substantially larger problems. 



No. Author(s) 

1 G. Kron . . . .  

2 A. Simpson and B. Taba r rok . .  

3 A. Simpson . . . . . .  

4 W. Wittrick and F. W. Williams 

5 A. Simpson . . . . . .  

6 A. Simpson . . . . . .  

7 G. Kron . . . . . .  

T. J. Higgins (Editor) .. 

G. Kron . . . . . .  

G. Kron . . . . . .  

G. Kron . . . . . .  

REFERENCES 

Diakoptics. 
Macdonald (1963). 

Title, etc. 

On Kron ' s  eigenvalue procedure and related methods of frequency 
analysis. 

Q. J. Mech. App. Math. XXI (1), pp. 1-39 (1968). 

A generalisation of Kron 's  eigenvalue procedure. 
J. Sound and Fib. 26(1) pp. 129-139 (1973). 

A general algorithm for computing natural frequencies of  elastic 
structures. 

Q. J. Mech. App. Math. XXIV(3)--  pp. 263-284 (1971). 

Scanning Kron 's  determinant• 
To be published in Q. J. Mech. App. Math., (1973)• 

Kron 's  method:  A consequence of the minimisation of a con- 
strained Lagrangian. 

J. Sound and ldb. 27(3) pp. 377-386 (1973). 

Inverting a 256 x 256 matrix 
Engineering Vol. 178, pp. 309-312 (1955)• 

B I B L I O G R A P H Y  (General) 

•. Modern Aspects of large scale system science (Kron commemor-  
ative issue). 

J. Franklin Inst. Vol. 286(6) (1968). 

..  Tensorial analysis and equivalent circuits of  elastic structures. 
J. Franklin Inst. Vol. 238, pp. 399-442 (1944)• 

•. Solving highly complex elastic structures in easy stages. 
J. Appl. Mech. Vol. 22, pp. 235-244 (1955). 

•. Tensor Analysis of Networks. 
John Wiley, N.Y. (1939). 

10 



APPENDIX I 

Standard Eigenvalue Treatment of the Constrained Equations 

Rather than look at equation (8A) we choose to examine the 'canonical' form given in equation (13). With 
D E = - o~ 2, this equation may be written 

Because of the sub-system singularity, we may partition Ap = Comp Diag [~p 0] and conformably partition 

LFbJ QP--  Qb " 

The 'stiffness' matrix may now be written 

wherein 

[ ° ,i.3, R=[O -to], B=  _r;  

Provided IB - R ' ~ - e R  I ~a O, the 'flexibility' matrix is 

= - 6R'•p 2 (I.4) 

with 

6 = [B - R'g~p2R] - 1 = cS'. (I.5) 

The 'mass matrix' A = Comp Diag [I0t], wherein at = Comp Diag [I 0], the number of unit terms being 
equal to the number of zero elements in Ap. Accordingly, the 'dynamical'  matrix is 

q~ 
- 6R'flp 2 SOt ] '  (I.6) 

The degeneracy of@ is n-fold corresponding to the 'n' null columns of  at. This procedure can be modified to 
cope with cases where E is singular. 

11 



APPENDIX II 

The Stiffness Method 

The dynamic stiffness matrix of the ith sub-system is 

so that the 'tie' stiffness is 

[sl 
Si = E i  - 0 ) 2 A i  ~ 1S~ t S~ / (II.1) 

= ,~."(,~";- ;~m (II.2) Si, S ~ i - " i , - i ,  - i .  

In the stiffness method, S~ has to be inverted for each co value specified. It is therefore logical to use its canoni- 
cal form. The eigenvalue problem for (An)-IE~ is the one which results when the 'tie' coordinates are locked. 
Let the spectral matrix be Pi and the normalised modal matrix Ni so that (II.2) can be written 

Sit = S~ - ~ n U i [ p 2  - 0)21 ]  - 1 N I S e i .  (II.3) 

Defining the primitive matrices 

Stp = Comp Diag [S1t.. .  S,t l, 

Sp = Comp Diag [St~ . . .  St]etc. etc. 

and the connexion matrix "/, the frequency determinant s is then 

[, , / ,Stp7 [ ~_ [7 tS ; ,  ~ , tn 2 2 - 1  , nt - -  ~ / S p  N p ( D p  - to  I )  NpSp T] = 0. (II.4) 

While the inversion bottleneck is avoided by use of the canonical form, this determinal equation is much more 
complex than the Kron equation (15). In general, however, the order of the above determinant will be smaller 
than that of Kron's  determinant. The Williams-Wittrick method 5 may be applied directly to (II.4) with Jo 
determined from sip 2 - 0)zI]. 

12 
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