N.A.E

NATIONAL AERONAUTICAL ESTABLISHMENT

R. & M. No. 2584 (4191, 4511, 4807) A.R.C. Technical Report

	NATIONAL AERONAUTICAL
	ESTABLICHMENT 97 NOT 1952
1000	NR. CLAIMAM Beds.

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL REPORTS AND MEMORANDA

Rayler	 広告:34	urt Cereph Samuer	
		GPT1952	
1			1.1.1

Tests in the Compressed Air Tunnel on the Aerofoils NACA 0015 and NACA 0030 With and Without Split Flap and on other Aerofoils of Various Thicknesses With a Split Flap

By

R. JONES, M.A., D.Sc. and the Staff of the Compressed Air Tunnel, of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

LONDON : HER MAJESTY'S STATIONERY OFFICE

PRICE 85 6d NET

Tests in the Compressed Air Tunnel on the Aerofoils NACA 0015 and NACA 0030 With and Without Split Flap and on other Aerofoils of Various Thicknesses With a Split Flap

By

R. Jones, M.A., D.Sc.

and the Staff of the Compressed Air Tunnel, of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2584

June, 1940

Boyal Aircraft Establishment 22 OCT 1952 L. I.B.F.A.H.Y

Summary.—Reasons for Inquiry.—To obtain information on the effect of thickness on the aerodynamic characteristics of aerofoils with and without a split flap.

Range of Investigation.—The following 4 ft. by 8 in. rectangular aerofoils were tested :—

NACA 0015 and NACA 0030 with and without a split flap $0 \cdot 1c$ wide at 90 deg. to wing surface and at $0 \cdot 1c$ from trailing edge.

NACA 0012, NACA 23012, RAF 28 and RAF 48 with flap.

The effect of rounding the edge of the flap was considered on NACA 0015.

A comparison made with a 0.2c flap at 50 deg. to wing surface and at 0.2c from trailing edge on NACA 0015 and RAF 48.

The effect of rounding the ends of NACA 0030 was also examined. C_L , C_D and C_m were obtained over a range of Reynolds numbers with additional C_D measurements at closer intervals of R on the two wings without flap. $C_{D,0}$ was also determined by the momentum method on NACA 0030.

Results.—Fig. 1 shows that $C_{D,0}$ on the NACA 0030 without flaps is much less when the ends are rounded. In that case the drag is in closer agreement with that obtained by momentum methods. The curve of $C_{D,0}$ against thickness ratio, Fig. 2, shows that balance measurements on square-ended models can only be relied upon for thicknesses up to about 14 per cent.; beyond that, the ends should be rounded to minimise end effect. $C_{D,0}$ increases with thickness ratio, particularly at the higher values of t/c considered.

 $dC_L/d\alpha$ decreases with thickness ratio. It is also less for thick models with round ends than with square ends:

 $dC_m/d\alpha$ increases with thickness ratio. It is also greater for thick models with round ends than with square ends. In common with other thick wings, NACA 0030 shows $C_{L \max}$ falling as R increases. At $R = 7 \times 10^6$, $C_{L \max}$ is considerably less on NACA 0030 than on NACA 0015. $\Delta C_{L \max}$ due to flap is much greater on NACA 0030, resulting in only a comparatively small fall in $C_{L \max}$ on NACA 0030 with flap, compared with NACA 0015 with flap. Fig. 3 gives $C_{L \max}$ curves for a number of aerofoils and shows a slight increase in $\Delta C_{L \max}$ due to rounding the edge of the flap. (This also has the effect of displacing the lift curve in the direction of increasing α .) Agreement between 0.15c flap at 90 deg. and 0.20c flap at 50 deg. is good. (Projection of the latter perpendicular to the wing surface is approximately equal to the former.) Agreement is also good between Compressed Air Tunnel results on NACA 0012, 0015 and 23012 and D.V.L. (Germany) and Full Scale Tunnel (America) results.

Fig. 4 gives $C_{L_{\text{max}}}$ against thickness ratio at $R = 5 \times 10^6$. $C_{L_{\text{max}}}$ rises both on models with and without flap as thickness increases to 15 per cent. approximately and then falls slightly for models with flaps and sharply for models with no flaps. $\Delta C_{D_1^{max}}$ increases steadily with thickness ratio.

Note.—This report has been compiled from three unpublished reports, A.R.C. 4191, 4511 and 4607, and contains all the results incorporated in these reports except those relating to the Piercy wing 20 per cent. thick in A.R.C. 4511. Those results have been published in R & M 2459 together with corresponding results on a Piercy wing 12 per cent. thick.

1

(94981)

1. Introductory.—The main object of the experiments, the results of which are presented in this report, was to obtain further information on the change in the aerodynamic characteristics of certain aerofoils of a conventional type as the thickness varied. Another object of the investigation was to obtain additional data on the effect of a split flap on the maximum lift coefficient of aerofoils of various thicknesses over a range of values of Reynolds number.

Tests with and without a flap were carried out on the two symmetrical aerofoils NACA 0015 and 0030 with t/c respectively 0.15 and 0.30. These aerofoils are members of the same family as the 12 per cent. thick NACA 0012 already tested in the Compressed Air Tunnel and reported on in R. & M. 1708¹.

The flap used in the tests was 0.15c wide and placed at 90 deg. to the lower surface of the wing and 0.15c from the trailing edge. It had a sharply bevelled edge and was of the same span as the aerofoil, viz., 4 ft.; it was the same flap as that used in previous experiments on the aerofoils RAF 69, 89, and 34, dealt with in R. & M. 1717² and R. & M. 1772³.

In addition, during the present series of tests, observations were taken on NACA 0015, with the edge of the flap rounded while retaining the overall width of 0.15c. Also the sharp-edged flap at 90 deg. was compared on NACA 0015 and RAF 48 with another sharp-edged flap 0.2c wide placed at 0.2c from the trailing edge at an angle of 50 deg. The latter has roughly the same projected area on a plane perpendicular to the wing surface as the 0.15c flap at 90 deg. The term flap, when used without qualification, will refer to the original 15 per cent. sharp-edged flap; when reference is made to the other two flaps, the rounding of the edge or the inclination to the wing will be specified.

Finally, the work was extended to include experiments with the flap fitted to other aerofoils tested earlier without a flap, viz., NACA 23012⁴, RAF 28⁵ and RAF 48⁵ and to a second model of NACA 0012.

2. The range of investigation may be summarised thus:—

NACA 0012		••	with 15 per cent. sharp-edged flap,
NACA 0015			without flap and with a flap of each of the three types.
NACA 0030		••	without flap, with square and rounded ends (see below section 4) and with 15 per cent. sharp-edged flap,
NACA 23012, and RAF 48	RAF	28	with 15 per cent. sharp-edged flap,
RAF 48		•••	with 20 per cent. sharp-edged flap at 50 deg.

The values of C_L , C_D and C_m were determined for several values of R from 0.3 to 7 millions, approximately, and over a range of incidence from below zero to above the stalling angle. The results are given in the tables, an index to which precedes Table 1.

In addition, the minimum drag coefficient of NACA 0015 and NACA 0030 were found by balance measurements and by the momentum method at closer intervals of R.

3. Remarks on the Models.—All the models had a chord of 8 in. and (except NACA 0030 with rounded ends) a span of 4 ft. The previously tested models (NACA 23012, RAF 28 and RAF 48) and the model of NACA 0015 made specially for these tests, were of aluminium alloy, hand-finished with a good smooth surface. The model of NACA 0030, also made for these tests, was of cast aluminium alloy; the surface was slightly pitted in places and did not polish up as well as the other aerofoils, but there was no reason for supecting that the surface was not aerodynamically smooth even up to the highest Reynolds numbers of the tests.

With regard to the NACA 0012 section, the model used for the experiments of R. & M. 1870 was of chromium plated steel. It is regarded as a standard, of which special care is taken so that it can be used for overall calibration of tunnel and balance when occasion demands. It was considered undesirable to deface the model by drilling holes in it for attaching the flap. Therefore, use was made of another steel aerofoil of approximately the same section. This was the base for the copper covering used when examining the effect of rivets (R. & M. 1855)⁶. After removing

the copper sheet to prepare the basic wing for test, the latter was found to be so badly pitted as to be totally unsuitable for the experiments. Therefore, a thick layer of zinc was deposited on it by spraying and the model subsequently finished by hand. Measurements of the section at a few places showed that the dimensions were not exactly the same as those of the standard model; they were, however, regarded as being sufficiently close to justify the model being used, especially as a few tests on the model without flaps agreed with those on the standard model.

4. Square and Rounded Ends.—In previous experiments balance measurements of the profile drag coefficients. $C_{D,0}$, on thick aerofoils had yielded higher values than the momentum method. Accordingly NACA 0030 was tested with rounded tips added to the rectangular aerofoil. The tips were such that a spanwise section in a plane perpendicular to the chord at any point was a semi-circle of diameter equal to the wing thickness at that point. When, however, the tips were attached to the model it was no longer possible to mount the model on the balance by means of the spigots fitting into holes in the ends of the wing near the leading edge (pip support). The alternative V method was therefore used. With this method, the model is supported from the top of the balance with two V-shaped beams which are attached to the upper surface of the model in the tunnel*. The two methods were applied to the model with square ends as they afforded a check on the corrections normally applied to allow for drag and interference of supports. One set of results only is given for the tests on the square-ended model as the agreement between the two series was in general very good. The flap was fitted to the square-ended model only.

5. Results.—The results are given in detail in Tables 2-16; Table 1, which is preceded by an index to the tables, gives the dimensions of the sections of the aerofoils.

The values of $C_{D,0}$ have been calculated from the formula

 $C_{D,0} = C_D - 0.0555 C_L^2$ for the square ended aerofoils and from

 $C_{D,0} = C_D - 0.0525 C_L^2$ for NACA 0030 with rounded ends.

 C_m is given with respect to an axis through the chord line c/4 from the leading edge.

The main features of the results have been plotted in the figures as follows :—

Fig. 1, $C_{D,0}$ against R for NACA 0012, 0015 and 0030.

Fig. 2, $C_{D,0}$ at $R = 7 \times 10^6$ against wing-thickness ratio.

Fig. 3, $C_{L \max}$ against R.

3(a) NACA 0012

3(b) NACA 0015

3(c) NACA 0030

3(d) NACA 23012 together with RAF 34 also 12 per cent. thick.

3(e) RAF 28 and 48.

3(f) RAF 69 and 89 two aerofoils 21 and 25 per cent. thick based on RAF 28.

These figures include sketches of the sections of the models. Figs. 3(a), 3(b) and 3(d) also contain curves obtained in the large wind tunnel of the D.V.L. (Germany) and in the Full Scale Tunnel (America)⁸.

Fig. 4, $C_{L \max}$ against thickness ratio at $R \times 5 \times 10^6$. Wing with and without flap.

6. Remarks on the Results.—(a) Drag. (i) End Effect.—Fig. 1 shows that the balance measurements of drag on NACA 0030 are appreciably greater on the square-ended model than on the model with rounded ends. The results on the latter are, however, in fairly close agreement with those obtained by the momentum method, in fact the momentum method yields slightly

(94981)

A 2

^{*} The model being upside down in the tunnel, this is the lower surface of the wing in flight.

higher values of $C_{D,0}$ at Reynolds numbers greater than 0.8×10^6 . On a thinner wing, Joukowski 12.7 per cent. thick⁹, balance measurements on a square-ended model agreed particularly well with momentum measurements. The agreement gradually deteriorates as thickness increases. At t/c = 0.2, $C_{D,0}$ may be 10 per cent. greater than the momentum drag, this figure increasing to 17 per cent. when t/c = 0.3. This is shown in Fig. 2, which applies to a Reynolds number of 7×10^7 .

It may probably be assumed that the momentum method gives a truer determination of the profile drag than balance measurements on square-ended wings.

The above considerations regarding agreement between momentum results and balance measurements on thicker models with rounded ends and on thinner models with square ends, lead to the conclusion that balance measurements yield reliable values of $C_{D,0}$ on rectangular wings up to, say, 15 per cent. thick, but that, owing to excessive end-effect, the ends should be rounded on thicker wings in order that balance measurements should be sufficiently accurate.

(ii) Effect of Thickness.—Fig. 2 also shows the manner in which the profile drag varies with thickness at $R = 7 \times 10^6$ in the C.A.T.; the curve has been drawn through the values obtained for rounded ends or by the momentum method. The rate of change in $C_{D,0}$ with thickness is fairly small for thin wings but increases appreciably as the thickness increases. For tabulated results see Tables, 6, 10 and 10a.

(b) Lift and Moment.—Curves giving C_L and C_m against incidence have not been included in the report. The main features of the results can be appreciated from Table 11 giving $dC_L/d\alpha$ and $dC_m/d\alpha$ and from Fig. 3, giving $C_{L \max}$ against R.

(i) End Effect on C_L and C_m does not appear to be as important as it is on drag. The value of $dC_L/d\alpha$ is, however, slightly less and the value of $dC_m/d\alpha$ greater on the round ended model. This was also observed in the experiments on the 20 per cent. thick Piercy wing¹⁰ and on the 23.6 per cent. thick Joukowski wing⁹. End effect on $C_{L \max}$ is small.

(ii) The effect of increasing thickness on the two quantities is small between t/c = 0.12and 0.15, but a thickness increase from 15 to 30 per cent. results in a decrease in the value of $dC_L/d\alpha$ from 0.072 to 0.052 and at $R = 7 \times 10^6$ an increase in $dC_m/d\alpha$ from 0.0013 to 0.0055. This corresponds to a marked movement of the centre of pressure towards the leading edge as thickness increases. This also is in accordance with results previously obtained on the Piercy¹⁰ and Joukowski⁹ wings (see R. & M. No. 2459 for the former, and the table on p. 3 of R. & M. No. 1870 for the latter).

(iii) $C_{L \max}$ —-Turning now to $C_{L \max}$, the results on NACA 0030 show the same characteristics as those served on other thick aerofoils, namely, a marked fall in $C_{L \max}$ as R increases. Reference to Fig. 3(f) shows that on RAF 69 and 89, respectively 21 and 25 per cent. thick, $C_{L \max}$ falls with increasing R up to R = 3 or 4×10^6 , but rises later. In the case of NACA 0030, the curve is falling over the entire range. With the flap, however, the variation of $C_{L \max}$ with R is small within the range covered by the C.A.T. At first, $C_{L \max}$, increases with R, then falls slightly giving a much greater $\Delta C_{L \max}$, due to flap, than on the thinner wings. Taking values at $R = 5 \times 10^6$, $C_{L \max}$ is plotted against thickness ratio for a number of wings in Fig. 4 and it is immediately evident that $\Delta C_{L \max}$, due to flap, increases steadily with thickness ratio over the range of thickness considered. Indeed, the effect of flap on NACA 0030 is such that, in spite of the low value of $C_{L \max}$ for the bare wing, the value for the wing with flap is but little less than the best observed, viz. on NACA 0015. The effect of increasing wing thickness can be summarised briefly thus :—

 $C_{D,0}$ increases slowly at first and then rapidly.

 $C_{L \max}$ increases slowly at first and then falls steadily.

 $C_{L \max}$ with flap increases rapidly at first and then falls slowly.

It is interesting to note here the good agreement between the C.A.T. results at $R = 5 \times 10^6$ and those obtained in the F.S.T. (America) and at the D.V.L. (Germany) (NACA 0012, 0015 and 23012; Figs. 3(a), (b) and (d)).

It should also be mentioned that the effect of the 20 per cent. flap at 50 deg. is very nearly the same as that of the 15 per cent. flap at 90 deg. As stated above, the projected area of the former perpendicular to the wing surface is nearly equal to the latter.

Finally, the effect on $C_{L \max}$ of rounding-off the edge of the 15 per cent. flap is seen in Fig 3(b). There is a slight diminution in value at the higher Reynolds numbers and plotting C_L against α shows the lift curve to have been displaced in the direction of greater α when the flap was rounded.

No.

Author

- 1 R. Jones and D. H. Williams .
- 2 D. H. Williams, A. F. Brown and E. Smyth.
- 3 D. H. Williams and A. F. Brown
- 4 D. H. Williams, A. H. Bell and E. Smyth.
- 5 E. F. Relf, R. Jones and A. H. Bell
- 6 D. H. Williams and A. F. Brown
- 7 Doetsch and Kramer ...
- 8 H. J. Goett and W. K. Bullivant
- 9 D. H. Williams, A. H. Bell and A. F. Brown.
- 10 D. H. Williams, A. H. Bell and W. G. Raymer.

REFERENCES

Title, etc.

- The Effect of Surface Roughness on the Characteristics of the Aerofoils NACA 0012 and RAF 34. R. & M. No. 1708. February, 1936.
- Tests of Aerofoils RAF 69 and RAF 89 with and without Split Flaps in the C.A.T. R. & M. No. 1717. May, 1936.
- Tests of RAF 34 and Negative Incidences and the Effect of Surface Roughness on RAF 34 with Split Flaps in the C.A.T. R. & M. No. 1772. 1937.
- Tests of Aerofoil NACA 23012 in the C.A.T. R. & M. No. 1898. January, 1937.
- Tests of Six Aerofoil Sections at Various Reynolds numbers in the C.A.T. R. & M. No. 1706. 1936.
- Experiments on a Riveted Wing in the C.A.T. R. & M. No. 1855. August, 1938.
- Systematic Profile Investigations in the Large Wind Tunnel of the D.V.L. Luftfahrtforschung, Vol. 14, No. 10, pp. 480 to 485. 20th October, 1937. A.R.C. 3354. (Unpublished.)
- Tests of NACA 0009, 0012 and 0018 Airfoils in the F.S.T. Summary of NACA Report No. 647. A.R.C. 4053. (Unpublished.)
- Tests on Two Joukowski Sections in the C.A.T. R. & M. No. 1870. May, 1939.
- Experiments on Two Piercy Aerofoils in the C.A.T. R. & M. 2459. August, 1939.

LIST OF TABLES

2.

- NACA 0015. C_L , C_D and C_m on model without flap.
- 3. NACA 0015. C_L , C_D and C_m with 15 per cent. flap at 90 deg.
- 4. NACA 0015. C_L , C_D and C_m with 15 per cent. flap at 90 deg., edge of flap rounded.
- 5. NACA 0015. C_L , C_p and C_m with 20 per cent. flap at 50 deg.
- 6. NACA 0015. C_{D,0 min.}.
- 7. NACA 0030. C_L , C_D and C_m on model without flap. Square ends on pips.
- 8. NACA 0030. C_L , C_D and C_m rounded ends on V's.
- 9. NACA 0030. C_L , C_D and C_m with 15 per cent. flap at 90 deg. Square ends on pips.
- 10. NACA 0030. $C_{D,0 \text{ min.}}$ measured on the balance.
- 10a. NACA 0030. $C_{D,0 \text{ min.}}$ measured by momentum methods.
- 11. NACA 0012, 0015 and 0030. $dC_L/d\alpha$ and $dC_m/d\alpha$.
- 12. NACA 0012. C_L , C_D and C_m on model with 15 per cent. flap at 90 deg.
- 13. NACA 23012. C_L , C_D and C_m on model with 15 per cent. flap at 90 deg.
- 14. RAF 28. C_L , C_p and C_m on model with 15 per cent. flap at 90 deg.
- 15. RAF 48. C_L , C_D and C_m on model with 15 per cent. flap at 90 deg.
- 16. RAF 48. C_L , C_p and C_m on model with 20 per cent. flap at 50 deg.
- The flap in all cases except in Table 3 had a sharp edge.
- The 0.15c flap was 0.15 chord from the trailing edge.
- The 0.20c flap was 0.2 chord from the trailing edge.

For results on the last four models without flaps see R. & M. No. 1708 (NACA 0012), R. & M. No. 1898 (NACA 23012) and R. & M. No. 1706 (RAF 28 and 48).

TABLE 1

Dimensions of Aerofoils in Terms of Chord

Distance from	NACA 0012	NACA 0015	NACA 0030	NA 230	CA)12	RAI	7 28	RA	F 48
Edge	$y_1 = y_2$	$y_1 = y_2$	$y_1 = y_2$	<i>y</i> 1	${\mathcal Y}_2$	${\mathcal Y}_1$	Y2	${\mathcal Y}_1$	${\mathcal{Y}}_2$
$\begin{array}{c} 0 \\ 0 \cdot 0125 \\ 0 \cdot 025 \\ 0 \cdot 05 \\ 0 \cdot 075 \\ 0 \cdot 10 \\ 0 \cdot 15 \\ 0 \cdot 20 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 50 \\ 0 \cdot 60 \\ 0 \cdot 60 \\ 0 \cdot 70 \\ 0 \cdot 80 \\ 0 \cdot 90 \\ 0 \cdot 95 \\ 1 \cdot 00 \end{array}$	$\begin{array}{c} 0\\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0\\ 0\cdot 0238\\ 0\cdot 0327\\ 0\cdot 0444\\ 0\cdot 0525\\ 0\cdot 0586\\ 0\cdot 0669\\ 0\cdot 0717\\ 0\cdot 0750\\ 0\cdot 0725\\ 0\cdot 0663\\ 0\cdot 0570\\ 0\cdot 0458\\ 0\cdot 0328\\ 0\cdot 0181\\ 0\cdot 0102\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\cdot 0475\\ 0\cdot 0654\\ 0\cdot 0888\\ 0\cdot 1050\\ 0\cdot 1172\\ 0\cdot 1337\\ 0\cdot 1435\\ 0\cdot 1500\\ 0\cdot 1435\\ 0\cdot 1500\\ 0\cdot 1325\\ 0\cdot 1141\\ 0\cdot 0916\\ 0\cdot 0656\\ 0\cdot 0362\\ 0\cdot 0204\\ 0\end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 0267 \\ 0 \cdot 0361 \\ 0 \cdot 0491 \\ 0 \cdot 0580 \\ 0 \cdot 0643 \\ 0 \cdot 0719 \\ 0 \cdot 0750 \\ 0 \cdot 0755 \\ 0 \cdot 0714 \\ 0 \cdot 0641 \\ 0 \cdot 0547 \\ 0 \cdot 0436 \\ 0 \cdot 0308 \\ 0 \cdot 0168 \\ 0 \cdot 0092 \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\cdot 0123\\ 0\cdot 0171\\ 0\cdot 0226\\ 0\cdot 0261\\ 0\cdot 0292\\ 0\cdot 0350\\ 0\cdot 0397\\ 0\cdot 0446\\ 0\cdot 0448\\ 0\cdot 0417\\ 0\cdot 0367\\ 0\cdot 0300\\ 0\cdot 0216\\ 0\cdot 0123\\ 0\cdot 0070\\ 0\\ \end{array}$	$\begin{matrix} 0 \\ 0 \cdot 0137 \\ 0 \cdot 0217 \\ 0 \cdot 0314 \\ 0 \cdot 0385 \\ 0 \cdot 0444 \\ 0 \cdot 0538 \\ 0 \cdot 0600 \\ 0 \cdot 0664 \\ 0 \cdot 0670 \\ 0 \cdot 0627 \\ 0 \cdot 0540 \\ 0 \cdot 0428 \\ 0 \cdot 0302 \\ 0 \cdot 0163 \\ 0 \cdot 0091 \\ 0 \end{matrix}$	$\begin{array}{c} 0 \\ 0 \cdot 0126 \\ 0 \cdot 0168 \\ 0 \cdot 0223 \\ 0 \cdot 0255 \\ 0 \cdot 0276 \\ 0 \cdot 0304 \\ 0 \cdot 0313 \\ 0 \cdot 0311 \\ 0 \cdot 0286 \\ 0 \cdot 0251 \\ 0 \cdot 0207 \\ 0 \cdot 0160 \\ 0 \cdot 0111 \\ 0 \cdot 0064 \\ 0 \cdot 0042 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 0260 \\ 0 \cdot 0365 \\ 0 \cdot 0520 \\ 0 \cdot 0639 \\ 0 \cdot 0730 \\ 0 \cdot 0863 \\ 0 \cdot 0953 \\ 0 \cdot 1040 \\ 0 \cdot 1020 \\ 0 \cdot 0938 \\ 0 \cdot 0794 \\ 0 \cdot 0605 \\ 0 \cdot 0402 \\ 0 \cdot 0195 \\ 0 \cdot 0105 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \cdot 0165 \\ 0 \cdot 0234 \\ 0 \cdot 0316 \\ 0 \cdot 0369 \\ 0 \cdot 0403 \\ 0 \cdot 0441 \\ 0 \cdot 0458 \\ 0 \cdot 0456 \\ 0 \cdot 0433 \\ 0 \cdot 0390 \\ 0 \cdot 0336 \\ 0 \cdot 0265 \\ 0 \cdot 0183 \\ 0 \cdot 0100 \\ 0 \cdot 0060 \\ 0 \\ \end{array}$

 $y_1 =$ ordinate of upper surface with respect to nose-tail datum line.

 $y_2 =$ ordinate of lower surface with respect to nose-tail datum line.

^{1.} Dimensions of Aerofoils.

TABLE 2

NACA 0015 without flap

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R =	$= 0.30 \times$	10^6 , P	== 1 atm	os.,	R =	$= 0.67 \times$	10^{6} , P	$= 2 \cdot 28$ a	atmos.,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{2}\rho V^2 =$	$= 6 \cdot 62$,	V	$= 76 \cdot 3 \text{ f}$	t./sec.	$\frac{1}{2}\rho V^2 =$	$= 13 \cdot 5,$	V	$= 71 \cdot 4 \text{ f}$	t./sec.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α deg.	C _L	Съ	$C_{D,0}$	C _m	α deg.	C_L	C _D	C _{D,0}	<i>C</i> _{<i>m</i>}
	$\begin{array}{c} - & 2 \cdot 9 \\ - & 0 \cdot 8 \\ + & 0 \cdot 2_5 \\ 1 \cdot 2_5 \\ 3 \cdot 3_5 \\ 6 \cdot 4 \\ 9 \cdot 5_5 \\ 11 \cdot 5_5 \\ 13 \cdot 6_5 \\ 13 \cdot 6_5 \\ 15 \cdot 7 \\ 16 \cdot 9_5 \\ 18 \cdot 1 \\ 19 \cdot 1_5 \\ 21 \cdot 3 \\ 23 \cdot 4 \\ 24 \cdot 5 \\ 25 \cdot 5_5 \\ 14 \cdot 7_5 \\ 15 \cdot 8_5 \\ \end{array}$	$\begin{array}{c} -0\cdot 216\\ -0\cdot 068\\ +0\cdot 005\\ 0\cdot 076\\ 0\cdot 222\\ 0\cdot 451\\ 0\cdot 710\\ 0\cdot 817\\ 0\cdot 905\\ 0\cdot 956\\ 0\cdot 948\\ 0\cdot 580\\ 0\cdot 543\\ 0\cdot 543\\ 0\cdot 540\\ 0\cdot 539\\ 0\cdot 553\\ 0\cdot 554\\ 0\cdot 555\\ 0\cdot 827\\ 0\cdot 656\end{array}$	$\begin{array}{c} 0.0137\\ 0.0113\\ 0.0107\\ 0.0108\\ 0.0134\\ 0.0236\\ 0.0438\\ 0.0570\\ 0.0704\\ 0.0780\\ 0.0704\\ 0.0780\\ 0.090\\ 0.210\\ 0.229\\ 0.244\\ 0.273\\ 0.306\\ 0.326\\ 0.340\\ 0.165\\ 0.192\\ \end{array}$	$\begin{array}{c} 0.0111\\ 0.0110\\ 0.0107\\ 0.0105\\ 0.0107\\ 0.0123\\ 0.0158\\ 0.0200\\ 0.0251\\ 0.0273\\ \end{array}$	$\begin{array}{c} -0\cdot0081\\ -0\cdot0021\\ +0\cdot0006\\ 0\cdot0033\\ 0\cdot0092\\ 0\cdot0127\\ 0\cdot0024\\ 0\cdot0118\\ 0\cdot0244\\ 0\cdot0287\\ +0\cdot0281\\ -0\cdot0518\\ -0\cdot0518\\ -0\cdot0547\\ -0\cdot0575\\ -0\cdot0623\\ -0\cdot0659\\ -0\cdot0681\\ -0\cdot0710\\ -0\cdot0484\\ -0\cdot0481\\ \end{array}$	$\begin{array}{c} - & 2 \cdot 9 \\ - & 0 \cdot 8 \\ + & 0 \cdot 2_5 \\ 1 \cdot 3 \\ 3 \cdot 3_5 \\ 6 \cdot 4_5 \\ 9 \cdot 5_5 \\ 12 \cdot 5_5 \\ 12 \cdot 5_5 \\ 12 \cdot 5_5 \\ 14 \cdot 7 \\ 15 \cdot 7_5 \\ 16 \cdot 7_5 \\ 17 \cdot 8_5 \\ 18 \cdot 9_5 \\ 21 \cdot 3 \\ 24 \cdot 4_5 \\ 15 \cdot 8^* \\ 16 \cdot 9_5^* \\ 18 \cdot 1^* \\ 19 \cdot 1_5^* \end{array}$	$\begin{array}{c} -0\cdot 219\\ -0\cdot 070\\ +0\cdot 003\\ 0\cdot 075\\ 0\cdot 220\\ 0\cdot 437\\ 0\cdot 658\\ 0\cdot 857\\ 0\cdot 982\\ 0\cdot 994\\ 1\cdot 010\\ 1\cdot 016\\ 0\cdot 993\\ 0\cdot 542\\ 0\cdot 557\\ 0\cdot 542\\ 0\cdot 557\\ 0\cdot 784\\ 0\cdot 645\\ 0\cdot 597\\ 0\cdot 569\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0 \cdot 0090 \\ 0 \cdot 0086 \\ 0 \cdot 0085 \\ 0 \cdot 0087 \\ 0 \cdot 0104 \\ 0 \cdot 0138 \\ 0 \cdot 0189 \\ 0 \cdot 0214 \\ 0 \cdot 0303 \end{array}$	$ \begin{vmatrix} -0 \cdot 0059 \\ -0 \cdot 0015 \\ +0 \cdot 0006 \\ 0 \cdot 0028 \\ 0 \cdot 0073 \\ 0 \cdot 0134 \\ 0 \cdot 0149 \\ 0 \cdot 0201 \\ 0 \cdot 0251 \\ 0 \cdot 0265 \\ 0 \cdot 0147 \\ +0 \cdot 0095 \\ -0 \cdot 0013 \\ -0 \cdot 0625 \\ -0 \cdot 0682 \\ -0 \cdot 0256 \\ -0 \cdot 0426 \\ -0 \cdot 0256 \\ -0 \cdot 0426 \\ -0 \cdot 0502 \\ -0 \cdot 0502 \\ -0 \cdot 0544 \end{vmatrix} $

 C_m is given throughout with reference to the quarter-chord axis. $\frac{1}{2}\rho V^2$ is given throughout in lb./sq. ft.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$R = 1 \cdot 27 \times 10^{\circ}, P = 4 \cdot 47 \text{ atmos.},$ $\frac{1}{2}\rho V^2 = 25 \cdot 4, V = 70 \cdot 3 \text{ ft./sec.}$					$\begin{array}{c} R = \\ \frac{1}{2}\rho V^2 = \end{array}$	$= 2 \cdot 19 \times $ = 42 \cdot 3,	$10^6, P$	$r = 7 \cdot 9$ at $r = 68 \cdot 0$ f	t./sec.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	α deg.	C	CD	C _{D,0}	C _m	α deg.	C _L	С _р	С _{л,0}	
$21 \cdot 2^{*}$ 0.799 0.256 -0.0486	$\begin{array}{c} - & 0 \cdot 8 \\ + & 0 \cdot 2_5 \\ 1 \cdot 3 \\ 3 \cdot 4 \\ 6 \cdot 4_5 \\ 9 \cdot 6 \\ 12 \cdot 6_5 \\ 14 \cdot 7 \\ 15 \cdot 8 \\ 16 \cdot 8 \\ 17 \cdot 8_5 \\ 18 \cdot 9_5 \\ 21 \cdot 1 \\ 24 \cdot 4 \\ 19 \cdot 0_5^* \\ 21 \cdot 2^* \end{array}$	$\begin{array}{c} -0.073 \\ +0.002 \\ 0.066 \\ 0.230 \\ 0.449 \\ 0.665 \\ 0.875 \\ 1.005 \\ 1.062 \\ 1.113 \\ 1.079 \\ 1.072 \\ 1.007 \\ 0.807 \\ 0.879 \\ 0.799 \end{array}$	$\begin{array}{c} 0\cdot0081\\ 0\cdot0079\\ 0\cdot0081\\ 0\cdot0110\\ 0\cdot0205\\ 0\cdot0363\\ 0\cdot0574\\ 0\cdot0746\\ 0\cdot0746\\ 0\cdot0746\\ 0\cdot0837\\ 0\cdot0946\\ 0\cdot124\\ 0\cdot140\\ 0\cdot187\\ 0\cdot140\\ 0\cdot187\\ 0\cdot310\\ 0\cdot165\\ 0\cdot256\end{array}$	$\begin{array}{c} 0.0078\\ 0.0079\\ 0.0079\\ 0.0081\\ 0.0093\\ 0.0118\\ 0.0149\\ 0.0186\\ 0.0212\\ 0.0280\\ \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} - & 0.8 \\ + & 0.2_5 \\ 1.3 \\ 3.4 \\ 6.5 \\ 9.7 \\ 12.7_5 \\ 14.8_5 \\ 15.8_5 \\ 16.8_5 \\ 17.9_5 \\ 19.0 \\ 20.1 \\ 22.2 \end{array}$	$\begin{array}{c} -0.079 \\ -0.002 \\ +0.074 \\ 0.226 \\ 0.450 \\ 0.679 \\ 0.900 \\ 1.039 \\ 1.106 \\ 1.176 \\ 1.231 \\ 1.282 \\ 1.136 \\ 1.008 \end{array}$	$\begin{array}{c} 0.0081\\ 0.0078\\ 0.0081\\ 0.0109\\ 0.0204\\ 0.0365\\ 0.0588\\ 0.0765\\ 0.0865\\ 0.0965\\ 0.0965\\ 0.108\\ 0.119\\ 0.165\\ 0.215\\ \end{array}$	$\begin{array}{c} 0 \cdot 0078 \\ 0 \cdot 0078 \\ 0 \cdot 0078 \\ 0 \cdot 0081 \\ 0 \cdot 0092 \\ 0 \cdot 0109 \\ 0 \cdot 0139 \\ 0 \cdot 0166 \\ 0 \cdot 0187 \end{array}$	$ \begin{vmatrix} -0.0010 \\ +0.0006 \\ 0.0025 \\ 0.0060 \\ 0.0107 \\ 0.0141 \\ 0.0166 \\ 0.0182 \\ 0.0187 \\ 0.0194 \\ 0.0199 \\ +0.0200 \\ -0.0108 \\ -0.0360 \end{vmatrix} $

* Decreasing incidence.

TABLE 2 (contd.)

NACA 0015 without flap

 $R = 4 \cdot 26 \times 10^6$, $P = 12 \cdot 4$ atmos., $\frac{1}{2}\rho V^2 = 107 \cdot 0$ $V = 86 \cdot 9$ ft./sec.

 $R = 5.54 \times 10^6$, P = 17.8 atmos., $\frac{1}{2}\rho V^2 = 130.0$, V = 80.7 ft./sec.

α deg.	C_{L}	C_{D}	С _{д,0}	C_m
$\begin{array}{c} - & 0 \cdot 8_5 \\ + & 0 \cdot 2_5 \\ 1 \cdot 3_5 \\ 3 \cdot 5 \\ 6 \cdot 7_5 \\ 9 \cdot 9_5 \\ 13 \cdot 1 \\ 15 \cdot 2_5 \\ 17 \cdot 3 \\ 18 \cdot 4_5 \\ 19 \cdot 5 \\ 20 \cdot 5_5 \\ 21 \cdot 5_5 \\ 22 \cdot 5_5 \\ 24 \cdot 7 \end{array}$	$\begin{array}{c} -0.077 \\ +0.005 \\ 0.083 \\ 0.244 \\ 0.480 \\ 0.718 \\ 0.947 \\ 1.091 \\ 1.235 \\ 1.295 \\ 1.360 \\ 1.412 \\ 1.187 \\ 1.056 \\ 0.992 \end{array}$	$\begin{array}{c} 0.0083\\ 0.0079\\ 0.0083\\ 0.0111\\ 0.0213\\ 0.0377\\ 0.0616\\ 0.0808\\ 0.102\\ 0.113\\ 0.125\\ 0.138\\ 0.195\\ 0.230\\ 0.276\\ \end{array}$	$\begin{array}{c} 0 \cdot 0080 \\ 0 \cdot 0079 \\ 0 \cdot 0079 \\ 0 \cdot 0078 \\ 0 \cdot 0085 \\ 0 \cdot 0091 \\ 0 \cdot 0129 \\ 0 \cdot 0148 \\ 0 \cdot 0174 \\ 0 \cdot 0200 \end{array}$	$\begin{array}{c} -0\cdot 0014\\ +0\cdot 0002\\ 0\cdot 0017\\ 0\cdot 0051\\ 0\cdot 0095\\ 0\cdot 0125\\ 0\cdot 0143\\ 0\cdot 0148\\ 0\cdot 0152\\ 0\cdot 0154\\ 0\cdot 0156\\ +0\cdot 0152\\ -0\cdot 0220\\ -0\cdot 0438\\ -0\cdot 0509\end{array}$

•		1		
α deg.	C_L	CD	$C_{D,0}$	C_m
$-\frac{0 \cdot 8_{5}}{1 \cdot 3_{5}} + \frac{0 \cdot 2_{5}}{3 \cdot 5_{5}} + \frac{0 \cdot 2_{5}}{6 \cdot 7_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{13 \cdot 2_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{5}} + \frac{0 \cdot 2_{5}}{10 \cdot 0_{$	$\begin{array}{ c c c c c } -0.078 \\ +0.005 \\ 0.087 \\ 0.252 \\ 0.490 \\ 0.738 \\ 0.961 \\ 0.961 \\ 0.021 \\ 0.0$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0:0082 0.0081 0.0079 0.0079 0.0079 0.0085 0.0081 0.0110	$ \begin{array}{c c} -0.0013 \\ +0.0003 \\ 0.0019 \\ 0.0049 \\ 0.0091 \\ 0.0120 \\ 0.0134 \\ 0.0134 \end{array} $
$16 \cdot 4_5$ $18 \cdot 6$ $19 \cdot 7$ $20 \cdot 7_5$ $21 \cdot 7_5$ $22 \cdot 7$ $24 \cdot 7_5$	$ \begin{array}{c} 1 \cdot 182 \\ 1 \cdot 324 \\ 1 \cdot 369 \\ 1 \cdot 432 \\ 1 \cdot 216 \\ 1 \cdot 182 \\ 1 \cdot 000 \\ \end{array} $	$\begin{array}{c} 0.0914\\ 0.115\\ 0.126\\ 0.136\\ 0.189\\ 0.236\\ 0.290\\ \end{array}$	0.0139 0.0181 0.0207	$\begin{array}{c} 0.0139\\ 0.0140\\ 0.0144\\ +0.0143\\ -0.0274\\ -0.0467\\ -0.0676\end{array}$

 $R = 7 \cdot 40 \times 10^{6},$ $\frac{1}{2}
ho V^{2} = 171 \cdot 5,$

 $P = 24 \cdot 4$ atmos., $V = 79 \cdot 4$ ft./sec.

-				
α deg.	C _L	C _D	С _{л,0}	
$\begin{array}{c} - & 0 \cdot 9 \\ + & 0 \cdot 2_5 \\ 1 \cdot 4 \\ 3 \cdot 6 \\ 6 \cdot 9 \\ 10 \cdot 2_5 \\ 13 \cdot 5 \\ 16 \cdot 7_5 \\ 18 \cdot 9_5 \\ 20 \cdot 0 \\ 21 \cdot 1_5 \\ 22 \cdot 0 \\ 23 \cdot 0 \\ 24 \cdot 9 \end{array}$	$\begin{array}{c} -0.083 \\ +0.001 \\ 0.085 \\ 0.251 \\ 0.498 \\ 0.745 \\ 0.982 \\ 1.196 \\ 1.321 \\ 1.386 \\ 1.436 \\ 1.260 \\ 1.234 \\ 1.015 \end{array}$	$\begin{array}{c} 0 \cdot 0089 \\ 0 \cdot 0083 \\ 0 \cdot 0087 \\ 0 \cdot 0116 \\ 0 \cdot 0220 \\ 0 \cdot 0395 \\ 0 \cdot 0639 \\ 0 \cdot 0965 \\ 0 \cdot 119 \\ 0 \cdot 131 \\ 0 \cdot 143 \\ 0 \cdot 206 \\ 0 \cdot 236 \\ 0 \cdot 304 \end{array}$	$\begin{array}{c} 0 \cdot 0085 \\ 0 \cdot 0083 \\ 0 \cdot 0083 \\ 0 \cdot 0081 \\ 0 \cdot 0083 \\ 0 \cdot 0087 \\ 0 \cdot 0104 \\ 0 \cdot 0172 \\ 0 \cdot 0225 \\ 0 \cdot 0225 \\ 0 \cdot 0251 \end{array}$	$\begin{array}{c} ,\\ -0\cdot 0011\\ +0\cdot 0004\\ 0\cdot 0018\\ 0\cdot 0050\\ 0\cdot 0090\\ 0\cdot 0110\\ 0\cdot 0118\\ 0\cdot 0124\\ 0\cdot 0126\\ 0\cdot 0125\\ +0\cdot 0127\\ -0\cdot 0239\\ -0\cdot 0374\\ -0\cdot 0697\end{array}$
	1	1		1

TABLE	3
-------	---

NACA 0015 with 15 per cent. sharp edge flap at 90 deg. Aspect ratio 6

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$R = 0$ $\frac{1}{2}\rho V^2 = 6$	$\cdot 31 imes 10^{6}$ $\cdot 62$,	$P = 1$ at $V = 75 \cdot t$	5 ft./sec.	$R = 0$ $\frac{1}{2}\rho V^2 = 1$	$0.66 imes 10^{6}, \ 3.5,$	$P = 2 \cdot 2$ $V = 71 \cdot 2$	25 atmos., 9 ft./sec.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	α deg.	C _L	CD	C_m	α deg.	C _L	. C _D	C _m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} -10 \cdot 9_5 \\ -8 \cdot 8_5 \\ -5 \cdot 6_5 \\ -2 \cdot 5_5 \\ +1 \cdot 6 \\ 5 \cdot 7 \\ 8 \cdot 9 \\ 10 \cdot 9_5 \\ 12 \cdot 0 \\ 13 \cdot 0 \\ 14 \cdot 5_5 \\ 16 \cdot 6_5 \\ 11 \cdot 1^* \\ 12 \cdot 3^* \\ 13 \cdot 4^* \end{array}$	$\begin{array}{c} 0.080\\ 0.265\\ 0.533\\ 0.770\\ 1.069\\ 1.337\\ 1.542\\ 1.655\\ 1.711\\ 1.778\\ 1.037\\ 1.024\\ 1.340\\ 1.165\\ 1.092\\ \end{array}$	$\begin{array}{c} 0\cdot 150\\ 0\cdot 159\\ 0\cdot 176\\ 0\cdot 196\\ 0\cdot 230\\ 0\cdot 269\\ 0\cdot 304\\ 0\cdot 328\\ 0\cdot 341\\ 0\cdot 354\\ 0\cdot 503\\ 0\cdot 549\\ 0\cdot 422\\ 0\cdot 463\\ 0\cdot 485\end{array}$	$\begin{array}{c} -0.170 \\ -0.184 \\ -0.190 \\ -0.199 \\ -0.204 \\ -0.199 \\ -0.197 \\ -0.197 \\ -0.197 \\ -0.197 \\ -0.198 \\ -0.259 \\ -0.247 \\ -0.259 \\ -0.247 \\ -0.259 \\ -0.268 \\ -0.266 \end{array}$	$\begin{array}{c} -11 \cdot 0 \\ - 8 \cdot 9_5 \\ - 5 \cdot 6_5 \\ - 2 \cdot 5_5 \\ + 1 \cdot 6_5 \\ 5 \cdot 7_5 \\ 8 \cdot 9 \\ 10 \cdot 9_5 \\ 12 \cdot 0_5 \\ 13 \cdot 0_5 \\ 14 \cdot 1 \\ 15 \cdot 1_5 \\ 16 \cdot 1_5 \\ 17 \cdot 7 \\ 18 \cdot 8 \\ 19 \cdot 8 \\ 10 \cdot 9 \\ 10 \cdot 10 \\ 10 $	$\begin{array}{c} 0\cdot 064 \\ 0\cdot 247 \\ 0\cdot 517 \\ 0\cdot 757 \\ 1\cdot 056 \\ 1\cdot 331 \\ 1\cdot 527 \\ 1\cdot 647 \\ 1\cdot 712 \\ 1\cdot 769 \\ 1\cdot 827 \\ 1\cdot 887 \\ 1\cdot 935 \\ 1\cdot 042 \\ 1\cdot 032 \\ 1\cdot 032 \\ 1\cdot 073 \\ 1\cdot 07$	$\begin{array}{c} 0.146\\ 0.155\\ 0.173\\ 0.192\\ 0.227\\ 0.264\\ 0.299\\ 0.323\\ 0.337\\ \hline \\ 0.365\\ \hline \\ 0.391\\ 0.578\\ 0.606\\ 0.635\\ \hline \\ 0.635\\ \hline \end{array}$	$ \begin{vmatrix} -0.156 \\ -0.169 \\ -0.185 \\ -0.190 \\ -0.193 \\ -0.193 \\ -0.191 \\ -0.189 \\ -0.187 \\ -0.187 \\ -0.187 \\ -0.187 \\ -0.188 \\ -0.254 \\ -0.254 \\ -0.258 \\ -0.263 $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. · ·	$12 \cdot 3^*$ $13 \cdot 4^*$ $14 \cdot 5_5^*$ $15 \cdot 6^*$ $16 \cdot 6^*$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0.438 \\497 \\0.553 \\ 0.553 \end{array} $	$\begin{array}{c c} -0.243 \\ -0.248 \\ -0.253 \end{array}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$R = 1$ $\frac{1}{2}\rho V^2 = 2$	$\cdot 26 imes 10^{6},$ 5 $\cdot 4,$	$P = 4 \cdot 40$ $V = 71 \cdot 0$	0 atmos., 0 ft./sec.	$R = 2$ $\frac{1}{2}\rho V^2 = 4$	$\cdot 14 imes 10^{6}$, $2 \cdot 3$,	$P = 7 \cdot 7$ $V = 69 \cdot$	atmos., 0 ft./sec.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$R = 1$ $\frac{\frac{1}{2}\rho V^2}{\alpha \text{ deg.}}$	$\begin{array}{c} \cdot 26 \times 10^{\mathfrak{s}}, \\ \overline{5 \cdot 4}, \\ \hline C_{L} \end{array}$	$P = 4 \cdot 40$ $V = 71 \cdot 0$ C_{p}	0 atmos., 0 ft./sec. C_m	$R = 2$ $\frac{1}{2}\rho V^2 = 4$ $\alpha \text{ deg.}$	$ \begin{array}{c} \cdot 14 \times 10^{\circ}, \\ 2 \cdot 3, \\ \end{array} $ $ \begin{array}{c} C_{L} \end{array} $	$P = 7 \cdot 7$ $V = 69 \cdot$ C_{p}	atmos., 0 ft./sec. C_m

* Decreasing incidence.

9

$R = 4 \cdot 17 imes 10^{6},$ $rac{1}{2} ho V^2 = 107 \cdot 0,$		$P = 12 \cdot 3$ atmos., $V = 87 \cdot 8$ ft./sec.		$R = 5 \cdot \frac{1}{2}\rho V^2 = 13$	$R=5{\cdot}39 imes10^{6}$, $rac{1}{2} hoV^{2}=130{\cdot}0$,		$P = 17 \cdot 6 \text{ atmos.,}$ $V = 81 \cdot 9 \text{ ft./sec.}$	
α deg.	С,	C _D	C_m	α deg.	C _L	C _D	C _m .	
$\begin{array}{c} -11 \cdot 2_5 \\ -9 \cdot 0_5 \\ -5 \cdot 7_5 \\ -1 \cdot 4_5 \\ +2 \cdot 9_5 \\ 7 \cdot 2 \\ 11 \cdot 5 \\ 15 \cdot 8 \\ 18 \cdot 9_5 \\ 21 \cdot 0_5 \\ 22 \cdot 2 \\ 23 \cdot 2_5 \\ 24 \cdot 2_5 \\ 25 \cdot 2_5 \\ 18 \cdot 9^* \\ 21 \cdot 0^* \\ 22 \cdot 0_5^* \\ 23 \cdot 1_5^* \end{array}$	$\begin{array}{c} 0.044\\ 0.223\\ 0.494\\ 0.825\\ 1.141\\ 1.428\\ 1.688\\ 1.953\\ 2.143\\ 2.267\\ 2.325\\ 2.380\\ 1.198\\ 1.170\\ 1.609\\ 1.430\\ 1.342\\ 1.252\\ \end{array}$	$\begin{array}{c} 0\cdot 144\\ 0\cdot 151\\ 0\cdot 170\\ 0\cdot 198\\ 0\cdot 237\\ 0\cdot 278\\ 0\cdot 328\\ 0\cdot 389\\ 0\cdot 436\\ 0\cdot 471\\ 0\cdot 485\\ 0\cdot 505\\ 0\cdot 616\\ 0\cdot 665\\ 0\cdot 503\\ 0\cdot 536\\ 0\cdot 555\\ 0\cdot 574\\ \end{array}$	$\begin{array}{c} -0\cdot 158\\ -0\cdot 166\\ -0\cdot 178\\ -0\cdot 185\\ -0\cdot 185\\ -0\cdot 187\\ -0\cdot 185\\ -0\cdot 184\\ -0\cdot 184\\ -0\cdot 183\\ -0\cdot 184\\ -0\cdot 183\\ -0\cdot 184\\ -0\cdot 183\\ -0\cdot 239\\ -0\cdot 239\\ -0\cdot 251\\ -0\cdot 213\\ -0\cdot 232\\ -0\cdot 233\\ -0\cdot 233\\ -0\cdot 233\end{array}$	$\begin{array}{c} -11 \cdot 3_5 \\ -9 \cdot 1 \\ -5 \cdot 7_5 \\ -1 \cdot 4_5 \\ +3 \cdot 0_5 \\ 7 \cdot 3_5 \\ 11 \cdot 6_5 \\ 16 \cdot 0 \\ 19 \cdot 1_5 \\ 21 \cdot 3 \\ 22 \cdot 4 \\ 23 \cdot 5 \\ 24 \cdot 2_5 \\ 25 \cdot 2_5 \\ 20 \cdot 0_5 \\ 21 \cdot 0_5 \\ 22 \cdot 1_5 \\ 23 \cdot 2 \\ \end{array}$	$\begin{array}{c} 0.043\\ 0.221\\ 0.490\\ 0.823\\ 1.127\\ 1.420\\ 1.698\\ 1.946\\ 2.140\\ 2.272\\ 2.323\\ 2.374\\ 1.198\\ 1.202\\ 1.619\\ 1.428\\ 1.348\\ 1.260\\ \end{array}$	$\begin{array}{c} 0\cdot 145\\ 0\cdot 154\\ 0\cdot 171\\ 0\cdot 198\\ 0\cdot 236\\ 0\cdot 279\\ 0\cdot 325\\ 0\cdot 387\\ 0\cdot 436\\ 0\cdot 467\\ 0\cdot 487\\ 0\cdot 507\\ 0\cdot 631\\ 0\cdot 685\\ 0\cdot 511\\ 0\cdot 540\\ 0\cdot 565\\ 0\cdot 588\end{array}$	$\begin{array}{c} -0.160\\ -0.169\\ -0.178\\ -0.183\\ -0.185\\ -0.185\\ -0.182\\ -0.182\\ -0.182\\ -0.182\\ -0.183\\ -0.187\\ -0.183\\ -0.243\\ -0.243\\ -0.261\\ -0.214\\ -0.223\\ -0.231\\ -0.235\end{array}$	

TABLE 3 (contd.)

TABLE 4

NACA 0015 with 15 per cent. rounded edge flap at 90 deg. Aspect ratio 6

$R = 0.68 imes 10^{6}, \ rac{1}{2} ho V^2 = 13.5,$		$P = 2 \cdot 35$ atmos., $V = 70 \cdot 3$ ft./sec.		$R = 1$ $\frac{1}{2}\rho V^2 = 25$	$28 imes10^{\circ}$, $5\cdot4$,	$P = 4 \cdot 40 \text{ atmos.,}$ $V = 70 \cdot 3 \text{ ft./sec.}$		
α deg.	C_L	C_{D}	<i>C</i> _{<i>m</i>}	α deg.	C _L	C_{D}	C_m	
$\begin{array}{c} -10 \cdot 9_5 \\ -8 \cdot 8_5 \\ -5 \cdot 6_5 \\ -2 \cdot 5_5 \\ +1 \cdot 6_5 \\ 5 \cdot 8 \\ 8 \cdot 9_5 \\ 12 \cdot 0_5 \\ 14 \cdot 1_5 \\ 15 \cdot 1_5 \\ 16 \cdot 1_5 \\ 17 \cdot 7 \\ 19 \cdot 8_5 \\ 20 \cdot 0 \\ 12 \cdot 3^* \\ 14 \cdot 5_5^* \\ 15 \cdot 6^* \\ 16 \cdot 6_5^* \end{array}$	0.036 0.221 0.483 0.727 1.028 1.308 1.494 1.668 1.807 1.862 1.928 1.028 1.028 1.028 1.028 1.044 1.056 1.292 1.059 1.034 1.027	$\begin{array}{c} 0\cdot 138\\ 0\cdot 146\\ 0\cdot 163\\ 0\cdot 183\\ 0\cdot 217\\ 0\cdot 255\\ 0\cdot 289\\ 0\cdot 329\\ 0\cdot 352\\ 0\cdot 367\\ 0\cdot 382\\ 0\cdot 566\\ 0\cdot 623\\ 0\cdot 566\\ 0\cdot 623\\ 0\cdot 683\\ 0\cdot 419\\ 0\cdot 483\\ 0\cdot 507\\ 0\cdot 532\end{array}$	$\begin{array}{c} -0.148\\ -0.162\\ -0.175\\ -0.181\\ -0.185\\ -0.181\\ -0.180\\ -0.180\\ -0.178\\ -0.177\\ -0.177\\ -0.239\\ -0.251\\ -0.261\\ -0.231\\ -0.241\\ -0.238\\ -0.242\\ \end{array}$	$\begin{array}{c} -10 \cdot 9_5 \\ -8 \cdot 8_5 \\ -5 \cdot 6 \\ -2 \cdot 5_5 \\ +1 \cdot 6_5 \\ 5 \cdot 8 \\ 9 \cdot 0_5 \\ 11 \cdot 0_5 \\ 14 \cdot 2 \\ 16 \cdot 2_5 \\ 18 \cdot 3 \\ 19 \cdot 3_5 \\ 20 \cdot 3_5 \\ 21 \cdot 9 \\ 23 \cdot 1 \\ 16 \cdot 4^* \\ 18 \cdot 6_5^* \\ 19 \cdot 7^* \\ 20 \cdot 8_5^* \end{array}$	$\begin{array}{c} 0\cdot 016\\ 0\cdot 203\\ 0\cdot 474\\ 0\cdot 725\\ 1\cdot 028\\ 1\cdot 311\\ 1\cdot 517\\ 1\cdot 651\\ 1\cdot 834\\ 1\cdot 961\\ 2\cdot 006\\ 2\cdot 149\\ 2\cdot 203\\ 1\cdot 152\\ 1\cdot 072\\ 1\cdot 532\\ 1\cdot 366\\ 1\cdot 330\\ 1\cdot 206\end{array}$	$\begin{array}{c} 0.136\\ 0.145\\ 0.145\\ 0.162\\ 0.183\\ 0.214\\ 0.257\\ 0.290\\ 0.314\\ 0.355\\ 0.381\\ 0.413\\ 0.426\\ 0.442\\ 0.679\\ 0.679\\ 0.679\\ 0.679\\ 0.683\\ 0.556\\ 0.575\\ 0.643\\ \end{array}$	$\begin{array}{c} -0.145\\ -0.157\\ -0.157\\ -0.171\\ -0.179\\ -0.179\\ -0.179\\ -0.181\\ -0.178\\ -0.176\\ -0.175\\ -0.175\\ -0.177\\ -0.175\\ -0.177\\ -0.178\\ -0.260\\ -0.249\\ -0.222\\ -0.235\\ -0.235\\ -0.255\end{array}$	

* Decreasing incidence.

.

.

$K = 20$ $\frac{1}{2}\rho V^2 = 42$	2.3,	$P = 7 \cdot 7$ atmos., $V = 69 \cdot 3$ ft./sec.		$\begin{array}{c} R = 4 \\ \frac{1}{2}\rho V^2 = 1 \end{array}$	$\cdot 36 \times 10^{\circ},$ 07.0,	P = 12.7 atmos., V = 85.8 ft./sec.		
∝ deg.	C_{L}	C _D		α deg.	C _L	С _р	C _m	
$\begin{array}{c} -11 \cdot 0_5 \\ -8 \cdot 9 \\ -5 \cdot 6_5 \\ -1 \cdot 5 \\ +2 \cdot 7_5 \\ 7 \cdot 0 \\ 11 \cdot 1_5 \\ 15 \cdot 3 \\ 18 \cdot 4_5 \\ 20 \cdot 5 \\ 21 \cdot 6 \\ 22 \cdot 6_5 \\ 24 \cdot 1_5 \\ 25 \cdot 2 \\ 18 \cdot 6_5 \\ 25 \cdot 2 \\ 18 \cdot 6_5 \\ 21 \cdot 9_5 \\ 21 \cdot 9_5 \\ 23 \cdot 1 \end{array}$	0.009 0.195 0.460 0.789 1.087 1.368 1.636 1.895 2.074 2.197 2.243 2.293 1.177 1.172 1.581 1.336 1.266 1.217	$egin{array}{ccccc} 0&\cdot 133 \ 0&\cdot 143 \ 0&\cdot 161 \ 0&\cdot 192 \ 0&\cdot 227 \ 0&\cdot 269 \ 0&\cdot 318 \ 0&\cdot 372 \ 0&\cdot 417 \ 0&\cdot 450 \ 0&\cdot 488 \ 0&\cdot 484 \ 0&\cdot 576 \ 0&\cdot 612 \ 0&\cdot 451 \ 0&\cdot 504 \ 0&\cdot 524 \ 0&\cdot 550 \end{array}$	$\begin{array}{c} -0 \cdot 146 \\ -0 \cdot 157 \\ -0 \cdot 169 \\ -0 \cdot 179 \\ -0 \cdot 178 \\ -0 \cdot 177 \\ -0 \cdot 175 \\ -0 \cdot 175 \\ -0 \cdot 172 \\ -0 \cdot 222 \\ -0 \cdot 195 \\ -0 \cdot 210 \\ -0 \cdot 215 \\ -0 \cdot 218 \end{array}$	$\begin{array}{c} -11 \cdot 2 \\ -9 \cdot 0 \\ -5 \cdot 7 \\ -1 \cdot 4 \\ +3 \cdot 0 \\ 7 \cdot 2 \\ 11 \cdot 5_5 \\ 15 \cdot 8 \\ 19 \cdot 0_5 \\ 20 \cdot 0_6 \\ 21 \cdot 1 \\ 22 \cdot 1_5 \\ 23 \cdot 1_5 \\ 25 \cdot 2 \\ 18 \cdot 9_5 \\ 19 \cdot 9_5 \\ 21 \cdot 0 \\ 8 \\ 9_5 \\ 21 \cdot 0 \\ 8 \\ 22 \cdot 1 \\ 8 \end{array}$	$\begin{array}{c} -0\cdot 004 \\ +0\cdot 171 \\ 0\cdot 438 \\ 0\cdot 777 \\ 1\cdot 088 \\ 1\cdot 379 \\ 1\cdot 645 \\ 1\cdot 896 \\ 2\cdot 090 \\ 2\cdot 152 \\ 2\cdot 218 \\ 2\cdot 273 \\ 1\cdot 228 \\ 1\cdot 228 \\ 1\cdot 226 \\ 1\cdot 631 \\ 1\cdot 598 \\ 1\cdot 414 \\ 1\cdot 252 \end{array}$	$\begin{array}{c} 0.131\\ 0.139\\ 0.155\\ 0.184\\ 0.220\\ 0.262\\ 0.312\\ 0.367\\ 0.417\\ 0.433\\ 0.452\\ 0.569\\ 0.580\\ 0.691\\ 0.471\\ 0.511\\ 0.535\\ 0.551\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

 $R=5{\cdot}71 imes10^{ extsf{6}},$ $rac{1}{2}
ho\,V^{2}=130{\cdot}0$, $P = 18 \cdot 4$ atmos. V

	10	-	comony
•	 7 9·	1	ft./sec.

α deg.	C _L	C _D	C_m
$\begin{array}{c} -11 \cdot 3 \\ -9 \cdot 0_5 \\ -5 \cdot 7 \\ -1 \cdot 3_5 \\ +3 \cdot 0 \\ 7 \cdot 3_5 \\ 11 \cdot 7 \\ 16 \cdot 0 \\ 19 \cdot 2_5 \\ 21 \cdot 3 \\ 22 \cdot 4 \\ 23 \cdot 2 \\ 25 \cdot 2_5 \\ 20 \cdot 1^* \\ 21 \cdot 1_5^* \\ 22 \cdot 1_5^* \end{array}$	$\begin{array}{c} -0\cdot 020 \\ +0\cdot 156 \\ 0\cdot 423 \\ 0\cdot 765 \\ 1\cdot 082 \\ 1\cdot 376 \\ 1\cdot 652 \\ 1\cdot 918 \\ 2\cdot 103 \\ 2\cdot 232 \\ 2\cdot 232 \\ 2\cdot 278 \\ 1\cdot 236 \\ 1\cdot 179 \\ 1\cdot 647 \\ 1\cdot 465 \\ 1\cdot 333 \end{array}$	$\begin{array}{c} 0.129\\ 0.135\\ 0.151\\ 0.180\\ 0.216\\ 0.258\\ 0.308\\ 0.366\\ 0.416\\ 0.449\\ 0.469\\ 0.588\\ 0.680\\ 0.470\\ 0.551\\ 0.551\end{array}$	$\begin{array}{c} -0 \cdot 144 \\ -0 \cdot 151 \\ -0 \cdot 159 \\ -0 \cdot 167 \\ -0 \cdot 169 \\ -0 \cdot 170 \\ -0 \cdot 169 \\ -0 \cdot 170 \\ -0 \cdot 170 \\ -0 \cdot 172 \\ -0 \cdot 173 \\ -0 \cdot 224 \\ -0 \cdot 251 \\ -0 \cdot 199 \\ -0 \cdot 199 \\ -0 \cdot 223 \end{array}$

* Decreasing incidence.

NACA 0015 with 20 per cent. flap at 50 deg fixed at 0.2c from the trailing edge. Aspect ratio 6

 $R = 0.30 \times 10^6$, P = 1 atmos., $\frac{1}{2}\rho V^2 = 6.63$, V = 76.5 ft./sec.

$R=0\!\cdot\!65 imes10^{ m 6}$,	$P = 2 \cdot 40$ atmos.,
$\frac{1}{2}\rho V^2 = 13.3$	V = 70.7 ft./sec.

α deg.	C_L	C_{D}	C _m
-2.5	0.742	0.160	-0.223
$\begin{array}{c} + 0.5 \\ 3.6 \end{array}$	$ \begin{array}{r} 0 \cdot 973 \\ 1 \cdot 200 \end{array} $	$\begin{array}{c} 0\cdot 184 \\ 0\cdot 213 \end{array}$	-0.221 -0.221
$6 \cdot 6_5$ 9 \cdot 7	$1 \cdot 421 \\ 1 \cdot 627$	$\begin{array}{c} 0\cdot 248 \\ 0\cdot 282 \end{array}$	$\begin{vmatrix} -0.220 \\ -0.219 \end{vmatrix}$
11.7 12.6	$1.744 \\ 1.807$	$0.305 \\ 0.316$	$\begin{vmatrix} -0.216 \\ -0.215 \end{vmatrix}$
$14 \cdot 1_5$	1.091	0.465	-0.275 -0.282
13.3 16.4	1.039 1.038	0.404 0.506	-0.271
$12 \cdot 0^* \\ 13 \cdot 0^*$	$1 \cdot 257$ $1 \cdot 154$	$\begin{array}{c} 0\cdot 417 \\ 0\cdot 444 \end{array}$	-0.277 -0.279

$\bar{\alpha}$ deg.	C_L	$C_{\mathcal{D}}$.	C_m
$\begin{array}{c} - & 2 \cdot 5 \\ + & 0 \cdot 5 \\ & 3 \cdot 6_5 \\ & 6 \cdot 7 \\ & 9 \cdot 7 \\ 12 \cdot 6_5 \\ 13 \cdot 7_5 \\ 14 \cdot 8 \\ 15 \cdot 8_5 \\ 17 \cdot 4_5 \\ 18 \cdot 5_5 \\ 13 \cdot 0^* \\ 15 \cdot 2^* \\ 16 \cdot 4^* \end{array}$	$\begin{array}{c} 0.738\\ 0.968\\ 1.192\\ 1.413\\ 1.629\\ 1.820\\ 1.820\\ 1.936\\ 1.965\\ 1.141\\ 1.137\\ 1.192\\ 1.182\\ 1.044\end{array}$	$\begin{array}{c} 0 & 156 \\ 0 \cdot 178 \\ 0 \cdot 208 \\ 0 \cdot 243 \\ 0 \cdot 279 \\ 0 \cdot 316 \\ 0 \cdot 329 \\ 0 \cdot 342 \\ 0 \cdot 355 \\ 0 \cdot 524 \\ 0 \cdot 548 \\ 0 \cdot 548 \\ 0 \cdot 436 \\ 0 \cdot 483 \\ 0 \cdot 509 \end{array}$	$\begin{array}{c} -0\cdot218\\ -0\cdot219\\ -0\cdot219\\ -0\cdot219\\ -0\cdot219\\ -0\cdot220\\ -0\cdot218\\ -0\cdot217\\ -0\cdot214\\ -0\cdot212\\ -0\cdot277\\ -0\cdot277\\ -0\cdot277\\ -0\cdot273\\ -0\cdot278\\ -0\cdot277\\ \end{array}$

$R=1\cdot 22 imes 10^{\mathfrak{s}}$,	$P = 4 \cdot 60$ atmos.,
$\frac{1}{2} V^2 = 24 \cdot 9$	V = 70.3 ft./sec.

$R=2\!\cdot\!11 imes10^{ m 6}$,	$P = 8 \cdot 0$ atmos.
$\frac{1}{2} ho V^2 = 41.6$,	$V = 67 \cdot 9$ ft./sec

$\frac{1}{2}\rho V = 24.5,$		v = 10010, 100000000000000000000000000000		$\frac{1}{2}pv = 11$	0,	, 0, 0 10,000		
α deg.	C_{L}	CD		α deg.	C_L	CD	C_m	
$\begin{array}{c} - & 2 \cdot 5 \\ + & 0 \cdot 5_5 \\ & 3 \cdot 6_5 \\ & 6 \cdot 7_5 \\ & 9 \cdot 7_5 \\ 12 \cdot 7_5 \\ 14 \cdot 9 \\ 17 \cdot 0 \\ 18 \cdot 1 \\ 19 \cdot 1_5 \\ 20 \cdot 5_5 \\ 21 \cdot 7_5 \\ 17 \cdot 3^* \\ 18 \cdot 5_5^* \\ 19 \cdot 6_5^* \end{array}$	0.727 0.955 1.189 1.404 1.627 1.808 1.946 2.057 2.108 2.144 1.442 1.442 1.441 1.512 1.137 1.121	$\begin{array}{c} 0.155\\ 0.177\\ 0.210\\ 0.243\\ 0.280\\ 0.318\\ 0.345\\ 0.372\\ 0.387\\ 0.401\\ 0.562\\ 0.591\\ 0.486\\ 0.532\\ 0.543\\ \end{array}$	$\begin{array}{c} -0\cdot218\\ -0\cdot218\\ -0\cdot218\\ -0\cdot221\\ -0\cdot221\\ -0\cdot221\\ -0\cdot218\\ -0\cdot217\\ -0\cdot214\\ -0\cdot213\\ -0\cdot212\\ -0\cdot261\\ -0\cdot259\\ -0\cdot259\\ -0\cdot259\\ -0\cdot252\\ -0\cdot255\\ \end{array}$	$\begin{array}{r} - 2 \cdot 5 \\ + 0 \cdot 5_5 \\ 3 \cdot 7 \\ 6 \cdot 8 \\ 9 \cdot 8_5 \\ 12 \cdot 8_5 \\ 15 \cdot 0 \\ 17 \cdot 1 \\ 19 \cdot 3 \\ 20 \cdot 3_5 \\ 21 \cdot 4_5 \\ 22 \cdot 4_5 \\ 23 \cdot 9_5 \\ 25 \cdot 0_5 \\ 19 \cdot 5_5 * \\ 20 \cdot 6_5 * \\ 20 \cdot 6_5 * \end{array}$	0.723 0.959 1.183 1.407 1.618 1.812 1.947 2.065 2.180 2.250 2.298 2.336 1.231 1.193 1.485 1.384	$\begin{array}{c} 0.154\\ 0.178\\ 0.208\\ 0.241\\ 0.281\\ 0.320\\ 0.351\\ 0.378\\ 0.408\\ 0.424\\ 0.440\\ 0.450\\ 0.547\\ 0.571\\ 0.571\\ 0.449\\ 0.472\\ 0.407\end{array}$	$\begin{array}{c c} -0.216\\ -0.217\\ -0.218\\ -0.218\\ -0.218\\ -0.219\\ -0.218\\ -0.218\\ -0.216\\ -0.214\\ -0.213\\ -0.212\\ -0.212\\ -0.210\\ -0.207\\ -0.252\\ -0.257\\ -0.252\\ -0.235\\ -0.235\\ -0.239\\ -0.242\end{array}$	
.				$21 \cdot 8^{*}$ 22.9*	1.319 1.276	0.497 0.522	-0.242 -0.248	

* Decreasing incidence.

$R=4\cdot 31 imes 10^{6},\ rac{1}{2} ho V^{2}=104\cdot 2,$		$P = 13 \cdot 4$ atmos., $V = 83 \cdot 1$ ft./sec.		$R = 6 + \frac{1}{2}\rho V^2 = 12$	$23 imes10^{6},$ $22{\cdot}4,$	$P = 23 \cdot 9 \text{ atmos.,}$ $V = 67 \cdot 6 \text{ ft./sec.}$		
α deg.	C _L	CD	C_m	α deg.	C_L ·	Съ	<i>C</i> _m	
$\begin{array}{c}2.5\\ +\ 0.6\\ 3.9\\ 7.05\\ 10.2\\ 13.2_5\\ 15.4_5\\ 17.6_5\\ 19.8\\ 20.9\\ 22.0\\ 23.0_5\\ 24.0\\ 25.1\\ 20.8_5*\\ 21.9*\\ 22.9_5* \end{array}$	$\begin{array}{c} 0.718\\ 0.965\\ 1.201\\ 1.422\\ 1.633\\ 1.843\\ 1.979\\ 2.103\\ 2.225\\ 2.285\\ 2.347\\ 2.388\\ 1.226\\ 1.191\\ 1.516\\ 1.394\\ 1.323\\ \end{array}$	$\begin{array}{c} 0.156\\ 0.181\\ 0.209\\ 0.245\\ 0.283\\ 0.322\\ 0.351\\ 0.381\\ 0.414\\ 0.432\\ 0.446\\ 0.465\\ 0.573\\ 0.596\\ 0.493\\ 0.525\\ 0.550\\ \end{array}$	$\begin{array}{c c} -0\cdot 215\\ -0\cdot 219\\ -0\cdot 219\\ -0\cdot 219\\ -0\cdot 218\\ -0\cdot 218\\ -0\cdot 218\\ -0\cdot 216\\ -0\cdot 215\\ -0\cdot 217\\ -0\cdot 217\\ -0\cdot 217\\ -0\cdot 216\\ -0\cdot 214\\ -0\cdot 258\\ -0\cdot 267\\ -0\cdot 252\\ -0\cdot 257\\ -0\cdot 261\end{array}$	$\begin{array}{r} - 2 \cdot 5 \\ + 0 \cdot 6 \\ 3 \cdot 9 \\ 7 \cdot 05 \\ 10 \cdot 2_5 \\ 13 \cdot 3 \\ 15 \cdot 5 \\ 17 \cdot 7_5 \\ 19 \cdot 9_5 \\ 21 \cdot 0_5 \\ 22 \cdot 1_5 \\ 22 \cdot 9_5 \\ 24 \cdot 0_5 \\ 20 \cdot 8_5 \\ 21 \cdot 9_5 \\ 21 \cdot 9_5 \end{array}$	0.719 0.941 1.210 1.432 1.644 1.852 1.990 2.097 2.222 2.293 2.357 1.336 1.251 1.638 1.458	0.153 0.178 0.210 0.244 0.279 0.322 0.353 0.382 0.418 0.432 0.449 0.573 0.598 0.509 0.543	$ \begin{array}{c c} -0.214 \\ -0.218 \\ -0.218 \\ -0.217 \\ -0.217 \\ -0.217 \\ -0.217 \\ -0.217 \\ -0.215 \\ -0.215 \\ -0.215 \\ -0.215 \\ -0.215 \\ -0.217 \\ -0.215 \\ -0.271 \\ -0.259 \\ -0.267 \end{array} $	

TABLE 5 (contd.)

* Decreasing incidence.

TABLE 6

NACA 0015 without flap. Minimum drag

P atmos.	$R \times 10^{-6}$	C_L	Съ	С _{л,0}	P atmos.	$R \times 10^{-6}$	C_{L}	CD	C _{D,0}
2.26	0.36	-0.067 + 0.004 0.072	$\begin{array}{c} 0.0106 \\ 0.0100 \\ 0.0103 \end{array}$	$ \begin{array}{c} 0.0103 \\ 0.0100 \\ 0.0100 \end{array} $	7.68	1.25	-0.074 + 0.002 0.076	0.0083 0.0079 0.0083	$\begin{array}{c} 0.0080 \\ 0.0079 \\ 0.0080 \end{array}$
2.26	0.51	-0.070 + 0.003 0.073	$0.0097 \\ 0.0094 \\ 0.0097$	$\begin{array}{c} 0 & 0094 \\ 0 \cdot 0094 \\ 0 \cdot 0094 \end{array}$	7.68	1.60	$-0.079 \\ -0.001 \\ +0.074$	$0.0083 \\ 0.0078 \\ 0.0083$	$\begin{array}{c} 0.0080 \\ 0.0078 \\ 0.0080 \end{array}$
$2 \cdot 26$	0.80	-0.072 + 0.004 - 0.067	$0.0085 \\ 0.0083 \\ 0.0085$	$0.0082 \\ 0.0083 \\ 0.0083$	7 · 97	2.74	-0.082 + 0.002 - 0.081	$0.0083 \\ 0.0078 \\ 0.0082$	$0.0079 \\ 0.0078 \\ 0.0079$
4.48	0.72	$-0.072 \\ -0.002 \\ 0.074$	$0.0089 \\ 0.0083 \\ 0.0088$	$0.0086 \\ 0.0083 \\ 0.0085$	$12 \cdot 2_{5}$	1.98	$-0.079 \\ -0.000 \\ +0.072$	$0.0084 \\ 0.0079 \\ 0.0083$	0.0081 0.0079 0.0080
4•47	0.94	$-0.074 \\ +0.001 \\ 0.076$	$0.0083 \\ 0.0080 \\ 0.0084$	$0.0080 \\ 0.0080 \\ 0.0081$	$12 \cdot 3_5$	2.59	-0.076 + 0.003 - 0.077	$0.0081 \\ 0.0079 \\ 0.0082$	$0.0078 \\ 0.0079 \\ 0.0079$
4 · 46	1.52	$-0.079 \\ +0.001 \\ +0.074$	$0.0084 \\ 0.0080 \\ 0.0083$	$0.0080 \\ 0.0080 \\ 0.0080$	12•4	3.45	$-0.075 \\ +0.003 \\ 0.082$	0:0083 0:0079 0:0083	$\begin{array}{c} 0 \cdot 0080 \\ 0 \cdot 0079 \\ 0 \cdot 0079 \end{array}$

TABLE 6 (contd.)

P atmos.	$R imes 10^{-6}$	C_{L}	C _D	С _{р,0}
17.3	3.51	-0.079	0.0085	0.0082
	0.01	+0.001	0.0080	0.0080
		0.079	0.0084	0.0081
17.5	4.76	-0.079	0.0088	0.0085
		+0.003	0.0081	0.0081
		0.084	0.0084	0.0080
17.7	5.90	-0.084	0.0088	0.0084
		+0.003	0.0082	0.0082
		0.086	0.0085	0.0081
$23 \cdot 3$	4.67	-0.080	0.0086	0.0083
		+0.001	0.0082	0.0082
		0.080	0.0084	0.0081
23.7	6.86	-0.083	0.0089	0.0085
		+0.002	0.0085	0.0085
		0.085	0.0089	0.0085
$24 \cdot 2$	7.95	-0.082	0.0091	0.0087
		+0.002	0.0085	0.0085
	ı	0.085	0.0087	0.0083

TABLE 7

NACA 0030 without flap. Square ends, on pips

 $\begin{array}{ll} R = 0.67 \times 10^{6}, & P = 2.40 \text{ atmos.,} \\ \frac{1}{2}\rho V^{2} = 13.1, & V = 68.8 \text{ ft./sec.} \end{array}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- 74 01	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cn		1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$C_{\mathcal{D},0}$	<i>C</i> _{<i>m</i>}
$\begin{array}{c ccccc} 27.5 & 0.282 \\ 17.7* & 0.356 \\ 19.9_5* & 0.251 \\ 22.0_5* & 0.261 \\ 24.2_5* & 0.258 \\ 25.3* & 0.267 \\ 26.4_* & 0.273 \end{array}$	$\begin{array}{c} 0 \cdot 0209 \\ 0 \cdot 0206 \\ 0 \cdot 0213 \\ 0 \cdot 0260 \\ 0 \cdot 0348 \\ 0 \cdot 0477 \\ 0 \cdot 0603 \\ 0 \cdot 0799 \\ 0 \cdot 0995 \\ 0 \cdot 117 \\ 0 \cdot 140 \\ 0 \cdot 170 \\ 0 \cdot 187 \\ 0 \cdot 207 \\ 0 \cdot 456 \\ 0 \cdot 197 \\ 0 \cdot 242 \\ 0 \cdot 272 \\ 0 \cdot 292 \\ 0 \cdot 302 \\ 0 \cdot 314 \end{array}$	0.0209 0.0205 0.0207 0.0220 0.0243 0.0288 0.0345 0.0452 0.0452 0.068 0.086 0.111 0.151 0.451 0.151 0.451 0.239 0.239 0.289 0.289 0.294 0.310	$\begin{array}{c} -0\cdot0007\\ +0\cdot0046\\ 0\cdot0098\\ 0\cdot0234\\ 0\cdot0348\\ 0\cdot0471\\ 0\cdot0523\\ 0\cdot0499\\ 0\cdot0440\\ 0\cdot0428\\ 0\cdot0393\\ 0\cdot0284\\ 0\cdot0213\\ +0\cdot0142\\ -0\cdot0028\\ +0\cdot0097\\ +0\cdot0042\\ -0\cdot0038\\ -0\cdot0088\\ -0\cdot0087\\ -0\cdot0091 \end{array}$

α deg.	C _L	C _D	С _{D,0}	C_m
-0.2	-0.013	0.0172	0.0172	-0.0016
$+ 0.8 \\ 1.9$	+0.039 0.094	0.0172 0.0181	0.0171 0.0176	+0.0048 0.0112
$\hat{5} \cdot \hat{0}$	0.258	0.0225	0.0188	0.0281
$8 \cdot 0_5$ 11 · 1	$0.423 \\ 0.584$	0.0314 0.0456	0.0214 0.0266	0.0410 0.0503
14.2	0.731	0.0648	0.0351	0.0554
$16 \cdot 2_5$ 18 \cdot 4	$0.824 \\ 0.908$	0.0836 0.106	0.0458 0.055	0.0524 0.0465
$20 \cdot 4_{5}$	0.978	0.132	0.079	0.0384
$22 \cdot 6 \\ 23 \cdot 7$	1.007 0.998	$0.165 \\ 0.186$	$0.108 \\ 0.131$	0.0268 0.0188
$24 \cdot 8$	0.979	0.205	0.152	0.0125
$25 \cdot 9_5 \\ 27 \cdot 0$	$ \begin{array}{c c} 0.964 \\ 0.953 \end{array} $	$ \begin{array}{c c} 0 \cdot 221 \\ 0 \cdot 236 \end{array} $	$0.171 \\ 0.186$	$0.0072 \\ 0.0022$

* Decreasing incidence.

$R=1\cdot 24 imes 10^{6}$,	$P = 4 \cdot 30$ atmos.,
$\frac{1}{2} ho V^2 = 24\cdot 7$,	$V = 70 \cdot 1$ ft./sec.

$R=2\!\cdot\!19 imes10^{ m 6}$,	$P=8{\cdot}2$ atmos.,
$\frac{1}{2} ho V^2 = 41\cdot 3$,	$V = 66 \cdot 1$ ft./sec.

α deg.	Cz	C _D	С _{D,0}	<i>C</i> _{<i>m</i>}
-0.35^{i}	-0.018	0.0147	0.0147	-0.0025
$+ 0.7_{5}$	+0.034	0.0152	0.0151	+0.0040
1.7_{5}	0.086	0.0158	0.0154	0.0107
$2 \cdot 8$	0.140	0.0168	0.0157	0.0171
$4 \cdot 9$	0.247	0.0197	0.0173	0.0287
$7 \cdot 9_{5}$	0.415	0.0283	0.0187	0.0414
$11 \cdot 0_{5}$	0.587	0.0422	0.0230	0.0499
$14 \cdot 1_{5}$	0.729	0.0631	0.0335	0.0527
$17 \cdot 2_{5}$	0.857	0.0937	0.0528	0.0478
19.4	0.917	0.119	0.072	0.0409
$20 \cdot 4$	0.945	0.134	0.085	0.0358
$21 \cdot 4_5$	0.945	0.152	0.103	0.0292
$22 \cdot 5_{5}$	0.929	0.172	0.124	0.0229
$24 \cdot 7_{5}$	0.901	0.205	0.160	0.0130
26 · 9	0.889	0.237	0.193	0.0035

α deg.	C _L	Съ	С _{л,0}	<i>C</i> _{<i>m</i>}
$\begin{array}{c} - & 0 \cdot 4 \\ + & 0 \cdot 7 \\ 1 \cdot 7 \\ 3 \cdot 8 \\ 6 \cdot 9 \\ 9 \cdot 9_5 \\ 12 \cdot 0 \\ 14 \cdot 1 \\ 16 \cdot 1_5 \\ 18 \cdot 3 \\ 19 \cdot 3_5 \\ 20 \cdot 4 \\ 21 \cdot 4_5 \\ 22 \cdot 5_5 \\ 24 \cdot 7_5 \\ 26 \cdot 9 \end{array}$	$\begin{array}{c} -0.020 \\ +0.032 \\ 0.084 \\ 0.192 \\ 0.366 \\ .0.539 \\ 0.653 \\ 0.750 \\ 0.818 \\ 0.849 \\ 0.861 \\ 0.875 \\ 0.871 \\ 0.870 \\ 0.819 \\ 0.812 \end{array}$	$\begin{array}{c} 0 \cdot 0139 \\ 0 \cdot 0141 \\ 0 \cdot 0143 \\ 0 \cdot 0166 \\ 0 \cdot 0239 \\ 0 \cdot 0358 \\ 0 \cdot 0481 \\ 0 \cdot 0548 \\ 0 \cdot 0905 \\ 0 \cdot 123 \\ 0 \cdot 139 \\ 0 \cdot 167 \\ 0 \cdot 177 \\ 0 \cdot 194 \\ 0 \cdot 226 \\ 0 \cdot 254 \end{array}$	$\begin{array}{c} 0 \cdot 0139 \\ 0 \cdot 0140 \\ 0 \cdot 0139 \\ 0 \cdot 0146 \\ 0 \cdot 0165 \\ 0 \cdot 0197 \\ 0 \cdot 0245 \\ 0 \cdot 0336 \\ 0 \cdot 0534 \\ 0 \cdot 083 \\ 0 \cdot 098 \\ 0 \cdot 125 \\ 0 \cdot 135 \\ 0 \cdot 135 \\ 0 \cdot 152 \\ 0 \cdot 189 \\ 0 \cdot 218 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

$R = \frac{1}{2}\rho V^2 =$	$= 4 \cdot 22 \times $ $= 103 \cdot 5,$	10°, P V	$= 12 \cdot 6 a$ $= 85 \cdot 0 f$	itmos., t./sec.
α deg.	C _L	$C_{\mathcal{D}}$	С _{л,0}	C _m
$\begin{array}{c} - & 0 \cdot 2_5 \\ + & 0 \cdot 8 \\ & 1 \cdot 8_5 \\ 3 \cdot 9_5 \\ 7 \cdot 0_5 \\ 10 \cdot 1 \\ 12 \cdot 1_5 \\ 112 \cdot 1_5 \\ 112 \cdot 1_5 \\ 112 \cdot 1_5 \\ 113 \cdot 3 \\ 15 \cdot 3 \\ 117 \cdot 4_5 \\ 117 \cdot 4_5 \\ 117 \cdot 4_5 \\ 20 \cdot 6_5 \\ 22 \cdot 8_5 \end{array}$	$\begin{array}{c} -0\cdot015\\ +0\cdot039\\ 0\cdot091\\ 0\cdot202\\ 0\cdot377\\ 0\cdot550\\ 0\cdot645\\ 0\cdot701\\ 0\cdot715\\ 0\cdot728\\ 0\cdot746\\ 0\cdot743\\ 0\cdot743\\ 0\cdot705\\ 0\cdot657\end{array}$	$\begin{array}{c} 0.0143\\ 0.0142\\ 0.0142\\ 0.0147\\ 0.0169\\ 0.0244\\ 0.0370\\ 0.0496\\ 0.0722\\ 0.0872\\ 0.0872\\ 0.102\\ 0.117\\ 0.135\\ 0.176\\ 0.208\\ \end{array}$	$\begin{array}{c} 0 \cdot 0143 \\ 0 \cdot 0141 \\ 0 \cdot 0142 \\ 0 \cdot 0146 \\ 0 \cdot 0165 \\ 0 \cdot 0202 \\ 0 \cdot 0265 \\ 0 \cdot 0450 \\ 0 \cdot 0588 \\ 0 \cdot 073 \\ 0 \cdot 086 \\ 0 \cdot 104 \\ 0 \cdot 184 \\ 0 \cdot 184 \end{array}$	$\begin{array}{c} -0.0017 \\ +0.0048 \\ 0.0107 \\ 0.0218 \\ 0.0345 \\ 0.0445 \\ 0.0494 \\ 0.0469 \\ 0.0437 \\ 0.0406 \\ 0.0370 \\ 0.0343 \\ 0.0193 \\ 0.0109 \end{array}$

$R=5\!\cdot\!52 imes10^{6}$,	P = 1
$rac{1}{2} ho V^2 = 125\cdot 5$,	V = 7

10°,
$$P = 18.6$$
 atmos.,
 $V = 77.7$ ft./sec.

α deg.	C_{L}	Съ	С _{л,0}	C_m
$\begin{array}{c} \alpha \ \text{deg.} \\ \hline \\ - \ 0 \cdot 2_5 \\ + \ 0 \cdot 8 \\ 1 \cdot 8_5 \\ 2 \cdot 9 \\ 4 \cdot 9_5 \\ 8 \cdot 0_5 \\ 11 \cdot 1_5 \\ 12 \cdot 1_5 \\ 13 \cdot 2 \\ 14 \cdot 2_5 \\ 15 \cdot 3 \\ 16 \cdot 3_5 \\ 17 \cdot 4_5 \\ 19 \cdot 6 \end{array}$	$\begin{array}{c} C_{L} \\ -0.017 \\ +0.040 \\ 0.096 \\ 0.152 \\ 0.265 \\ 0.441 \\ 0.610 \\ 0.659 \\ 0.706 \\ 0.733 \\ 0.721 \\ 0.727 \\ 0.734 \\ 0.696 \end{array}$	$\begin{array}{c} C_{\mathcal{D}} \\ \hline \\ 0 \cdot 0145 \\ 0 \cdot 0144 \\ 0 \cdot 0149 \\ 0 \cdot 0158 \\ 0 \cdot 0191 \\ 0 \cdot 0283 \\ 0 \cdot 0428 \\ 0 \cdot 0493 \\ 0 \cdot 0493 \\ 0 \cdot 0579 \\ 0 \cdot 0701 \\ 0 \cdot 0881 \\ 0 \cdot 104 \\ 0 \cdot 121 \\ 0 \cdot 160 \end{array}$	$C_{D,0}$, 0.0145 0.0143 0.0144 0.0145 0.0149 0.0175 0.0222 0.0253 0.0302 0.0403 0.0593 0.0593 0.074 0.091 0.133	$\begin{array}{c} C_m \\ \hline \\ -0.0022 \\ +0.0041 \\ 0.0100 \\ 0.0156 \\ 0.0258 \\ 0.0382 \\ 0.0476 \\ 0.0498 \\ 0.0476 \\ 0.0498 \\ 0.0502 \\ 0.0482 \\ 0.0482 \\ 0.0482 \\ 0.0448 \\ 0.0410 \\ 0.0369 \\ 0.0252 \end{array}$
21.8	0.625	0.195	0.173	0.0157

 $R=7\!\cdot\!07 imes10^{
m 6}$, $\frac{1}{2}
ho V^2 = 166.0,$

 $P = 22 \cdot 8$ atmos., V = 80.5 ft./sec.

-				
α deg.	C_L	C_{D}	$C_{\mathcal{D},0}$	C _m
$\begin{array}{c} - & 0 \cdot 4 \\ + & 0 \cdot 6_5 \\ & 1 \cdot 7 \\ 2 & 7_5 \\ 4 \cdot 8 \\ 7 \cdot 9 \\ 11 \cdot 0 \\ 13 \cdot 0_5 \\ 14 \cdot 1 \\ 15 \cdot 1_5 \\ 16 \cdot 2 \\ 17 \cdot 3 \\ 19 \cdot 5 \\ 21 \cdot 6_5 \end{array}$	$\begin{array}{c} -0.020 \\ +0.040 \\ 0.094 \\ 0.152 \\ 0.269 \\ 0.442 \\ 0.619 \\ 0.709 \\ 0.746 \\ 0.749 \\ 0.743 \\ 0.663 \\ 0.663 \\ 0.619 \end{array}$	$\begin{array}{c} 0.0143\\ 0.0142\\ 0.0147\\ 0.0159\\ 0.0188\\ 0.0282\\ 0.0427\\ 0.0565\\ 0.0675\\ 0.0849\\ 0.102\\ 0.120\\ 0.162\\ 0.196\\ \end{array}$	$\begin{array}{c} 0.0143\\ 0.0141\\ 0.0142\\ 0.0146\\ 0.0148\\ 0.0174\\ 0.0215\\ 0.0286\\ 0.0366\\ 0.0538\\ 0.071\\ 0.089\\ 0.138\\ 0.175\\ \end{array}$	$\begin{array}{c} -0\cdot 0028 \\ +0\cdot 0033 \\ 0\cdot 0090 \\ 0\cdot 0144 \\ 0\cdot 0247 \\ 0\cdot 0370 \\ 0\cdot 0457 \\ 0\cdot 0497 \\ 0\cdot 0482 \\ 0\cdot 0498 \\ 0\cdot 0428 \\ 0\cdot 0428 \\ 0\cdot 0400 \\ 0\cdot 0357 \\ 0\cdot 0241 \\ 0\cdot 0138 \end{array}$
	•	1		•

TABLE 8

NACA	0030,	without	flaþ,	rounded	ends,	$O\mathcal{H}$	V	's
------	-------	---------	-------	---------	-------	----------------	---	----

0.0126

0.0270

0.0484

0.0635

0.0665

0.0625

0.0589

0.0533

0.0459

0.0364

+0.0272

-0.0063

+0.0155

+0.0019

-0.0010

-0.0033

-0.0058

0.0056

 $R=0.30 imes10^{6}$, P = 1 atmos., $V = 75 \cdot 3$ ft./sec. $\frac{1}{2}\rho V^2 = 6.56$, α deg. C_L C_{D} $C_{D,0}$ C_m -0.013- 0.3 0.0187 0.0187-0.0018+ 1.0+0.0500.01810.0180+0.0053

0.0185

0.0211

0.0283

 $0 \cdot 0446$

0.0714

0.0947

0.120

 $0 \cdot 137$

0.157

0.183

0·206

0.336

0.218

0.262

0.281

0.295

0.309

0.323

0.0178

0.0177

0.0176

 $0 \cdot 0233$

0.0363

0.0475

0.065

0.080

 $0 \cdot 099$

0.125

0.149

0.331

0.215

0.260

0.277

0.292

0.305

0.319

 $2 \cdot 3$

 $4 \cdot 8_{5}$

 $8 \cdot 6_5$ $12 \cdot 4_5$ $16 \cdot 1_5$ 10^{-1}

 $18 \cdot 6_{5}^{0}$

 $\begin{array}{c}
 10 \cdot 0_{5} \\
 21 \cdot 1_{5} \\
 22 \cdot 4 \\
 23 \cdot 7 \\
 25 \cdot 0 \\
 26 \cdot 2_{5} \\
 0 \\
 26 \cdot 2_{5} \\
 \end{array}$

 28.0°

 $19 \cdot 1_5 * 21 \cdot 7 *$

22.9*

 $24 \cdot 2^*$

 $25 \cdot 5^{*}$

 $26 \cdot 7_5^*$

 $0 \cdot 118$

0.253

0.452

0.637

0.818

0.925

0.993

 $1 \cdot 015$

1.027

1 023

 $1 \cdot 010$

0.298

0.248

0.243

0.257

0.264

0.271

0.285

∝ deg.	C _L	Съ	$C_{D,0}$	C_m
- 0.6	-0.028	0.0138	0.0138	-0.0051
+ 0.7	+0.036	0.0129	0.0129	+0.0038
$2 \cdot 0_5$	0.094	0.0138	0.0133	0.0120
4.6	0.224	0.0159	0.0133	0.0285
8.3_{5}	0.420	0.0245	0.0153	0.0498
12.2	0.597	0.0419	0.0232	0.0632
15.8_{5}	0.763	0.0683	0.0377	0.0674
18.4	0.866	0.0951	0.0558	0.0607
$20 \cdot 9$	0.940	0.127	0.081	0.0501
$22 \cdot 1_5$	0.957	0.145	0.097	0.0432
$23 \cdot 4_{5}$	0.957	0.168	$0 \cdot 120$	0.0348
$24 \cdot 7_5$	0.954	0.192	$0 \cdot 144$	0.0271
$26 \cdot 0$	0.925	0.211	0.166	0.0204
$27 \cdot 2_{5}$	0.919	0.230	0.186	0.0140

 $R=0\!\cdot\!65 imes10^{
m 6}$,

 $P = 2 \cdot 30$ atmos.,

 $R = 1 \cdot 20 \times 10^6$, $P = 4 \cdot 20$ atmos., $\frac{1}{2}\rho V^2 = 24 \cdot 7$, $V = 71 \cdot 3$ ft./sec.

$R=2\!\cdot\!13 imes10^{6}$,	$P = 7 \cdot 7$ atmos.,
$\frac{1}{2} ho V^2 = 41 \cdot 3,$	$V = 68 \cdot 4$ ft./sec.

	·····			
α deg.	C _L	C _D	С _{л, 0}	C_m
$\begin{array}{c} - & 0 \cdot 8 \\ + & 0 \cdot 5_5 \\ & 1 \cdot 8_5 \\ & 4 \cdot 4 \\ & 8 \cdot 1_5 \\ & 12 \cdot 0 \cdot \\ & 15 \cdot 6_5 \\ & 18 \cdot 2 \\ & 19 \cdot 4_5 \\ & 20 \cdot 7_5 \\ & 22 \cdot 0 \\ & 23 \cdot 3 \\ & 24 \cdot 6 \end{array}$	$\begin{array}{ c c c c c } -0.035 \\ +0.025 \\ 0.088 \\ 0.212 \\ 0.411 \\ 0.598 \\ 0.756 \\ 0.827 \\ 0.856 \\ 0.862 \\ 0.870 \\ 0.870 \\ 0.862 \end{array}$	$\begin{array}{c} 0 \cdot 0119 \\ 0 \cdot 0116 \\ 0 \cdot 0119 \\ 0 \cdot 0142 \\ 0 \cdot 0233 \\ 0 \cdot 0409 \\ 0 \cdot 0718 \\ 0 \cdot 106 \\ 0 \cdot 128 \\ 0 \cdot 152 \\ 0 \cdot 152 \\ 0 \cdot 152 \\ 0 \cdot 172 \\ 0 \cdot 191 \\ 0 \cdot 208 \end{array}$	$\begin{array}{c} 0 \cdot 0119 \\ 0 \cdot 0116 \\ 0 \cdot 0115 \\ 0 \cdot 0118 \\ 0 \cdot 0144 \\ 0 \cdot 0221 \\ 0 \cdot 0418 \\ 0 \cdot 070 \\ 0 \cdot 089 \\ 0 \cdot 113 \\ 0 \cdot 132 \\ 0 \cdot 151 \\ 0 \cdot 169 \end{array}$	$\begin{array}{c} -0.0061 \\ +0.0023 \\ 0.0115 \\ 0.0285 \\ 0.0477 \\ 0.0589 \\ 0.0588 \\ 0.0480 \\ 0.0480 \\ 0.0401 \\ 0.0330 \\ 0.0265 \\ 0.0213 \\ 0.0165 \end{array}$
$\begin{array}{c} 23 \cdot 3 \\ 24 \cdot 6 \end{array}$	$0.870 \\ 0.862$	$\begin{array}{c} 0\cdot 191 \\ 0\cdot 208 \end{array}$	$ \begin{array}{c c} 0.151 \\ 0.169 \end{array} $	$\begin{array}{c} 0.0213 \\ 0.0165 \end{array}$

α deg.	C _L	CD	.C _{D,0}	
$\begin{array}{c} - & 0.5 \\ + & 0.8 \\ & 2.1_5 \\ & 4.7 \\ & 8.4_5 \\ & 12.3 \\ & 15.9_5 \\ & 17.2_5 \\ & 18.5_5 \\ & 19.8 \\ & 21.0_5 \\ & 22.3_5 \\ & 23.6_5 \\ & 26.2 \end{array}$	$\begin{array}{c} -0.015 \\ +0.042 \\ 0.104 \\ 0.226 \\ 0.422 \\ 0.617 \\ 0.757 \\ 0.777 \\ 0.799 \\ 0.810 \\ 0.824 \\ 0.813 \\ 0.788 \\ 0.800 \end{array}$	$\begin{array}{c} 0 \cdot 0116 \\ 0 \cdot 0110 \\ 0 \cdot 0119 \\ 0 \cdot 0143 \\ 0 \cdot 0239 \\ 0 \cdot 0413 \\ 0 \cdot 0730 \\ 0 \cdot 0889 \\ 0 \cdot 109 \\ 0 \cdot 132 \\ 0 \cdot 154 \\ 0 \cdot 178 \\ 0 \cdot 178 \\ 0 \cdot 196 \\ 0 \cdot 236 \end{array}$	$ \begin{array}{c} 0.0116\\ 0.0109\\ 0.0113\\ 0.0116\\ 0.0145\\ 0.0213\\ 0.0430\\ 0.0573\\ 0.0755\\ 0.0980\\ 0.119\\ 0.143\\ 0.163\\ 0.202\\ \end{array} $	$\begin{array}{c} -0.0043 \\ +0.0050 \\ 0.0142 \\ 0.0324 \\ 0.0537 \\ 0.0631 \\ 0.0621 \\ 0.0578 \\ 0.0509 \\ 0.0442 \\ 0.0390 \\ 0.0316 \\ 0.0240 \\ 0.0140 \end{array}$

* Decreasing incidence.

17

$\frac{1}{2}\rho V^2$:	$= 103 \cdot 5$,	V	= 85.7 f	t./sec.	$\frac{1}{2} ho V^2$ =	$= 125 \cdot 5,$	200, 2 V	= 80.8 f	t./sec.
α deg		Съ	С _{р,0}		α deg.	<i>C</i> _{<i>L</i>}	CD	С _{л,0}	
$\begin{array}{c} - & 0 \cdot 7_5 \\ + & 0 \cdot 6 \\ 1 \cdot 9 \\ 4 \cdot 4_5 \\ 8 \cdot 2 \\ 12 \cdot 0 \\ 15 \cdot 7_5 \\ 17 \cdot 0_5 \\ 18 \cdot 3_5 \\ 19 \cdot 6 \\ 20 \cdot 9 \\ 22 \cdot 2 \\ 23 \cdot 5 \end{array}$	$\begin{array}{c} -0.033 \\ +0.028 \\ 0.092 \\ 0.225 \\ 0.432 \\ 0.615 \\ 0.700 \\ 0.716 \\ 0.708 \\ 0.683 \\ 0.683 \\ 0.678 \\ 0.653 \\ 0.649 \end{array}$	$\begin{array}{c} 0 \cdot 0122 \\ 0 \cdot 0120 \\ 0 \cdot 0122 \\ 0 \cdot 0147 \\ 0 \cdot 0242 \\ 0 \cdot 0433 \\ 0 \cdot 0864 \\ 0 \cdot 105 \\ 0 \cdot 124 \\ 0 \cdot 148 \\ 0 \cdot 171 \\ 0 \cdot 192 \\ 0 \cdot 210 \end{array}$	$\begin{array}{c} 0.0121\\ 0.0120\\ 0.0118\\ 0.0121\\ 0.0144\\ 0.0235\\ 0.0607\\ 0.078\\ 0.098\\ 0.123\\ 0.147\\ 0.169\\ 0.188\\ \end{array}$	$\begin{array}{c} -0.0053 \\ +0.0029 \\ 0.0121 \\ 0.0277 \\ 0.0436 \\ 0.0577 \\ 0.0522 \\ 0.0488 \\ 0.0428 \\ 0.0428 \\ 0.0366 \\ 0.0291 \\ 0.0220 \\ 0.0167 \end{array}$	$-\begin{array}{c} 0.7_5 \\ + \begin{array}{c} 0.5_5 \\ 1.8_5 \\ 4.4 \\ 6.9 \\ 10.7 \\ 13.2 \\ 14.4_5 \\ 15.7 \\ 17.0 \\ 18.3 \\ 19.6 \\ 20.9 \end{array}$	$\begin{array}{c} -0.039 \\ +0.025 \\ 0.090 \\ 0.225 \\ 0.359 \\ 0.567 \\ 0.672 \\ 0.701 \\ 0.703 \\ 0.705 \\ 0.688 \\ 0.663 \\ 0.636 \end{array}$	$\begin{array}{c} 0{\cdot}0121\\ 0{\cdot}0117\\ 0{\cdot}0120\\ 0{\cdot}0145\\ 0{\cdot}0201\\ 0{\cdot}0352\\ 0{\cdot}0521\\ 0{\cdot}0664\\ 0{\cdot}0881\\ 0{\cdot}107\\ 0{\cdot}127\\ 0{\cdot}127\\ 0{\cdot}152\\ 0{\cdot}175\end{array}$	$\begin{array}{c} 0 \cdot 0120 \\ 0 \cdot 0117 \\ 0 \cdot 0116 \\ 0 \cdot 0119 \\ 0 \cdot 0134 \\ 0 \cdot 0183 \\ 0 \cdot 0291 \\ 0 \cdot 0406 \\ 0 \cdot 0622 \\ 0 \cdot 081 \\ 0 \cdot 102 \\ 0 \cdot 129 \\ 0 \cdot 153 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	1	1	I	1			ļ		

 $R=4{\cdot}17 imes10^{\circ},~~P=12{\cdot}4$ atmos.,

$R=5\!\cdot\!28 imes10^{ m 6}$, $P = 17 \cdot 3$ atmos.

$R=7\!\cdot\!20 imes10^{ m 6}$,	$P = 23 \cdot 8$ atmos.,
$\frac{1}{2}\rho V^2 = 166 \cdot 0.$	$V = 79 \cdot 1$ ft./sec.

α deg	C_L	C _D	С _{л,0}	C_m
$\begin{array}{r} - & 0 \cdot 8 \\ + & 0 \cdot 5_5 \\ 1 \cdot 8_5 \\ 4 \cdot 4 \\ 8 \cdot 1_5 \\ 10 \cdot 7 \\ 11 \cdot 9_5 \\ 13 \cdot 2 \\ 14 \cdot 5 \\ 15 \cdot 7_5 \\ 17 \cdot 0_5 \\ 18 \cdot 3 \\ 19 \cdot 6 \\ 22 \cdot 2 \end{array}$	$\begin{array}{c} -0.035 \\ +0.024 \\ 0.089 \\ 0.222 \\ 0.423 \\ 0.555 \\ 0.614 \\ 0.661 \\ 0.675 \\ 0.680 \\ 0.680 \\ 0.682 \\ 0.630 \\ 0.550 \end{array}$	$\begin{array}{c} 0 \cdot 0131 \\ 0 \cdot 0128 \\ 0 \cdot 0131 \\ 0 \cdot 0161 \\ 0 \cdot 0259 \\ 0 \cdot 0363 \\ 0 \cdot 0441 \\ 0 \cdot 0530 \\ 0 \cdot 0683 \\ 0 \cdot 0908 \\ 0 \cdot 0981 \\ 0 \cdot 128 \\ 0 \cdot 154 \\ 0 \cdot 200 \end{array}$	$\begin{array}{c} 0 \cdot 0131 \\ 0 \cdot 0128 \\ 0 \cdot 0127 \\ 0 \cdot 0135 \\ 0 \cdot 0165 \\ 0 \cdot 0202 \\ 0 \cdot 0243 \\ 0 \cdot 0301 \\ 0 \cdot 0444 \\ 0 \cdot 0666 \\ 0 \cdot 0739 \\ 0 \cdot 104 \\ 0 \cdot 133 \\ 0 \cdot 183 \end{array}$	$\begin{array}{c} -0.0058 \\ +0.0026 \\ 0.0112 \\ 0.0264 \\ 0.0436 \\ 0.0523 \\ 0.0559 \\ 0.0569 \\ 0.0569 \\ 0.0546 \\ 0.0491 \\ 0.0463 \\ 0.0406 \\ 0.0323 \\ 0.0178 \end{array}$

NACA 0030 with 15 per cent. flap	at 90 deg., :	square ends, c	on pips
----------------------------------	---------------	----------------	---------

R =	$R=0{\cdot}30 imes10^{ m 6},~~P=1$ atmos.,				
$\frac{1}{2}\rho V^2 =$	= 6.57,	V	$= 75 \cdot 4 \text{ f}$	t./sec.	
α deg.	C _L	Съ	$C_{D,0}$	C _m	
$\begin{array}{c} -& 5\cdot 0_5 \\ -& 1\cdot 9_5 \\ +& 1\cdot 1_5 \\ & 4\cdot 2 \\ & 7\cdot 2_5 \\ 10\cdot 3 \\ 13\cdot 3 \\ 14\cdot 3 \\ 15\cdot 4 \\ 16\cdot 4 \\ 17\cdot 5_5 \\ 19\cdot 8 \\ 22\cdot 0_5 \\ 23\cdot 7 \\ 15\cdot 1* \\ 16\cdot 2* \\ 17\cdot 2_5* \\ 18\cdot 3_5* \\ 20\cdot 4_5* \\ 20\cdot 4_5* \\ 22\cdot 6* \end{array}$	0.715 0.961 1.205 1.437 1.658 1.866 2.057 2.130 2.184 2.135 2.037 1.848 1.667 0.852 0.993 0.932 0.914 0.909 0.911 0.875	$\begin{array}{c} 0\cdot 174\\ 0\cdot 202\\ 0\cdot 233\\ 0\cdot 271\\ 0\cdot 313\\ 0\cdot 357\\ 0\cdot 402\\ 0\cdot 415\\ 0\cdot 424\\ 0\cdot 431\\ 0\cdot 436\\ 0\cdot 460\\ 0\cdot 486\\ 0\cdot 661\\ 0\cdot 515\\ 0\cdot 540\\ 0\cdot 558\\ 0\cdot 558\\ 0\cdot 582\\ 0\cdot 622\\ 0\cdot 622\\ 0\cdot 656\end{array}$	$\begin{array}{c} 0\cdot 145\\ 0\cdot 150\\ 0\cdot 152\\ 0\cdot 157\\ 0\cdot 160\\ 0\cdot 164\\ 0\cdot 168\\ 0\cdot 162\\ 0\cdot 162\\ 0\cdot 160\\ 0\cdot 177\\ 0\cdot 206\\ 0\cdot 271\\ 0\cdot 332\\ 0\cdot 621\\ 0\cdot 460\\ 0\cdot 492\\ 0\cdot 511\\ 0\cdot 535\\ 0\cdot 575\\ 0\cdot 613\end{array}$	$\begin{array}{c} -0\cdot229\\ -0\cdot243\\ -0\cdot252\\ -0\cdot260\\ -0\cdot265\\ -0\cdot266\\ -0\cdot266\\ -0\cdot266\\ -0\cdot265\\ -0\cdot266\\ -0\cdot242\\ -0\cdot244\\ -0\cdot244\\ -0\cdot244\\ -0\cdot244\\ -0\cdot244\\ -0\cdot244\\ -0\cdot245\\ -0\cdot247\\ -0\cdot247\\ -0\cdot249\\ -0\cdot251\\ -0\cdot252\\ -0\cdot252\\ -0\cdot243\end{array}$	
<u> </u>					

with 15 per cent. Jup at 56 deg., square enus, or

α deg.	C_L	C_{D}	$C_{D,0}$	C _m
$\begin{array}{c} - 5 \cdot 0_5 \\ - 2 \cdot 0 \\ + 1 \cdot 1 \\ 4 \cdot 1_5 \\ 7 \cdot 2 \\ 10 \cdot 2_5 \\ 13 \cdot 2_5 \\ 14 \cdot 3 \\ 15 \cdot 3_5 \\ 16 \cdot 4 \\ 17 \cdot 6_5 \\ 18 \cdot 7_5 \\ 21 \cdot 0 \end{array}$	$\begin{array}{c} 0\cdot 689\\ 0\cdot 949\\ 1\cdot 195\\ 1\cdot 422\\ 1\cdot 657\\ 1\cdot 867\\ 2\cdot 060\\ 2\cdot 104\\ 2\cdot 162\\ 2\cdot 043\\ 1\cdot 889\\ 1\cdot 787\\ 1\cdot 638\end{array}$	$\begin{array}{c} 0\cdot 164\\ 0\cdot 192\\ 0\cdot 226\\ 0\cdot 263\\ 0\cdot 302\\ 0\cdot 349\\ 0\cdot 395\\ 0\cdot 410\\ 0\cdot 419\\ 0\cdot 425\\ 0\cdot 432\\ 0\cdot 446\\ 0\cdot 471\end{array}$	$\begin{array}{c} 0\cdot 137\\ 0\cdot 142\\ 0\cdot 146\\ 0\cdot 151\\ 0\cdot 150\\ 0\cdot 155\\ 0\cdot 159\\ 0\cdot 164\\ 0\cdot 160\\ 0\cdot 193\\ 0\cdot 234\\ 0\cdot 268\\ 0\cdot 321\end{array}$	$\begin{array}{c} -0.221\\ -0.237\\ -0.249\\ -0.256\\ -0.261\\ -0.266\\ -0.266\\ -0.265\\ -0.257\\ -0.236\\ -0.236\\ -0.220\\ -0.212\\ -0.207\\ \end{array}$

 $R=0.67 imes10^{6}$,

 $\frac{1}{2}\rho V^2 = 13 \cdot 1$,

 $R = 1.28 \times 10^6, \quad P = 4.60 \text{ atmos.}$ $\frac{1}{2}
ho V^2 = 24.7, \quad V = 67.8 \text{ ft./sec.}$

			-
,	R =	$2 \cdot 15 =$	10^{6}
	$\frac{1}{2} ho V^2 =$	41.3,	

$P = 7 \cdot 8$ atmos., $V = 67 \cdot 5$ ft./sec.

 $P = 2 \cdot 40$ atmos.,

 $V = 59 \cdot 0$ ft./sec.

α deg.	Cz	C _D	$C_{D,0}$	C_m
$\begin{array}{c} - & 5 \cdot 0_5 \\ - & 2 \cdot 0 \\ + & 1 \cdot 1 \\ & 4 \cdot 1_5 \\ & 7 \cdot 2 \\ 10 \cdot 2_5 \\ 13 \cdot 2_5 \\ 14 \cdot 3 \\ 15 \cdot 3_5 \\ 16 \cdot 3 \\ 17 \cdot 3_5 \\ 18 \cdot 8 \\ 19 \cdot 9 \\ 21 \cdot 0_5 \\ 17 \cdot 7^* \end{array}$	$\begin{array}{c} 0.683\\ 0.943\\ 1.194\\ 1.431\\ 1.648\\ 1.850\\ 2.047\\ 2.112\\ 2.180\\ 2.230\\ 2.277\\ 1.694\\ 1.618\\ 1.546\\ 1.753\end{array}$	$\begin{array}{c} 0\cdot 160\\ 0\cdot 187\\ 0\cdot 221\\ 0\cdot 258\\ 0\cdot 300\\ 0\cdot 345\\ 0\cdot 395\\ 0\cdot 414\\ 0\cdot 429\\ 0\cdot 455\\ 0\cdot 462\\ 0\cdot 463\\ 0\cdot 474\\ 0\cdot 484\\ 0\cdot 447\\ \end{array}$	$\begin{array}{c} 0\cdot 134\\ 0\cdot 138\\ 0\cdot 142\\ 0\cdot 144\\ 0\cdot 150\\ 0\cdot 154\\ 0\cdot 163\\ 0\cdot 166\\ 0\cdot 165\\ 0\cdot 165\\ 0\cdot 178\\ 0\cdot 173\\ 0\cdot 303\\ 0\cdot 329\\ 0\cdot 351\\ 0\cdot 276\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

α deg.	C _L	C _D	$C_{D,0}$	C_m
$\begin{array}{c} -5\cdot1\\ -2\cdot0_5\\ +1\cdot0_5\\ 4\cdot1\\ 7\cdot1_5\\ 10\cdot2\\ 13\cdot2\\ 14\cdot2_5\\ 15\cdot3\\ 16\cdot2_5\\ 17\cdot3_5\\ 18\cdot3_5\\ 19\cdot9\\ 20\cdot0_5\\ 17\cdot7^*\\ 18\cdot8^*\end{array}$	$\begin{array}{c} 0\cdot 665\\ 0\cdot 936\\ 1\cdot 183\\ 1\cdot 417\\ 1\cdot 640\\ 1\cdot 827\\ 2\cdot 025\\ 2\cdot 080\\ 2\cdot 155\\ 2\cdot 210\\ 2\cdot 250\\ 2\cdot 315\\ 1\cdot 543\\ 1\cdot 499\\ 1\cdot 711\\ 1\cdot 637\end{array}$	$\begin{array}{c} 0\cdot 156\\ 0\cdot 185\\ 0\cdot 218\\ 0\cdot 258\\ 0\cdot 303\\ 0\cdot 351\\ 0\cdot 400\\ 0\cdot 417\\ 0\cdot 435\\ 0\cdot 453\\ 0\cdot 453\\ 0\cdot 470\\ 0\cdot 481\\ 0\cdot 489\\ 0\cdot 457\\ 0\cdot 470\end{array}$	$\begin{array}{c} 0\cdot 131\\ 0\cdot 136\\ 0\cdot 140\\ 0\cdot 147\\ 0\cdot 153\\ 0\cdot 165\\ 0\cdot 173\\ 0\cdot 177\\ 0\cdot 177\\ 0\cdot 177\\ 0\cdot 182\\ 0\cdot 189\\ 0\cdot 172\\ 0\cdot 349\\ 0\cdot 364\\ 0\cdot 295\\ 0\cdot 321\\ \end{array}$	$\begin{array}{c} -0.120\\ -0.228\\ -0.239\\ -0.249\\ -0.256\\ -0.260\\ -0.263\\ -0.263\\ -0.265\\ -0.265\\ -0.265\\ -0.265\\ -0.265\\ -0.265\\ -0.261\\ -0.214\\ -0.211\\ -0.223\\ -0.218\end{array}$

* Decreasing incidence.

19

(94981)

$R = \frac{1}{2}\rho V^2 =$	$= 4 \cdot 42 \times $ $= 103 \cdot 5,$	10 ⁶ , <i>P</i> <i>V</i>	= 14.0 a = 80.7 f	tmos., . t./sec.	$R = \frac{1}{2}\rho V^2 =$	= $5 \cdot 39 \times$ = 125 \cdot 5,	10 ⁶ . P V	= 16.9 a = 80.7 f	tmos., t./sec.
α deg.	Cz	C _D	$C_{D,0}$	C _m	α deg.	$\cdot C_{L}$	CD	С _{л,0}	<i>C</i> _m
$\begin{array}{c} - & 4 \cdot 9 \\ - & 1 \cdot 8_5 \\ + & 1 \cdot 2 \\ & 4 \cdot 2_5 \\ 7 \cdot 3 \\ 10 \cdot 3_5 \\ 13 \cdot 3_5 \\ 14 \cdot 4 \\ 15 \cdot 4_5 \\ 16 \cdot 4 \\ 17 \cdot 4_5 \\ 19 \cdot 0 \\ 20 \cdot 1 \\ 16 \cdot 8^* \\ 17 \cdot 9^* \end{array}$	$\begin{array}{c} 0\cdot 640\\ 0\cdot 907\\ 1\cdot 163\\ 1\cdot 405\\ 1\cdot 631\\ 1\cdot 830\\ 2\cdot 040\\ 2\cdot 110\\ 2\cdot 175\\ 2\cdot 220\\ 2\cdot 280\\ 1\cdot 550\\ 1\cdot 550\\ 1\cdot 478\\ 1\cdot 650\\ 1\cdot 615\end{array}$	$\begin{array}{c} 0\cdot 150\\ 0\cdot 179\\ 0\cdot 214\\ 0\cdot 254\\ 0\cdot 297\\ 0\cdot 347\\ 0\cdot 397\\ 0\cdot 412\\ 0\cdot 430\\ 0\cdot 451\\ 0\cdot 466\\ 0\cdot 480\\ 0\cdot 495\\ 0\cdot 434\\ 0\cdot 463\\ \end{array}$	$\begin{array}{c} 0\cdot 126\\ 0\cdot 133\\ 0\cdot 139\\ 0\cdot 145\\ 0\cdot 150\\ 0\cdot 160\\ 0\cdot 165\\ 0\cdot 164\\ 0\cdot 168\\ 0\cdot 178\\ 0\cdot 178\\ 0\cdot 178\\ 0\cdot 178\\ 0\cdot 447\\ 0\cdot 374\\ 0\cdot 283\\ 0\cdot 318\end{array}$	$\begin{array}{c} -0\cdot 200\\ -0\cdot 218\\ -0\cdot 232\\ -0\cdot 244\\ -0\cdot 251\\ -0\cdot 258\\ -0\cdot 262\\ -0\cdot 262\\ -0\cdot 263\\ -0\cdot 263\\ -0\cdot 263\\ -0\cdot 263\\ -0\cdot 263\\ -0\cdot 219\\ -0\cdot 219\\ -0\cdot 225\\ -0\cdot 225\\ -0\cdot 225\end{array}$	$-\frac{4 \cdot 9}{-1 \cdot 8_5} + \frac{1 \cdot 2}{4 \cdot 2_5} \\ +\frac{1 \cdot 2}{7 \cdot 3} \\ 10 \cdot 3_5 \\ 13 \cdot 4 \\ 14 \cdot 4 \\ 15 \cdot 4_5 \\ 16 \cdot 4_5 \\ 18 \cdot 1 \\ 19 \cdot 2 \\ 20 \cdot 2_5 \\ 15 \cdot 9 \\ 16 \cdot 9_5 \\ * \\ 10 \cdot 9_5 \\ 10 \cdot 9_5 \\ * \\ 10 \cdot 9_5 \\ $	$\begin{array}{c} 0\cdot 627\\ 0\cdot 887\\ 1\cdot 152\\ 1\cdot 396\\ 1\cdot 617\\ 1\cdot 840\\ 2\cdot 025\\ 2\cdot 100\\ 2\cdot 162\\ 2\cdot 215\\ 1\cdot 350\\ 1\cdot 283\\ 1\cdot 237\\ 1\cdot 485\\ 1\cdot 418\end{array}$	$\begin{array}{c} 0\cdot 149\\ 0\cdot 177\\ 0\cdot 214\\ 0\cdot 254\\ 0\cdot 298\\ 0\cdot 345\\ 0\cdot 395\\ 0\cdot 414\\ 0\cdot 430\\ 0\cdot 451\\ 0\cdot 472\\ 0\cdot 488\\ 0\cdot 503\\ 0\cdot 427\\ 0\cdot 455\\ \end{array}$	$\begin{array}{c} 0\cdot 127\\ 0\cdot 133\\ 0\cdot 140\\ 0\cdot 146\\ 0\cdot 152\\ 0\cdot 156\\ 0\cdot 167\\ 0\cdot 169\\ 0\cdot 170\\ 0\cdot 178\\ 0\cdot 370\\ 0\cdot 397\\ 0\cdot 418\\ 0\cdot 305\\ 0\cdot 344\\ \end{array}$	$\begin{array}{c} -0.198 \\ -0.214 \\ -0.231 \\ -0.242 \\ -0.251 \\ -0.257 \\ -0.261 \\ -0.262 \\ -0.263 \\ -0.263 \\ -0.264 \\ -0.215 \\ -0.215 \\ -0.215 \\ -0.222 \\ -0.220 \end{array}$

TABLE 9 (contd.)

* Decreasing incidence.

TABLE 10A

Minimum profile drag of NACA 0030 (on balance)

P atmos	Square ends, pips		Square e	nds, V's	Rounded ends, V's		
	$R imes 10^{-6}$. C _{2,0}	$R imes 10^{-6}$	С _{л,0}	$R \times 10^{-6}$	С _{л,0} .	
$ \begin{array}{c} 1\\2\\2\\2\\4\\4\\4\\4\\8\\8\\8\\8\\12\\12\\12\\12\\12\\12\\12\\12\\12\\18\\18\\18\\18\\18\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\23\\$	$\begin{array}{c} 0.31\\ 0.36\\ 0.52\\ 0.67\\ 0.81\\ 0.69\\ 0.90\\ 1.24\\ 1.47\\ 1.26\\ 1.61\\ 2.19\\ 2.69\\ 1.90\\ 2.50\\ 3.39\\ 4.22\\ 3.45\\ 4.70\\ 5.52\\ 5.86\\ 4.47\\ 6.83\\ 7.07\\ 9.14\end{array}$	$\begin{array}{c} 0.0208\\ 0.0190\\ 0.0181\\ 0.0172\\ 0.0161\\ 0.0161\\ 0.0156\\ 0.0151\\ 0.0151\\ 0.0151\\ 0.0151\\ 0.0150\\ 0.0143\\ 0.0139\\ 0.0141\\ 0.0139\\ 0.0141\\ 0.0142\\ 0.0141\\ 0.0141\\ 0.0144\\ 0.0143\\ 0.0145\\ 0.0145\\ 0.0142\\ 0.0147\\ .0.0143\\ 0.0145\\ 0.015\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ $	$\begin{array}{c} 0.31\\ 0.35\\ 0.51\\ 0.67\\ 0.81\\ 0.76\\ 0.98\\ 1.36\\ 1.61\\ 1.26\\ 1.61\\ 2.20\\ 2.72\\ 1.98\\ 2.61\\ 3.50\\ 4.15\\ 3.61\\ 4.89\\ 5.53\\ 6.12\\ 4.68\\ 6.82\\ 7.39\\ 7.39\\ 10\end{array}$	$\begin{array}{c} 0.0209\\ 0.0212\\ 0.0183\\ 0.0164\\ 0.0161\\ 0.0160\\ 0.0152\\ 0.0143\\ 0.0143\\ 0.0144\\ 0.0145\\ 0.0139\\ 0.0136\\ 0.0136\\ 0.0136\\ 0.0136\\ 0.0136\\ 0.0142\\ 0.0161\\ 0.0157\\ 0.0146\\ 0.0150\\ 0.0149\\ 0.0152\\ 0.0146\\ 0.0152\\ 0.0146\\ 0.0152\\ 0.0146\\ 0.0152\\ 0.0146\\ 0.0152\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0157\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0152\\ 0.0164\\ 0.0155\\ 0.005\\ 0.$	$\begin{array}{c} 0.30\\ 0.35\\ 0.49\\ 0.65\\ 0.77\\ 0.68\\ 0.88\\ 1.21\\ 1.44\\ 1.23\\ 1.60\\ 2.13\\ 2.64\\ 1.88\\ 2.46\\ 3.31\\ 4.18\\ 3.53\\ 4.80\\ 5.28\\ 5.99\\ 4.48\\ 6.57\\ 7.20\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.$	0.0183 0.0169 0.0154 0.0134 0.0127 0.0135 0.0123 0.0117 0.0113 0.0115 0.0111 0.0113 0.0111 0.0113 0.0111 0.0110 0.0109 0.0113 0.0119 0.0116 0.0117 0.0119 0.0118 0.0119 0.0128	
23	8.14	0.0128	8.18	0.0157	8.42	0.0132	

TABLE 10B

	0.1c beh	ind T.E.	0.5c behind T.E.		
P atmos.	$R \times 10^{-6}$	С _{л,0}	$R \times 10^{-6}$	С _{D,0}	
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 5 \\ 8 \\ 11 \\ 15 \\ 19 \\ 24 \\ \end{array} $	$\begin{array}{c} 0.31 \\ 0.60 \\ 0.85 \\ 1.27 \\ 2.17 \\ 3.41 \\ 4.32 \\ 5.38 \\ 7.86 \end{array}$	$\begin{array}{c} 0 \cdot 0152 \\ 0 \cdot 0134 \\ 0 \cdot 0124 \\ 0 \cdot 0124 \\ 0 \cdot 0121 \\ 0 \cdot 0126 \\ 0 \cdot 0128 \\ 0 \cdot 0127 \\ 0 \cdot 0126 \end{array}$	$\begin{array}{c} 0.30 \\ 0.61 \\ 0.86 \\ 1.26 \\ 2.07 \\ 3.24 \\ 4.22 \\ 5.24 \\ 7.89 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Minimum profile drag of NACA 0030 (momentum method)

TABLE 11 Values of $dC_L/d\alpha$ and $dC_m/d\alpha$ (α in degrees) at $\alpha = 0$. Aspect Ratio 6

									NA	CA 0030)		•	
Aerof	oil NACA	0012	NACA 0015		0015 Square Ends on Pips		Square Ends on V's		Rounded Ends on V's					
$R \times 10^{-6}$	$dC_L/d\alpha$	$dC_m/d\alpha$	$R \times 10^{-6}$	$dC_L/d\alpha$	$dC_m/d\alpha$	$R \times 10^{-6}$	$dC_L/d\alpha$	$dC_m/d\alpha$	$R \times 10^{-6}$	$dC_L/d\alpha$	$dC_m/d\alpha$	$R \times 10^{-6}$	$dC_L/d\alpha$	$dC_m/d\alpha$
$0.31 \\ 0.63 \\ 0.98$	$0.070 \\ 0.071 \\ 0.071$	$ \begin{array}{c} 0.0020 \\ 0.0019 \\ 0.0016 \end{array} $	$\begin{array}{c} 0\cdot 30\\ 0\cdot 67\end{array}$	$0.072 \\ 0.070$	0.0027 0.0020	0 · 31 0 · 67	$0.054 \\ 0.052$	$0.0047 \\ 0.0056$	$\begin{array}{c} 0\cdot 31 \\ 0\cdot 67 \end{array}$	$0.053 \\ 0.052$	$0.0047 \\ 0.0055$	$\begin{array}{c} 0\cdot 31 \\ 0\cdot 65 \end{array}$	$0.052 \\ 0.049$	$0.0055 \\ 0.0060$
$1 \cdot 45 \\ 1 \cdot 99 \\ 3 \cdot 02$	0.072_{5} 0.072_{5} 0.072_{5}	0.0016 0.0015 0.0012	$1 \cdot 27 \\ 2 \cdot 20$	$0.070 \\ 0.072$	$0.0018 \\ 0.0017$	$1 \cdot 24 \\ 2 \cdot 19$	$0.052 \\ 0.053$	$0.0058 \\ 0.0059$	$1 \cdot 36$ $2 \cdot 20$	$0.052 \\ 0.052$	$0.0054 \\ 0.0056$	$1 \cdot 21 \\ 2 \cdot 13$	$0.049 \\ 0.049$	$0.0061 \\ 0.0066$
$3 \cdot 94 \\ 5 \cdot 52 \\ 7 \cdot 20$	0.074_{5}° 0.075° 0.074_{5}°	$\begin{array}{c} 0 \cdot 0014 \\ 0 \cdot 0013 \\ 0 \cdot 0013 \end{array}$	$4 \cdot 25 \\ 5 \cdot 55 \\ 7 \cdot 4$	$0.073 \\ 0.074 \\ 0.073$	$0.0014 \\ 0.0014 \\ 0.0013$	$4 \cdot 22 \\ 5 \cdot 52 \\ 7 \cdot 07$	$0.054 \\ 0.055 \\ 0.056$	$0.0054 \\ 0.0052 \\ 0.0052$	$4 \cdot 15 \\ 5 \cdot 53 \\ 7 \cdot 39$	$0.051 \\ 0.054 \\ 0.051$	$0.0054 \\ 0.0054 \\ 0.0055$	$4 \cdot 17 \\ 5 \cdot 28 \\ 7 \cdot 20$	$0.051 \\ 0.051 \\ 0.051 \\ 0.051$	$0.0060 \\ 0.0057 \\ 0.0058$

		1111011		Per contraction from p and			
$R = 0$ $\frac{1}{2}\rho V^2 = 6$	$31 imes10^{6}$, 62,	P = 1 atmos., $V = 74 \cdot 4$ ft./sec.		$R = 0$ $\frac{1}{2}\rho V^2 = 13$	$70 imes10^{6},$ $3\cdot1,$	P = 2.54 atmos., V = 66.1 ft./sec.	
α deg.	<i>C</i> _{<i>L</i>}	$C_{\mathcal{D}}$	C_m	∝ deg.	C_L	C_{D}	C_m
$\begin{array}{c} - & 6 \cdot 2_5 \\ - & 4 \cdot 3 \\ - & 2 \cdot 1_5 \\ + & 1 \cdot 0_5 \\ 4 \cdot 2 \\ 7 \cdot 3 \\ 8 \cdot 3 \\ 9 \cdot 3_5 \\ 10 \cdot 4 \\ 11 \cdot 7 \\ 12 \cdot 8_5 \\ 15 \cdot 0 \\ 9 \cdot 3_5 \\ 10 \cdot 5_5 \\ * \end{array}$	0.466 0.632 0.785 0.996 1.190 1.377 1.450 1.507 1.568 1.174 1.100 1.040 1.445 1.316	0.174 0.188 0.203 0.226 0.252 0.281 0.293 0.304 0.317 0.438 0.463 0.504 0.355 0.403	$\begin{array}{c} -0.180\\ -0.186\\ -0.187\\ -0.186\\ -0.180\\ -0.175\\ -0.176\\ -0.176\\ -0.174\\ -0.175\\ -0.247\\ -0.244\\ -0.240\\ -0.219\\ -0.242\end{array}$	$\begin{array}{c} - & 6 \cdot 2 \\ - & 4 \cdot 2_5 \\ - & 2 \cdot 1 \\ + & 1 \cdot 0 \\ 4 \cdot 2 \\ & 7 \cdot 3_5 \\ 9 \cdot 3_5 \\ 10 \cdot 4_5 \\ 11 \cdot 4 \\ 12 \cdot 5 \\ 13 \cdot 5_5 \\ 14 \cdot 5 \\ 15 \cdot 5 \\ 16 \cdot 5_5 \\ 18 \cdot 1 \\ 19 \cdot 1 \\ 21 \cdot 2_5 \\ 10 \cdot 4_5 \\ 11 \cdot 6 \\ 12 \cdot 7_5 \\ 13 \cdot 9 \\ 14 \cdot 9_5 \\ 16 \cdot 0 \\ 17 \cdot 0 \\ * \end{array}$	0.379 0.623 0.783 1.005 1.209 1.405 1.530 1.586 1.669 1.727 1.775 1.870 1.900 1.957 1.085 1.095 1.102 1.473 1.298 1.233 1.165 1.090 1.089 1.106	0.175 0.187 0.201 0.224 0.251 0.282 0.303 0.321 0.328 0.342 0.353 0.362 0.378 0.388 0.603 0.603 0.640 0.703 0.378 0.430 0.430 0.430 0.461 0.485 0.539 0.580	$\begin{array}{c} -0 \cdot 177 \\ -0 \cdot 182 \\ -0 \cdot 184 \\ -0 \cdot 186 \\ -0 \cdot 184 \\ -0 \cdot 181 \\ -0 \cdot 176 \\ -0 \cdot 176 \\ -0 \cdot 177 \\ -0 \cdot 177 \\ -0 \cdot 177 \\ -0 \cdot 177 \\ -0 \cdot 175 \\ -0 \cdot 2175 \\ -0 \cdot 259 \\ -0 \cdot 261 \\ -0 \cdot 221 \\ -0 \cdot 243 \\ -0 \cdot 243 \\ -0 \cdot 246 \\ -0 \cdot 249 \\ -0 \cdot 248 \\ -0 \cdot 249 \\ -0 \cdot 268 \end{array}$

 $17 \cdot 0_5^*$

TABLE 12 NACA 0012 with 15 per cent. flap at 90 deg

$K = \frac{1}{2}\rho V^2 = 1$	$1.23 \times 10^{\circ},$ = 24.7,	$P \equiv 4 \cdot 2$ $V = 70 \cdot 0$	7 atmos., 0 ft. sec.	$K \equiv 24$ $\frac{1}{2}\rho V^2 = 41$	[·3,	V = 68
α deg.	<i>C_L</i>	C _D	C _m	α deg.	C_{L}	C _D
$\begin{array}{c} - & 6 \cdot 3 \\ - & 4 \cdot 2_5 \\ - & 2 \cdot 1 \\ + & 1 \cdot 0_5 \\ 4 \cdot 2_5 \\ 7 \cdot 3_5 \\ 10 \cdot 4 \\ 12 \cdot 3_5 \\ 14 \cdot 5_5 \\ 15 \cdot 5_5 \\ 16 \cdot 6 \\ 17 \cdot 6 \\ 18 \cdot 5_5 \\ 20 \cdot 2 \\ 22 \cdot 2_5 \\ 12 \cdot 6_5^* \\ 14 \cdot 8_5^* \\ 15 \cdot 9_5^* \\ 18 \cdot 1^* \\ 19 \cdot 1^* \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.173\\ 0.185\\ 0.200\\ 0.223\\ 0.249\\ 0.282\\ 0.314\\ 0.369\\ 0.381\\ 0.369\\ 0.381\\ 0.397\\ 0.409\\ 0.421\\ 0.672\\ 0.715\\ 0.422\\ 0.488\\ 0.510\\ 0.598\\ 0.634\\ \end{array}$	$\begin{array}{c} -0\cdot175\\ -0\cdot179\\ -0\cdot182\\ -0\cdot184\\ -0\cdot182\\ -0\cdot179\\ -0\cdot176\\ -0\cdot174\\ -0\cdot172\\ -0\cdot172\\ -0\cdot171\\ -0\cdot171\\ -0\cdot171\\ -0\cdot171\\ -0\cdot172\\ -0\cdot269\\ -0\cdot273\\ -0\cdot226\\ -0\cdot231\\ -0\cdot243\\ -0\cdot258\\ -0\cdot258\\ -0\cdot267\end{array}$	$\begin{array}{c} - \ 6 \cdot 3 \\ - \ 4 \cdot 3 \\ - \ 2 \cdot 1 \\ + \ 1 \cdot 1 \\ 4 \cdot 2_5 \\ 7 \cdot 4 \\ 10 \cdot 5 \\ 12 \cdot 6 \\ 14 \cdot 6 \\ 15 \cdot 8 \\ 16 \cdot 6_5 \\ 17 \cdot 6_5 \\ 18 \cdot 6_5 \\ 19 \cdot 7_5 \\ 21 \cdot 2 \\ 22 \cdot 3 \\ 24 \cdot 5_5 \\ 16 \cdot 8_5 \\ 17 \cdot 9_5 \\ 18 \cdot 9_5 \\ \end{array}$	0.436 0.599 0.744 0.980 1.192 1.412 1.587 1.708 1.847 1.532 1.957 2.013 2.053 2.110 1.172 1.162 1.093 1.510 1.389 1.324	$\begin{array}{c} 0\cdot 171\\ 0\cdot 182\\ 0\cdot 196\\ 0\cdot 221\\ 0\cdot 252\\ 0\cdot 283\\ 0\cdot 316\\ 0\cdot 343\\ 0\cdot 370\\ 0\cdot 395\\ 0\cdot 397\\ 0\cdot 409\\ 0\cdot 425\\ 0\cdot 476\\ 0\cdot 600\\ 0\cdot 640\\ 0\cdot 698\\ 0\cdot 469\\ 0\cdot 504\\ 0\cdot 554\\ 0\cdot 554\end{array}$
				20 · 1 ₅ *	$1 \cdot 221$	0.583

D \mathbf{n} 00 . . 106 A 077 1

P = 7.7 atmos., $R = 2.07 \times 10^{6}$ $= 68 \cdot 4$ ft./sec.

 C_m

-0.171-0.174-0.177 $-0.179 \\ -0.179$

-0.178

 $-0.176 \\ -0.174$ -0.172-0.166

 $-0.170 \\ -0.171$

 $\begin{array}{r} -0.171 \\
-0.169 \\
-0.246 \\
-0.250 \\
-0.249 \\
0.002
\end{array}$

 $-0.226 \\ -0.239$

-0.245-0.237

* Decreasing incidence.

22

$R = 4$ $\frac{1}{2}\rho V^2 = 1$	$\cdot 14 imes 10^{\circ}, \ 03 \cdot 5,$	$P = 12 \cdot 3$ $V = 85 \cdot 3$	3 atmos., 7 ft./sec.		$R = 5$ $\frac{1}{2}\rho V^2 = 1$	$.60 \times 10^{6},$ 25.5,	$P = 18 \cdot r$ $V = 76 \cdot s$	4 atmos., 9 ft./sec.
α deg.	. <i>C_L</i>	C _D	C _m		α deg.	C _L	C _D	C_m
$\begin{array}{c} - & 6 \cdot 3_5 \\ - & 4 \cdot 3_5 \\ - & 2 \cdot 1 \\ + & 1 \cdot 1 \\ 4 \cdot 3_5 \\ 7 \cdot 5 \\ 10 \cdot 6_5 \\ 12 \cdot 8 \\ 14 \cdot 8_5 \\ 15 \cdot 8_5 \\ 16 \cdot 8_5 \\ 17 \cdot 9_5 \\ 18 \cdot 9 \\ 20 \cdot 1 \\ 22 \cdot 2 \\ 14 \cdot 8_5 \\ 15 \cdot 9^* \\ 15 \cdot 9^* \\ 15 \cdot 9^* \\ 16 \cdot 9^* \\ 19 \cdot 0^* \end{array}$	$\begin{array}{c} 0.434\\ 0.597\\ 0.757\\ 0.980\\ 1.196\\ 1.400\\ 1.600\\ 1.720\\ 1.850\\ 1.905\\ 1.905\\ 1.970\\ 2.015\\ 2.060\\ 1.158\\ 1.162\\ 1.593\\ 1.517\\ 1.383\\ 1.183\\ \end{array}$	0.168 0.180 0.195 0.218 0.247 0.277 0.313 0.335 0.366 0.380 0.394 0.409 0.423 0.575 0.646 0.403 0.443 0.493 0.547	$\begin{array}{c} -0.170\\ -0.174\\ -0.176\\ -0.177\\ -0.177\\ -0.177\\ -0.175\\ -0.173\\ -0.172\\ -0.169\\ -0.169\\ -0.169\\ -0.169\\ -0.169\\ -0.168\\ -0.169\\ -0.245\\ -0.265\\ -0.203\\ -0.213\\ -0.242\\ -0.243\\ \end{array}$	-	$\begin{array}{r} - \ 6 \cdot 4 \\ - \ 4 \cdot 3_5 \\ - \ 2 \cdot 1 \\ + \ 1 \cdot 2 \\ 4 \cdot 3_5 \\ 7 \cdot 5_5 \\ 10 \cdot 7 \\ 12 \cdot 8_5 \\ 13 \cdot 9_5 \\ 15 \cdot 9_5 \\ 15 \cdot 9_5 \\ 16 \cdot 9_5 \\ 18 \cdot 0 \\ 19 \cdot 0_5 \\ 22 \cdot 2 \\ 15 \cdot 9_5^* \\ 18 \cdot 0^* \\ 19 \cdot 0^* \end{array}$	$\begin{array}{c} 0.438\\ 0.602\\ 0.759\\ 0.989\\ 1.204\\ 1.420\\ 1.607\\ 1.720\\ 1.801\\ 1.910\\ 1.910\\ 1.970\\ 2.040\\ 2.085\\ 1.140\\ 1.160\\ 1.495\\ 1.273\\ 1.165\\ \end{array}$	0.170 0.181 0.195 0.220 0.250 0.281 0.316 0.343 0.356 0.385 0.396 0.414 0.431 0.585 0.664 0.455 0.539 0.557	$\begin{array}{c} -0.172\\ -0.177\\ -0.177\\ -0.177\\ -0.178\\ -0.179\\ -0.179\\ -0.175\\ -0.175\\ -0.174\\ -0.172\\ -0.170\\ -0.170\\ -0.170\\ -0.170\\ -0.171\\ -0.172\\ -0.249\\ -0.265\\ -0.218\\ -0.251\\ -0.245\\ \end{array}$

TABLE 12 (contd.)

TABLE 13

NACA 23012 with 15 per cent. flap at 90 deg.

$R = 0.31 \times 10^6, P = 1 \text{ atmos.},$ $\frac{1}{2} ho V^2 = 6.77, V = 76.1 \text{ ft./sec.}$		$R = 0$ $\frac{1}{2}\rho V^2 = 15$	$81 imes10^{6}$, 5 \cdot 1,	$P = 3 \cdot 02$ atmos., $V = 65 \cdot 6$ ft./sec.			
∝ deg.	C _L	CD	C _m	α deg.	<i>C</i> _{<i>L</i>}	$C_{\mathcal{D}}$	<i>C_m</i>
$\begin{array}{c} - & 6 \cdot 9_5 \\ - & 5 \cdot 1 \\ - & 1 \cdot 1_5 \\ + & 2 \cdot 9_5 \\ & 7 \cdot 1_5 \\ 10 \cdot 1_5 \\ 12 \cdot 2 \\ 13 \cdot 3 \\ 14 \cdot 3 \\ 14 \cdot 7_5 \\ 15 \cdot 8_5 \\ 17 \cdot 9_5 \\ 12 \cdot 4_5 \\ 13 \cdot 7 \end{array}$	0.449 0.616 0.897 1.149 1.402 1.602 1.713 1.772 1.838 1.086 1.058 1.069 1.262 1.136	$\begin{array}{c} 0\cdot 168\\ 0\cdot 182\\ 0\cdot 212\\ 0\cdot 244\\ 0\cdot 283\\ 0\cdot 319\\ 0\cdot 344\\ 0\cdot 359\\ 0\cdot 368\\ 0\cdot 501\\ 0\cdot 523\\ 0\cdot 587\\ 0\cdot 447\\ 0\cdot 475\\ \end{array}$	$\begin{array}{c} -0.166\\ -0.180\\ -0.183\\ -0.183\\ -0.174\\ -0.174\\ -0.176\\ -0.177\\ -0.180\\ -0.237\\ -0.236\\ -0.249\\ -0.235\\ -0.234\\ \end{array}$	$\begin{array}{c} -7.0 \\ -5.1 \\ -1.1_5 \\ +3.0 \\ 7.1_5 \\ 10.2 \\ 12.2 \\ 13.3_5 \\ 14.3_5 \\ 15.4 \\ 16.4 \\ 17.4 \\ 19.0 \\ 20.0 \\ 22.1_5 \\ 15.7* \\ 16.7.* \end{array}$	0.447 0.606 0.923 1.202 1.471 1.656 1.769 1.839 1.898 1.957 2.018 2.072 1.146 1.156 1.152 1.366 1.248	$\begin{array}{c} 0\cdot 164\\ 0\cdot 179\\ 0\cdot 212\\ 0\cdot 245\\ 0\cdot 283\\ 0\cdot 320\\ 0\cdot 346\\ 0\cdot 361\\ 0\cdot 376\\ 0\cdot 388\\ 0\cdot 405\\ 0\cdot 417\\ 0\cdot 633\\ 0\cdot 666\\ 0\cdot 722\\ 0\cdot 507\\ 0\cdot 507\\ 0\cdot 670\end{array}$	$\begin{array}{c} -0.163\\ -0.174\\ -0.186\\ -0.185\\ -0.185\\ -0.181\\ -0.179\\ -0.179\\ -0.178\\ -0.179\\ -0.181\\ -0.180\\ -0.183\\ -0.186\\ -0.256\\ -0.269\\ -0.269\\ -0.232\\ -0.229\end{array}$
				17.8_{5}^{*}	$1 \cdot 162$	0.592	-0.247

* Decreasing incidence.

$R = 1$ $\frac{1}{2}\rho V^2 = 25$	$\cdot27 imes10^{ m 6},$ 5 $\cdot3,$	$P = 4 \cdot 42 \text{ atmos.,}$ $V = 70 \cdot 1 \text{ ft./sec.}$				
α deg.	C_L	Съ	C_m			
$\begin{array}{c} - & 7 \cdot 0 \\ - & 5 \cdot 1 \\ - & 1 \cdot 1_5 \\ + & 3 \cdot 0_5 \\ 7 \cdot 2 \\ 10 \cdot 2_5 \\ 12 \cdot 3 \\ 14 \cdot 4 \\ 15 \cdot 5 \\ 16 \cdot 5 \\ 17 \cdot 5 \\ 18 \cdot 5_5 \\ 19 \cdot 9_5 \\ 22 \cdot 1 \\ 15 \cdot 6^* \\ 15 \cdot 6^* \\ 15 \cdot 6^* \\ 16 \cdot 7^* \\ 17 \cdot 8^* \end{array}$	0.445 0.602 0.929 1.206 1.468 1.665 1.785 1.910 1.961 2.037 2.098 2.153 1.242 1.235 1.628 1.585 1.494 1.360	$egin{array}{ccccc} 0\cdot168 & 0\cdot181 & 0\cdot214 & 0\cdot248 & 0\cdot290 & 0\cdot325 & 0\cdot325 & 0\cdot351 & 0\cdot378 & 0\cdot395 & 0\cdot406 & 0\cdot421 & 0\cdot439 & 0\cdot645 & 0\cdot705 & 0\cdot423 & 0\cdot403 & 0\cdot423 & 0\cdot403 & 0\cdot454 & 0\cdot580 & 0\cdot$	$\begin{array}{c} -0.166\\ -0.173\\ -0.187\\ -0.187\\ -0.186\\ -0.184\\ -0.182\\ -0.181\\ -0.181\\ -0.182\\ -0.183\\ -0.183\\ -0.183\\ -0.184\\ -0.187\\ -0.251\\ -0.258\\ -0.204\\ -0.177\\ -0.211\\ -0.249\end{array}$			
$18 \cdot 9_5^*$	$1 \cdot 115$	0.604	-0.245			

$R = 2$ $\frac{1}{2}\rho V^2 = 53$	$\cdot 47 imes 10^{ m 6}, \ 3 \cdot 9,$	$P = 8 \cdot 0$ atmos., $V = 76 \cdot 7$ ft./sec.				
α deg.	C _L	C _D ·	<i>C</i> _{<i>m</i>} .			
$\begin{array}{r} - & 7 \cdot 0_5 \\ - & 5 \cdot 1_5 \\ - & 1 \cdot 1 \\ + & 3 \cdot 1 \\ & 7 \cdot 3_5 \\ 10 \cdot 4_5 \\ 12 \cdot 5_5 \\ 14 \cdot 7 \\ 15 \cdot 7 \\ 16 \cdot 7_5 \\ 17 \cdot 8 \\ 18 \cdot 9 \\ 19 \cdot 9 \\ 21 \cdot 1_5 \\ 22 \cdot 1 \\ 23 \cdot 1_5 \\ 16 \cdot 8^* \\ 17 \cdot 8_5^* \\ 18 \cdot 9_5^* \\ 20 \cdot 0_5^* \end{array}$	$\begin{array}{c} 0.438\\ 0.591\\ 0.909\\ 1.203\\ 1.479\\ 1.675\\ 1.797\\ 1.923\\ 1.984\\ 2.045\\ 2.094\\ 2.175\\ 2.215\\ 1.217\\ 1.226\\ 1.217\\ 1.226\\ 1.246\\ 1.552\\ 1.432\\ 1.299\\ 1.258\end{array}$	$\begin{array}{c} 0.167\\ 0.179\\ 0.212\\ 0.248\\ 0.291\\ 0.327\\ 0.352\\ 0.384\\ 0.395\\ 0.411\\ 0.425\\ 0.440\\ 0.456\\ 0.577\\ 0.637\\ 0.637\\ 0.697\\ 0.458\\ 0.483\\ 0.515\\ 0.545\end{array}$	$\begin{array}{c} -0.166\\ -0.170\\ -0.179\\ -0.181\\ -0.180\\ -0.180\\ -0.180\\ -0.178\\ -0.179\\ -0.179\\ -0.179\\ -0.182\\ -0.184\\ -0.238\\ -0.256\\ -0.272\\ -0.214\\ -0.223\\ -0.224\\ -0.235\end{array}$			

$R=4\cdot 47 imes 10^{6}$,	P = 14.6 atmos.,
$\frac{1}{2} ho V^2 = 101 \cdot 6,$	$V = 78 \cdot 8$ ft./sec.

 C_L

 $0.450 \\ 0.600$

 $0.909 \\ 1.211 \\ 1.489$

1.688

 $1 \cdot 814 \\ 1 \cdot 933$

1.933 2.067 2.134 2.192 2.244 1.218 1.2121.526

 $\begin{array}{r}
1 \cdot 536 \\
1 \cdot 469
\end{array}$

 $\begin{array}{c}
1 \cdot 322 \\
1 \cdot 264
\end{array}$

 \propto deg.

 $\begin{array}{r} - & 7 \cdot 1_5 \\ - & 5 \cdot 2 \\ - & 1 \cdot 0_5 \\ + & 3 \cdot 3 \\ & 7 \cdot 6 \\ 10 \cdot 7_5 \\ 12 \cdot 9_5 \\ 15 \cdot 1 \\ 17 \cdot 2_5 \\ 18 \cdot 3 \\ 19 \cdot 4 \\ 20 \cdot 4_5 \\ 21 \cdot 1_5 \\ 23 \cdot 1_5 \\ 17 \cdot 0^* \end{array}$

 $18 \cdot 0^{*}$ $19 \cdot 0_{5}^{*}$ $20 \cdot 1^{*}$

$R=5\!\cdot\!43 imes10^{6}$,	$P = 18 \cdot 1$ atmos.,
$\frac{1}{3} ho V^2 = 124 \cdot 0$	$V = 78 \cdot 4$ ft./sec.

		<u>.</u>	, .		1
Съ		α deg.	C _L	C_{D}	C_m
$\begin{array}{c} 0 \cdot 169 \\ 0 \cdot 181 \\ 0 \cdot 209 \\ 0 \cdot 245 \\ 0 \cdot 289 \\ 0 \cdot 327 \\ 0 \cdot 355 \\ 0 \cdot 383 \\ 0 \cdot 414 \\ 0 \cdot 430 \\ 0 \cdot 446 \\ 0 \cdot 465 \\ 0 \cdot 585 \\ 0 \cdot 712 \\ 0 \cdot 471 \\ 0 \cdot 502 \\ 0 \cdot 535 \\ 0 \cdot 556 \end{array}$	$ \begin{array}{c} -0 \cdot 169 \\ -0 \cdot 174 \\ -0 \cdot 177 \\ -0 \cdot 180 \\ -0 \cdot 181 \\ -0 \cdot 183 \\ -0 \cdot 181 \\ -0 \cdot 183 \\ -0 \cdot 184 \\ -0 \cdot 242 \\ -0 \cdot 268 \\ -0 \cdot 215 \\ -0 \cdot 230 \\ -0 \cdot 235 \\ -0 \cdot 234 \\ \end{array} $	$\begin{array}{r} - & 7 \cdot 2 \\ - & 5 \cdot 2 \\ - & 1 \cdot 0 \\ + & 3 \cdot 4 \\ & 7 \cdot 7_5 \\ 10 \cdot 9_5 \\ 13 \cdot 0_5 \\ 15 \cdot 3 \\ 17 \cdot 4_5 \\ 18 \cdot 5 \\ 19 \cdot 6_5 \\ 20 \cdot 7 \\ 21 \cdot 1_5 \\ 22 \cdot 1_5 \\ 22 \cdot 1_5 \\ 24 \cdot 0_5 \\ 17 \cdot 0_5^* \\ 18 \cdot 0_5^* \\ 19 \cdot 1^* \\ 20 \cdot 1^* \end{array}$	$\begin{array}{c} 0\cdot 453\\ 0\cdot 599\\ 0\cdot 917\\ 1\cdot 221\\ 1\cdot 501\\ 1\cdot 705\\ 1\cdot 834\\ 1\cdot 967\\ 2\cdot 076\\ 2\cdot 137\\ 2\cdot 210\\ 2\cdot 263\\ 1\cdot 204\\ 1\cdot 216\\ 1\cdot 232\\ 1\cdot 522\\ 1\cdot 522\\ 1\cdot 522\\ 1\cdot 477\\ 1\cdot 329\\ 1\cdot 258\end{array}$	$\begin{array}{c} 0\cdot 171 \\ 0\cdot 180 \\ 0\cdot 210 \\ 0\cdot 245 \\ 0\cdot 290 \\ 0\cdot 329 \\ 0\cdot 358 \\ 0\cdot 387 \\ 0\cdot 419 \\ 0\cdot 436 \\ 0\cdot 453 \\ 0\cdot 467 \\ 0\cdot 600 \\ 0\cdot 656 \\ 0\cdot 750 \\ \hline \\ 0\cdot 511 \\ 0\cdot 545 \\ 0\cdot 563 \\ \end{array}$	$\begin{array}{c} -0\cdot171\\ -0\cdot173\\ -0\cdot178\\ -0\cdot178\\ -0\cdot178\\ -0\cdot178\\ -0\cdot177\\ -0\cdot177\\ -0\cdot177\\ -0\cdot178\\ -0\cdot180\\ -0\cdot182\\ -0\cdot185\\ -0\cdot185\\ -0\cdot185\\ -0\cdot185\\ -0\cdot245\\ -0\cdot259\\ -0\cdot234\\ -0\\ -0\cdot229\\ -0\cdot236\\ -0\cdot234\end{array}$
					1

* Decreasing incidence.

TABLE 14

RAF 28 with 15 per cent. flap at 90 deg.

$R = 0$ $\frac{1}{2}\rho V^2 = 6$	$\cdot 31 imes 10$ °, $\cdot 77$, .	P = 1 at $V = 76$.	tmos., 7 ft./sec.	$R = 0$ $\frac{1}{2}\rho V^2 = 13$	$\cdot78 imes10^{ m 6}$, $5\cdot1$,	$P = 2 \cdot 8$ $V = 67 \cdot$	8 atmos., 6 ft./sec.
∝ deg.	C_L	C_{D}	<i>C</i> _{<i>m</i>}	α deg.	C_L	Cp	C _m
$\begin{array}{c} - & 6 \cdot 6 \\ - & 4 \cdot 5_5 \\ - & 0 \cdot 3_5 \\ + & 3 \cdot 9 \\ & 8 \cdot 0 \\ & 9 \cdot 0_5 \\ 10 \cdot 1 \\ 11 \cdot 2_5 \\ 12 \cdot 3 \\ 13 \cdot 4_5 \\ 13 \cdot 4_5 \\ 14 \cdot 5_5 \\ 15 \cdot 6 \\ 16 \cdot 6_5 \end{array}$	$\begin{array}{c} 0.476 \\ 0.641 \\ 0.931 \\ 1.187 \\ 1.449 \\ 1.504 \\ 1.496 \\ 1.438 \\ 1.359 \\ 1.218 \\ 1.218 \\ 1.126 \\ 1.126 \\ 1.101 \\ 1.084 \end{array}$	$\begin{array}{c} 0\cdot 173 \\ 0\cdot 185 \\ 0\cdot 215 \\ 0\cdot 251 \\ 0\cdot 295 \\ 0\cdot 324 \\ 0\cdot 366 \\ 0\cdot 411 \\ 0\cdot 448 \\ 0\cdot 473 \\ 0\cdot 497 \\ 0\cdot 522 \\ 0\cdot 552 \end{array}$	$ \begin{array}{c} -0 \cdot 174 \\ -0 \cdot 179 \\ -0 \cdot 181 \\ -0 \cdot 177 \\ -0 \cdot 185 \\ -0 \cdot 202 \\ -0 \cdot 216 \\ -0 \cdot 227 \\ -0 \cdot 231 \\ -0 \cdot 228 \\ -0 \cdot 236 \\ -0 \cdot 238 \end{array} $	$\begin{array}{c} - & 6 \cdot 6 \\ - & 4 \cdot 5_5 \\ - & 0 \cdot 3 \\ + & 4 \cdot 0 \\ & 7 \cdot 1 \\ & 9 \cdot 1_5 \\ 10 \cdot 2 \\ 11 \cdot 2_5 \\ 12 \cdot 3_5 \\ 14 \cdot 5 \\ 16 \cdot 6_5 \end{array}$	$\begin{array}{c} 0\cdot 471 \\ 0\cdot 631 \\ 0\cdot 948 \\ 1\cdot 217 \\ 1\cdot 405 \\ 1\cdot 547 \\ 1\cdot 566 \\ 1\cdot 523 \\ 1\cdot 452 \\ 1\cdot 280 \\ 1\cdot 168 \end{array}$	$\begin{array}{c} 0\cdot 175\\ 0\cdot 187\\ 0\cdot 221\\ 0\cdot 254\\ 0\cdot 287\\ 0\cdot 315\\ 0\cdot 350\\ 0\cdot 399\\ 0\cdot 442\\ 0\cdot 510\\ 0\cdot 557\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

 $R=1\cdot 27 imes 10^{6}$, $\frac{1}{2}
ho V^2 = 25 \cdot 3$,

 C_L

0.541

 $0.707 \\ 0.938$

 $1 \cdot 219 \\ 1 \cdot 424$

 $\begin{array}{c}1\cdot 422\\1\cdot 232\end{array}$

-

αdeg.

-5.5

 $\begin{array}{r} - 5 \cdot 5 \\ - 3 \cdot 4_5 \\ - 0 \cdot 2_5 \\ + 4 \cdot 1_5 \\ 7 \cdot 2_5 \\ 9 \cdot 3 \\ 10 \cdot 3_5 \\ 11 \cdot 4 \\ 12 \cdot 5 \\ 13 \cdot 5_5 \\ 15 \cdot 6_5 \end{array}$

P		$4 \cdot 52$	atmos.,	
V	=	$69 \cdot 9$	ft./sec.	

 C_m

 $-0.174 \\ -0.178 \\ -0.181 \\ -0.181 \\ -0.181 \\ -0.182 \\ -0.186 \\ -0.199 \\ -0.211$

-0.211

 $-0.225 \\ -0.235$

 C_{D}

0.180

0.193 0.2170.2530.286

 $\begin{array}{c} 0.308\\ 0.333\end{array}$ 0.3670.426

 $0.451 \\ 0.532$

$R = 2 \cdot 43 \times$	10^6 , P		$8 \cdot 0$
$\frac{1}{2} ho V^2 = 53 \cdot 9$,	V	=:	$77 \cdot 1$

atmos., ft./sec.

α deg.	C_L	CD	C _m
$\begin{array}{c} - & 6 \cdot 6_5 \\ - & 4 \cdot 4 \\ - & 0 \cdot 0_5 \\ + & 4 \cdot 4_5 \\ & 7 \cdot 6_5 \\ 9 \cdot 8 \\ 10 \cdot 8_5 \\ 11 \cdot 9 \\ 12 \cdot 9 \\ 13 \cdot 9_5 \\ 15 \cdot 9_5 \end{array}$	$\begin{array}{c} 0\cdot 458 \\ 0\cdot 621 \\ 0\cdot 935 \\ 1\cdot 217 \\ 1\cdot 424 \\ 1\cdot 559 \\ 1\cdot 633 \\ 1\cdot 667 \\ 1\cdot 609 \\ 1\cdot 560 \\ 1\cdot 453 \end{array}$	$\begin{array}{c} 0\cdot 175\\ 0\cdot 188\\ 0\cdot 222\\ 0\cdot 257\\ 0\cdot 288\\ 0\cdot 312\\ 0\cdot 325\\ 0\cdot 353\\ 0\cdot 394\\ 0\cdot 435\\ 0\cdot 517\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

R=4 $rac{1}{2} ho V^2=10$	$\cdot 48 imes 10^{\mathfrak{s}}$, 01 $\cdot 6$,	$P = 14 \cdot 0$ $V = 78 \cdot 0$	6 atmos., 6 ft./sec.	$R = 5 \cdot \frac{1}{2}\rho V^2 = 12$	48×10^{6} , $24 \cdot 0$,	$P = 17 \cdot 9$ $V = 78 \cdot 9$	9 atmos., 2 ft./sec.
α deg.	C_{L}	C _D	C_m	α deg.	C_{L}	CD	<i>C</i> _{<i>m</i>}
$\begin{array}{c} - & 6 \cdot 7 \\ - & 4 \cdot 3_5 \\ + & 0 \cdot 3 \\ 5 \cdot 0 \\ 8 \cdot 3_5 \\ 10 \cdot 6 \\ 11 \cdot 7 \\ 12 \cdot 9 \\ 13 \cdot 9 \\ 14 \cdot 7_5 \\ 15 \cdot 6_5 \\ 17 \cdot 5_5 \end{array}$	$\begin{array}{c} 0\cdot 461 \\ 0\cdot 627 \\ 0\cdot 953 \\ 1\cdot 252 \\ 1\cdot 464 \\ 1\cdot 607 \\ 1\cdot 670 \\ 1\cdot 732 \\ 1\cdot 767 \\ 1\cdot 671 \\ 1\cdot 609 \\ 1\cdot 478 \end{array}$	$\begin{array}{c} 0\cdot 175 \\ 0\cdot 187 \\ 0\cdot 219 \\ 0\cdot 258 \\ 0\cdot 291 \\ 0\cdot 317 \\ 0\cdot 330 \\ 0\cdot 345 \\ 0\cdot 373 \\ 0\cdot 425 \\ 0\cdot 469 \\ 0\cdot 529 \end{array}$	$\begin{array}{c} -0\cdot 174\\ -0\cdot 176\\ -0\cdot 179\\ -0\cdot 177\\ -0\cdot 177\\ -0\cdot 177\\ -0\cdot 180\\ -0\cdot 180\\ -0\cdot 180\\ -0\cdot 195\\ -0\cdot 212\\ -0\cdot 223\\ -0\cdot 230\end{array}$	$\begin{array}{r} - & 6 \cdot 7_5 \\ - & 4 \cdot 3 \\ + & 0 \cdot 4_5 \\ & 5 \cdot 2_5 \\ 8 \cdot 7_5 \\ 11 \cdot 0_5 \\ 12 \cdot 1_5 \\ 13 \cdot 3_5 \\ 14 \cdot 2_5 \\ 15 \cdot 0_5 \\ 16 \cdot 8_5 \\ 13 \cdot 3^* \end{array}$	$\begin{array}{c} 0\cdot 456\\ 0\cdot 626\\ 0\cdot 953\\ 1\cdot 268\\ 1\cdot 477\\ 1\cdot 627\\ 1\cdot 695\\ 1\cdot 752\\ 1\cdot 723\\ 1\cdot 651\\ 1\cdot 542\\ 1\cdot 757\end{array}$	$\begin{array}{c} 0\cdot 175 \\ 0\cdot 188 \\ 0\cdot 221 \\ 0\cdot 260 \\ 0\cdot 294 \\ 0\cdot 320 \\ 0\cdot 334 \\ 0\cdot 349 \\ 0\cdot 391 \\ 0\cdot 438 \\ 0\cdot 514 \\ 0\cdot 354 \end{array}$	$\begin{array}{c c} -0.175\\ -0.176\\ -0.177\\ -0.176\\ -0.177\\ -0.179\\ -0.179\\ -0.179\\ -0.179\\ -0.199\\ -0.217\\ -0.232\\ -0.189\end{array}$

TABLE 15

RAF 48, with 15 per cent. sharp-edge flap at 90 deg. Aspect ratio 6

$\begin{aligned} R &= 0\\ \frac{1}{2}\rho V^2 &= 6 \end{aligned}$	$\cdot 31 imes 10^{ m 6}$, $\cdot 63$,	$P = 1$ at $V = 75 \cdot 10^{-10}$	tmos., 6 ft./sec.	$R = 0 \cdot \frac{1}{2} \rho V^2 = 13$	$68 imes10^{6},$	$P = 2 \cdot 42$ $V = 68 \cdot 4$	7 atmos., 4 ft./sec.
∝ deg.		C _D		α deg.	C _L	Съ	<i>C</i> _{<i>m</i>}
$\begin{array}{c} - & 3 \cdot 2 \\ - & 0 \cdot 1_5 \\ + & 3 \cdot 0 \\ & 6 \cdot 1 \\ & 9 \cdot 1_5 \\ 12 \cdot 2 \\ 13 \cdot 2 \\ 14 \cdot 2 \\ 15 \cdot 4 \\ 16 \cdot 5_5 \end{array}$	$\begin{array}{c} 0.843\\ 1.073\\ 1.288\\ 1.477\\ 1.668\\ 1.870\\ 1.910\\ 1.970\\ 1.760\\ 1.650\\ \end{array}$	$\begin{array}{c} 0 \cdot 202 \\ 0 \cdot 227 \\ 0 \cdot 255 \\ 0 \cdot 286 \\ 0 \cdot 322 \\ 0 \cdot 365 \\ 0 \cdot 377 \\ 0 \cdot 390 \\ 0 \cdot 409 \\ 0 \cdot 413 \end{array}$	$\begin{array}{c c} -0\cdot 201 \\ -0\cdot 203 \\ -0\cdot 204 \\ -0\cdot 200 \\ -0\cdot 201 \\ -0\cdot 206 \\ -0\cdot 205 \\ -0\cdot 206 \\ -0\cdot 207 \\ -0\cdot 186 \end{array}$	$\begin{array}{r} - & 3 \cdot 1_5 \\ - & 0 \cdot 0_5 \\ + & 3 \cdot 0_5 \\ & 6 \cdot 1_5 \\ & 9 \cdot 3 \\ 12 \cdot 3 \\ 14 \cdot 3 \\ 15 \cdot 3_5 \\ 16 \cdot 6_5 \\ 17 \cdot 7_5 \\ 15 \cdot 5_5 * \end{array}$	0.827 1.059 1.262 1.466 1.662 1.837 1.968 2.022 1.639 1.575 1.720	$\begin{array}{c} 0\cdot 196\\ 0\cdot 224\\ 0\cdot 248\\ 0\cdot 279\\ 0\cdot 312\\ 0\cdot 358\\ 0\cdot 385\\ 0\cdot 401\\ 0\cdot 407\\ 0\cdot 422\\ 0\cdot 395\end{array}$	$\begin{array}{c} -0.196\\ -0.199\\ -0.201\\ -0.200\\ -0.198\\ -0.201\\ -0.205\\ -0.205\\ -0.185\\ -0.183\\ -0.188\end{array}$

* Decreasing incidence.

$R = 1$ $\frac{1}{2}\rho V^2 = 2$	5.0, 5.0 ,	P = 4.6 $V = 68.$	0 atmos., 9 ft./sec.	K=2 $rac{1}{2} ho V^2=41$	$125 \times 10^{\circ},$ 1.6,	$P = 8 \cdot 7$ $V = 64 \cdot$	atmos., 7 ft./sec.
α deg.	C_L	C_{D}	<i>C</i> _m	∝ deg	C_{L}	C _D	
$\begin{array}{r} - & 3 \cdot 0 \\ + & 0 \cdot 0_5 \\ & 3 \cdot 2 \\ & 6 \cdot 3 \\ & 9 \cdot 4_5 \\ & 12 \cdot 4_5 \\ & 14 \cdot 5_5 \\ & 15 \cdot 5_5 \\ & 16 \cdot 5_5 \\ & 17 \cdot 5_5 \\ & 19 \cdot 0 \\ & 20 \cdot 0_5 \\ & 16 \cdot 7^* \\ & 17 \cdot 8_5 * \end{array}$	$\begin{array}{c} 0\cdot 810\\ 1\cdot 042\\ 1\cdot 248\\ 1\cdot 448\\ 1\cdot 654\\ 1\cdot 822\\ 1\cdot 950\\ 2\cdot 03\\ 2\cdot 075\\ 2\cdot 13\\ 1\cdot 535\\ 1\cdot 465\\ 1\cdot 755\\ 1\cdot 625\end{array}$	$\begin{array}{c} 0\cdot 210 \\ 0\cdot 219 \\ 0\cdot 249 \\ 0\cdot 280 \\ 0\cdot 318 \\ 0\cdot 359 \\ 0\cdot 389 \\ 0\cdot 402 \\ 0\cdot 418 \\ 0\cdot 429 \\ 0\cdot 447 \\ 0\cdot 458 \\ 0\cdot 415 \\ 0\cdot 435 \end{array}$	$ \begin{array}{c c} -0.190 \\ -0.194 \\ -0.196 \\ -0.198 \\ -0.198 \\ -0.199 \\ -0.198 \\ -0.201 \\ -0.202 \\ -0.203 \\ -0.203 \\ -0.204 \\ -0.189 \\ -0.192 \\ -0.193 \\ -0.191 \end{array} $	$\begin{array}{c} -2 \cdot 9 \\ +0 \cdot 2 \\ 3 \cdot 4 \\ 6 \cdot 6 \\ 9 \cdot 7 \\ 12 \cdot 7_5 \\ 14 \cdot 7_5 \\ 16 \cdot 8_5 \\ 17 \cdot 8_5 \\ 18 \cdot 9 \\ 20 \cdot 3 \\ 21 \cdot 4 \\ 19 \cdot 2^* \end{array}$	0.809 1.031 1.246 1.440 1.652 1.844 1.969 2.092 2.148 2.194 1.575 1.498 1.635	$\begin{array}{c} 0\cdot 197 \\ 0\cdot 223 \\ 0\cdot 252 \\ 0\cdot 285 \\ 0\cdot 322 \\ 0\cdot 361 \\ 0\cdot 388 \\ 0\cdot 422 \\ 0\cdot 435 \\ 0\cdot 425 \\ 0\cdot 455 \\ 0\cdot 490 \\ 0\cdot 509 \\ 0\cdot 469 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
-					,		

 $R=3\cdot 66 imes 10^{6}$, $\frac{1}{2}\rho V^2 = 66 \cdot 0,$

P = 14.5 atmos.,V = 62.8 ft./sec.

$\frac{1}{2} ho V^2 = -66 \cdot 0$,

$P = 24 \cdot 0$ atmos., $R = 4 \cdot 63 = 10^{6}$, $V = 49 \cdot 2$ ft./sec.

2

			•				· ·
α deg.		CD	C_m	α deg.	C _L	C _D	C_m
$\begin{array}{r} - & 2 \cdot 7 \\ + & 0 \cdot 5 \\ & 3 \cdot 6_5 \\ & 6 \cdot 8_5 \\ 10 \cdot 0 \\ 13 \cdot 1 \\ 16 \cdot 2 \\ 18 \cdot 2_5 \\ 19 \cdot 3_5 \\ 20 \cdot 3_5 \\ 21 \cdot 7_5 \\ 22 \cdot 9 \\ 19 \cdot 5^* \\ 20 \cdot 6^* \end{array}$	$\begin{array}{c} 0.811\\ 1.037\\ 1.260\\ 1.463\\ 1.657\\ 1.850\\ 2.030\\ 2.165\\ 2.225\\ 2.280\\ 1.510\\ 1.428\\ 1.682\\ 1.595\end{array}$	$\begin{array}{c} 0\cdot 197\\ 0\cdot 223\\ 0\cdot 250\\ 0\cdot 281\\ 0\cdot 320\\ 0\cdot 360\\ 0\cdot 407\\ 0\cdot 437\\ 0\cdot 452\\ 0\cdot 474\\ 0\cdot 527\\ 0\cdot 550\\ 0\cdot 484\\ 0\cdot 504\\ \end{array}$	$ \begin{vmatrix} -0 \cdot 191 \\ -0 \cdot 193 \\ -0 \cdot 195 \\ -0 \cdot 197 \\ -0 \cdot 201 \\ -0 \cdot 204 \\ -0 \cdot 205 \\ -0 \cdot 210 \\ -0 \cdot 217 \\ -0 \cdot 201 \\ -0 \cdot 207 \end{vmatrix} $	$\begin{array}{c} - & 2 \cdot 6 \\ + & 0 \cdot 4_5 \\ & 3 \cdot 6_5 \\ & 6 \cdot 8_5 \\ 10 \cdot 0 \\ 13 \cdot 1 \\ 16 \cdot 2 \\ 18 \cdot 3 \\ 19 \cdot 3_5 \\ 20 \cdot 3_5 \\ 21 \cdot 7_5 \\ 22 \cdot 8_5 \\ 19 \cdot 5_5 \\ 20 \cdot 6_5 \\ \end{array}$	$\begin{array}{c} 0\cdot 802\\ 1\cdot 028\\ 1\cdot 245\\ 1\cdot 455\\ 1\cdot 655\\ 1\cdot 655\\ 2\cdot 035\\ 2\cdot 035\\ 2\cdot 150\\ 2\cdot 220\\ 2\cdot 270\\ 1\cdot 473\\ 1\cdot 377\\ 1\cdot 650\\ 1\cdot 580\end{array}$	$\begin{array}{c} 0\cdot 198\\ 0\cdot 221\\ 0\cdot 249\\ 0\cdot 281\\ 0\cdot 319\\ 0\cdot 358\\ 0\cdot 407\\ 0\cdot 436\\ 0\cdot 451\\ 0\cdot 451\\ 0\cdot 471\\ 0\cdot 529\\ 0\cdot 561\\ 0\cdot 481\\ 0\cdot 508\\ \end{array}$	$\begin{array}{c} -0.190\\ -0.191\\ -0.191\\ -0.195\\ -0.195\\ -0.195\\ -0.195\\ -0.198\\ -0.200\\ -0.204\\ -0.203\\ -0.209\\ -0.218\\ -0.201\\ -0.209\end{array}$

* Decreasing incidence.

TABLE 16RAF 48, with 20 per cent. flap at 50 deg.Aspect ratio 6

 $R = 0.31 \times 10^6$, P = 1 atmos., $\frac{1}{2}\rho V^2 = 6.63$, V = 74.8 ft./sec.

R = 0	$68 imes10^{ m 6}$,	P
$\frac{1}{2} ho V^2 = 13$	· 3,	V

P		$2 \cdot 40$	atmos.
V	=	$68 \cdot 9$	ft./sec.

α deg.	C_L	C _D	<i>C</i> _{<i>m</i>}
-3.1_{5}	0.837	0.172	-0.233
-0.1_{5}	1.062	0.195	-0.235
+ 3.0	$1 \cdot 284$	0.220	-0.233
$6 \cdot 1$	$1 \cdot 490$	0.254	-0.234
$9 \cdot 1_{5}$	1.690	0.293	-0.236
$12 \cdot 1_{5}$	1.900	0.334	-0.240
$13\cdot 2$	1.970	0.347	-0.241
$14 \cdot 3_{5}$	1.880	0.356	-0.225
$15\cdot4$	1.785	0.373	-0.220
16.5	1.702	0.388	-0.216
17.6	1.624	0.406	-0.216

α deg	C _L	C_{D}	C_m
$\begin{array}{r} - 3 \cdot 0_5 \\ - 0 \cdot 0_5 \\ + 3 \cdot 0_5 \\ 6 \cdot 2 \\ 9 \cdot 2_5 \\ 12 \cdot 2_5 \\ 14 \cdot 4 \\ 15 \cdot 5 \\ 17 \cdot 7_5 \end{array}$	0.828 1.062 1.280 1.490 1.692 1.887 2.010 1.743 1.588	$\begin{array}{c} 0 \cdot 169 \\ 0 \cdot 194 \\ 0 \cdot 223 \\ 0 \cdot 259 \\ 0 \cdot 297 \\ 0 \cdot 342 \\ 0 \cdot 369 \\ 0 \cdot 379 \\ 0 \cdot 409 \end{array}$	$ \begin{vmatrix} -0 \cdot 231 \\ -0 \cdot 235 \\ -0 \cdot 235 \\ -0 \cdot 237 \\ -0 \cdot 239 \\ -0 \cdot 242 \\ -0 \cdot 240 \\ -0 \cdot 225 \\ -0 \cdot 217 \end{vmatrix} $

 $\begin{array}{ll} R = 1 \cdot 25 \, \times \, 10^{\rm 6}, & P = 4 \cdot 32 \, {\rm atmos.}, \\ \frac{1}{2} \rho \, V^2 = 25 \cdot 0, & V = 70 \cdot 5 \, {\rm ft./sec.} \end{array}$

 $R = 2 \cdot 19 \times 10^{6},$ $\frac{1}{2}
ho V^2 = 41 \cdot 6,$

P		$6 \cdot 5 a$	itmos.,
V	==:	$66 \cdot 7$	ft./sec.

α deg.	C_L	C_{D}	C _m	α deg.	C_L	C_{D}	C _m
-2.9_{5}	0.828	0.170	-0.230.	-2.8_{5}	0.813	0.166	-0.225
$\left. + \begin{array}{c} 0 \cdot 0_5 \\ 3 \cdot 2 \end{array} \right $	$1 \cdot 054 \\ 1 \cdot 277$	$\begin{array}{c} 0\cdot 194 \\ 0\cdot 224 \end{array}$	$-0.233 \\ -0.234$	$+ \begin{array}{c} 0 \cdot 2_5 \\ 3 \cdot 4 \end{array}$	$\frac{1\cdot042}{1\cdot268}$	$0.196 \\ 0.228$	-0.229 -0.232
$6 \cdot 3_5$ $9 \cdot 4_5$	1.510 1.714	$0.257 \\ 0.298$	-0.237 -0.239	$6 \cdot 5_5$ $9 \cdot 6_r$	$1 \cdot 471 \\ 1 \cdot 684$	$0.264 \\ 0.303$	-0.233 -0.234
$12 \cdot 4_5$	1.900	0.342	-0.241	12.7 14.8	1.892 2.003	0.345 0.380	-0.235 -0.237
14.6 15.5_5	2.025 2.095	0.373	-0.241 -0.242	14.8 16.8_5	2.003 2.132	$0.000 \\ 0.413 \\ 0.407$	-0.239
$16 \cdot 5_5$ $17 \cdot 8_5$	$2 \cdot 155 \\ 1 \cdot 670$	$\begin{array}{c} 0\cdot 353 \\ 0\cdot 419 \end{array}$	-0.246 -0.224	$17 \cdot 8_5$ $19 \cdot 1_5$	2.193 1.680	0.427 0.453	$\begin{vmatrix} -0.241 \\ -0.229 \end{vmatrix}$
$20 \cdot 0_5$ $16 \cdot 7_5*$	$1 \cdot 540 \\ 1 \cdot 770$	$0.458 \\ 0.402$	$-0.226 \\ -0.228$	$20 \cdot 2_5$ $18 \cdot 0_5^*$	$1.618 \\ 1.758$	$0\cdot478$ $0\cdot435$	$\begin{vmatrix} -0.231 \\ -0.230 \end{vmatrix}$

* Decreasing incidence.

TABLE 16 (contd.)

$R = 3$ $\frac{1}{2}\rho V^2 = 6$	$5.70 imes10^{6},$ 5.7,	$P = 14 \cdot \\ V = 62 \cdot $	6 atmos., 4 ft./sec.	$R = 4$ $\frac{1}{2}\rho V^2 = 66$	$0.68 imes 10^{6}$, $3\!\cdot\!0$,	$P = 24 \cdot V = 49 \cdot V$	0 atmos., 0 ft./sec.
α deg.	C _L	Съ	C_m	α deg.	C _L	Cp	
$\begin{array}{c} - & 2 \cdot 6 \\ + & 0 \cdot 5_5 \\ & 3 \cdot 7 \\ & 6 \cdot 9 \\ 10 \cdot 0_5 \\ 13 \cdot 1_5 \\ 15 \cdot 2_5 \\ 17 \cdot 3 \\ 18 \cdot 3 \\ 19 \cdot 4 \\ 20 \cdot 6 \\ 21 \cdot 7_5 \\ 19 \cdot 5^* \end{array}$	$\begin{array}{c} 0.817\\ 1.046\\ 1.284\\ 1.496\\ 1.700\\ 1.905\\ 2.031\\ 2.161\\ 2.237\\ 2.284\\ 1.674\\ 1.619\\ 1.751\end{array}$	$\begin{array}{c} 0.170\\ 0.197\\ 0.226\\ 0.262\\ 0.301\\ 0.346\\ 0.377\\ 0.414\\ 0.431\\ 0.447\\ 0.494\\ 0.518\\ 0.468\end{array}$	$\begin{array}{c} -0.230\\ -0.231\\ -0.234\\ -0.234\\ -0.235\\ -0.237\\ -0.237\\ -0.237\\ -0.231\\ -0.243\\ -0.244\\ -0.244\\ -0.244\\ -0.246\\ -0.240\end{array}$	$\begin{array}{r} - & 2 \cdot 5_5 \\ + & 0 \cdot 5 \\ & 3 \cdot 7 \\ & 6 \cdot 9 \\ 10 \cdot 0_5 \\ 13 \cdot 1_5 \\ 15 \cdot 3 \\ 17 \cdot 3 \\ 18 \cdot 3 \\ 19 \cdot 4 \\ 20 \cdot 6_5 \\ 21 \cdot 7_5 \\ 19 \cdot 5 * \end{array}$	$\begin{array}{c} 0.820\\ 1.052\\ 1.272\\ 1.482\\ 1.687\\ 1.903\\ 2.030\\ 2.165\\ 2.225\\ 2.300\\ 1.660\\ 1.591\\ 1.740\\ \end{array}$	$\begin{array}{c} 0.169 \\ 0.196 \\ 0.225 \\ 0.258 \\ 0.297 \\ 0.344 \\ 0.371 \\ 0.411 \\ 0.428 \\ 0.444 \\ 0.496 \\ 0.521_5 \\ 0.465 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

* Decreasing incidence.

¢

.

(94981) Wt. 14/806 K.5 7/52 Hw.

PRINTED IN GREAT BRITAIN

Publications of the Aeronautical Research Council

ANNUAL TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL (BOUND VOLUMES)-

1934-35 Vol. I. Aerodynamics. Out of print.

Vol. II. Seaplanes, Structures, Engines, Materials, etc. 40s. (40s. 8d.)

1935-36 Vol. I. Aerodynamics. 30s. (30s. 7d.) Vol. II. Structures, Flutter, Engines, Seaplanes, etc. 30s. (30s. 7d.)

1936 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 405. (405. 9d.)

Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 501. (501. 10d.)

1937 Vol. I. Aerodynamics General, Performance, Airscrews, Flutter and Spinning. 40s. (40s. 10d.)

Vol. II. Stability and Control, Structures, Seaplanes, Engines, etc. 60s. (61s.)

- 1938 Vol. I. Aerodynamics General, Performance, Airscrews. 505. (515.)
 - Vol. II. Stability and Control, Flutter, Structures, Seaplanes, Wind Tunnels, Materials. 30s. (30s. 9d.)
- 1939 Vol. I. Aerodynamics General, Performance, Airscrews, Engines. 50s. (50s. 11d.) Vol. II. Stability and Control, Flutter and Vibration, Instruments, Structures, Seaplanes, etc. 63s. (64s. 2d.)

1940 Aero and Hydrodynamics, Aerofoils, Airscrews, Engines, Flutter, Icing, Stability and Control, Structures, and a miscellaneous section. 50s. (51s.)

Certain other reports proper to the 1940 volume will subsequently be included in a separate volume.

ANNUAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

	1933-34	15. 6d. (15. 8d.)	
	1934-35	1s. 6d. (1s. 8d.)	
April	1, 1935 to	December 31, 1936. 4s. (4s. 4d.)	
	1937	2s. (2s. 2d.)	
	1938	1s. 6d. (1s. 8d.)	
	1939-48	3s. (3s. 2d.)	

INDEX TO ALL REPORTS AND MEMORANDA PUBLISHED IN THE ANNUAL TECHNICAL REPORTS, AND SEPARATELY-

April, 1950

R. & M. No. 2600. 25. 6d. (25. 71/2d.)

INDEXES TO THE TECHNICAL REPORTS OF THE AERONAUTICAL RESEARCH COUNCIL-

R. & M. No. 1850.	IS. 3d. (IS. 4½d.)
R. & M. No. 1950.	IS. (IS. $1\frac{1}{2}d$.)
R. & M. No. 2050.	15. (15. 1½d.)
R. & M. No. 2150.	1s. 3d. (1s. 4 ¹ / ₂ d.)
R. & M. No. 2250.	15. 3d. (15. $4\frac{1}{2}d$.)
	R. & M. No. 1850. R. & M. No. 1950. R. & M. No. 2050. R. & M. No. 2150. R. & M. No. 2250.

Prices in brackets include postage.

Obtainable from

HER MAJESTY'S STATIONERY OFFICE

York House, Kingsway, LONDON, W.C.2 P.O. Box 569, LONDON, S.E.1 13a Castle Street, EDINBURGH, 2 39 King Street, MANCHESTER, 2 2 Edmund Street, BIRMINGHAM, 3 423 Oxford Street, LONDON, W.C.2 424 Oxford Street, LONDON, W.C.2 425 Oxford Street, LONDON, W.C.2 426 Oxford Street, BIRMINGHAM, 3 427 Oxford Street, BELFAST 423 Oxford Street, LONDON, W.1

or through any bookseller.

S.O. Code No. 23-2584