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Summary 

The theoretical method presented here gives improved accuracy and economy of operation, because it is 
modelled on a very satisfactory method for steady subsonic flow and is programmed in an efficient machine 
code for the KDF9 computer. There is no restriction on planform, provided that any cranks are rounded 
to give smooth leading and trailing edges with continuous curvature. The method is programmed in two 
parts, illustrated by flow diagrams and an example. An appendix describes various operative schemes for 
obtaining generalised forces and chordwise loadings in phase and in quadrature with arbitrary wing 
motion in rigid or elastic modes. Restrictions on size of solution are discussed, and the usable range of 
chordwise and spanwise parameters should serve most needs. 

The method is applied to elliptical, rectangular and tapered swept wings of small and large aspect 
ratio at Mach numbers up to 0.8 and over a wide range of frequency parameter. Accuracy is established by 
direct comparison with steady flow, by independent desk calculation, by reverse-flow relationships, by 
asymptotic expansion for small frequency, and by studies of convergence. Results and computing times 
compare favourably with those of other collocation methods in current use. 
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1. Introduction 

Although the demand for a general linear theoretical treatment of oscillating lifting surfaces stems 
primarily from requirements for flutter calculations, the objective cannot be achieved without a reliable 
method to cover special cases of low-frequency stability derivatives and the loading on thin wings in steady 
flow. Moreover, a method that is satisfactory over the whole frequency spectrum is applicable to problems 
of time-dependent flow involving gust and response functions. 

The problem of calculating the aerodynamic load distribution on a wing in harmonic motion in a 
uniform subsonic stream has long been the subject of mathematical analysis and programming for 
automatic calculation. The present contribution in this field is based on linear theory and is intended to 
provide the improved accuracy and economy of operation that can be achieved respectively by modelling 
the theory on a very satisfactory method for steady flow, and by using an efficient machine code. 

The historical sequence leading to the present investigation has been an iterative one, in the course of 
which subsonic lifting-surface methods have been extended from zero to small frequency, from small to 
general frequency, and have then been found wanting in greater or lesser degree. The failings have arisen 
from imperfections in numerical techniques in steady flow, which have to some extent been remedied. The 
cycle has repeated itself more than once. 

As a first generation, we may consider Refs. 1 to 4. Multhopp's ~ theory, extended to low frequency in 
Ref. 2, was developed for general frequency by Acum 3 and Davies ~. Both Refs. 3 and 4 are based on the 
kernel function of the downwash integral due to Watkins et al.5; in practical operation they differ in that 
Ref. 3 includes collocation points along the centre line, while Ref. 4 has avoided this situation. It was 
discovered that all four methods suffer from an integration routine that gives inaccurate downwash over, 
say, the front quarter chord of the wing when the loading at the leading edge has the usual inverse-square 
root singularity. None of them could therefore be expected to have sufficient accuracy if the number of 
chordwise terms were increased above 2 or 3; this becomes more and more desirable as the frequency 
parameter grows. 

Downwash studies in steady flow then led to the low-frequency theory of Garner and Fox 6, and later 
to a corresponding improved method for general frequency by Long 7. Just as Ref. 6 superseded Ref. 2 
and became available as a program in Algol 60, so Ref. 7 became an improved version of Ref. 4 
re-programmed in Fortran IV. The innovation in this second generation was an additional parameter to 
control the spanwise integration following the chordwise integration of the downwash integral. While 
these methods are in current use and give desirable improvement in accuracy, which is sufficient for many 
purposes, some limitations persist. Unfavourable Col~ditions arise when particularly large numbers of 
chordwise terms are needed; convergence with respect to the spanwise integration parameter is then 
markedly slower, especially for wings of high aspect ratio typical of many civil aircraft. Although Ref. 6 is 
restricted to at most four chordwise terms, Ref. 7 is not limited in this way; nevertheless, converged 
results for very high frequency or high-order chordwise bending would require many more chordwise 
terms and consequent downwash points so near the leading edge as to demand excessive spanwise 
integration points. 

The sequel in steady flow is reassuring. Zandbergen et al. 8 and also Hewitt and Kellaway 9 have de- 
veloped new and more efficient approaches to the evaluation of the downwash integral. Moreover, a joint 
investigation involving solutions by the methods of Refs. 6, 8 and 9 for selected planforms at uniform 
incidence has been published in Ref. 10. The best solutions by each of the three methods show excellent 
agreement, but there is sufficient evidence to discourage the extension of Ref. 6 to more than four chord- 
wise terms, while Refs. 8 and 9 should remain satisfactory for larger numbers. The present method for 
general frequency is an offspring of Refs. 3 and 8. The influence functions used by Acum and the spanwise 
integration routine of Zandbergen et  al. are combined. After some mathematical manipulation the 
resulting equations are programmed in KDF9 Usercode to determine generalised forces with arbitrary 
modes and load distributions at arbitrary sections for any choice of planform, subsonic Mach number 
and frequency parameter. 

The re-formulated equations give numerical results consistent with those of Ref. 8 in the limiting case of 
steady flow. The new program has been checked by hand calculation for an illustrative example for 



moderate ly  high Mach number  and frequency parameter .  Reverse-flow checks are applied, and compar i -  
son is made with several current theories for general frequency. The main applicat ions are to wings of low 
and moderate ly  high aspect ratio and cover a wide range of frequency parameter ,  convergence with 
respect to the number  or chordwise terms being studied in both cases. The method is well suited to deter- 
mine gust and response functions relating to the ae rodynamic  loading in t ime-dependent  flow. 

2. Formulation in Steady Flow 

In presenting the principles and basic equat ions of Ref. 8, it is necessary to change the notation. This 
will facilitate the use of Ref. 3 and avoid repetit ion of equations in the following Section 3. We take the 
origin at a reference point  on the centre line of the planfonn with x-axis horizontal  along the stream of 
uniform velocity U and density p, y-axis to s ta rboard  and z-axis vertically upwards.  The wing is of zero 
thickness and slightly displaced from the plane z = 0. The linearised boundary  condition on z = 0 
expresses the local upwash angle as 

w(x. y) i f  
- l(x', y ')K(x, y; x', y') dx' dy', (1) 

U 8n ...... (¢) 

where s is the semi-span of the wing, x~(q') and x,(q') with r/' = y'/s define its leading and trailing edges, l 
denotes lift per unit area as a fraction of the dynamic  pressure 2~pU 2 and the kernel function is given by 

K(x, y; x', y') = -@--)- ) - )g  1 + {(x - x') ff +fl2~y _ y,)2} , (2) 

where f12 = 1 - M 2 and M is the subsonic Mach number  of the stream. 
In choosing the s tandard form of I(x', y') it is supposed that v~(r/') and x,(q') are smooth  functions to give a 

' regular '  planform. Then we can write 

8 s  N 
t(x', y ' ) -  ~c(,F) Z rq(,f)'v.(4,'), (3) 

q = l  

where eft/') is the wing chord, the spanwise distributions Fo(r/') are to be determined,  

cos(q - 1)qS' + cos qqS' 
Wq(4") = sin ~b' 

(4) 

and the angular  chordwise parameter  ~b' is given by 

x' = x,(¢) + ½c(~')(1 - cos 4/). (5) 

With the substi tut ion of equat ions (3) to (5) the upwash integral in equat ion (1) can be written as 

w(x, y) 1 ~ f~ r~(¢)F~(x, ~; ~') 
U - f'K q--~l -1 (/'~ _ r/,) 2 dr/' (6) 

in terms of 'influence functions'  F~(x, r/; r/'), which are integrals with respect to ~b'. It follows from equat ion 
(2) that  the functions Fq are conveniently expressed in terms of the two non-dimensional  parameters  

x -  c(rt) , t ;  
(7) 



thus 

Fq(x, r/; r/') = ~-  1 + {(X _i ~g~5 + y2}£ Vq(~b') sin qS' dqS' (8)  

where X 0 = ½(1 - cos qS'). 
The integrand of equation (6) has a strong singularity at r/' -- t/, which has to be accounted for by taking 

the second-order principal value as derived by Mangler in Appendix I of Ref. 1. Furthermore, the log- 
arithmic singularity inherent in the integrand of equation (6) is removed by taking 

( fls l 2Eq(x, ~1)(~1 - it') z In In - q ' l .  P,(x. ~; ~') = F,(x. ~; ,() - ic(,t) I (9) 

where Eq(x, tl) is discussed later in Section 2. By means of equation (9), the upwash integral of equation (6) 
is rewritten as 

w(x,y)  1 N [FFq(q ' )P&,n;  l f l s ,2 (  r' }]  
U -2~a~=1 i ~ r l ' ) d t l ' + [ ~ ) I E q ( x ' t l ) J - ,  Fq( t l ' ) ln l t l -~ ' ld t l '  " (10) 

The above equations provide the basis of Mul thopp '¢  method and its subsequent developments for 
steady or oscillatory flow in Refs. 3, 6 and 8 for example. The solution of equation (10) for the spanwise 
distributions Fq(t/') due to a given wing displacement z(x, y) is achieved by collocation at specified upwash 
points x = xp~ and y = y~ on the wing planform. 

A basic difference between Ref. 8 and earlier methods for steady flow is that in the product 
Fq(r()Pq(x, r/; ~/') of equation (10) the two functions are treated separately. The accuracy of the numerical 
procedure for the first integral in equation (10) is improved by the construction ofa 'regularised' influence 
function Rq(x, r/; r/'), which may be represented by a higher-order polynomial than the loading Fq(r/'). 
The spanwise distribution is represented by the double Fourier series 

m + 1 sin/~0' sin/10r (11) 
r = i  1 

where t/' = - c o s  0'; the values Fqr = Fq(t / r  ) correspond to the stations 

t/r = - cos0~  = - c o s  , r = l(1)m, (12) 

and the integer m can be either even or odd. The regularised influence function Rq(x, t / ;  r/') is constructed 
according to equations (A(2) and A(3) of Ref. 8 and becomes 

Rq(x, tl ; tl') = sin O' { Pq(x' tl ; tl') - Pq(x' q ; ~) - (tl' - tl)P'q(x' ~l ; tl) } 
= (t/' -- r/~ , (13) 

p;(~,,~;,1) = L a,l' , , , . .  
and by equation (9) . (14) 

Pq(x, tl ; tl) = Fq(x, tl ; tl) 

The numerator in equation (13) is of order (t/' - t/) 2 in the neighbourhood of r/' = r/, so that the function 
Rq(x,r/;t/') is bounded and continuous and can be represented adequately as in equation A(4) of 
Ref. 8 by 

s n 0sin 4 Rq(x,q;~')  - A + 1 Z=l ~,=l 

where 



where 

~7~ / ,  
r/~ = -cos0~ = - c o s / A  + 1] 

A =  {a(m + 1 ) -  1} 

a = positive integer 

2 = I(1)A}. 

(16) 

By taking the parameter a sufficiently large, we can achieve any desired accuracy in the representation 
of Rq(X, r/;q') to be used in equation (13). When the integrals in equation (10) are transformed to the 
variable 0' with the substitution of Fq(r/') from equation (11) and Pq(X, q;q') from equations (13) and (15), 
a tractable form is obtained for w(x, y). 

In the present method, the number and position of the upwash points x = Xp~, y = y~ are restricted 
to the Nm values given by 

Xp~ : xt(~) + ½c(~){l - cos ~p} = x,~ +½c~(1 - cOS~p)~ 

J ~p = 2gp/(ZN + 1), p = I(1)N 
(17) 

and 

q~=y~/s= - c o s O ~ =  - c o s  v = l(1)m. (18) 

The integrals remaining in the upwash w(xp~, y~) are effected analytically with due regard to the principal 
value and are denoted here as coefficients i%~, p~, ~r~ r, r~r'* The algebraic formulae for the coefficients 
with 0 r, 0~ and 0~ defined according to equations (12), (16) and (18) are 

( -  1)' sin 0r sin (2~/a) / 
K~ = 2(m+ 1)(A + 1) (cos0a-cos0r )  0~:~ 0 r , (19) 

_ 1 0 x =  0 r , i . e . , 2 = a r  
2(A + 1) 

and 

P~r = 

O'vr : 

= 0  

sin 0,{1 - ( -1 )  ~+~} 
2(m + 1)(cos 0~ - cos 0r) 2 

(m + 1) 

4 sin 0~ 

sin0r{1 - ( - D  r+v } 

2(m + 1)(cos 0v - cos 0 r) 

0 r ¢ 0 ~  

0r = 0~ 

0r -¢ 0~/ ,  

Or=O~ 

(20) 

(21) 

zvr - sin 0r( ¼ cos 20v - ½ In 2) - ~ {p sin/~0~ sin 0v + cos V0~ cos 0v} sin #0 r (22) 
m + 1 u=2 ~2 ~ 1) " 

* These correspond to the four integrals defined in equations A(6)(a to d) of Ref. 8 after multiplication 
by the respective factors 

1 sin 0 r -½, -½ and the substitution 0 r for 0,. 
2a(m+ 1)' 2sin0~' 



The values of the coefficients P,,r, a,,,. and %~ are governed solely by the value m chosen for the collocation 
solution, whilst the values of x~a depend also on the value assigned to A through the integer a of equation 
(16). Formulation of w(xp,,, y,,) at the points given by equations (17) and (18) therefore provides a set of 
N m  linear equations in the unknown coefficients Fqr ; thus 

with 

w(xpv, yO iv U Z rqr~'~q(p, v, r) (23) 
q = l  r = l  

1 nq(p, v, r) = v, ,1)K~a } + Pq(p, v)p,,~ + P'q(p, v)a~ + v)z,,~ , (24) 

where the abbreviated notation (p, v, 2), (p, v) indicates that the function corresponds to the values 
(xov, t/v ; t/a), (xp~, t/~; t/d respectively. 

The major part of the computation for f~q(p, v, r) is in the evaluation of the regularised influence 
functions from equation (13) rewritten as 

Rq(p, v,,1) = sin oa {Pq(P' V'2) - Pq(p, v) - (tl~ - t/OP'q(P, V) } 

for q = I(1)N, p = I(1)N, v = l(1)m, 2 = I(1)A, 

(25) 

where by equation (9) 

fls) 2 2 } 
Pq(p, v,,1) = Fq(xp~,t/v;t/a) - ~ E~(p, v)(t/v - t/a) ln[~/~ - t/al 

Pq(p, v) Fq(xpv, t/,, ; rl,,) 

P'q(p, v) P'q(Xp~, t/v ; t/v), defined by equation (14) 

(26) 

For steady flow the required values of the influence functions Fq(xp~, t/,, ; t/a) are determined by equations 
(4) and (8) where in place of equation (7) 

X ( p ,  v, ,t) - Xpv - x l ( t / a )  _ Xpv - x t4]  
c(t/a) ca 

Y(v ,  .~) = ~slt/~ - t/al ca 
(27) 

The particular value Rq(p, v;2 = av) requires a special formula, since equation (25) is indeterminate 
when r& = t/v. 

The series development of Fq from equation (8) with fixed X and small Y is of the form 

Fq = Fq(X, Y= O) + {yZ In Y}{Eq(X)  + O(Y:)} + YZ{Dq(X) + O(y2)}, (28) 

where Eq(X) is equivalent to the quantity Eq(x, ~) introduced in equation (9). It follows from equations 
(4) and (8) that 

Fq(X, Y = 0) = ~ ~q(q~') sin ~b' dq~' (29) 



where X = 21(l - cos 05). We write 

Fq(X, Y = 0) = 2Lq(X) = 2105 + sin of], 

2 Fsin (q - 1) 0 " 

- ~ L  q Z I  + ,jqqqS], 

Differentiation with respect to X gives 

L'q(X) = 2 [cos (q - 1)05 + cos q 0 5 ] =  sin 05 

From the analysis in Appendix lII of Ref. 1, it is easily shown that 

q: t q~> 

4[cos ] Eq(X) = - L q ( X )  = q (q - 1)05 - (q - 1)cos q05 
,~ sTnbSi 2 7os  05) ' 

An algebraic formula for Dq(X) c a n  be deduced from equation A(18) of Ref. 8 to be 

Do(X) = q sin (q - 1)05 - (q - 1) sin q05 ~X 
X sin 05 + [qlq_ t - (q - 1)lq] 

n 1 + X - ~ L ; ( X ) +  Lq(X)[2 -I-In {8X(1 - X)}], 

where I o = 0, I~ = (~ - 0) and there is the recurrence relation 

q - I  
sin (q - 1)05, q >/2. l q  - -  (2 c o s  0 5 ) I q _  l + Iq 2 - 

(3o) 

(31) 

(32) 

(33) 

Substitution of equation (28) into equation (9) gives an expansion for Pq(x, r/;r/'); after differentiation 
with respect to i/' 

dF~(X. Y = 0) o r  
P'o(x, r/; r/') = J(r/ ')----~/-y ........ + )?~-; [{ V + 2Vln Y } E , ( X )  + 2YDq(X)] 

[ - f l s ]  2{(r/ _ , )  + 2(q - q')in I1/ - tl'l}Eq(X) + O(Y  3 In Y), (35) 
+ kc(~) j  

where by equation (7) for X 

OX x't(q') + Xc'(tl') (36) J(r/') . . . . . . . .  
0~' c(q') 

<;(p.  v) = L 0~ 2 J , . = , ~  

Ro( p, v, 2 = av) = ~ . . . .  2rqt p, v) sin 0~, 

where 

(34) 

in practice, Dq(X) has been calculated from the integral expression in equation (1.23) of Appendix 1 for 
general frequency: in the special case of steady flow (tt -~ 0) this can be manipulated to give equation (33). 

It can be deduced immediately from the limiting form of equation (13) as ~/' --+ r / that  



in terms of the differential coefficients x't(r/) and c'(r/'). Differentiation of equation (35) gives 

where, since 

P"tx , dFq(X, Y = O) d2Fq(X, Y = O) 
q, , t l ' t f)  = J'(tf) dX + {j(q,)}z dX 2 

( + [{3 + 2 In Y}Eq(X) + 2Dq(X)] 

- [ f ls]2{3 + 2 1 n i t / -  tl'I}Eq(X) + O(Y = In Y) 
Lc(~)J 

= I- 
L4¢)_1 + o(r), 

(37) 

it can be seen that the logarithmic singularities will cancel when ~/' ~ q. With substitutions x = xpv and 
~/' ~ r /=  t/v, equations (7) become 

X = Xp = ½(1 - cos ~bp)'[, (38) 

Y 0 J 
and equations (9), (31) and (35) reduce to 

Pq(p, v) = 2Lq(Xo) 1. 
¢ t Pq(p, v) 2Jp,,Lq(Xp)) 

(39) 

Similarly efluations (34), (36) and (37) reduce to give the required limiting form of equation (25) 

Rq(p, v, )c = av) = sin 0v JvvLq(Xp) + Jp~Lq(X v) + Dq(Xp) + Eq(Xp) In , 
~C~l L 

(40) 

where 

Jp~ - -  

J'e~ = 

x;v +cv%C; ; t 
xi'~ + Xvc'~ + 2JpvC 

Cv 

(41) 

The regularised influence functions Rq a r e  thus defined by equation (25) or (40), where Fq, Pq and its 
limiting value and derivative are given in equations (8) and (26); the formulation also includes the 
supplementary functions Lq(Xp) and its derivatives, Eq(p, v) - Eq(Xv), Oq(Xp), Jpv and J'pv from equations 
(30) to (33) and (38) to (41). 

We can now return to equations (19) to (.24) and relate the upwash angle to an arbitrary mode of 
deformation by means of 

(42) 
U 2 ~3x ' 

where zj(x, y) denotes an upward displacement of the wing. Equation (23) may then be rewritten as 

N f 8z~ 
Z f~(p, v, r)(r~,)j = - T x  (x~, YO, 

q = l  r = l  

(43) 



where the coefficients Oq(p, v, r) from equat ion (24) form a square matrix of order  mN. It remains to 
solve the linear s imultaneous equat ions for (Fq,)j and to substitute in equat ion (3) for the wing loading 

8s 
(Ir)J = ~ ~) "1= (Fqr)jvtJq((9) (44) 

at the sections in equat ion (12) where 

x = Xlr + ½Cr(1 -- COS ~), r = l(1)m. (45) 

In general, there are force modes z = zi(x, y) and force coefficients 

Qij - 2dD zil ~ dx dy, (46) 

where d and D are the arbi t rary reference length and area respectively and 

8s N COS ( q -  1)qb + cos qq~ 
=~ [Fq(r/)]j sin q5 (47) 

with spanwise distr ibutions [l-q(rl)~j in accord with equat ion (1l). With D = S and z i = zt = - d ,  for 
example,  equat ions (46) and (47) reduce to 

m 

rcA ~ (FI~)j sin ----r~z (48) 
O, j  = ~Cc = 2irn-+ 1)r 1 m + 1' 

where Ct, is the lift coefficient and A = (2s)2/S is the aspect ratio of the planform. Similarly, with 
Z i = Z 2 = - - X  

Q2j = -½C, ,  - 2(m + 1)d {(Flr)j(Xtr + ¼cr) - (F2r)j(¼c,) } sin r ~ _ _  (49) 
r=t m + l '  

where C,, is the nose-up pitching momen t  coefficient about  the axis x = 0 with arbi t rary reference length d. 
The requirement,  that the p lanfonn  is regular, is closely allied to equat ion (41) for J'p~. with its explicit 

dependence on the second derivatives xi',, and c~. It is necessary that  the p lanform should have cont inuous 
curvature  at the collocation sections; moreover ,  it is desirable to remove irregularities due to cranks 
wherever they occur (Section 4.l). Given a smooth  planform, the subsonic Mach number  and modes  
z i and z j, there are still the basic parameters  N, m and a to specify the collocation points and the terms 
in the loading and to ensure sufficient accuracy in equat ion (15); some guidance is found in Section 4.3. 
In Section 5.1 there is numerical  confirmat ion that  a solution of the preceding equations is consistent 
with results obta ined for steady flow in the original Ref. 8. Many  of these equations continue to apply 
in the formulat ion for general frequency that follows in Section 3, a l though the details are much more  
complicated.  

3. Extension to General Frequency 

For  lifting surfaces oscillating in simple harmonic  modes at an angular  frequency ~:~, linearized theory 
applies subject to the l imitations indicated in Section 2 and provided that the oscillations are of small 
ampli tude about  zero mean incidence or a steady state within the scope of Ref 8. As can be seen from 
equations (24) to (27) of Ref. 3, the integral equat ion relating the complex upwash w(x, y)e  i~t and the 
complex load distribution l(x', y') e i ' t  over the wing planform at time t has the same form as equat ion (1) 
but with an oscillatory kernel function K(x, y ; x', y') dependent  also upon ~ and M. As in the theory of 

10 



Ref. 3, it is convenient to take 

w(x, y) = exp { - igx/g}ff~(x, y) (50) 

and 

with 
l(x', y') = exp { - ffx/g}i(x, y) 

8s u 
i(x', y') -- ~c(~') ~ [rq(~')%(q~')~ 

q=l 

(51) 

where 7̀ = ogg/U in terms of the geometric mean chord ? and the real chordwise distributions ~Pq(q~') are 
given by equations (4) and (5). Again it is assumed that the spanwise distribution Fq(t/') is smooth over 
the wing span and can be represented by the interpolation polynomial of equation (11) with unknown 
coefficients F~r, these now being the complex values Fq(rb). Equations (51) with ,7 -- 0 give I(x', y') consistent 
with the load distribution for steady flow in equation (3). 

The integral equation of the upwash w(x, y) for general 7̀ reduces by means of equations (50) and (51) 
to an equation for the modified upwash 

~(x,y) 1 ~ f l Fq(tl,)Fq(x, tl;rl, ) 
e - 27z -1 ~ ~,~ d//' (52) q=l 

with 

2 e)  ,sin.Osin.O, 1 Fq(r/') - (m + 1),= 1 u=l 

where q ' =  - c o s  0' and qr = - c o s  {r=/(m + 1)}, r = l(1)m. The oscillatory influence functions Fq are 
defined as 

l f ] [  { if(x - x')} K(x, y; x,, y,)lepq((a,)sin qS, d4) ' Fq(x, r I ; rf) = --~ (y _ y,)2 exp (54) 

with the modified kernel function in the square brackets corresponding to the function defined by 
equations (68) to (72) of Ref. 3 and used in Appendix I. From the point of view of programming, it is 
convenient to express Fq as a function of the five non-dimensional parameters 

M, 7̀, , X and Y, 
C 

with the two non-dimensional coordinates defined by equation (7). The form of the function Fq in the 
neighbourhood of Y = 0 is shown by equation (126) of Ref. 3; its extension in Appendix I of the present 
Report is similar to the series developed in equation (28) for small Y, but with the functions Fq(X, Y = 0), 
Eq(X) and Dq(X) appropriate to the oscillatory problem. By equation (90) of Ref. 3, Fq(X, Y = 0) is 
independent of`7 and in fact identical to equation (30). By equation (127) of Ref. 3, 

Eq(X) = [-L~(X) + 2i#L'q(X) + fl2/~2Lq(X)] (55) 

in terms of the functions defined by equations (30) to (32) and with 

`7c(,1') 
/ z -  flz8- (56) 
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The function Dq(X) is the complicated sum of integrals in equation (I.23) which is also dependent upon 
and has to be computed numerically. 
Now we consider the integration for the modified upwash in equation (52). The resemblance between 

the form of the integral for ~(x, y) and that for the upwash w(x, y) in steady flow from equation (6) indicates 
that the procedures of Section 2 may be applied directly to the evaluation of the modified upwash for 
general frequency. It can be shown that a collocation solution for the oscillatory coefficients Fq~ leads to 
a set of Nm linear equations for ~(Xp~, y~), similar to equation (23) and with complex elements flq(p, v, r) 
now defined by equations (24) to (26) in terms of fq(Xpv, fly ; r/.~) from equation (54) and Eq(p, v) from 
equation (55) with the substitutions 

1( 
X = X v = ~  1 - c o s 2 N  + 11~ 

vc v 
= #~ - f12~ 

(57) 

consistent with the collocation points in equations (17) and (18). The limiting form of the regularized 
influence function 

or, [ 2, ,  = = sin O~ J'p,,L'q(Xp) + JpvLq(Xp) + De( p, v) + Eq(p, v ) I n -  
\c~ I c~ 

(58) 

is unchanged from equation (40), except that the quantities Dq(p, v) and Eq(p, v) denote their dependence 
on both chordwise and spanwise location of the upwash point through Xp and the local frequency 
parameter #~ from equations (57). 

The boundary condition and wing loading for arbitrary modes in equations (42) to (49) no longer 
apply when the flow is oscillatory. The modified upwash from equation (50) is obtained from the upward 
displacement mode zj(x, y) as 

iFflx, y) exp exp + (59j 
u . . . . . .  v - -  -- Y 3 L ~  

In place of equation (23), the complex set of equations to be solved for (Fq~)j is 

Y ~ ( p ,  v, r)( l ' ,~ b = (Gv)j  - w~(x.~, .vd 
q = 1 r =  1 U (60) 

where ~q(p, v,r) is still formulated from equation (24), p = I(1)N and v = l(l)m. Hence the complex 
loading fronl equations (51} is obtainable at each collocation section as 

(lr)i 8 S e x p /  if, x}  ~ . . . . . .  (Fq~)jUdql~b), {61) 
7"CC 'r  (; q 1 

where x and ch are related by equation (45). The complete distribution lj follows by writing c(r/) for c r 
and replacing (Fqr}j by [Fq(r/)]~ in accord with equation (11). The generalised force coefficients arc then 
defined as before by the surface integral (46), which after chordwise integration becomes 

2 s 2 ~ f  ' Q~i = ~D [Fq(rl)]iKiq dq (62) 
q = l  -1  
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with 

= - ~ exp udq(05) sin 05 d05. 
C 

(63) 

For the simple modes z~ considered in equations (48) and (49), the integrals K~q are expressible in terms 
of Bessel functions as indicated in equations (149) and (150) of Ref. 3. In practice, however, equation (63) 
is evaluated by numerical integration. The final spanwise integration in equation (62) is accomplished 
by application of the interpolation polynomial (11) to the product Fqglq, which presupposes that giq 
can be represented by a polynomial in r/of order less than m. It is then sufficient to calculate 

2s2 ~ 
Q i j  - -  D(m + 1) (Fqr)j (Kq,)i sin 0~, 

q=l  r = l  
(64) 

where (Kqr)i denotes the value of Kiq at the section ~/= - c o s  0 r defined in equation (12). Table II.4a of 
Appendix II shows how provision is made to output (Kq~)i, if required. 

The summations with respect to r in equations (60) and (64) can be roughly halved in length as soon 
as it is known whether the spanwise loading is symmetrical or antisymmetrical and whether m, the 
number of collocation sections from tip to tip, is even or odd. The major part of the calculation lies in 
evaluating the elements £)q(p, v, r) of the aerodynamic influence matrix, and the success of the computer 
program depends in large measure on the efficient handling of this process in KDF9 Usercode. There 
are particular quantities 2in t and ~c that are set to optimise the calculation of the complicated function 
Dq(p, v) required in equation (58) and derived in Appendix I. There are, moreover, the variable parameters 

and e that limit the smallness of interval in spanwise integration and control the tolerance in accuracy 
(Appendix II). It is remarkable that the computation time for general frequency is less than twice that 
for steady flow, unless the frequency parameter is very large (say, ~ > 9fl2). 

4. Numerical and Program Data for KDF9 

The preceding formulation has presupposed than the planform is smooth apart from the possibility 
of a pointed or steamwiSe tip. Elsewhere on the planform, discontinuities in slope require the artificial 
rounding discussed in Section 4.1. The modes of oscillation are chosen and defined according to Section 
4.2. Section 4.3 gives recommended values of the other parameters needed to specify the basic calculation. 
Solution by collocation can then proceed. 

As described in Appendix II and illustrated in Appendix III, the method has been programmed in 
KDF9 Usercode and the calculation can be run on a KDF9 computer in one or two stages. A brief 
account of Programs I and II and their various uses is given in Section 4.4. 

4.1. Planform Data 

The derivation of the matrix of ordinary linear simultaneous equations (23) assumes that the leading 
edge xt(~) and chord cffl) are twice differentiable. In practice, planforms with sweepback or taper have 
discontinuities in slope at the centre section, and likewise at non-central sections if there are cranks 
or non-streamwise tips. Under such conditions some artificial rounding of the planform becomes 
necessary. 

We consider first a straight-tapered swept wing with streamwise tips. In an arbitrary central region 
It/[ < r/i a the true leading edge and chord are replaced by 

2h(rl) = XlR + "f(2)[xl(rhR) -- xm] l (65) 

c(rl) = CR + f()-)[C(rhR) -- CR] J 

where 0 ~ 2 = I~I/~R ~< 1. Of the three shapes of rounding compared in Ref. 10, we choose from Refs. 8 
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and 9 respectively 

f (2)  = f~(2) = ½ + 2 2 _ ½2 3 ~. 

. / ' (`1) 5 15 2 J2(`1) = 16 + v~`1 - ~`1 '*  + ~ ` 1 6  
(66) 

The polynomial./ '1(2) is that  of the lowest order to achieve continuity in xi'(r/) and c"(~l). The even poly- 
nomial./;(`1) gives continuity in the third derivative at Iql = rha and in all derivatives at t/ = 0. The equat ion 
(65) for c(t/) is conveniently written in the form of an increment  

C(t/)  = [C( t ] ) ] t ru  e q-  g( `1)  [C(t]iR) - -  CR] , (67) 

where g(2) = 0 if 1̀ ~> 1 and from the respective equations (66) when 2 ~< 1 either 

g(`1)  : g l ( ` 1 )  = ./`1(`1) - -  `1 = ½(1 - `1)3 (68) 

or 

g(`1) = g2(`1) = f2(`1) - ,t = t~(1 - 2)4(5 + 42 + `12). (69) 

The rounded leading edge is given by a corresponding increment  

x,(~)  = [ x , ( r / ) L . e  + g(`1)[x,(~/,~) - -  x,R]. (70) 

Provision has been made to treat four classes of  wing denoted by indicators 

wing = 1 s t ra ight- tapered swept wing with streamwise tips, 
wing = 2 straight-edged planform with extra non-central  crank at Ir/I = r/K, 
wing = 3 straight-edged planform with cranks at I~/I = 0, r]a and ~/B, 
wing = 4 planform with leading edge and chord and their first two derivatives specified numerically. 

A rectangular  wing is treated as a special case of wing = 1, as in equat ions (67) to (70); a l though neither 
has any influence, it is necessary to specify the extent of rounding rhR and shape of rounding,  round = 1 
or round = 2 from the appropr ia te  equat ion (68) or (69). In the case wing = 2, equat ion (67) is replaced by 

C(~)  = [ C ( ~ ) ] t r u e  "Jr- (CK - -  C R ) I ~ i R g ( ` 1 R ) / ~ K ,  (71) 

where c K and Cg are the true crank chord and root  chord respectively and `in = I~l/t/,g. To equat ion (71) 
is added an increment due to rounding the non-central  crank over the region of arbi t rary extent 
It/ - t/KI ~< r/~K, SO that  for r/ /> 0 

eK - ~ .  1~c~ - CK CK -- C. t 
¢(- t / )  = ¢(t/) = [c(t/)],,.o + ~ "~g(`1~) + ~ / i  -- ~ t/~ qa~{g(`1K) + g(`1-K)}, (72) 

where `1K = It/ -- ~/Kl/rhK and the last term with 2_~ = It/ + t/Kl/tlit< caters for the possibility that  the 
region Ii/ - t/x ] ~< t/~K may extend beyond the root. Similarly in the case wing = 3, the rounded wing 
chord is given by 

~ - e .  !Fe~ - ~a 

l ~ c r - c B  c/~-ca] 
+ 5L i  - ~ . .  ~Jn'"g(`1")' 

ca|-I rhA{g(2a) + g(2-a)} CA 

J 

(73) 

14 



where c R, CA, C B are the true chords at tl = 0, I']A , ~B, 2A = I / / / -  ~]A[/~iA, 2 - A  = ]rl + ~AI/~iA, 
2B = [rl - ttBl/tli~, rhA and r/iB (~< t/B) are arbitrary, g(2) = 0 if 2 ~> 1 and equations (68) and (69) offer a 
choice of function g(2). Again there is a corresponding equation for x~(-q) = x~(q). The quantities thg, 
rhK, rhA and q~B should normally be of the same order as the spacing between consecutive collocation 
sections. On the other hand, the two roundings at t/A and tln might be superposed to simulate a curved 

tip. 
When wing = 1, 2 or 3, it is sufficient to define the planform by numerical values of 

wing, round, s, XlR , CR, tliR, XIT, C T 

and intermediate data for each non-central crank, e.g., 

~K, XIK, CK, l~iK' 

However, wing = 4 caters for planforms with curved edges or with shapes of rounding other than 
round = 1 or 2. Then every element of planform data to be used in the calculation is input numerically 
as set out in Table II.2 of Appendix II. The indicator round = 0 implies that the rounding, if any, is 
different from that of equation (68) or (69). 

The origin of coordinates is chosen on the centre line, such that the y-axis becomes the pitching axis. 
The reference length d is taken as unity and determines the linear scale. The arbitrary reference area D 
must be specified. The geometric mean chord g and associated frequency parameter ~o~/U are required, 
but the aerodynamic mean chord g and frequency parameter o)~/U may replace these without affecting 
the calculation. The aspect ratio A is not input, but it would normally appear in the descriptive title. 

4.2. Mode Data 

The mode data fulfil the dual r61e of defining the complex upwash 

and the generalised force coefficient 

(74) 

f s fZ  Qi - 3 - s  zil(x' y) dx  dy, (75) 

where zi/d = - Z~ is the force mode. The oscillatory motion is expressed in terms of a linear combination 
of modes as an upward deflection 

J 

z(x, y) = - d ~" b Z j ( x / d ,  y/s). (76) 
j = l  

There are corresponding expressions for the non-dimensional loading 

J 

l(x, y) = ~ b~lj(x, y) (77) 
j = l  

J 

Qi = ~ bjQij, (78) 
j = l  

and the force coefficients 
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where 

=s 1:;i(: 
Qij ~ f -  1 Zi(x/d, q)Is(x, rls) dx dq. (79) 

The basic modes Zj fall into four categories according to their spanwise symmetry or antisymmetry 
and their analytical or numerical definition. The analytical 'standard modes'  are selected from 

Z = X~Y ~, (80) 

where X = x/d, Y = r/and the integers ~r (>/0) and z (/> 0) satisfy a + ½z ~< 4; thus, fifteen symmetrical 
and ten antisymmetrical standard modes are available as indicated in Table ILl of Appendix II. The 
numerical modes are defined by values of Zj and 8 Z / S X  at the collocation points where equation (74) 
is to be evaluated. The weighting Z i in equation (79) is determined for each collocation section as a 
polynomial in X of degree (2N - 1) consistent with the local values of both Zi and 8Zfl~X. 

Spanwise symmetry is denoted by sym = 1, antisymmetry by sym = - 1, and both together by sym = 0. 
Restrictions on the numbers of modes are discussed in Appendix II and are represented approximately 
in equations (II.5) to (II.7). If there are numerical modes when sym = 0, the parameter ( is used to indicate 
how many of these are symmetric. 

4.3. Choice of Parameters 

Given the rounded planform data and mode data outlined in Sections 4.1 and 4.2, it is necessary to 
specify the subsonic Mach number M and frequency parameter i; to complete the defnit ion of the aero- 
dynamic problem. The facility wing = 4 for planform data and the use of numerical modes together 
imply a prior choice of the parameters N, m and a, which should be as small as is compatible with the 
desired accuracy. 

The number of chordwise terms is dictated primarily by the behaviour of the complex upwash ~/U 
in equation (74). The higher the power a in equation (80) and the higher the frequency parameter, the 
larger N needs to be. It is reasonable to take 

2~ 
N > 2 + a + - - ,  (81) 

but low aspect ratio or high sweepback or high M may call for a further increase. The number of collocation 
sections is governed primarily by the aspect ratio, but the demand is probably increased in cases of high 
sweepback or high taper or an increase in the power z in equation (80). As a guide line we suggest 

m~>10 

4so R 
m > T + sec At 

(82) 

where A, is the sweepback of the trailing edge. The spanwise integration parameter must increase with 
the number of chordwise terms, lest the matrix elements Oq(p, v, r) in equation (24) should become 
inaccurate at the forward positions p = 1. If m is determined from the second inequality (82), then a 
satisfactory value of a is (2N - 4); in general we suggest 

a(m + 1) > (2N - 4)(1 + 2A). (83) 

This should provide roughly three-figure or + ½ per cent accuracy in the generalised forces. 
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There are four other parameters to define the calculation of the basic matrix f2q(p, v, r) in equation (23). 
As stated in Appendix II, the values for routine operation are 

nm, x = 2 ~ = 128, /~int = 3 1. (84) 

tol = 10 - '  = 10 -4, /c 0.5 

Refinement in accuracy is obtainable by taking ~ > 7 and e > 4, but only with a considerable penalty 
in computing time according to equation (II.9). 

4.4. Programs I and 1I 

The preparation of data for the first stage of the program is summarised in Table II.2 and illustrated 
in Appendix III. The indicators 'stop' and 'print' are introduced to control the end of the computation 
and the output. The various options are included in Table II.4. The larger the value of stop, the more the 
computation is curtailed : the larger the value of print, the greater the output. In the normal calculation 
with stop = print = 0, the matrix of complex generalised force coefficients Qij is evaluated and printed 
out together with the input data, the required storage from equations (II. 1) and (II.4), the solutions (Fqr) j 
and the running time. With stop = print = 1, the computation does not proceed beyond the solution~ 
(Fqr)j, while the matrix f~q(p, v, r) and right hand sides hp~ from equation (60) are printed as additional 

output. In matrix notation we write 

If2] [ r ]  = [h], (853 

where'[f2] is the square influence matrix of order mN with element ~-~q(p, V, r) in row {(p - 1)m + v} and 
column {(q - 1)m + r} and in corresponding order [F] and [h] are column matrices with respective 
elements Fqr and hpv. With stop = 2, print = 3, only the matrix is calculated, but it is output on paper 
tape as well as by line printer. Ten other combinations of stop and print appear in Table II.4, and the 
flow diagram in Figs. la and lb shows the various methods of operation and safeguards. 

The facility print = 3 provides the link between Program I and Program II which has two main uses. 
As explained in Table II.5, the output paper tape comprises definitive planform data and the matrix 
['2q(p, V, r) and forms input tape A, the major part of the data for Program II. With the option stop = 0, 
the force coefficients Qis are calculated for arbitrary modes; this offers a large saving in running time if 
additional or amended modes are necessary. With the option stop = 5, the computation proceeds further 
to obtain the complex loading at chordwise positions 

where the integer V is arbitrary. The quantity l(x, y) from equation (61) is evaluated at all sections/7 = /7r 
and, if desired, at T additional sections/7 =/7,, for which the values of x~(/7,) and c(/7,) must appear on the 
supplementary input tape B as listed in Table II.5. The functions (Kqr)i from equation (63) with/7 = /Tr 
serve to calculate not only Qij but the local lift and moment both of which are output when stop = 5. From 
equations (613 and (63) the local lift coefficient is 

r~ N 

(CLr)J = fo (Ir)j ½ sin q5 dq5 = __4s ~ (Kqr)l(Fqr)j ' (87) 
7ZCr q = 1 

where i = 1 denotes that z i = z~ = - d .  Similarly with 

Zi = - - C r  ( X  - -  Xlr} = Z2 \Or ] 

where 

Z 1 = - d  and z 2 = - x ,  

(88) 
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the local pitching moment coefficient about the leading edge is given by 

__(Cmr) j = 4s a (Kqr)2_  _ (Kqr) , (Fq,)j. 
7CCr q = 1 

(89) 

The general flow diagram is shown in Fig. 2. The running time is trivial by comparison with that of 
program I. 

There are slight complications when sym = 0, but the instructions in Appendix II should suffice. 
There are also greater restrictions on storage in Program I when sym = 0, because it is necessary to store 
the regularised influence functions Rq(p, v, 2). In cases outside the range of Table lI.6b and within the range 
of Table II.6a it would be necessary to run the symmetrical and antisymmetrical calculations separately. 

5. Calculated Examples 

The present method has been applied to the four planforms in Fig. 3, which shows their origins of 
coordinates and indicates the scope of the calculations. The numerical planform data are listed in Table 
1, where the representative length d(= 1) and area D are defined for each wing. 

The elliptical wing has been used for numerical checks in Section 5.1. and as the illustrative example in 
Appendix Ill. Like the elliptical wing, the tapered swept wing of aspect ratio 2 is selected from the examples 
in Ref. 11, where the results of several current methods are compared. Being a wing of high sweepback, 
it is a suitable case in which to study solutions with odd and even values of m, respectively with and without 
collocation points on the centre line (Section 5.2.). The low-aspect-ratio rectangular wing in Section 5.3. 
makes little demand on the parameter m, but it serves to study convergence with respect to N at moderate 
and at high frequency parameter. The final example in Section 5.4., a tapered swept wing of aspect ratio 6, 
has the most practical planform and provides a thorough examination of the present method at two Mach 
numbers and over a wide range of frequency. 

5.1. Elliptical Wing 

At the outset of the present investigation the method of Ref. 8 for steady flow was reformulated con- 
veniently for the extension to oscillatory conditions. The case of a circular wing at M = 0 with N = 
3(R = 2), m = 5, a = 2 in Table 2A of Ref. 8 furnished a good example on which to check the formulae by 
hand calculation, and the results were reproduced to all six decimal places. The computation involved 
non-zero values of the first and second derivatives of the planform geometry x~(r/) and c(r/), which provided 
the necessary generality. 

The main calculation to be completed on a desk machine was for an elliptical planform at Mach number 
M = 0-8 and frequency parameter 

LOS 

k = U = 1 (90) 

and of the same reduced aspect ratio tqA as the circle. As a computational aid there was, fortunately, an 
established program for the influence functions F~ from equation (54), which had already been developed 
in connection with Ref. 3. The greatest difficulty in arriving at the complex matrix equation (85) concerned 
the computation of R~(p, v, 2) from equation (58) in the special cases 2 = av. The limiting expression in 
steady flow from equations (38) to (41) is manageable enough, but for general frequency the quantity 
Dq(p, v) =_ Dq(X) in equation (I.23) of Appendix I requires special elaboration. 

After the desk calculation for N, m, a = 3, 5, 2 had been completed, a first version of the present program 
became available: this test case, used as the illustrative example in Appendix III, confirmed numerical 
accuracy to the fourth decimal place, the small discrepancies being accepted in view of the large computing 
effort in evaluating Dq(p, v) to improved accuracy by hand. 
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With reference to equations (81) to (83), it is reasonable to take N = 4, m = 11, a = 6 for simple modes 
of oscillation; instead of (6, e) = (7, 4) as in equation (84), the extra accuracy with (6, e) = (8, 6) is used in 
the solution quoted in Table 2. The force coefficients 

Qi~ = Q'ij + ikQ'[~ (91) 

for symmetric modes Z = 1, X ,  X 2, y2 and antisymmetric modes Z = Y, XYagree with those of Ref. 11, 
to the order of accuracy, 1 or 2 per cent, revealed by those comparisons. 

Since the planform has streamwise symmetry, we may apply the reverse-flow theorem as given by the 
identity in equation (19) of Ref. 12. Thus, from equations (32) of Ref. 12, we have the identity 

Q12 q- Q21 -'[- = 0 (92) 

without the term in CR because the origin at the centre of the ellipse occurs in the transverse plane of 
symmetry. Similarly there is the identity 

i 
Q23 q- Q32 d- ~(Q13 -1- 2022) = 0, (93) 

Where the modes I, 2 and 3 correspond to Z = 1, X and X 2 respectively. With the aid of equation (91) the 
real and imaginary parts of equations (92) and (93) give 

Q;2 + Q i l  - 0 ;1  = 0 ] 

Q'~2 + Q;~ + k-2(2 i~  = 0 

Q;a q- Q;2 Q13 - 2(2;2 = 0 

O~3 -t- Q;2 + k-2(Q'13 -[- 2Q'zz) = 0 

(94) 

The solutions in Table 2 with k = 1 give respective left hand sides 0.0002, 0-0004, 0.0004 and 0.0006, 
which are consistent with results correct to the third decimal place. The left hand sides of equations (94) 
have also been calculated for the other solutions in Ref. 11, and the next best set of values is 0.0000, 0.0021, 
0-0009 and 0.0048 as found from Ref. 13; all the others show errors in the second decimal, possibly due to 
taking only three chordwise terms. The root-mean-square error between the 32 force coefficients in Table 
2a and the corresponding values from Ref. 13 is 0.0062, while for the antisymmetrical modes in Table 2b 
it is only 0.0004 ; with reference to the value of Q'; 1, the damping derivative in heave (or roll), the worst of 
the discrepancies is about ½ per cent and of no practical concern. 

5.2. Tapered Swept Wing (A = 2) 

As shown in Fig. 3, the planform has high leading-edge sweepback. The choice of artificial central 
rounding is therefore a matter of importance, and we have used equations (67), (68) and (70) with 

rhR= sin (~6) = 0-19509. 

The reference length d = s, area D = s 2 and origin at mid-root-chord are taken in Table 1 to be consistent 
with Ref. 11, so as to facilitate comparisons with other methods; for the same reason the Mach number is 
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fixed at M = 0.7806 (fl = 0.625) and the frequency parameter  

(OS (.O~" 
k -  U -  U - ~ =  1. (95) 

For  the simple rigid modes of  heaving and pitching, equations (81) to (83) suggest that it is reasonable to 
take N = 4, m = 14, a = 2. Most of the present calculations have been made with N = 3 to correspond to 
the original results for this wing in Ref. 3 and most of  those in Ref. 11. However, the calculated force 
coefficients Q~a(i,j = 1 and 2) in Table 3a include one set obtained with N = 4. 

The four solutions with N = 3 show the negligible effect of increasing (~, e) from (7, 4) to (8, 6) and of 
increasing a from 2 to 3. Moreover,  the increase in m from 14 to 15 barely affects Q'zi or  Qi'i in the third 
significant figure. Considering that this change in m produces full interspersion of collocation sections in 
the central region, we may fairly conclude that the artificial rounding is effective. By contrast, a problem of 
collocation error was encountered for the same planform at low frequency in Fig. 22 of Ref. 14 when the 
method of Ref. 6 was applied with insufficient rounding and therefore with excessive curvature of planform 
at the central collocation section. The procedures in Section 4.1. appear  to avoid this difficulty. 

The remaining solution with N = 4 shows much more effect of this parameter  than any of the others, 
changes of up to 4 per cent being found in Table 3a when N is increased from 3 to the recommended value 
4. Perhaps equation (81) is a little optimistic for such a high value of leading-edge sweep parameter  as 

[j- a tan A t = 2,77. 

Convergence with respect to N will be considered more fully for the remaining planforms in Sections 5.3. 
and 5.4. 

Table 3b shows comparisons  of the present results with those of Ref. 3 and others quoted in Ref. 11. 
Both Acum's  3 original calculations and those by Laschka 's  ~5 method* with N = 3 and m = 15 are in 
satisfactory agreement with corresponding results by the present method ;  the worst differences of about  
2 per cent are of the same order as the effect of increasing N from 3 to 4. The comparisons  with N - 4 
and m even [ >~ 14) do not show the method of Ref. 13 in such a favourable light as the previous discussion 
for the elliptical wing. The differences average above 4 per cent, and the worst discrepancies (in Q'~ 2 and 

93~" Q'2z) may be written as 0.0_. t2~ by comparison with 0.006Q'~ for the elliptical wing. The most likely 
explanation lies in the severe kink at the apex of the leading edge. Neverthless the results by Long 's  7 
method with N = 4 are reasonably close to the corresponding values by the present method in view of 
differences in assumed central rounding and the incomplete convergence with respect to N. Whilst an 
increase in Mach number  or frequency would aggraw~te the question of accuracy, none of the disparities in 
Table 3b is likely to discourage the use of the various methods in flutter calculations. 

5.3. Rectangular Wing (A - i-25) 

The reclangular wing is of such small aspect ratio A ~: 1.25 that m = 11 is sure to suffice. We can there- 
fore concentrate on the other parameters N, a, 6 and ~: at the moderate and high frequency parameters 
v = 1.5 and 6.0 in incompressible flow. The gcneralised forces in Table 4 correspond to the modes of 
heaving and pitching about  the leading edge. 

Consider first the parameters ~5 and ~: introduced in equation (84). Before the computer  program was 
optimised, lhc maximum number  of inlervals in the integration routine for the influence functions was 
often fixed al 2 '~ with 6 8 or 9; moreover the tolerance 10 ': was usually selected with ¢: : 6 or more. 
With the recommended values (6,~:) {7,4}, the influence matrix [f~] shows small inaccuracies in its 
elements, but the equations are so well-conditioned that there are virtually no discrepancies in the final 
calculation of generalised forces. Table 4 shows that at both frequencies the changes in QIi and Qili a r c  

insi~milicanl to the fourth decimal place when (~ is increased to 8 and then ~: is increased to 6. This sanac 
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negligible effect was found for the two previous wings and appears to be irrespective of Mach number  and 
frequency parameter.  The facility to vary (6, e) appears to have served its purpose by more than halving 

the running time as estimated in equation (II.9) of Appendix II. 
Equation (81) suggests that N = 4 and N = 7 should suffice when 9 = 1.5 and 6.0 respectively, and with 

m = 11 the respective values a = 2 and a = 3 or 4 are recommended in equation (83). The calculated 
generalised forces in Table 4 show slight changes in the fourth significant figure when a is increased from 
4 to 6 and N = 4. This is so small compared with the alarming effect of N when ~ = 6.0, that a = 4 
is retained in the study of convergence with respect to N. This aspect of the results is illustrated in Figs. 4 
and 5 by parabolic curves of pitching stiffness and damping against axis position, viz., 

(96) 

The curves for N = 3, 4, 5 and 6 become progressively closer until those for N = 6 and N = 7 would 
differ by no more than the thickness of a line. It is of passing interest that the threat of negative pitching 
damping, predicted in Fig. 5 with N ~< 5, is dispelled by the more accurate calculations. The particular 
derivatives Q22 and Q~2 for the quarter-chord pitching axis are plotted against N in Fig. 6. Whilst N = 4 
appears to be more than adequate for the lower frequency parameter ~ = 1.5, one needs to gd to N = 7 or 
above to obtain comparable accuracy when ~ = 6.0. 

A further illustration of convergence follows from reverse-flow checks similar to those in Section 5.1. 
Since the y-axis on the leading edge is no longer an axis of symmetry and is therefore displaced unit 
distance in the reverse flow, the first two of equations (94) now become 

Q12 + Q i l  - Qi~  - QI~ = 0 (97) 

and 

. . . . . .  Q'11 
Q12 + Q21 - QI1 + - ~ -  = 0. (98) 

The left hand sides are calculated from the present solutions in the following table. 

1.5 

6:0 

N a Eqn. (97) 

3 6 
4 6 
5 6 

0.0004 
0.0001 
0.0000 

4 4 0.1053 
5 4 0.0208 
6 4 0.0061 
7 4 0.0046 

Eqn. (98) 

0.0006 
0.0001 
0-0000 

0.0156 
0-0021 
0.0002 

-0.0001 

While the results are wholly satisfactory for ~ = 1-5, those for ~ = 6.0 show a convincing improvement as N 

increases. 
By application of the reverse-flow theorem, the present solutions have been used to obtain the lift 

and pitching moment  arising from an oscillating control surface, as recently reported by Drane and 
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Destuynder ~ 6. The range of frequency parameter  in the associated experiments was particularly large, and 
the corresponding theoretical calculations have accentuated the need to increase the number ofchordwise 
terms if convergence is to be maintained. It is with N > 4 that the facility to increase the parameter a 
becomes crucial to accuracy in the influence matrix, and more especially in the following Section 5.4. when 
the aspect ratio is no longer small. 

5.4. Tapered Swept Wing (A = 6) 

The fourth planform in Fig. 3 has been selected as being typical of designs for high subsonic cruise. In 
all the solutions to be considered, including those by the method of Ref. 7, the central rounding is defined 
by equations (67), (68) and (70) with r/~ R = 0.19509. The calculations for M = 0.4 and 0.8 cover the wide 
range of frequency parameter 0 < ~ ~< 4.345. The corresponding range of N from equation (81) is 4 ~< N ~< 
6, while equations (82) and (83) suggest m = 19 and 3 ~< a ~< 6. Most of the calculations use N, m, a = 
6, 15, 4, but the results in Tables 5, 6 and 7 include variations of each parameter. 

The convergence with respect to N has only been studied in the worst case with the largest values of 
M = 0-8 and ~ = 4.345. In Fig. 7, the cross derivatives Q'lZ, Q~I, Q;2 and Q~I are plotted against N 
(4 ~< N ~< 7). Although the presentation is less consistent than for the rectangular wing in Fig. 6, it suggests 
that accuracy to three significant figures has been approached, apart from the smallest coefficient Q't 2. The 
effect of increasing the spanwise integration parameter from a = 4 to a = 6 is also of order 0.01 and small 
enough to encourage confidence that the extreme combination of Mach number and frequency parameter 
can be handled satisfactorily. 

Figs. 8 to 10 concern the effect of frequency, which is expected to be large when the aspect ratio is large. 
The stiffness derivatives Q'l 1, Q'I z, Q~ 1 and Q22 for M = 0.8 in Fig. 8 all change sign in the range 0 < ~ < 5, 
but their behaviour in the upper part of the range is reasonably consistent with the trend set in the lower 
part. By contrast, still at M = 0.8, the corresponding curves of damping derivatives in Fig. 9 do not 
involve any change of sign, but have unexpected points ofinflexion near ~ = 3. The direct pitching damping 
Q22 has such a marked increase in slope in the region ? > 3, that the question of reliability is raised, 
although it would appear from the evidence in Table 6 that the effect is genuine. The trends with frequency 
parameter are intensified at the lower Mach number M = 0.4, as illustrated for Q;2 and Q~z in Fig. 10. 
The stiffness derivative shows the usual smallish compressibility effect at 9 = 0, but it changes sign at 
much smaller ~ when M = 0-4 and soon reaches negative values of much greater magnitude than the 
static value. The behaviour of the damping derivative in Fig. 10 can be made to appear quite logical. The 
initial slopes are known from equation (17) of Ref. 17, viz., 

/ 1 

~-v l :~o - 16A(Q'~JQ'i2):~° 

= 2.077 and 3.107 when i = j = 2 (99) 

for M = 0.4 and 0-8 respectively. These initial slopes, indicated by broken lines, are not maintained for 
long and, as is usual, the rates of change ofQ~ 2 with respect to "~ soon become relatively small. However, the 
required limit from piston theory, which becomes exact as 9 ~ oc, requires that 

Q22 =  Lf E, xo'l dxd' • c (100) 

From equation (100) and the definition of the planform in Table 1, it may be shown that 

(Q22)w oo 1.4717 - (lOt) 
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and 

(Q~2)~o = 2.4992 - 2.9434 x°_ + 
C 

(102) 

= 12.496 and 6.248 when Xo = 0 

for M = 0-4 and 0.8 respectively. A dramatic increase in 5~,22/0v is required when M 0-4; although 
much more gentle, the same trend is found necessary at M = 0-8. Without these explanations the double 
cross-over of the two curves in Fig. 10 might appear unrealistic. 

The influence of axis position on pitching damping is illustrated in the two remaining diagrams. In Fig. 
11, the curves of Q~2 from the imaginary part of equation (96) for M = 0.8 and selected values ~ = 0, 0.5, 
1.608 and 3.157 shown an initial shift in the axis position for minimum damping from Xo = 1.060 when 
is very small to above x o = 1.45~ when ~ > 1. The limit from equation (102), plotted as a broken curve, 
indicates what might be expected above ~ = 3-157. Indeed, the calculated minimum when 9 = 4-345, i.e., 
Q~2 = 0.674, is about as small as its theoretical value for this wing can be when M = 0.8. Fig. 12 shows a 
substantial reduction in the minimum when M = 0.4, though there is no danger of negative damping. 

The relationships in equations (32) of Ref. 12 have been used to obtain numerical values of Q'ij and Q'i} 
from solutions for the complex generalised forces ~?ij on the reversed planform with leading and trailing 
edges interchanged. For M = 0.4, two such sets of results are included in Table 5; thus we calculate the 
reverse-flow curve Q~2(Xo/O) of short dashes in Fig. 12 with N, m, a = 6, 15, 6 to compare with the full 
curve from the corresponding direct solution. While the two curves are not in serious disagreement, the 
difference between them suggests that convergence with respect to m may not be complete. Whereas for 
the tapered swept wing of lower aspect ratio in Table 3 there was only a small effect of changing m from 
15 to 14, the corresponding results for A = 6 in Table 5 show differences of the same order as those 
revealed by the reverse-flow check. The comparative exercise has therefore been repeated with m = 22 and 
23 and a reverse-flow check in the latter case. The discrepancies are significantly reduced and never exceed 
0.05Q'~ 1 as compared with 0.13Q'~ 1 with the two smaller values of m. While it is not possible to state with 
any certainty that even values of m are preferable on wings of high sweepback, there is a remarkable 
agreement in Table 5 between the direct 6, 22, 4 solution and reverse-flow result with N, m, a = 6, 23, 4. 

The final comparisons are between the present solutions and those by the method of Ref. 7 with m = 14, 
N = 6 and variation of the spanwise integration parameter, denoted by q in Ref. 7. There can be little 
doubt that the two methods would yield identical results if, respectively, a and q were increased indefinitely. 
Table 7 shows a tendency, which has also been noted from downwash studies in Fig. 3 of Ref. 18, that 
convergence with respect to both a and q involves a maximum in the error prior to eventual convergence. 
The result by the method of Ref. 7 with q = 1 is virtually what would be expected by Davies '4 method. On 
each derivative the result for q = 5 has overcorrected the initial integration error. As q increases to 9, the 
error begins to subside towards the present result, which is only slightly altered by the change from a = 6 to 
a = 10 and converges from the opposite direction; moreover, the q = 9 solution differs from the converged 
result by no more than the residual discrepancies in Table 5 from considerations of m and N. 

A fair conclusion from Fig. 3 of Ref. 18 is that the present method, developed from Ref. 8, and the method 
of Ref. 7, developed from Ref. 6, with q = 2a are likely to yield similar accuracy for unswept wings at any 
rate. However, the outstanding advantage of the present method lies in the economy of computation, as 
emphasized at the foot of Table 7. Although Ref. 7 is particularly rapid when q = 1, the running time of the 
present method only grows in proportion to a ~ over the usual range a ~< 8, in accord with equation (II.8) 
and as a result of the efficient use of machine code. 

6. Conclusions 

(1) A linear theoretical method is formulated for general subsonic Mach number and frequency and for 
planforms with smooth leading and trailing edges in arbitrary modes of deformation. Procedures are 
incorporated for treating wings with several cranks by selected artificial rounding (Section 4.1.); 
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alternatively the planform may be defined numerically by leading edge and chord data including their 
first and second derivatives. 

(2) The method is programmed in two parts, the first of which expresses the wing loading for each mode 
in terms of a set of complex numbers and provides a matrix ofgeneralised force coefficients. Program I has 
a facility for outputting the aerodynamic influence matrix on tape, which is input into Program II to obtain 
generalized forces for additional modes and, if required, the load distributions at arbitrary sections. 

(3) The program can be run for zero or very small frequency parameter, say ~ = 0.0001. Because it is 
based on a highly satisfactory method for steady flow and on the efficient KDF9 machine code, it is 
quicker and more accurate than the Algol program of Ref. 6 used previously. 

(4) The restrictions on size of solution are indicated in Table II.6a, and the usable range of parameters 
should serve most needs. The requirement to handle wings of high aspect ratio demands quite large 
numbers of spanwise terms (Section 4.33; moreover, the requirement to treat high values of the frequency 
parameter is shown to demand at least seven chordwise terms as compared with the four that are available 
in Ref. 6. 

(5) Accuracy has been established by direct comparison with the limiting case of Ref.. 8 when ~ = 0, by 
hand calculation, by reverse-flow relationships, by asymptotic expansion for small frequency, and by 
studies of convergence. Results have been compared with those of other collocation methods in current 
use. 

(6) Illustrative results for a tapered swept wing of aspect ratio 6 show larger frequency effects in the 
flutter range at low than at high subsonic Mach number. Because of its capability in the upper frequency 
range, the method is of considerable potential in relation to non-harmonic time-dependent flows where 
linear theory is applicable, in particular to the growth of lift as a wing enters a gust. 
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LIST OF SYMBOLS 

Factor controlling number of spanwise integration points 

Coefficients in equation (I.21) 

Aspect ratio of planform ; 2s/g 
Coefficient of downwash mode in equation (76) 

Local chord 

Geometric mean chord; S/2s 
c(r/) and its first two derivatives at r/ = q~ 

Lift coefficient;lift/(½pU2S) in equation (48) 

Local lift/(½pU2cr) at r/ = qr in equation (87) 

Nose-up pitching moment/(½p U2Sd) about y-axis in equation (49) 

Local pitching moment/(½p U2c~) about leading edge in equation (89) 

Representative length (usually s or g)_ 

Representative area (usually s 2 or S) 

Function in equation (33) or (I.23); also written as Dq(p, v) 
Function in equation (32) or (55) ; also written as Eo(P, v) 
Shape of artificial rounding; f1(2) or f2(2) in equations (66) 

Influence function in equation (8) or (I. 1) 

Artificial rounding function; g1(2) or g2(2) in equation (68) or (69) 

Contributions to kernel function in equation (I.1) and defined in Ref. 3 

Element of right hand side of equation (85); - ~jU 
or integer denoting force mode, e.g., lift (i = 1), pitching moment (i = 2) 

Alternative integrals in equations (I.21) and (I.23) 

Integer (~< J) denoting downwash mode, e.g,, heaving (j = 1), pitching (j = 2) 

Function in equation (36) and its derivative ; see also equations (41) 

Frequency parameter cod/U 
Kernel function in equation (2); see also equation (27) of Ref. 3 

Integrated chordwise loading in equations (63) and (64) 

Lift per unit area/(½pU 2) in equation (3) 

Natural logarithm (to base e) 

Modified complex loading in equations (51) 

Complex loading at section ~ = G in downwash mode j 

Chordwise integral with first and second derivatives L'q(X) and Lq(X) in equations (29) 
to (32) 

Number of collocation sections 

½m or ½(m + 1) according as m is even or odd 

Mach number of stream 

Maximum number of intervals in evaluating the integral Fq 

Number of chordwise functions or collocation points 

Integer I(1)N denoting chordwise positions x = xr, 

Functions in equations (I.7), (I.8), (I.9) 

Modified influence function in equation (9) also written as Pq(p, v, 2) 
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q 
q 

(2, 
Qq 

Q', j, Q'i'j 

r 

R 

&(x,  ~; ~') 

S 

S 

t 

T 

TI,Tz, T3 

U 

v , V  

w(x, y) 

X 

X ~ 

X o 

xt(~/) 

Xpv 

x,(rl) 

X 

X o , Xp 

Y 
yl 

Yv 

Y 

Z 

Z i , 2 j  

Z~, Zj 

Z n u m  

z.~, z ' .  

OPq/O~', ~2pq/~I~t2 in equations (35), (37) respectively 

Integer I(1)N denoting particular function ~Pq(~b') 

Factor in Ref. 7 (analogous to a) 

Force/pU2O in mode zi in equation (75) 

Generalised force coefficient in force mode i and downwash mode j 

Stiffness and damping coefficients; Qij = Q'i) + ikQi'~ 

Integer l(1)m denoting loading station r/ = ~/, 

Quantity in equation (II.2) 

Regularised influence function in equations (13) or (40) 
Semi-span of wing 

Area of planform 

Time 

X or (1 - X), whichever is the smaller 

Number of Sections r /=  q, 

Functions in equations (I.16), (I.17), (I.18) 

Velocity of stream 

Integers in equation (86) for chordwise loading positions 

Upwash velocity in equation (1); see also equation (59) 

Modified complex upwash in equation (50) 

Ordinate in streamwise direction (Fig. 3) 

Streamwise variable in downwash integral 

Location of pitching axis; usually x 0 = 0, but see equation (96) 

Ordinate of leading edge 

First and second derivatives of xt(rl) at ~/= r h 

Ordinate of collocation point in equation (17) 

Ordinate of trailing edge 

Influence function parameter in equation (7); otherwise x/d or x/c 

Chordwise variables ½(1 - cos ~b), ½(1 - cos ckp) 

Ordinate in standard direction (Fig. 3) 

Spanwise variable in downwash integral 

 ocationofco,,o  tionsec.on   cos(V l) 
Influence function parameter in equation (7); otherwise y/s 

Supplementary variable in equation (1.7) 

Ordinate in upward direction 

Modes z(x, y)corresponding to i , j  

Non-dimensional mode - z/d = Z(x/d, y/s), e.g., equation (80) 

Non-standard mode defined by numerical values of Zp~ and Z'p~ 

OZ 
Values of Z and ~ at collocation point (xp~, Y0 
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r.(n') 
(r.,)j 

6 

rl, r l' 

qi, ~liR 

rl, 

qt 

q~ 

0', O~ 

K 

Kr2 

2 

2, 2K 

~int 

A 

A* 

Al, A~, A~ 
/1, #~ 

12 

P 
Pv~. 

0"~ "C 

O'vr 

2 

Tvr 

%(4)') 
(2) 

f~(p, v, r) 

A , - A  

B 

Compressibility factor ; (1 - M 2)3 

Spanwise loading function in equations (3) and (11) 
Loading coefficient in mode j;  element of unknown column matrix in equation (85) 

Accuracy parameter given by nma x = 2 ~ 
Accuracy parameter given by tol = 10 -~ 
Number of symmetric modes Znum when sym = 0 
Spanwise ordinates y/s, y'/s 

Extent of artificial rounding, e.g., Iq[ ~< r/jR for central crank 

Loading station r /=  -cos (  r ~ l  ) 

Section r/(:~ r/v ) where loading is to be calculated 

Spanwise integration point where t /=  - cos  ~ 

Collocation section t /=  -cos (  V ~ l  ) 

Angular spanwise parameters cos- 1(_ tf), w / (m + 1) 

Parameter for subdividing chordwise integration (= ½) 

Coefficient in equation (19) 

Integer I(1)A in spanwise integration of downwash 

Artificial rounding parameter, I t / -  tlK[/tliK for crank at q = t/K 
Number of terms used in estimating convergence of spanwise integration (= 3) 

Number of spanwise integration points ; a(m + 1) - 1 

½A or ½(A + 1) according as A is even or odd 

Angles of sweepback of leading edge, midchord, trailing edge 
Local frequency parameters coc(rf)/(~ 2 U), o9c~/(~ 2 U) 

Integer l(1)m denoting collocation section r/ = ~/~ 

Frequency parameter og~/U 

Chordwise variable equivalent to X o 
Density of stream 
Coefficient in equation (20) 
Indices in equation (80) 
Parameters for running time in equations (II.8) and (II.9) 

Coefficient in equation (21) 
Word storage; E I or Eli in equations (II.1) or (II.3) 
Coefficient in equation (22) 
Angular chordwise parameters in equations (29), (5) 

2np/(2N + 1); values of ~b at collocation point 

Chordwise loading function in equation (4) 

Circular frequency of oscillation 
Element of aerodynamic influence matrix in equations (24) and (85) 

Subscripts denoting cranks at q = r/a, ~/= - ~/a (wing = 3) 

Subscript denoting crank at ~/= ~/B (wing = 3) 
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i 

J 
K , - K  

1 

P 

q 

p 

R 

t 

t 

T 

2 

v 

print 

round 

stop 

sym 

tol 

wing 

Subscript numerating force mode 

Subscript numerating downwash mode 

Subscripts denoting cranks at t/ = r/K , r /=  

Subscript denoting leading edge 

Subscript 

Subscript 

Subscript 

Subscript 

Subscript 

Subscript 

Subscript 

Subscript 

Subscript 

- ~/K (wing = 2) 

numerating chordwise collocation point 

numerating chordwise loading function 

numerating spanwise loading station r /=  r/r 

denoting root section or central crank 

denoting trailing edge 

denoting optional section q = r/f where load is calculated 
denoting tip section 

numerating spanwise integration point r/ =: r/2 

numerating spanwise collocation point 

Parameter to define output (Table II.4) 

Parameter to define artificial rounding (Table ll. 1) 

Parameter to define extent of calculation (Table II.4) 

Parameter to define spanwise symmetry (Tables II.1, II.2) 

Parameter (= 10 -'~) to regulate accuracy of calculation 

Parameter to specify type of planform (Tables ll.l, II.2) 
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APPENDIX I 

Evaluation of the Influence Functions and their Behaviour at Small Spanwise Distances 

By A. R. Curtis and W. E. A. Acum 

A convenient form for the influence function Fq is given in equation (114) of Ref. 3, namely 

Fq = I ~ FG1 + G2 + Ga + G4]fq(Zo) dXo, 
do 

where 

(I.1) 

fq(X0) = 1Xo:V(1 - Xo)-+[cos{q - 1)cos-l(1 - 2Xo) } + cos{q cos- '(1 - 2Xo)}] (I.2) 

and the functions G~, G2, G 3 and G 4 are  defined by equations (78)* to (82) of Ref. 3 and can readily be 
expressed in terms of 

X 0 = ½(1 - cos q~), M, ~, c(r/'), X and Y. 
C 

The quantities 

1 (G~ + G 2 + G 3 + G4)cosq~b d~b (I.3) 

are introduced, so that 

F~ =Fq_ 1 +Fq,  q =  1 ,2 ,3 , . . . .  (I.4) 

It is possible so to arrange the formulae that only single quadratures of non-singular integrands over 
finite ranges are necessary, and for such quadratures the method of Chebyshev integration due to Clenshaw 
and Curtis 19 was chosen, since it offered economy in the number of evaluations of integrands. However 
many of the integrals can be expressed in the form 

f; i = f (cos q~) cos rq5 d~b (I.5) 

and may be approximated accurately and economically by 

= nu=° f =  cos coS--,n (I.6) 

the dashes denoting the inclusion of a factor ½ for s = 0 and n, After some preliminary transformations, 

* The exponential in equation (78) of Ref. 3 should read exp(-iMY/fl), where Y = ~c(q')Y/fl& 
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G l 4- G 2 4- G 3 + G,~ is rewritten as P~ + /:'2 + P3, where 

P, = Y[K,(Y) + ½7ti{l,(Y) - L,(Y)}] (I.7) 

where Y = ~cffl')Y/(fie), K~ and 1~ denote Bessel functions and L 1 a Struve function, all in the notat ion of 
Ref. 20, 

o 
P2 = - -  ~2  (1 + z2)~ exp(ig~) dr (1.8) 

and 

P3 = L ( , ~ - 7  ~ - ~  - [~i( X ~2)½ -- exp[fl{.X --  M ( X  2 + (I.9) 

where .~ = ~c(r/')(X -- ~ + ~ cos O),/(fl?) and ro = {-~ - M( ~2  + ~2)~}/(fly). It is to be noted that  P1 
is independent  of .~ or (/5, and that P2 involves an integration. However ,  the double integration implied 
by equations (1.3) and (I.8) may be reduced to a single one by interchanging the order of integration, 
because P_, involves the wtriable 4) only in the limit of integration. It is desirable to collect all the integrands 
for which the quadra ture  formula (i.6) may not be applied, and also to arrange for the Chebyshev integra- 
tion to be performed s imultaneously on the real and imaginary parts of the contr ibut ion to F 0, as this will 
result in economy of computat ion.  

For the purpose of evaluating the limiting form of the regularised influence function in equat ion (58) it is 
necessary to know the behaviour  of F~ when Y is small and the parameters  M, ~, c(tf)/~ and X remain 
constant.  The expansion in equation (28) is used, where Fq(X, Y = 0) and Eq(X) are known from equations 
(30) to (32) and (55). It remains to formulate  D(X) ,  the coefficient o f  yZ. 

Since G~ and G 2 are independent  of X o, equat ion (I.1) may be written as 

fo  I I,] = Lq(I)(G 1 + G2) + (G3 + G 4 ) f ( X o ) d X o  {I. 10) 

where, consistent with equat ion (30), 



and ~ = 0.57721566 is Euler's constant. The remaining part of Dq is the coefficient of y2 in 

k (G3 + G,)fq(Xo)dXo = La(1)[G3 + G4]xo= ~ - Lq(Xo) [G a + G,] dX 0 

= T, + T2 + T3, (I.15) 

where 

and 

M(I_- ] 
/'1 = 1 - {(1 - X) 2 + yZ}~j exp { -i/~(1 - X + M[(1 - X) 2 + y2]+)} (I.16) 

- X  
i~flZLq(1)(~ exp { - i # [ v  + M(v z + y2)~]} dv 0.17) 

T2= M do 

f o I  Y2 i # M Y 2 ]  
Ta = Lq(X°) {(X - X - ~  + y2}~ + (X --X~o) z + y2- 

x exp {i#(X - X o - M[(X - Xo) z + y21t-)} dXo. 

The coefficient of y2 in T 1 

= ½Lq(1)[i 1 1 X) 2 

(I.18) 

i p ~ £ M ! I  exp {- i#(1  + M)(1 - X)} (I.19) 

from a direct Taylor expansion of equation (1.16). The contribution from equation (1.17) is obtained by 
expansion of the exponential and use of the result that the coefficient of yZ in the integral 

:~ - X  IV -1- M(V 2 -t- y2)~], d v  

is 

0 

½M In (2 - 2X) + ¼M 

rM 
1)(1 + M)r-l(1 - JO ' - l  

2(r 

(r = 0)} 
(r 1) . 

(r 2) 

The coefficient of y2 in T 2 is therefore 

(- i#) ' (1 +_ M)~-~I  - X) r - l ]  
½i#fleL¢(1)[ - i#(ln (2 - 2X) + ½} + ,--'2"2 (r - 1)(r - 1)! 

= ½#2fl2Lq(l)[ln(2- 2X) + ) + f~c'+m't-X'v- ' (e- '"-  l, dv]. (I.20) 

Although the term T 3 in equation (I.18) conveniently contains the factor y2, one cannot obtain the 
required coefficient of y2 by removing the factor and setting Y = 0. In order to extract the terms that 
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are 0(1) and O ( Y  2 In Y), it is necessary to split and rearrange the integration such that 

£ Ta = y2 {Lq(X - t)e'm + Lq(X + t)e -~"' - aq - bqt 2} 

[ 1  i#M ] 
x exp{-i/2M(t 2+ y2)}} ( tz + y2)} + t  2 + y~ dt 

+ y2 + b f ) [ { l  + i u m ( t  2 + y'9{-} 

× exp ~-ibtM(t 2 + y2).q 1 + ½(ilaM)2(tz + 2 dt 
- Y }](t2 _+_ y2)k 

+ y2 (aq + bqt2){1 - ';(i~tM)2(t z + y2)} ( tz + yz)k + y2I, 0.21) 

where f is the smaller of X and 1 - X, 

aq = 2Lq(X), bq = -#2Lq(X) - 2ilaL'q(X) + Lq(X), 

and 

I 1 i#M 1 L ~ ( X + t )  e x p { - i # [ t + M ( t  2 +  y2)~]} ( t2 + y 2 ) ~ + t  2 +  y~ dt 

o r  

j-, [ 1 i M_ ] 
l - x  L°(X - t)exp {i#[t - M(t z + y2)~*]} ( t2 + ye)g- + ~-2 _~_ y23 dt 

according as X ~< ½ or X > ½. In equation (1.21) all the integrands except the third are analytic at t = 0 
and may be evaluated with Y = 0. The third integration may be carried out formally for general Y and 
expanded in the form of equation (28) to give 

Fq(X, Y = O) = aq ? ], 

E q( X) = - b q - ½aql.tZ M 2 J (I,22) 

consistent with equations (30) and (55), and also the required term in y2. The contributions (i.13), (I.19), 
(I.20) and from T3/Y 2 in (I.21) are added to give 

[~ ( 1 ;~(1 - M) 1 
Dq(X)= Lq(1) exp{--i#(1 +M)(1  - X)} (1 -X) 2 i S X  -] 

+ s g  fl + ? X)} + - 1)dr ~zl + In {#(1 + m)(1 - v-~(e -i~ 
v O  

+ Lq(X + t) exp{-ibt(1 + M)t} + Lq(X - t) exp {i#(1 - M)t} 75 + t2 ] 

- (aq + bqt2)(1 + ½~2M2tZ)t-31 dt + aq{½1~2M 2 In (2t-) ½(1/2~2)} 

+ bq{ln (2t) - 1 + l#2M2t2} -}-- I,  (I.23) 
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where 

f -x [1 1 I= Lq(X+t) exp{-i/~(1 +M) t}  ~ +  t2 jd t  

o r  

-xLq(X- t)exp{i#(1-M)t} + t2 j dt 

according as X ~< ½ or X > ½. 
The three integrations occurring in equation (I.23) will need to be performed numerically ; in practice, 

a program was based on the method of Ref. 19. The first integrand, although analytic over the range, 
will be computed inaccurately near v = 0 due to cancellation, but the guarding figures inherent in a 
machine with a 39-bit word will more than compensate for such inaccuracies when only six or seven 
decimal places are required. In the second integrand, however, a severe cancellation will occur when 
the integrand is evaluated near t = 0, although again the integrand is analytic. The remedy here is to 
divide the range of integration (0, ~) into (0, ~:~) and (~ct, ~), where, as suggested in Appendix II, r; = 0.5 
gives satisfactory results. The standard integration deals with the second range, but for the first it is 
necessary to resort to term-by-term integration of the Taylor series. The integrand of I is finite at the 
upper limit of integration, but has infinite derivatives at that point; provided a lower limit of 128 integra- 
tion points is set (3 ~> 7), sufficient accuracy is obtained. 
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APPENDIX II 

Notes on Programs and Alternative Usage 

By P. S. Hampton 

The two programs have been written in KDF9 Usercode and, as such, are unique to an English Electric 
Leo-Marconi  KDF9 machine. 2~ The minimum use of peripheral equipment and the ability to calculate 
exact storage requirements allow greater efficiency of machine use in the time-sharing mode. All input 
and output routines are contained in English Electric library packages for KDF9 (e.g., Ref. 22), and the 
8-hole input data tape must be compatible with the code used in these routines. 

The respective flow diagrams for Programs I and II in Figs. 1 and 2 show alternative methods of 
operation depending on the planform and the required output. The four* types of planform, with or 
without artificial rounding of cranks, are defined by the parameters 'wing' and ' round'  in Table II.1 ; 
the identifier 'sym' indicates whether the modes of deformation are symmetrical only, antisymmetrical 
only or of both kinds. The format of input data for Program I is listed in Table II.2, where provision is 
made for arbitrary numerical input modes in addition to the optional standard modes included in Table 
lI. 1. Checks are performed on the correctness of the data in amount and format, and the storage allocation 
is checked to prevent failure at a later stage. Failures lead to store prints, allowing the course of the 
program to be checked; the relevant failure messages are collected in Table II.3. Two parameters 'stop' 
and 'print'  control the point at which Program I ends and the various output options (Table II.4a). 

The main body of Program I employs influence function and integration subroutines written for KDF9 
by Mr. A. R. Curtis. Entry parameters essential to the integration routine are as follows : 

tol = 10 -E, the tolerance ofaccuracy (~ ~> 4), 

nma x = 2 6, which limits the number of iterations if the tolerance has not been achieved (fi ~> 7), 

2~n t, the number of terms compared in the integration procedure with optimum value 3, 

~, a parameter for splitting the range of integration to deal with discontinuities ; the suggested 
value is 0.5. 

Having compiled the complex matrix f~ = ~q(p, v, r), the program demands the solution F = Fqr to 
the complex matrix equation [f~] [F] = [h] for right hand sides h = hpv corresponding to each input modej. 
This has necessitated the writing of routines to deal with matrices in the complex field, and these routines 
have proved to be a valuable addition to the library of routines for use on KDF9. 

Unless precluded by an instruction stop >~ 1 (Table II.4a), the final stage of Program I is the computation 
of complex generalized forces Qij corresponding to each input force mode Z r The numerical procedure 
of integration by quadrature varies in detail according as Zg is a standard mode defined by formula 
(Table II.l), or a numerical mode defined by Zp~ and the slopes Z'p~. at all collocation positions. The 
facility print = 3 (Table II.4a) for outputting definitive wing data and the matrix from Program I on 
paper tape enables generalized forces for standard and numerical modes to be calculated quickly by 
means of Program II without the need to re-calculate the matrix. When additional or amended modes 
are envisaged, this should prove a valuable asset with computer time at a premium. With stop = 5 
(Table II.4b), Program II goes on to calculate the load distribution and local lift and pitching moment 
at the sections 1//= t/r and, if required, at arbitrary sections r/t ; the format of input data is listed in Table II.5. 
The example in Appendix III illustrates the preparation of data tapes and the printed output in a com- 
putation involving both programs. 

The storage requirement 22 for the two programs is restricted to the capacity of the KDF9 computer, 
so that 22 ~< 29504 or 22 ~< 31456 according as the programs are run in the time-sharing or non-time- 

* A facility exists for a fifth type of planform (wing = 0), defined by a fifth degree spline fit and with 
provision for an elliptic tip. 
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sharing mode.  The  n u m b e r  of  words  of  store needed for a par t icular  compu ta t i on  depends  upon  the 
combina t ion  of  the pa ramete r s  (N, m, a) and the identifier sym. F o r  P r o g r a m  I when sym = 1 or sym = - 1, 
the s torage Z = Z~ is determined as 

X x = [8300 + 6nma x + ( l l N  + 3N 2) + (4m* + 3m 2) + 2Nm + (3A* + 2NA + mA) + 2N2R2], (II.1) 

where A = a(m + 1) - 1, m* and A* are defined in Table  11.2, and 

R = ½m 

= ~ m +  1) 

= ½(m - 1) 

for m even and  sym = _+ 1]  

for m odd and sym = 1 

for m odd and sym = - 1 

(II.2) 

There  is no difficulty with P r o g r a m  II, since smaller  s torage is required;  whether  sym = 1 or sym = - 1 

or - 2  (Table II.5) 

X = X.  = [Y'x - 2000] (II.3) 

is sufficient. The facility in P r o g r a m  I of  sym = 0, i.e., solutions sym = 1 followed by sym = - 1, requires 
addi t ional  storage. The  quant i ty  Z x f rom equat ion (II.1) with sym = 1 is increased by an a m o u n t  

N2mA for m even l 

N2(m - 1)A for m odd ]" 
(II.4) 

Thus,  there is the penal ty  of  an extra s torage requi rement  of  order  Namaa in P r o g r a m  I when sym = 0. 
A mino r  adjus tment  is made  if a = 1 with m odd and sym = 1 or 0; in such cases the te rm given as 2NA 
in equat ion (II.1) is replaced by 2N(m + 1). The  var ious  combina t ions  of  the pa ramete r s  (N, m, a) in 
Table  II .6a illustrate some possible computa t ions  which lie within the t ime-shar ing capaci ty  E~ ~< 29 504 
for P r o g r a m  I with sym = 1 and  nma x = 128 (6 = 7). When  sym = 0, the capaci ty  restricts the use of  
P r o g r a m  I to much  more  limited combina t ions  of  (N, m, a) as is indicated by Table  II.6b. 

The  basic s torage requi rement  of  each p rogram,  specified by the 8300 words in equat ion  (II. 1), includes 
2000 words al located for the input of  Da ta  5 (Table 11.2) for numerical  modes  Znu m and the retent ion of  
the complex  coefficients Fqr for all modes  j. Al though some extra store of  variable a m o u n t  is also employed,  
there is a limit on the n u m b e r  of  modes  Znu m that  can be a c c o m m o d a t e d  for a specified combina t ion  
(N, m, a); the greatest  restrictions arise when sym = 0 and  s tandard  and numerical  modes  are input for 
both  the symmetr ic  and  an t i symmetr ic  cases. It  is noted that  even with the failure message ' T O O  M A N Y  
M O D E S '  (Table II.3), the p rog rams  do not  fail completely,  but will proceed to evaluate Fqr for the 
m a x i m u m  n u m b e r  of  modes  j consistent with the available store. It  is not easy to define the limits on 
Znu m precisely; the following formulae are suggested as guide lines. Let  

u = n u m b e r  of  s tandard  modes  selected when sym = _ 1, 

= n u m b e r  of symmetr ic  s tandard  modes  when sym = 0, and  

v = n u m b e r  of  numerical  modes  when sym = 1, - 1 or  0. 

When  sym = _ 1, the restriction on Inpu t  Da ta  5 gives 

1000 

N R  
(I1.5) 
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and there is an overall l imitation on modes 

I 1000] 
u + 2 v ~ <  7 -  N + m + a + ~ - j .  (II.6) 

When sym = 0, the limitation is 

10001 
u +  2v~< 2 + ~ - j  w i t h R f o r s y m =  1, (II.7) 

which is always more  restrictive than the inequality of equat ion (II.5). 
If the storage restrictions on 22~ are satisfied, the other consideration is the computer  time to run Program 

I. This is mainly dependent  on the size and accuracy of the matrix through the parameters (N, m, a) and 
(,5, t:), but it is found that the combinat ion of Mach number  M with aspect ratio A and frequency parameter  
i~ also influences the running time. F rom a correlat ion of times actually taken in seventy applications 
with (,5, ~:) = (7, 4) and a limited number  of applications with (6, e) = (8, 4), (7, 6), (8, 6), the empirical 
formula 

Running time = (rN~m~a ~) seconds (li.~) 

has been deduced to an accuracy of _+ l0 per cent;  for sym = _+ 1 the quanti ty r approximates  to 

= ~I/~A + 1] for ~ = 
and  I,9, 

= 4 / / / A  + 1] 0 . 6 5 + 0 . 0 4 9  f o r i ~ >  

with cr = 4, 5, 7, 9 for (6, e) = (7, 4), (8, 4), (7, 6), (8, 6) respectively. 
An increase of up to I0 per cent in the value of ~ should be allowed when sym = 0. With values T = 1 

when sym = 1 and T = 1.2 when sym = 0, appropriate  to an example with 

A = 6 ,  M = 0 . 8 ( / ~ = 0 - 6 ) ,  i~= 1.53 and (6, e . )=(7 ,4) ,  

the respective running times from equation (II.8) are given in Tables lI.6a and II.6b for various examples 
just within the time-sharing mode. For  large a, it is expected that the running time will become propor-  
tional to a; as equat ion (II.8) is likely to underestimate running times for a > 8, such estimates are omitted 
in Table ll.6a. It seems, however, that capacity is a more severe restriction than running time, especially 
when sym = 0. Only in exceptional cases that might demand larger values of the accuracy parameters 
(,~, e) would running time become the critical factor as a result of the increase in a. For  the examples given 
in this Report (6, e.) = (7, 4) gives sufficient accuracy for the specified combinat ions (N, m, a). To ensure 
complet ion of a long run, it is suggested that 10 per cent should be added to the estimated time in the 
operat ing instructions. 
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APPENDIX III 

Illustrative Example 

The example for the elliptical wing at M = 0.8 with N, m, a = 3, 5, 2, used for the desk calculations 
discussed in Section 5.1, is convenient in size and scope to illustrate the input and output as summarized 
in Tables II.1 and II.5. Since the planform has continuous non-zero curvature, we set wing = 4 and 
round = 0. The calculation will include symmetric and antisymmetric standard modes, so that sym = 0. 
From Table II.4a, we choose stop = 0 and print = 3, so that the generalized forces are calculated in 
Program I and the output tape provides the aerodynamic influence matrices (symmetric and antisym- 
metric) for Program II. 

With reference to Table II.2 and the planform data in Table 1, Data 1 and 2 are input and then output 
as shown at the top of Table III. 1. As reference length, the semi-span s is unity; the frequency parameter 
k = e)s/U = 1 becomes ~ = o~UU = 0.3n. Instead of at the centre of the ellipse as in Fig. 3, the origin 
is taken at the leading edge of the centre section, and Data 3 require prior evaluation of 

Xt't = 0 ' 6 1 1 -  sin ( A ~ I )  J } 

cx 1.2 sin ( A ~ i )  

2 = I(1)A*, 

w h e r e A +  1 = a ( m +  1)=  12 a n d A * = 6 ,  and 

x~v = - 0.6 cot 

cv = 1.2 cot 

,, 3 !  t 
x ,v - -  0 6  cosec 

c :  - -  -1.  osec 

v = 1(1)3. 

These also appear in Table III.1, followed by the definition of the symmetric and antisymmetric modes i or 
j corresponding to Data 4 

1 ; 1 ; 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; } .  

1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;  

Data 5 (including ~) are omitted as there are no numerical input modes. The storage is then calculated, so 
that failure from insufficient storage would preclude the start of the main computation (Table II.3). 

The remainder of the output from Program I, described in Table II.4a, consists of the symmetric matrix 
[f~] with elements f~q(p, v, r) (Table III.2), the solutions IF] with elements (F~r)j and the matrix ofgeneralised 
force coefficients Q~j (Table III.3), followed by the corresponding antisymmetric results (not illustrated). 
Each row in Table III.2 represents the real and imaginary parts of f~q(p, v, r) first with v = 1 and then with 
v = 2 and 3, while the last three rows in Table III.3 give similarly the real and imaginary parts of Qij, viz., 
Q !  t! ! tl ¢ tt 

~1, kQil , Qi2, kQi2, Qi3, kQi3. 
The input for Program II is listed in Table II.5. The first half of the output tape from Program I is 

detached to provide input tape A for the symmetrical case sym = 1. Input tape B requires Data 8 and 9; 
thus stop = 5, V = 8 and T = 3 indicate that load distributions are to be obtained at local chordwise 
positions 

v = 1, 2 . . . .  ( v -  1) 

39 



at 3 sections in addition to the loading sections q = qr. Then Data 10 of Table II.5 specify r/t, xtt and cf at 
these 3 sections, so that the loading can be evaluated from equations (51), (53) and (86). T o  reduce output, 
only the first two standard modes are included in Data 4 and again Data 5 are omitted in the absence of 
numerical modes. 

Table II.4b summarizes the complete output from Program II, the initial and final parts of which are 
reproduced in Table III.4. For  each value of ~ the real and imaginary parts of (It) J are given side by side 
for the appropriate values of qr and r/t. The corresponding local lifts and moments are computed from 
equations (87) and (89) with interpolation from equation (53) as necessary. Separate tables are printed for 
each value ofj. The short running time of 15 seconds illustrates that this is trivial by comparison with that 
of Program I. 

40 



TABLE 1 

Planforms  used in N u m e r i c a l  E x a m p l e s  

Planform Elliptic Tapered swept Rectangular Tapered swept 

A 
S 

XIR 
CR 
XlT 
C T 

round 
r/iR 
d 
D 

20/(3x) 
1 
0.37z 

-0-6  
1.2 
0 
0 

S 
S 2 

2 
1 
1 

-0.808013 
1.616025 
0.924038 
0.383975 

1 
0.195090 

S 
S 2 

1.250 
0.625 
1 
0 
1 
0 
1 

1 
any 

2sg 

6 
3 
1 
0 
1.5 
2.232051 
0.5 

1 

0-195090 
g 

2s~ 

TABLE 2 

Genera l i sed  Forces  for Ell ipt ic  Wing  ( M  = 0.8,  k = o ~ s / U  = 1) 

Solutions with (N, m, a) = (4, 11, 6), (3, e) = (8, 6) and origin at centre of ellipse 

(a) Symmetric modes 

Z =  1 Z =  X Z =  X z Z =  yZ 

t t 
Q'il Q'i't Qi2 Q'i'2 Qi4 Q'i4 

1 -0.8731 
2 -0-5013 
3 0-0531 
4 -0.1308 

3.2056 
-0.7636 

0.3759 
0.7563 

3.7071 
-0-8969 

0.3883 
0-8675 

1.6371 
0.9203 

-0.1033 
0.2722 

013 QI ;  

1.5810 -0.6271 
0-8256 0.3167 

-0.1035 0-0384 
0-3008 -0.1563 

-0.1308 
- 0 -111l  

0.0180 
-0.0532 

0.7563 
-0.1412 

0.0660 
0.2450 

(b) Antisymmetric modes 

Z = Y  

011 QI', 

-0-2123 0.4084 
-0-0177 -0.1166 

Z = X Y  

QI2 Q~ 

0.4261 0-3291 
-0-1309 0.0553 

41 



T A B L E  3 

G e n e r a l i s e d  F o r c e s  for  T a p e r e d  S w e p t  W i n g  (A = 2 ,  M = 0 . 7 8 0 6 ,  ~ = 1)  

Origin  at m id - roo t - cho rd  

(a) Present solutions 

Force  
mode  

Z = I  
i = 1  

N m a 6 g 

Z = I  Z = X  

Q' Q" Q' Q" 
i l  i l  i2  i2 

3 15 2 7 4 - 0 . 7 2 8 9  
3 15 3 8 6 -0 .7291  
3 14 3 8 6 - 0.7312 
3 14 3 7 4 -0 .7311  
4 14 3 7 4 - 0 . 7 2 6 8  

3 15 2 7 4 
3 15 3 8 6 

Z = X  
3 14 3 8 6 

i = 2  
3 14 3 7 4 
4 14 3 7 4 

- 0 . 4 9 5 2  
- 0 - 4 9 5 6  
-0 -4933  
-0 -4933  
- 0 - 5 0 8 6  

2-5815 
2.5821 
2-5802 
2-5802 
2-5990 

0.7390 
0.7389 
0.7374 
0.7374 
0.7548 

2.6549 
2.6551 
2.6507 
2.6506 
2.6944 

0.5218 
0-5215 
0-5194 
0-5194 
0.5399 

2.7488 
2.7492 
2.7532 
2-7532 
2-7632 

1.6661 
1.6660 
1.6609 
1.6609 
1-7111 

(b) Comparisons with other methods 

Method  Q'll 

N = 3  
Ref. 3 - 0-742 
Ref. 15 - 0.726 
Present - 0.729 

N = 4  
Ref. 13 - 0.687 
Ref. 7 - 0.747 
Present  - 0.727 

0';, 

2.588 
2.600 
2-582 

2.554 
2.616 
2.599 

Q;2 

2 . 6 4 0  

2.679 
2.655 

2.635 
2.706 
2-694 

Q'~2 

2.765 
2.748 
2.749 

2.744 
2.802 
2.763 

- 0.496 
- 0 . 5 1 2  
- 0-496 

- 0.494 
- 0.506 
- 0.509 

0.735 
0-741 
0.739 

0.710 
0-740 
0.755 

Q~2 

0.511 
0.515 
0.522 

0.480 
0-517 
0-540 

Q~2 

1-650 
1.686 
1.666 

1.668 
1.704 
1.711 
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1.5 

6.0 

6.0 

TABLE 4 

Heaving and Pitching Derivatives for Rectangular Wing (A = 1.25, M = 0) 

Solutions with m = 11 and pitching axis x o = 0 

t t 

N a 6 e Q'I, Q~I Ql2 Q'~2 Q21 Q~I 

3 4 7 4 - 1.0768 0.8365 0.3147 1.1620 -0.5548 0.1536 
3 6 7 4 - 1-0763 0.8364 0.3150 1.1617 -0.5545 0.1537 
4 6 7 4 - 1.0783 0.8369 0.3154 1.1632 -0-5567 0-1530 
5 6 7 4 -1.0786 0-8371 0.3154 1.1635 -0-5569 0-1530 
5 6 8 4 - l . 0786  0.8371 0.3153 1.1635 -0.5569 0.1530 
5 6 8 6 -1.0786 0-8371 0.3153 1.1635 -0.5568 0.1530 

3 6 7 4 -11.2885 0-0853 -6.1793 0.3426 -4-6912 0-1180 
4 4 7 4 -16.3973 0-5492 -8.0731 0.8870 -7-6697 0.1333 
5 4 7 4 -17.8113 0.7592 -8.2209 1.1120 -8 .8104 0-1441 
6 4 7 4 - 17.9991 0-7978 -8.1735 1.1516 -9.0217 0.1464 
7 4 7 4 -18.0093 0.8013 -8.1621 1.1550 -9.0413 0.1465 

4 4 7 4 - 16.3973 0-5492 -8.0731 0.8870 -7.6697 0-1333 
4 4 8 4 -16.3972 0.5492 -8.0731 0.8870 -7-6697 0.1333 
4 4 8 6 -16.3972 0.5492 -8.0730 0.8870 -7-6697 0.1333 
4 6 8 6 -16.4007 0.5492 -8.0752 0.8872 -7-6718 0-1333 

m 

m 

t 022 O~2 

0-1670 0.5301 
0.1667 0.5301 
0.1691 0.5326 
0-1693 0.5327 
0.1693 0.5327 
0-1693 0.5327 

2.7647 0.2218 
4.4216 0.4054 
5.0071 0.5044 
5.1090 0.5280 
5-1184 0.5307 

4.4216 0.4054 
4.4216 0.4054 
4.4216 0.4054 
4.4230 0.4055 
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T A B L E  5 

H e a v i n g  a n d  P i t c h i n g  D e r i v a t i v e s  f o r  T a p e r e d  S w e p t  W i n g  ( A  = 6 ,  M = 0 - 4 )  

S o l u t i o n s  w i th  N = 6, (fi, ~;) = (7, 4) a n d  axis  at  r o o t  l e a d i n g  edge  

(a) (N,  m, a) = (6, 15, 4) 

Qi, 

0.0001 0-0000 

(I.2484 0-0225 

0.5000 - 0 - 0 0 1 0  

1.0257 - 0 . 3 9 0 3  

1-6085 - 1.3572 

2-2936 - 3.1373 

3-1569 - 6 .0487 

4-3451 - 9 .8930 

Q~, 0~2 

2.0979 2.0979 

1-9611 2-0150 

1-7972 1.8613 

1.6330 1.2626 

1.6409 0.0861 

1.8168 - 1.9268 

2.2581 - 5.0469 

3.0458 - 9.3838 

Q" Q' e" 12 21  21  

2.7948 

3.0550 

3-1466 

3.2231 

3.3509 

3.6223 

4.1338 

4.9274 

0 .0000 2.6398 

0-0262 2.4581 

- 0 . 0 1 6 2  2.2378 

- 0 . 5 8 5 4  2.0098 

- 1.9816 2.0036 

- 4 . 5 8 5 0  2.2107 

- 9 . 0 3 4 2  2.7699 

- 1 5 . 6 0 6 9  3.8874 

Q22 Q ~ 2  

2.6398 4.0197 

2.5163 4-3541 

2.2682 4 .4714 

1.2758 4.5647 

- 0 . 6 9 1 9  4.7281 

- 4.1413 5.0941 

- 9.8289 5.8320 

- 1 8 . 6 1 1 4  7.1461 

(b) i~ = 3.1569 

M e t h o d  m 

D i r e c t  14 

15 

22 

23 

Reve r se  15 

f low 23 

a O'l, 

6 - 6.2908 

6 - 6.0688 

4 - 6 . 2 2 8 3  

4 - 6.1401 

6 - 6 . 2 9 5 1  

4 - 6 . 2 2 2 6  

Q'II 

2-2318 

2.2643 

2-2683 

2.2743 

2.2470 

2.2667 

Qi2 

- 5.3548 

- 5.0652 

- 5.1966 

- 5.0909 

- 5.3040 

- 5.1945 

Q~2 

4.1850 

4.1452 

4 .1949 

4.1806 

4.1991 

4.1938 

- 9.2140 

- 9.0664 

- 9 . 2 0 2 4  

- 9 . 1 2 2 8  

- 9.2182 

- 9-1977 

2.7331 

2.7773 

2.7683 

2.7791 

2.7455 

2.7682 

Q~2 Q~2 

- 10.1222 5.8539 

- 9.8672 5.8479 

- 10.0157 5.8784 

- 9-9064 5.8716 

- 1 0 . 0 9 1 7  5-8695 

- 1 0 . 0 1 5 9  5.8804 
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N 

6 

TABLE 6 

Heaving and Pitching Derivatives for Tapered Swept Wing (A = 6, M = 0.8) 

Solutions with m = 15, (6, e) (7, 4) and axis at root leading edge 

Q]I Q~I Q]2 Q~2 

0.0001 0.0000 2.5505 2-5505 2.1404 
0.2484 0.0812 2-2790 2.4532 2.6382 
0.5000 0.1422 2-0071 2.3723 2.8476 
1.0257 0.0205 1 .8595 2.2495 2.9701 
1-6085 -0.2648 1.8948 2.0313 3-0067 
2.2936 -0.6104 1.9864 1.7379 3.0579 
3.1569 -1.1343 2.0790 1.1315 3.1148 
4.3451 -1.8024 2.2413 0.1334 3.2659 

4.3451 - 1.8407 
- 1.5743 
-1 .8024  
-1.7425 
- 1.7471 

r~ 

0.0000 3-2483 
0.0888 2.9087 
0-1242 2-5770 

-0.2088 2.4549 
-0.7836 2-6211 
-1 .3808  2.8390 
-2.2012 3.0113 
- 3.2530 3-2943 

2.4433 0.7881 3.6158 - 3.4001 3-4617 
2-2245 0.5549 3.2144 -3.0410 3.2923 
2.2413 0.1334 3.2659 -3-2530 3.2943 
2.2489 0.2266 3-2815 - 3-2309 3.3054 
2.2552 0.2289 3.2917 -3-2397 3.3154 

Qi2 Q~2 

3.2483 3.5731 
3.1018 4.2255 
2.9378 4-5315 
2-5960 4-8105 
2-1521 4-9511 
1-5956 5.0871 
0.5531 5.1981 

-1.1774 5.4744 

- 0.8504 5.8266 
-0.7541 5.4551 
-1-1774 5-4744 
- 1.1457 5-4968 
- 1.1476 5.5140 

TABLE 7 

Direct Comparison of Computations by Present Method and that of Ref. 7 

Tapered swept wing A = 6, M = 0.4,~ = 3.1569, N = 6, m = 14 

Method 
Ref. 7 Present 

q = l  q = 5  q = 9  a = 6  a =  10 

Q'll -5.661 -6 .398 -6-354 -6-291 -6-297 
Q~ ~ 2.098 2.259 2.250 2.232 2.234 

Q'12 -4-646 -5.376 -5 .354 -5 .355 -5 .364 
Q~2 3.849 4-226 ' 4.216 4-185 4-190 

Q~I -8 .273 -9.322 -9 .276 -9 .214 -9 .228 
Q21 2.542 2.740 2.741 2.733 2.736 

Q'zz -8 .890 -10.203 -10.167 -10.122 -10.143 
Q~2 5-367 5.877 5.878 5-854 5.862 

Time in 
5 64 113 29 44 

minutes 

45 



TABLE II.1 

Definitions of  Wing, Round and Standard Modes 

wing = l P lanform of a rb i t ra ry  aspect  ratio,  taper  rat io  and sweepback (crank at  r/ = 0) 

wing = 2 As wing = 1 with add i t iona l  crank at ]~/] = t/r 

wing = 3 As wing = 1 with addi t iona l  cranks at ]r/I = F] A and ]~/] = r/B 

wing = 4 Planform with a rb i t ra ry  curvature,  defined by numerica l  input  xlx, cx, x'~, x'~' v, c' v, c~ 

round  = 0 Case where wing = 4 and  round  ~ 1, :/: 2 

round  = 1 Artificial round ing  from equa t ion  (68) at all c ranks  

round  = 2 Artificial round ing  from equat ion  (69) at all c ranks  

Op t iona l  s t anda rd  modes  Z ( X  = x/d, Y = y/s) 

sym = 1 1, X, X 2, X 3, X 4", y 2  Xy2, X z y z ,  X3y2, y4, Xy4, X2y4, y6, Xy6, y8 

s y m =  - I  Y, XY, XzY, X aY, y 3  x y a ,  x 2Y3, y 5  X Y S  y7 

sym = 0 15 modes  for sym = 1 and  10 modes  for sym = - 1 
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T A B L E  II .2 

Format  o f  Input D a t a  Tape  for Program I 

Data  

2 

Case Input  tape, with Data  5 if any 

Descript ive title with end message 

Fig. l a  

M ; 9 ; sym ; N ;  m ; a;  nma x ; tol  ; 2in t; X ; Initial da ta  

s top;  print  ; wing; round  ; s; ~ ; D; Stop and print  values in Table  B4 

wing = 1 x m ; c R ; rliR ; x t r  ; Cr ; 

wing = 2 XtR ; CR ; qiR ; fir ; X~r ; Cr ; q~r ; x t r  ; Cr ; 

wing = 3 Xta ; CR ; t~ig '~ ~A "~ XlA ; CA'; ~liA 
liB; XIB; CB'~ tliB; XIT; CT'~ 

xl~ ;. c~ ; 
! . p !  . 

X l v  ~ • X l v  , • 

c;; c~ ; 
wing = 4~" 

sym = 1 1 (or 0) ;. 15 times. 

s y m =  - 1  l ( o r 0 ) ; .  10t imes .  

sym = 0 1 (or 0) ;. 25 times. 

( ;  ( = n u m b e r  of  symmetr ic  modes  Z,  um) 

Z'p~; Zp~; 
(pv = 11, 12 . . . .  1R, 21,22 . . . .  N R )  

End message 

sym = 0 

Addit ional  data  appropr ia te  to 
value of wing. Wing and round  
are defined in Table  (II. 1) 

Indicators  1 (Yes) or  0 (No) used 
for s tandard  modes  in Table  
(II.1) 

Omi t  i f s y m  = + 1 

Numer ica l  input  modes,  all 
Znum. R f rom eqn. II.2 

t 2 = I(1)A* where A* = ½A or ½(A + 1) according as A is even or odd, and v = l(1)m* where m* = ½m 
or ½(m + 1) according as m is even or odd. 
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TABLE 11.3 

Messages on Printout for Failure of Programs I and II 

Message output 

NEGATIVE NUMBER 
I N DATA 

BASIC PM . . . . . . . . . . . . . . . .  
with 271 in top row of 
nesting store 

R.H.S. FAIL 

STORAGE EXC. 

SERIES O V E R F L O W  
BASIC PM . . . . . . . . . . . . . .  

MATRIX FAIL 

T O O  MANY MODES 

Reason for failure 

Negative number in initial data 
excluding sym, on input tape 

Insufficient standard mode data 

Wrong amount of numerical 
mode data 

Allocated storage insufficient 

Store exceeded in a calculation 
of Fq(p, v, 2) 

Singular matrix generated 

Store insufficient for Data 5 
and all (Fqrjj. See equations 
{11.5) to (11.7) 

Remarks 

Applies only to Program I 

Insufficient data or incorrect 
format of input tape with no 
Data 5 

Can arise from excess standard 
mode data 

Required STORAGE . . . . . . . . .  
, printed on previous line 

Applies only to Program I. 
Matrix store printed out 

Matrix expected to be well 
conditioned 

Message replaces (Fqr) j where 
excess modes j are ignored. 
Calculation continues to end 
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(a) Program I 

T A B L E  I1.4 

Output for Alternative Combinations of Stop and Print 

print = 0 

print = l 

print = 2 

print = 3 

print = 4 

Addit ional  
output  

t~q(p, v, r) 
h~, v if s top ~< 1 

~q(p, V, r) 
hp~ if stop ~ 1 

(Kqr)i 

gZq(p, v, t") 
Ou tpu t  tape 

Fq(p, v, 2.) 
D q(p, v) 

~q(p, v, r) 

Extent of  calculat ion 

Qij (Fqr) j ~q(p, v, r) Data  6 

s top = 0 s top = 1 stop = 2 stop = 3 

* Compul so ry  output  is defined by stop and the following data  : 
Da ta  (1 + 2) of  Table  II.2 plus Data  (3 + 6) of Table II.5 with sym = 1 or - 1 or 0; 
Modes  i , j  ( =  1, 2, 3 . . . ) g i v e n  by Da ta  4 (indicator 1 )and  Da ta  5 (if any) of  Table  II.2; 
s torage Z;  (Fqr)j; Qij; running time in seconds. 

(b) Program II 

i 

Extent of  calculat ion and output  

s top = 0 Q o [ s y m  = 1 o r s y m  = - 1 ( -2 ) ]  
Ou tpu t  for print = 2 of  P r o g r a m  I 

s top = 5 As above  but also loading at r/r, and at tl, (optional) 
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T A B L E  II.5 

Format of input Data Tape (A + B) for Program II 

The ou tpu t  from P rog ram I with pr int  = 3 gives tape A label led as follows : 

P r o g r a m  I 

sym = 1 

sym = - 1 

sym = 0 

Inpu t  tape  A with mat r ix  

Symmetr ic  

sym = 1 

sym = 1 

Ant i symmet r i c  

sym = - 1 

sym = - 2  

Data  Input  tape  A Remarks  

1 Descr ipt ive  title with end message To be inserted by hand  i fsym = - 2 

2 Data  2 of Table  11.2 Excluding s top  and  print  

3 Da t a  3 of Table  II.2 Only  if wing ¢ 4 

6 Da ta  3 of  Table  II.2 for wing = 4 preceded by wing = 1, 2, 3 or  4 

r/x; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7 Real ; imaginary  ; . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
e lements  of  mat r ix  f~q(p, v, r) 

Delete end message, if any Cut tape before Da ta  2 with 
sym = - 2 

Data  Input  tape  B Remarks  

8 s top  ( = 0  or 5); See Table  II .4b 

9 V; T(~>0);  Only  if s top = 5 

10 r/, ; x~, ; c, ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Only  if T />  1 
Repeat  for t = I(1)T 

4 Da ta  4 of Table  II.2 

Data  5 of Table  II.2 

End message 

T r e a t s y m =  - 2 a s s y m  = - 1  
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TABLE II.6 

Usable (N, m, a) and Running Times with 6 = 7 in Time-Sharing Mode 

(a) s y m  = 1 

N 

~<5 
~<7 

~<10 

4 
4 
4 

4 
4 
4 

m 

31 
23 
15 

~<38 
~<34 
4 3 0  

23 
15 
11 

~<17 
~<44 
~<76 

Eqn. (II.8) with ~ = 1 

56 min 
~< 68 min 
~< 75 min 

~< 44 min 
~< 53 min 
~< 62 min 

(b) s y m  = 0 

N m 

4 2  23 

4 415  

4 11 

a Eqn. (II.8) with ~ = 1-2 

4 ~< 12 min 

4 ~< 19 min 

4 8  ~< 17 min 
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bO 

ILLUSTRATIVE EXAMPLE - £~LIPT|C ~IN3 

MACK= 8 , O O 0 0 0 = -  I 

FREQ= ~ 4 2 4 v B a =  1 
SY~= 0 

N= 3oO00UO 
N= 5o00000  
A: 2eCO000 
N~AX= 25o 

TOL= l ° O 0 0 0 0 ~ -  b 
L I N T :  3 , 0 0 0 0 0  
K: 5 , 0 0 0 0 0 = -  i 

STOP: 0 
PRINT= 3 

WING= 4 
ROUND= 0 

S= I°00000 
CBAR= 9,42478=- 1 
AREA= 1oUO000 

COLLOCATION PTS 

ETA XL C 

= 9 ~ 6 5 9 2 ~ ¢ -  1 4 e 4 4 T 0 9 © -  I 

-8,66025=- i- 3 o 0 0 0 0 0 ~ -  1 
- 7 e O 7 l O T = ~  1 l e 7 5 7 3 6 © -  i 
- S e O 0 0 0 0 ~ .  1 @eO384B=- 2 
= Z e 5 8 8 1 9 ~ -  1 2 e 0 4 4 4 ~ = -  2 

4 e 9 1 O 9 b ~ - 1 2  O e O 0 0 0 0  

3,10583=- I 

6,00000=- 1 
8,48528=- i 

ie03923 
1 , 1 5 9 1 1  
l e20OO0 

TABLE IIl.l 

XLDASH 

-ie03923 

-3,4@410=- l 

0®00000 

CDASH 

2,07~4b 

6ogzBzo=- 1 

0 , 0 0 0 0 0  

XL DOU6LE OASH 

4e~O00C 

9e237~Om- l 

6 ,00UDO~-  l 

C DOUBLE DASH 

-9,00000 

- 1 ~ 4 7 5 2  

-le~OOO0 

MODES SYMMETRY 

IJ=1 Z=1 

i J = 2  Z=X 
2 

I J = 3  Z=Y 

ANTI-SY~IMETRy 

I J : !  Z=Y 

iJ :2  Z:XY 

STORAGE IOo?~ WORDS 



SYMMETRIC MATRIX OMEGA 

R P =  I 
| 4 , 7 7 7 6 5  4 = 7 0 6 8 5 = -  1 - 3 = 7 0 9 4 0 = -  I 1 , 3 3 5 2 3 = -  1 1 = 2 7 1 3 8 = -  I 5 . 0 Z 0 8 7 = -  2 

2 -2e0404~ 2=IB970W~ I 2=41164 5=14263=- I -91183]3w-  I 2,59926=- I 

3 3o74830=- 1 7=08714~= 2 o7o11650=- 1 |e53974=- 1 1,97053 4 ,b i112=-  1 

1 3=76629 I=48489=- 1 ~3=19211=- I 6=36151=- 2 7 . 1 4 3 ~ = -  Z 2,b2706=- 2 

2 =Ie17246 3=24018=- Z Io87390 2,01174=- 1 - 7 , I Z O I Z s -  1 Io36372~- 1 

3 I®71~8== 1 2=59085== Z -4 .87901=-  I 5.21877=- 2 1.553b~ 1.71~15=- 1 

1 I ,84790 - I=25166=-  l =I180920=- I 4=94741=- 3 3*22~]~=-  Z 4,09975=- 3 

2 =4=28971== 2 -8=96959=- Z 9eb4009~- I - I®28156=-  1 -3=46~30m- I -Zo lb400~-  Z 

3 - 5 = 7 7 5 9 0 = l  2 = 4 = 7 7 8 6 1 = -  3 = 1 e 5 ~ 2 3 2 = -  | - 3 . 9 7 4 0 6 = -  Z ~ = 2 6 7 0 b ~ -  1 - | . 3 3 0 0 4 = -  1 

P= 2 
l 5 o 4 8 1 9 9  2 . 6 6 0 1 0 = -  I - 1 o 0 7 0 2 2  I = 2 0 7 8 8 = -  l 8 . 5 6 6 7 6 = -  2 5 . 4 7 ~ 5 7 = -  2 

2 " 1 o 7 3 1 2 0  1 $ 6 7 t 9 3 = -  1 3 , 3 4 2 0 6  2 = 7 7 5 4 3 = -  1 - 1 = 8 3 6 6 9  Z , u z v g o m -  ] 

3 4 = 3 0 3 1 4 m -  2 6 = 9 4 1 8 3 = -  2 - 1 . 0 4 2 4 1  1 . 0 9 2 1 b = -  1 2 e 8 9 2 ~  2 , 1 6 9 7 9 ~ -  ] 

I Im71013 -Ie87310== I -2=643fi0=- I -3=40781=- 2 i=b1909=- 2 -3,Z14~6=- 3 

Z - 7 = 3 0 7 0 4 . -  1 - 4 = 8 3 2 9 5 = -  2 9 c O b 0 9 0 = -  1 - 1 . 8 8 3 8 2 = -  1 - S e 3 1 7 3 b = -  1 - ~ . Z O Z 6 9 = -  2 

3 5 = 6 5 6 4 7 = -  2 = 1 = 5 | b 8 4 = =  3 - 3 = 3 7 5 2 4 = -  1 ~ 4 = 3 6 1 5 7 = -  2 7 o 7 7 3 ~ . -  1 - 1 ~ 4 7 5 9 = -  I 

--continued 



" 1 o 3 0 4 6 1  

2 e 4 8 3 5 ~ a -  

" 2 0 4 8 7 9 5 = -  

P= 3 
6 e 2 8 7 4 3  

" 1 = 9 6 7 2 8  

4 e 1 8 6 0 2 = =  2 

" Z o 1 9 6 2 8 ~ o  1 

- 4 = ~ 3 3 3 1 ~ -  1 

6 = 0 5 7 4 8 = -  2 

3 = 7 1 3 7 4 = -  2 

4 o 7 8 1 2 6 = -  1 

~ 1 = 1 9 3 2 7 = -  1 

- 5 o 5 6 9 0 0 ~ =  Z 

- 5 o 5 4 0 9 9 l  I 2 

- - l o 4 6 3 1 3 = l  Z 

1 ~ 2 4 9 8 6 = =  l 

l o 3 5 5 9 5 = -  I 

5 o b 0 4 9 4 = -  2 

-Io13816m= I 

- 8 o 3 7 3 4 4 a =  

- I~17679~= 2 

8 o 4 8 9 4 8 = -  

Ie04589~- 2 

- 1 , 4 1 4 5 4 ~ -  Z 

TABLE III.2--continued 

1 = 3 5 0 8 4 ~ -  I 

- 7 e 4 ~ 0 9 4 = -  1 

I e 4 7 | 1 4 = -  l 

- l o 2 4 2 4 3  

3 = 7 5 0 7 9  

= I o I 0 7 1 1 ~ -  2 

- 7 , 4 5 4 7 6 = -  2 

=3e3154b~- Z 

6 e 0 8 4 8 9 ~ -  2 

le28945m- I 

- I e19435  

- I e 3 4 8 2 7 = -  2 

-9o17928=-  2 

- Ie04434== I 

2~47913n- 3 

2 e 4 6 8 9 6 ~  l 2 

1,09288=-  I 

6 e 4 8 I I g = -  2 

-2~23155~-  2 

- I o 3 3 4 5 9 = -  1 

=SeSb740~- 2 

bo464Z8~- 3 

9eO5928W- 2 

I o76389=-  2 

-2e6996b~-  Z 

2o5580Z~- l 

-b,273ZOm- l 

5e8943Z~- 

- 2 ~ I 1 3 ~  

3o25Z~ 

-6,037£Z~- 3 

-7o505~- Z 

=6=97832~- Z 

-2e5520~- 3 

7~187~J~= 2 

3o47|6b=- Z 

-5o20430~- 3 

-4e4~745p-  2 

-6otb99Zm- Z 

5o0bb83~- Z 

8 e ~ 7 U 7 9 ~ -  Z 

- 1 . 2 3 1 2 9 = -  Z 

-7o73264m- Z 

- I e Z i i 1 5 ~ -  

-7®79376~- 

Z~78737=- 

i . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 

Z 

9o5~150~- 2 



PEAL 

TABLE 1II.3 

I ~IAG I N AR't' 
GAr,IH A 

J= l 
- 1 , 9 5 7 7 7  3 7 0 ~ 7 = -  l 
- 4 , 3 7 1 6 8  3 3 5 2 7 ~ -  l 
- 5 , 4 4 3 0 2  614901~- l 

2 , 4 8 6 7 7  ~ 1 9 0 7 = -  1 
7 , 5 3 0 6 1  93109m-  1 
1 , 0 0 2 8 9  3~384 

4 , 0 3 9 3 0  2 7 9 6 1 = -  2 
1 , 6 3 9 8 4  6 9 0 3 4 = -  I 
2 , 4 2 2 2 4  1 2 7 8 6 = -  l 

3 , 5 S 8 1 5  I 1 7 6 1 ~ -  I 
5 , 5 1 9 8 0  5 2 7 5 ~ -  l 
5 o @ 7 6 1 8  5 8 3 2 0 = -  l 

2 , 0 7 7 6 0  4 6 9 6 ~ - .  1 
5 . 0 9 8 2 4  6 6 1 9 7 = -  I 
6 . 7 6 4 3 4  5 5 2 8 7 ~ -  1 

- 4 , 3 U I 4 E  7 8 8 6 6 = -  Z 
- 3 , 1 b 6 2 3  2 5 7 9 6 = -  1 
- 5 , 0 3 2 0 9  0 6 7 1 0 = -  ! 

J= 2 
2 , 4 0 8 2 2  7 8 6 3 0 ~ -  I 
2 , 0 5 4 4 7  7 0 4 6 6 ~ -  1 
1 . 3 1 4 1 5  0 6 8 6 6 = -  I 

4 . 7 0 5 3 6  88781=- 1 
1 * 3 4 5 8 5  69935  
1 , 8 1 4 5 5  44477  

- 7 , 2 3 3 2 5  0 4 5 4 4 m -  2 
- 5 , 0 6 4 5 7  5582 .9~-  1 
- 7 , 9 5 2 5 6  7 0 2 8 6 = -  I 

4 , 7 0 3 0 6  4 3 4 1 6 = -  t 
q , 3 6 2 0 7  3 0 7 6 4 = -  1 
I , 1 1 5 1 4  01121 

- 2 , 9 7 6 1 2  9 8 2 9 1 = -  1 
= 9 , 0 1 5 0 3  1 2 3 0 6 = -  1 
- 1 , 1 7 5 3 8  84517 

- 1 , 0 6 0 2 5  2 4 8 7 5 = -  l 
- 5 D 4 1 5 2 9  8 1 9 5 9 = -  1 
- 8 , 3 Z 3 ~ 3  7 1 5 3 9 ~ -  l 

J= 3 
- 1 * 0 7 6 9 5  9 2 8 2 6 = -  l 
- 1 , 0 0 9 3 0  7 1 4 9 8 ~ -  1 
- 5 = 4 9 q 0 3  8 6 0 7 7 = -  2 

8 , 0 2 9 1 3  8 9 2 8 0 ~ -  2 
1 , 7 4 4 6 6  8 1 6 4 7 = -  1 
1 * 7 8 6 2 5  7 1 9 4 6 = -  1 

1 . 9 3 4 4 3  2 5 6 7 0 = -  2 
3 e 6 6 4 9 3  3 4 3 4 1 ~ -  Z 
1 , 6 6 3 3 8  9 9 0 2 3 = -  2 

1 ,4Z |04  4 4 7 7 ~ = -  I 
1,35171 6344.6~-  1 
| o 0 7 5 2 4  73367~- I 

1 , 1 1 6 5 9  3 2 1 6 0 = -  I 
9 , 6 3 1 2 7  1 3 4 9 6 = -  Z 
1 , 8 1 5 5 4  5 9 6 1 9 = -  Z 

- e , 3 6 0 6 1  6 5 7 6 6 ~ -  3 
- 8 , 3 3 0 4 5  2 2 F 5 8 = -  Z 
- I , 1 6 6 1 0  4 4 5 ~ 9 = -  I 

SYMMETRIC 

Q 

I J  
- 8 , 8 3 1 2 8 ~ -  I ~ , 1 9 6 3 2  3,15390 3 , 5 7 1 7 7  - I , 3 7 ~ 2 7 = -  l 7 , 5 5 3 6 9 ~ -  I 

I J  
- I = 0 1 4 4 1  1114722  6 , 9 4 6 0 7 = -  1 2 , 5 6 6 6 3  - I , 8 9 4 ~ I ~ -  1 ~,08913~o- 1 

I J  
- I , 3 6 1 2 1 = -  I 7 , 5 5 6 3 1 = -  l 7 , e 1 5 0 3 ~ -  I 7 , 3 4 4 2 4 ~ -  1 -SQ689|~- 2 2,4~3~8~- 1 

E= 203 
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ET~ 
T 

3~)OGOO~- 
T~OOO00©- 

X C 
LT T 

2 = 7 6 3 6 5 = .  2 I ~ 1 4 4 7 3  
I , 7 1 5 1 4 = =  I 8 , 5 6 9 7 1 ~ .  I 
3 " 3 ~ 4 6 6 ~ -  1 5 , 2 3 0 6 ~ m .  I 

TABLE III.4 

L~ 

LIFT 
MOMENT 

LTCT 
~O~E~T 

XI 

9 . b 1 9 3 9 8 = -  | 
8 . 5 3 5 5 3 4 ~  1 
& . @ 1 3 4 | 7 = =  [ 
5 o 0 0 0 0 0 0 ~ -  ] 
3 ~ 0 8 6 5 6 3 ~ .  1 
l o 4 0 4 4 6 6 = ,  l 
3 ° 8 0 6 ~ 2 3 ~ -  2 

Xl 

g ~ 6 1 9 3 9 ~  
8 ~ 5 3 5 5 3 4 = -  
~ = 9 1 3 4 1 7 ~ -  
5 o 0 0 0 0 0 0 ~  
3 ~ 0 8 6 5 6 3 ~ -  
l o 4 6 4 4 6 6 ~  
3 ° 8 0 6 0 2 3 ~ -  

Lu~D ~IST~IBUTIoN 

ETA: - 8 , 6 6 0 2 5 4 ~ =  l 

=6~A5124== 
- 1 ~ 1 5 9 5 6  
- 1 ~ 3 7 2 0 0  
= 1 . 2 3 3 2 7  
-6~26727~- 

7 . 5 4 4 0 6 ~ .  
4 . 2 2 3 5 7  

2 ~ 5 0 4 2 0 ~  1 
q ~ 9 3 0 9 3 = .  1 
1 , 1 0 4 1 @  

2 , 9 2 1 2 2  
4 , ~ 1 3 0 2  

= I . 9 0 3 9 1 = -  I 
4 . 8 6 3 0 6 = -  1 

3eOl2OR 
- 6 0 9 7 9 0 ¢ = ~  1 

ETA= 3 . 0 0 0 0 @ 0 ~  l 

- | = 6 2 3 4 4  
~2~60241 
- 2 , 7 ~ 7 5 3  
- 2 , 4 9 4 8 9  
- I . 8 2 8 8 0  
- 7 . ~ 3 7 4 0 = -  2 

5 . 0 2 5 5 2  

3~1~734©.  1 
7 e 4 9 3 4 0 ~  | 
1 .55923  
2~79352 
4 , | 4 4 7 2  
5o~8a70 
9~27~92 

- 1 . 1 6 3 5 5  
I ~ 1 0 9 8 9  

3 0 5 0 9 3 6  
- 9 * 5 3 2 7 8 e .  1 

ETA: - 5 . 0 0 0 0 0 0 © -  ] 

~ 2 . 2 0 1 0 4  
~ 2 o 4 0 1 3 T  
- 2 ~ 2 3 9 5 ~  
- 1 = 5 6 ~ 1 7  

I~08564=e 
4~7819~ 

2 ~ 9 0 7 5 2 ~  
7 ~ 1 9 9 6 9 ~ .  
1~47974 
2 . 6 0 3 2 8  
3~884~7 

I 5 ~ 4 1 6 1 3  
9 . 3 9 5 9 5  

ETA: O,OtlOOOn 

- 1 . 1 4 4 n 5  3 . 2 1 4 7 7 = ~  l 
- Z ) 7 7 5 6 4  7.6,588qm~ I 
~ 2 , 9 4 1 5 0  1=59363 
- 2 0 6 2 4 3 |  2 © ~ 9 | 4  
- 1 = 0 6 6 7 4  4 o 2 ~ 2 1 0  
~ I ~ 3 6 8 4 ~  I 5 e ~ 2 4 7  

~ 1 ~ 3 5 7  9 o 7 1 V 7 2  

" 9 e 6 5 0 4 ~ = ~  1 3 , 4 0 1 9 2  * 1 o 2 6 8 3 3  3056530 
9®75972e~ l ~ e 0 1 9 8 9 ~ .  1 1e18065 e 9 e T ~ 5 7 0 ~ .  1 

ETA= 7 o 0 0 0 0 0 ~ = .  1 ETA= 9 = 0 0 0 0 0 0 ~ =  | 

- 1 , 0 5 7 ~ 7 ~  2 , ~ 3 6 ~ 1 ~ .  I - b o 7 3 0 9 8 ~  1 2QS1794m~ 1 
" | , 7 6 4 9 5  6 e 6 1 1 7 4 ~ -  1 ~ 1 ~ 0 1 4 1 9  5 , 7 9 2 2 3 w ~  | 
- 1 . 0 9 1 3 6  1 . 3 2 0 6 9  ~ 1 o 2 1 7 9 9  | o 0 4 9 | 4  
~ 1 ~ 7 9 5 9 3  2 . 2 6 9 3 1  - 1 e 0 9 1 3 0  1oY3329 
w | Q ! 4 0 9 4  3~452@5 ~ 4 , 9 ~ 5 5 7 r ~  I 2078765 

3 . 9 6 4 3 2 = ~  1 5 , ~ 4 | 5 1  6 ~ 5 6 2 7 1 ~  | 4 © 7 2 ~ ? ~  
4 . 4 2 5 | 9  9o66801 4 . 2 5 6 0 2  l®O173Qe* | 

- 6 ~ 3 0 3 4 8 ~  | 3e22440 ~ b e 9 3 0 5 9 ~  2 2o95879 
7Q~4830~= 1 ~ 8 , 1 1 3 5 0 ~  ] 4 o 1 9 8 3 4 r =  | = 6 e b 9 9 | 2 m =  I 

--continued 



LIFT 
HOHENT 

LIFT 
~ONENT 

J:  2 

XI 

9.619398m- 
8 , 5 3 5 5 3 4 ~ .  
6 . 9 1 3 4 1 7 ~ -  
5.000000~- 
3 . 0 8 6 5 5 3 . -  
1,464486~- 
3 , 8 0 ~ 0 2 3 . -  

XI 

TABLE III.4~continued 

LOAD D I S T R I B U T I O N  

ETA= ~ 8 , 6 6 0 2 5 4 , ~  I ETA~ . 5 , 0 0 0 0 0 0 m .  I ETA= 

- l a 9 3 6 | S m .  1 Ie38424 -8,15069=- I 2 , 7 6 1 8 1  ~I,08570 
-9.59670=. 2 2.5Q033 -9.4~361=. l 4.6053b -I.35939 
4.T5101~- I 3.20922 b.04649~. 2 5.42462 -I,77693~= 
1.55743 3.45945 2.00977 5.68880 2.18632 
3 , 2 0 0 5 2  9 , 1 3 2 1 7  4 , 2 0 2 ~ 2  5 , 3 3 3 9 1  4 , 6 3 3 3 5  
5 , 9 ~ 5 3 8  1 , 9 5 0 4 3  6.67245 3 , 2 0 4 6 1  6 , 9 8 7 9 7  
1,92252=+ I -7,35774~. I 1.27598©+ I -3.21035 1,28246~÷ 

3 , 2 9 1 9 1  2 , 3 9 8 1 5  3 , 3 4 1 6 9  3 , S 3 5 8 4  
-5,2~230~- 1 - 1 , 3 5 1 6 0  - 4 , 4 1 0 6 1 , .  1 - 2 , 3 3 B B 3  

ETA:  7 . 0 0 0 0 0 0 ~ .  I ETA= 3.00DOOOw" I 

3 , 3 8 0 6 8  
-9,90~75~- 

ETA= 

0.000000 

3 , 4 0 8 9 3  
5.52104 

I 6.27993 
bo53375 
6~28475 
3,82226 

| .4.35400 

4 o 4 1 6 4 6  
1 - 2 o 7 4 6 8 7  

9.000000.- I 

9.blq398~- I -9,89246~- 1 3.1~n06 -5.37553~- I 2.10997 -l,o5044m- 1 1.21784 
8o535534B- I -Io20972 5.20271 -5,~4272w- | 3.&3623 1,80682.~ 2 2Q22963 
6.9134|T~- | -8.768441= 2 5.9915| 2 , & 3 | 8 1 , =  | 4*44385 ~,2511T~- ! 2 , 9 0 ~ 6 n  
5.00000Ow- | 2e12558 &,2502S | * S 0 9 1 6  4.70848 |,49426 3014359 
3.0865~3©- 1 4.48259 5.953S3 3,74860 4o32814 3.0&501 2,83823 
1.464456~- ! 6.87855 3.59773 6e3384~ 2.62180 5o86T~0 1.75867 
3.806023s- 2 1.27894=~ 1 =3o96323 1.2~430~+ I -1.98760 ~.33764p÷ 1 -5e22652m. 

3 e 3 6 7 8 4  4 , 2 1 a 1 4  3 * 3 0 4 7 5  3 , 2 0 0 9 2  
~ 4 . 1 0 3 4 0 ~  | - 2 . 6 0 6 6 3  - 4 , 0 1 5 7 8 ~  I ~ 1 , 8 9 2 9 6  

~ o 2 9 b q 3  
- 5 , 3 6 2 6 6 ~ -  I 

2 e t 8 6 5 6  

TI~£~ 15 



Readand ~__> IReadM,~,sym,N,m, 
output title a, nma x , tol ,;~int,~ 

t 
Are all values ~ II Output failure 
(except syrn) ~ ~ m e s s a g e  and finish 

positive ? initial data 

T 
Read and output 
stop~ print ~win 9 
round,s~E ~ D 

Failure 27i 
will occur ~_ 
if data a r e  
insufficient 

LFINISH J 

J . ~  Read and output additional data i 
for value of wing (=1 ,2 ,3 ,4 )  

t NO 
l lswing=4?J 

' YES 

Read indicators Oori 
tar standard modes in 
accordance with sym 

t 
Has end message I 
been reached? 

YES i YES 
-< 

NO 
> 

Evaluate and 
output x tX ,c ;~, 

/ C / / /  C / /  
XZv~ "u 

Read ~" if sym-O.i 
Read n u m e r i c a l  I 
input modes Znu ~ 

Y~S 

t "° 
( t w o  s e t s  if sym = O )  

-s ~mount of 
ta correct ? ~ ~ 

as storage ] NO 
sufficient ? ] 

YES 

(to Fig. I b) 

Fit;. la. General flow diagram for Program I. 
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I Compile Rq (p,u,h) I 
and store if sym=O 

I Is symf:-I ? , 

(from Fi 9. [a) 

YES t 

Compile influence functions 
Fq(p,v ,h)  and Dq ( p , v , a , )  
and output if p r i n t = 4  

l - -~Compi le  symmetric matrix ~c i (p,~,r) I 

_ _ •  Compi le antisymmetric[__~__ I 
matrix Qq (p,~,r) 

FINISH I 

t YES t 

Is print = O ? ' ~ O u t p u t  matrix I 

IYES I 
Output on paper tape ~ l s .  print =3? I < 
input data,xt;k,c h ,  | 
¢tc~and matrix TNO Evaluate hp~ and !'qr 

t for each mode j.Out put 
I NO hp~ if print=l or2. 

II s stop=2? I r Output _r'qr 

NO YES 

ISet sym" -I 

I Is sym=O? I - iIs stop=l 

YES t NO 
Evaluate Qij ~_~Evaluat¢ Kqr a2d 
and output- I ioutput if print= 

FIG. lb. General flow diagram for Program I. 
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Run Program I with 
stop.<2 and print=3 

...... N O  
IRcad and o u t p u t d a t a ~  
I '°r wing C= ' ,2 ,3 )  ! ' -yE-!-y ~ ........................... 
, . . . . . . . . . . . . .  . . . . .  _t ' . . . .  . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  X ' XNI IN l V , ¢v, x zv, evil Read and. output xl;k,c / / / /  / /J ' ]  

Read matrix L Qq (.p, ~, r) II 

Failure 271 
will occur 
if data arc 
insufficient 

E Read numerical 1 
input rhodes Znumj 

Input tope for Program II with 
s m = ) o r  - I  ....... y .......... and stop:O ors 

t 
Read and output 
title,M,@, syrn, 
N , m , a , n m a  x , 

tol,;~int,K, wing, 
round, s, E, D 

Read andoutputstopI 
~,.. stop ~ o ~ _j 

Is a m o u n t  o f  

data correct ? 

~No 

r YES 

Read indicators Oor l  
for standard modes in 
accordance with sym 

,ml 

NO I Read V and T 
~and output 

t 

.... t N O  

4 [ Read Qt, ×it, I 
l c t and output J t . . . .  

N~___~Has end messogI¢l 
been reached ? J 

l YES.outpOur YES 

IOutput fainure IOutpu t / For each j evaluate J 
I me=='~ge matrix ~-~-ihp~,rqr a.d output 

[ . . . .  2~ ..=:=" 1 'I ~ NO " 1 ~i7 and output 

t : l t l .  ;.. ~ ( ;cncr~l l  t tow di~lgram l'or I ) roTran l  | I ,  
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El l i p t i ca l  wing 

x 

~ y  

A =2.1221,cR=l -2s  

M = 0 . 8  p ~ s / U = i  

I I |ust rat iv¢ example 

sym--0 

X 

Tapered swept wing 

A= 2 , tan A t =0-5 

M= 0"7806,¢os/U = I 

Ef fects  of a and m 

(odd and even) 

t 

1 
X 

Rectangu lar  wing 

. -y  
A=  i'2S , M=O 

cot 
= m = 1 . 5 , 6 . 0  

U 

Ef fec ts  o f  N,~,,¢ 

0 

Tape red 

X 

swept wing 

= 6 ~ As/2=30 ° A 

M=0-4 and 0"8 

Ef fec t s  o f  ~ a n d  m 

and N (~'==4.3451 

FIG. 3. Planforms and scope of calculations. 
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FIG. 4. 

4"0 
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3"0 

2 . 5  

! 

-C)22 

2"0 

B.5 

1.0 

0-5  

r/ 
! A = I  .25 

M = 0  

N=6 

N=5 

0 
0 0 .2  0"4 ×o "=1'- 0-6 0"8 I '0  

Convergence with respect to N of high-frequency pitching stiffness derivative against axis position 
for rectangular wing. 
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FIG. 5. 

0.6 

0-5 

A =1 .25  

M =  0 

0"4 

N--6 

0'3 

I I  

Q22 

0-2 

N=5 

o 

- 0 ' 1  ~' 

- 0"2  
0 0-2 0 -4 0- 6 0" 8 I" 0 

Xo/ " 
Convergence with respect to N of high-frequency pitching damping derivative against axis position 

for rectangular wing. 
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O-177 

0"176 

- Q '22 

0"175 

0"174 

O" 173 
3 

~ = | - 5  

/ 
/ 

4 N 5 

2-5 

2.0 

- -  t Q22 

1.5 

! .0  

f - - - - - - - I  

- I - - - I -  ~= O'Z5 o 

A=1.25 M=O 

0.5 
3 4 5 N 6 

0 "257 

0-256 

S/ 
Q22 

0-255 

O" 254 

~ =1 "5  

0 "30, 
"~=6 

/ 
0 "25 

022 

0"20 

0"15~ 
0.10 

3 4 
O" 253 

3 4 H 5 5 N 6 7 

Convergence v,,ith respect to N of direct pitching derivatives for rectangular wing at moderate and 
high frcq uencies. 
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1.0 3"S 

0-Z j J  

A=6 
M= 0-8 
~'=4.345 
Xo= 0 

0"6 

I 
QI2 

0.4 

3'4 

o m =, mS, a ,,,4 

o m ,=i5,  a = 6  

3'3 

I -Q;u 

3'2 

3 ' i  

0 3'0 
4 5 N 6 7 4 5 N 6 7 

FIG. 72 

3"7 

3 . 6  d 

3.5 

I I  
q l2  

3 . 4  

3"3 

3'50 

I 

3"45 

3"40 

3.35 

( 

3"30 

3-2 3"25 
4 5 N 6 7 4 5 N 6 7 

Convergence with respect to N of cross derivatives for tapered swept wing at high subsonic Mach 
number and frequency. 
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o~ 

4 

1 

0 ~ - 

- 2  

- 3  

- 4  
0 

A = 6  

M = 0 . 8  

XO= 0 

{ N , m , o }  ={G,15,4 } 

ij 

2 ~ 3 4 5 

FIG. 8. Stiffness derivatives against frequency parameter for tapered swept wing at M = 0.8. 
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s.s / 

5.0 

4.5 

4"0 

I !  

QO 
3"5 

il 
Y 

A = 6  

M = 0 . 8  

xo=0 

(N~m,a) = (6 ,1S ,4 )  

3o ~ ~ - - ~ ~  

Z.S / 

Z-O t / 

Fr~. 9. 

I ' 5 :  ....... 

0 I Z ~. 3 4 5 

Damping derivatives against frequency parameter for tapered swept wing at M = 0.8. 
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?0 

Q 22 
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~ 0"4 

;Y 
Slopes frcm # 
eqn. (99) 

M=0"8 
// 

/ 

F[(;. 10. 

3 
0 1 2 ~' 3 4 $ 

Direct pitching derivatives against frequency parameter for tapered swept wing at two Mach 
numbers. 
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~'S 

# 
Q22 

2"0 
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1"0 

0.5  

I 

\ 

theory 

I 

, 

i' 

\ \ \  ¢ / 

0 
0 

FIG. 11. 

0.4 0.8 ~-z = o / ~  !-6 2-0 z.,~ 

Pitching damping against axis position for tapered swept wing at M = 0.8 and varying frequency 
parameter. 
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FIG. 12. 

1.4 
M =0.4 (direct f low} 

M =0,.4 (reverse f l o w }  

M =0.8 (direct f low)  

/ 
// 

/ 
, / 

/ 
/ 

# 

! 
/I 

I-0 l.Z i '4Xol~ 1.6 1,8 Z.O 

Pitching damping against axis position for tapered swept wing at frequency parameter 9 = 3.157. 
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