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Summary

In parallel with a recent experimental study of the use of slotted tunnel liners with variable perforated
screens to give interference-free aerodynamic damping derivatives, the corresponding problem is con-
sidered theoretically. The principle, that wall interference usually changes sign when slots in the roof
and floor of a rectangular tunnel are completely sealed, has prompted these complementary studies with
systematic variation of a porosity parameter that can govern the intermediate wall conditions. A theory
for small frequency parameter and subsonic compressible flow, which has already explained serious
interference effects observed experimentally, is extended to the more general tunnel boundary conditions.

With the aid of a special similarity rule for compressible flow, the six necessary interference parameters
are determined by a judicious amalgam of exact and approximate data for incompressible flow, including
allowance for elliptic loading over a finite wing span. The corrections to oscillatory lift and pitching
moment are formulated. By iterative calculation the theoretical method is applied to pitching motion
of the unswept tapered and cropped delta planforms chosen for the related half-model experiments. The
most favourable wall porosity for low interference is similar in theory and experiment for the two wings.
A recommended practical procedure for approximating to interference-free wall conditions is thus
corroborated by theoretical calculation and is also extended to give residual corrections.

The extended procedure is illustrated for the larger cropped delta half-model. It is concluded that the
uncertainties from ventilated wall interference on pitching derivatives can be reduced to about 5 per cent
of the in-phase lift derivative, provided that the model span does not exceed 40 per cent of the tunnel
breadth, nor the planform area 15 per cent of the working cross section. Theory and experiment combine
to show that the optimum ventilated wall is hardly influenced by Mach number, so that there are good
prospects of eliminating the major interference effects at transonic speeds.

* Replaces RAE Technical Report 71017—ARC 33 053.
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1. Introduction

The need for theoretical study of wall interference on oscillating models in ventilated tunnels has
continued since the publication of Ref. 1 (Garner, Moore and Wight, 1966). Although that paper gives a
mathematical explanation of the serious interference effects on pitching derivatives observed experi-
mentally, it does not provide a complete remedy. Under conditions of small frequency parameter and
small model area ratio, satisfactory interference corrections can be applied if the slotted or perforated
walls are sealed; with such a configuration blockage or choking would prohibit transonic operation.
Under the same model conditions but with open slots in the roof and floor of the tunnel, the wall inter-
ference can be formulated satisfactorily unless the slots are too narrow or have perforated screens;
unfortunately, the corrections in this case are liable to be of the same order of magnitude as the measure-
ments, and cannot be applied with confidence. One remedy, suggested in Ref. 1,is to reduce the interference
effects by having the side-walls ventilated but the roof and floor solid ; however, operation at transonic
and low supersonic speeds would impose severe limitations on model size to avoid interference due to
reflected waves from the solid walls. In order to approximate to interference-free measurements over the
operative speed range, it is best to utilize the result that wall interference usually changes sign when slots
are completely sealed. This principle has led to experimental and theoretical studies with systematic
variation of a porosity parameter that can govern the intermediate wall conditions.

In a series of experimental papers by Moore and Wight?-3# (1967 to 1969), considerable progress has
been achieved towards the elimination of interference effects on half-model testing. It is shown in Ref. 2
that, if wall effects are present in a ventilated tunnel at subsonic speeds, they are likely to persist through-
out the low supersonic range. It is, therefore, necessary to remove as much of the interference as possible
at subsonic speeds; then an empirical method, with § = 0-45 as suggested in Ref. 2, can reasonably be
used to correct the measurements at transonic speeds. The investigation in Ref. 2 reveals a systematic
influence of the side-wall boundary layer where the half-model is mounted. A simple method of allowing
for the displacement thickness of the boundary layer is suggested ir Ref. 3, so that an experimental
interference-free datum is established from measurements on a cropped-delta half-model tested in three
relatively-large ventilated tunnels. The same model has also been tested in the smaller NPL 94 in x 91in
(24 cm x 24 cm) tunnel with longitudinally slotted liners fitted with perforated screens of adjustable hole
size. As the porosity of the screens is changed, the measured oscillatory pitching moment passes through
the interference-free datum to define an optimum wall condition that is practically independent of Mach
number in the subsonic range. This conclusion is reached in Ref. 3, but a full account of the experiment is
givenin Ref. 4, which includes similar measurements on an unswept tapered half-wing. Pitching derivatives
for the latter planform are known to be sensitive to slotted-wall interference ; nevertheless, the same wall
condition is found to give measurements in fair agreement with those obtained when the slots are sealed
and corrections are made by the method of Ref. 1.

The variable porosity parameter, associated with the perforated screen, is determined from the rate of
change of mass flow through the slot with respect to the pressure drop across the ventilated wall in steady
flow. Calibration against Mach number is made for four sizes of perforation in Ref. 4, but has not played
a crucial part in the subsequent analysis. However, the Appendix to Ref. 4 discusses the interpretation
of the quantity Py from experiment as a porosity parameter in the boundary condition for a slotted-
perforated wall. This provides the vital link between experiment and theory. In the present report the
theory for small frequency parameter has been extended to the more general boundary condition in
subsonic compressible flow. With interference parameters from approximate numerical analysis, theor-
etical interference-free conditions are found to be reasonably consistent with those from experiment.
This resuit offers the possibility of residual wall corrections when, in Ref. 4 for example, there is no choice
of perforated screen that will eliminate interference effects on damping and stiffness derivatives simul-
taneously.

2. Treatment of Slotted—Perforated Walls

Fig. 1 shows the working section of the NPL 94in x 9{in (24 cm x 24 cm) tunnel and the identical
spanwise extent of the cropped delta and unswept tapered half-models. The origin O is indicated on the



side-wall, but is regarded as a point on the central axis of a rectangular tunnel of the given height » and
an effective breadth b. The side-wall or reflection plane is denoted by y = 0 and, including the small gap
g, the half-model has spanwise extent 0 < y < s; the z-axis is vertically upwards and, to complete a
right-handed system, the x-axis out of the paper represents the direction of the undisturbed stream of
velocity U, subsonic Mach number M and density p.

The wing is made to oscillate harmonically with angular frequency w. The perturbation velocity
potential is written in the usual form

¢ = real part of {P(x, y, z) &'}. (1
Then the linearized flow is governed by the complex differential equation

PO BT 0T 2eM? 0§ oM _

ox2  ayr | oz U dx U?

0, (2)

where 32 = 1 — M2, It is assumed that the complex potential ¢,, due to the model alone is known in
terms of the oscillatory aerodynamic forces acting on it. Then we write

¢=¢n+ & 3)

and the problem is to determine ¢; in the region of the model subject to certain boundary conditions on
the tunnel walls.

The effective tunnel has solid walls on the sides y = +1b and the combination of ten longitudinal
slots and perforated screens on the doubled roof and floor z = + }h. The relevant details of slot geometry,
width ¢ and spacing d, are given in Fig. 1; the adjustable screens are illustrated in Fig. 2 of Ref. 4. The
general boundary condition on ¢, with arbitrary slot geometry and porosity, is discussed and formulated
in Section 2.1. Subject to this condition and small frequency, the treatment of equation (2) is considered
in Section 2.2.

2.1. Boundary Conditions

The theoretical treatment of slotted walls is discussed in Section 2 of Ref. 1. Instead of separate con-
ditions on the slots and slats, the mixed boundary is represented by a homogeneous condition, which
presupposes that the slots are neither too few in number nor too large in width. The boundary condition
for steady flow is that proposed by Baldwin, Turner and Knechtel® (1954)

0 0 )
¢ th((bw 1o

ox 2 “oxdon  Pon 0 “)
where n is the outward normal distance from the boundary,
2d na
e T = ‘2
F o log, cosec o 0-233 %)

and the porosity parameter P, by allusion to a perforated wall, regulates the pressure drop through the
slots from tunnel to plenum chamber in proportion to the outflow. The value of F corresponds to the data
in Fig. 1 and is unaffected by the reflection plane. The generalization of equation (4) to oscillatory flow
is not certain, but it is plausible to take the boundary condition

a+i(—u)(d3+th@)+lg—¢=0- (6)
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There is no physical reason why P should not be complex, but it is taken to be real as there is no positive
evidence of any phase lag between pressure drop and outflow. Equation (6) reduces to the accepted
linearized boundary conditions in the limiting cases of steady flow (w = 0) and ideal slots (P — <0), and
in particular to

@Y _0 (7)

on the solid walls, which may be interpreted as either P — 0 or F — 0.

The slots are thought to be wide enough to prevent much effect of the boundary layer on the wall
condition. The porosity parameter P is therefore supposed to relate to the size of hole in the perforated
screen. The interpretation of P in compressible flow is not straightforward, but a reasoned discussion of
the problem is found in the Appendix to Ref. 4. To be consistent with what is observed at transonic speeds,
it is considered necessary to write

P = pPyg, @)

where Py is determined experimentally with the tunnel empty. The mean outward mass flow pv, per unit
area is plotted non-dimensionally against the pressure drop Ap from working section to plenum chamber
to give a linear calibration, as illustrated for four hole sizes in Fig. 4 of Ref. 4. The slopes then determine

_ 20w,/U)

= 9
E= 3Ap) ®)

where g = 1pU? is the dynamic pressure of the undisturbed stream. The small, but significant, dependence
of P; on Mach number for each hole size is reproduced in the upper diagram of Fig. 2. With substitution
from equation (8), the boundary condition (6) becomes

1 9

G, iw
( ﬁ_f’;% = 0. (10)

- 1 _ 0¢
a"" U) (¢ +'2—Fh-é;) +

2.2. Similarity Rule for Compressible Flow

The basic principle underlying the simple analytical solutions for wall interference in Ref. 1 is the
integral relationship between the steady and oscillatory velocity potentials for incompressible flow in
equation (10) of that report. The result is generalized to the case of low-frequency subsonic compressible
flow, and there follows a convenient interdependence of the real and imaginary parts of the interference
upwash

__ 04,
w, = 2z’ (11)
which continues to hold for ideal slots (Pg — ). The principle no longer applies when Py is finite and
non-zero, and we are faced with a formidable combination of differential equation (2) and boundary
condition (10).

Some simplification results from the use of the potential function ¥ such that

(12)

Flx, 1,2) = Y(X, 7, 2) exp {i“’M X }
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where X = x/f8. Then i satisfies the differential equation

Py By W WM

X2t T e =0 (13)

which reduces to Laplace’s equation in the limit of small frequency when O(w?) is negligible. The model
potential

ioM? X
'z,m = $mexp {_ lwﬁU }7 (14)
and hence the corresponding interference potential
Y= = Y, (15)

both satisfy the same governing differential equation. With substitution from equation (12), the boundary
-condition (10) becomes
0 N iQ
oX U

where Q = w/f. Thus the interference potential satisfies

a0 1 ap) 1 oy 8 iQ 1.y, 1 oy,
— + |y, + =<Fh Sl S _F B 4
(ax * U) (‘/" *3 an) T Py o (ax * U) (‘”’" T afh an) P, on (1)

1

W+ 5Fh 0, (16)

i L
on P, on

on the roof and floor, while on the solid side-walls (P; — 0)

al//i . al//m
= (18)

Starting from the elementary perturbation velocity potential of a small area S with lift coefficient C,
at the origin in steady incompressible flow

USC,z x
= 1
¢m0 Sn(yZ + ZZ)[ + (XZ + y2 + ZZ)—;‘:l’ (19)

we use equation (11) of Ref. 1 to construct the corresponding quantity

S s iwé  iwx) OPuoe
b= [ oo - e 20)

in oscillatory compressible flow. By equations (14), (19) and (20) it is easily shown that

Usc
Y = -

X z Q¢ - X)
87 f_m &+ + zz)%eXp{ U }dé‘ @1
Apart from the substitutions X = x/f and Q = w/f, equations (17) and (21) are invariant for M < 1.
With a fixed value of P; and low frequency, the similarity rule for compressible flow is first to solve for

¥ = ¢dx, y,z; w,0) with M': 0,



and then to take

22)

(ﬁ(x,y,z;w, M) = $i(x/ﬁ,y’z;w/ﬂa 0) {1 + inzx}

HUBS

A necessary condition for the similarity rule is that Py is real. While this is fundamental, it is of little
consequence that Pz shows a minor dependence on Mach number. Theoretical calculations must cover
the range of hole size in Fig. 2, and we shall take P; = 0-3, 1.0 and 2-5. A convenient porosity parameter
for purposes of interpolation is the quantity

Y=(1+P)7 (23)

plotted in the lower diagram of Fig. 2. There are limiting values ¥ = 0 for a solid boundary and ¥ = 1
for an ideal slotted wall, both of which play an important part in the subsequent analysis.

3. Method of Interference Correction

The similarity rule in Section 2.2 has reduced the problem to that of solving Laplace’s equation subject
to the boundary conditions (17) and (18), where ¥, is known. A numerical finite-difference technique,
known as dynamic relaxation, has been developed by Rushton and Laing® (1968) for the case of a small
model in steady flow. In Ref. 7 they have extended the treatment to oscillations of low frequency and
have applied their method to the present wall configuration in incompressible flow. These results for
zero span are discussed in Section 3.1.

The calculations by dynamic relaxation are only approximate, and where analytical solutions are
available they have been preferred. Furthermore, the span of the half-models in Fig. 1 is large enough to
warrant adjustments to the interference parameters, as derived in Section 3.2. Use is made of Holder’s®
(1963) result for finite wings in rectangular tunnels with ventilated roof and floor and also of various
formulae from Refs. 1, 9 and 10 (Table 1).

From equations (11) and (22) the complex interference upwash becomes

. 2 x
v {1 e x} a¢i(x//3, ¥,2;0/B,0). @)

BU | oz
In the most general case, when Pg is finite and non-zero, six interference parameters are needed to define

8¢,/0z in place of the three in Ref. 1. Some re-formulation of the corrections to pitching derivatives is
therefore required in Section 3.3.

3.1. Interference Parameters for Small Wing

It follows from Section 2.2, that the expression for the complex interference upwash in equation (15)
of Ref. 1 is no longer valid when there is an arbitrary porosity parameter in the homogeneous boundary
condition on the ventilated walls of the tunnel. Instead we write for incompressible flow

USC 2) ik 2 3
W) = L[{50+51%+52(f }+%{55+5;%+5;(;—‘) }+O%H, (25)

C h
where C = bh and the complex lift coefficient C, is defined by
lift = real part of {3pU*SC, &'*}. (26)




By equation (24) the corresponding result for compressible flow becomes

USC, ioM?x {() 5 5 2
¢ H BZU} o 015+ 0| }

Bh Bh }-i— @) .Bh) } (27)

With fixed slot parameter F, the integral for d, in equation (16) of Ref. 1 and the simplifications

Wi(x) =

zwh
ﬁ U

{oow' +5(

62 = 07 (Sll = —60’ 512 = —_%51 (28)
hold only when P > 0 or co. In general, all six of the interference parameters from equation (25) need

to be determined.
The method of solution in Ref. 7 is to split

$ = (ER -+ i(-ﬁ[ (29)

into its real and imaginary parts, both of which satisfy Laplace’s equation in incompressible flow.
Similarly

USC, ze toxIU
o x —x)? +y*+ 22

d)m = (-ﬁmR + l&ml

dx’, (30

the interference potential ¢; and the boundary condition (10) are separated into their real and imaginary
parts. The components ¢, and @;; are linked by both parts of the boundary condition on the ventilated
roof and floor. A very small value wh/U = 0-01 is substituted into equation (30). Then ¢, and 0@, /dn
are evaluated on the tunnel walls, and the finite-difference equations for ¢, and ¢;; at an array of mesh
points are set up and solved by an extension of the dynamic relaxation method of Ref. 6. The results are
readily expressed in terms of equation (25); the interference parameters, taken from Table 3 of Ref. 7,
are reproduced in Table 2. For fixed b/h = 2-6 with solid side-walls and F = 0-233 on the roof and floor,
all six interference parameters are tabulated for variable porosity parameter P = Pg; the limiting case
of an open roof and floor (F = 1/P = 0) is also included.

Restrictions on the total of mesh points make it necessary to consider the accuracy of the approximate
results from Ref. 7. The analytical result due to Holder® in equation (6.73) of Ref. 9 gives

do =0 — ¥ I, (31)
k=0

where 54" denotes the value for a closed rectangular tunnel from equation (20) of Ref. 1,

- 4 (32)
® 7 2P, J, (sinhg + Fqcosh g)* + (Pg ! cosh g)*’
and for k > 1
1 (= dg
Io= — f _ —— ; (33)
Py Jo (g/o)*(sinh o, + Foy cosho)® + (Pg * cosh o)

where

= [¢* + (knh/b)’]%.



The exact values of , in Table 2 have been computed from these equations and others listed in Table 1.
The plot in Fig. 3 against the porosity parameter ¥ from equation (23) shows that Ref. 7 is least accurate
near ¥ = 0, that is, when the perforated screens are almost closed. All the interference parameters have
been calculated exactly for the limiting case ¥ = O from equations in Ref. 1 and from the simple relations
(28) that also apply to ideal slots (¥ = 1). These exact data have been plotted in Figs. 3 and 4, and it
appears that the broken curves from Table 2 must be adjusted in the range W < 0-4. At the other extreme,
open roof and floor, the results from Ref. 7 are accurate within 1 or 2 per cent. It is significant that J,,
the leading coefficient of the real part of the interference upwash, vanishes at a larger value of W than
does the all-important imaginary term in Jg.

3.2. Effect of Model Span

Of greater importance than the numerical approximations in Ref. 7, the effect of model span has to be
taken into account. We have to consider a breadth to height ratio b/h = 2-6, and Fig. 17 of Ref. 1 shows
how the steady lift interference parameter (6,); becomes more sensitive to wing span as b/h increases
from 1 to 2.

It follows from equations (6) to (8) of Ref. 8, that for a uniformly loaded wing of span bt the spanwise
distribution of interference upwash across a rectangular tunnel with ventilated roof and floor is given by

Cwi(y)
USC,

= 50(’75 T)

Eﬂ@ﬂ@@ (34)

knt

where the first term corresponds to a closed tunnel with the same b/h, n = 2y/b and [, is defined in
equations (32) and (33). The general formulation of (8,); in equation (3.46) of Ref. 10 may be written as

6 ! )2 )2 ¢ 2t (g
oo =3 [} Lo o= (- 1 )
7o Jo Jo o a o c
where o = 2s/b. Its value (83")g for the closed tunnel is readily calculated from equation (3.84) of Ref. 10.
It follows from equations (34) and (35) that

(Bo)s = (B, — z I J‘7 jz cos(kno sin ¢) sin(kmo sin 6) Sin 0 cos? ¢ dO dob, (36)

kro

q (35)

g

where we have substituted © = ¢ sin § and # = o sin ¢. By separation of the variables 6 and ¢ it can be
shown that

(m—W’—I—ZhFumﬂ, 37

kno

which is formally similar to the result in equation (10) of Ref. 8, except that sin (kno) is replaced by the
Bessel function 2J(kno) in changing from uniform to elliptic spanwise loading. Special care is needed in
the evaluation of the integrals for I,, but once these are known it is relatively simple to compute (&)
as a function of ¢.

With reference to equations (6.68) of Ref. 9 and (3.17) of Ref. 10, the corresponding result for an ideal
slotted roof and floor is

1 nh & k k 2J (kra) |2
— (s _ = L
@o)e = 000 ~ 35 F) ,;1 {@kez'm"/l’ L 1}[ kno ] ’ G8)




where

b + knhF

O = ek F

The limiting case of closed side-walls and open roof and floor is obtained by substituting F = 0and ©, = 1
in equation (38); it has been checked numerically that this more elegant and convenient formulation is
consistent with the method described in equations (63) to (65) of Ref. 1.

The parameter (3,),; has been evaluated from equations (32), (33), (37) and (38) and plotted against ¢
in Fig. 5 for F = 0-233 and five values of 1/P;. The present application requires ¢ = 0-385, when the
effect of span is to reduce &4 for the closed tunnel by 28 per cent. The values of (J,); for ¢ = 0-385 are
used for J, in Table 3; apart from &, and 9 for the special cases 1/P; = 0 and oo, there is an element
of guesswork in all the other interference parameters. For the closed roof and floor, we have ignored
Ref. 7 and applied the correction factor

TOE 0722 (39)

to the exact values for the small wing plotted in Figs. 3 and 4. For the ideal slotted roof and floor (1/P, = 0),
a trivial adjustment has been made to Table 2 before applying the correction factor

On)i:
(,L)b = 0-880 (40)
do
to each interference parameter. For the intermediate cases 1/P; = 3.0, 1-0 and 0-4, each approximate
value in Table 2 has been corrected by an amount

A, x (known error when 1/P; = o0)
with respective values 4, = 0-63, 0-11 and 0. Finally the increment due to ¢ = 0-385 is calculated to be
/., (increment when 1/P, = 0) + (1 — 4,) (increment when 1/P, = o),

where the respective values 4, = 021, 0-49 and 0-73 are determined from the exact values of &, and (dy),;.
For example, the estimated J, in Table 3 is

Oy = (O))ger, 7 T /11[5(11) - ((jl)ReI'.7,a/:] - 0'12012((51)&:&7,0 - 0-278(1 — ;"2)6(1“7 (41)

where 3 = 0-3741, (3 )per. 7... = 0-444 from Table 2 and there is a trivial adjustment in (3, )y, 7.9 from
—0-233 to —0-236 to be consistent with the corresponding value of — 245 . Except for the rough allowance
for finite span included in the interference parameters of Table 3, the method of interference correction
proceeds as if the wing were of negligible span.

3.3. Correction to Pitching Derivatives

The present study requires two types of wall-interference correction. In the cases when the perforated
screens are sealed (1/P; = oc) or completely removed (1/P; = 0), equations (28) and the analysis in
Ref. 1 hold good. With the effects of slot parameter F and span ratio ¢ included in the interference para-
meters, certain terms in the analysis are omitted and the practical procedure in equations (58) of Ref. 1
is followed. The tunnel values of the pitching derivatives ly;, myy, [y and my, are taken from uncorrected
experiment, the rotary derivatives [, and m, are taken from theory, and the equations are solved for
corrected experimental derivatives ,, my, {; and m;. The other type of correction, which will now be

10



developed, is to take Iy, m,, l; and m,; from theory and to calculate lyy, myr, I and myg for arbitrary 1/P;.
The starting point is equation (27) associated with a streamwise distribution of lift L(x) per unit length.
In place of equation (38) of Ref. 1, we now have

W) _ [PLEO[f, oM -8 . x—& fx =g
¢ *mecHH - }{004-51 u +52( e )}

_ox\2
G “

where 0 < ¢ < [ denotes the streamwise extent of the wing. Then, as in Ref. 1, we write

lwh

BU
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1
f L(&)dé = $pUS(Cpq + i7C,),
0

4
-f L(&E dE = 3pUSECpp + 17C,) (43)
0

and

1
- j LE)E dé = SpUScHChy + i7CE))
4]

where the geometric mean chord ¢ = §/(2s) and the frequency parameter ¥V = wé/U. By equations (42)

and (43)
wilx) _ |:a0 + a1 + az(’; 2] + i\‘)[bo + blg + bz(gﬂ + O, (44)

where

R | \

by = % : ﬁ%h Cou t 5 +ﬂ12\4250 coo— (&, +ﬁi\:25l)a \ 4+ aCo + ﬁh— ] (45)

b, = % :5'1 +ﬁ12\4250CLR N 2(8, ;3];4251)_C Z;Cu]
and

b, = % :(5'2 +Bi\2251)a CLR]
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In order to convert the complex interference upwash into an increment in aerodynamic loading, we
shall use the subsonic low-frequency lifting-surface theory of Ref. 11. Following equation (5) of Ref. 11,
we obtain

, ioM?*x
U 1 - "BZ—U = (aofxl + a oy + a2a4)

W

MZ
+ i\'}[(boal + ba, + byoy) — F(aooc2 + a0, + azoc6):|, (46)

where o, = 1, 4, = x/¢, y = (x/0)* and aq = (x/¢)°. Then by equations (4), (24) and (25) of Ref. 11, the
load distribution corresponding to w;/U is

Ap, M>
S = (aoly + ayly + axly) + 5| (boly + byly + boly) + o (agly + ayly + ayly)
U pre
[ M2
+ /3—2((1013 + a,ls + a,l;) — F(aol2 + aly + ayly) |, 47

where [} is the steady loading coefficient corresponding to the incidence «;, and respectively «;, a5 and
a4 are related to I, [, and [, by equation (23) of Ref. 11. When terms of order (¥8/C)(¢/h)? are neglected,
the coeflicient a, disappears from the imaginary part of equation (47). In terms of the coefficients [, ;
and I}; = — I,; in equations (33) of Ref. 11, which may be regarded as known, we can integrate Ap,
over the planform to give real and imaginary parts of the incremental lift coefficient

. 1
0C g = B(GOILI +al, +ayly)
and

. 1 M? . e[ (48)
0Cp; = B (bolpy + bydpy + byly) + F(“olm + a,If,)

2

1
+B“z(aolm +oals) — ‘ﬁT(aoILz + ay 1L4)]

These increments are defined similarly to C,; and C,; in equations (43), and there are corresponding
formulae

. 1
OCmR = E(aolml + a11m2 + a2]m4)7

. 1 M?
0C,y = BI:(bolmx + by L, + byl,) + F(“olfnl + a,1};)

2

F(aﬂlml + a, Im4):l

1 49
+ Bf(aolrn3 + aIImS) - ( )

and

1
oChig = E(a()l;:u +ailh, +ayIi)

12



for the increments to the other force coefficients occurring in equations (45). An iterative procedure can
now be established. Given initial free stream theoretical values of the five quantities C, 5, Cr;, Cor, Cour
and C*, we calculate the coefficients ay, ay, a,, by, b, and b, from equations (45) and then the increments
8C,r,0C11,0C g, 6C,pand 8C from equations (48) and (49). The quantities (Cp g + 6C ), (Cpy + 0C),
etc., are first approximations to the theoretical windtunnel values to be substituted in equations (45).
Successive approximations to 6C, 5, 6C,;, etc., can be obtained by repeating the process until convergence
is achieved.

The procedure just described applies to arbitrary wing motion. The simplification in the case of pitching
motion is that the coefficients I, ;, I,,; and I%; occurring in equations (48) and (49) also determine the free-
stream aerodynamic forces. Initially, with unit amplitude of pitching oscillation

CLR = 219= CLI = 211‘)
and , (50)
Coar = 2mg, C, = 2m;

where by equations (39) of Ref. 11 with pitching axis x = x,

1
la ==y,

2

1 X
My = ﬁ[lml + _E'-OILl] >

1[p* - M2 1 M? x
l(i = _I:“—__ILZ + "IL3 - Flm - ‘égILl

281 B? B
(51
and
1[p? - M? 1 M?
= Ly s I
mfl ZB|: ﬁz Im2 + ﬁz m3 + ﬁz ml
xo [B* — M? 1 1 X0\ ?
oD L lnitacllly AVENS ARy S S o) (Y A )
+ z { BZ L2 + ,BZ L3 ,32 ml z Li
Finally, after the iterative procedure has converged,
lor = H(Cprg + 0Crr)s lor = HCry + 6Cyy),
(52)
and myi = 3(Coug + 6Cpp)s Myr = HCpt + 6C,up)

The rotary derivatives required in the first type of interference correction are defined in equations (53)
of Ref. 1

and . (53)

1 X xo\?
my = Eﬁ‘[lmz + ‘EB(ILZ = L) — (?0} IL1j|

With these quantities substituted in equations (58) of Ref. 1, the appropriate sets of measured pitching
derivatives (1/P; = 0 or o) can be corrected to free-stream conditions. When Py is finite and non-zero,
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equations (45), (48) and (49) can be used to correct measured derivatives. The theoretical free-stream
derivatives in equations (50) are replaced by experimental tunnel values. It is necessary to simulate a
measurement of the real part of the second aerodynamic moment C¥, from equation (43) and also to
devise semi-empirical coefficients I, ;, I,; and Ij; in place of the theoretical values. With such artifice
equations (45) lead to the final values of a,, a,, a,, by, b, and b,, and without iteration 6C,,, 6C,,, etc.,
can be calculated. The corrected experimental values are then

lo = leT - %6CLR3 lri = lr)r - %5(31,1
(54)
and my = Mgy — 30C,, g, my = myp — 36C,

Provided that the empirical stages can be handled satisfactorily, the same procedure can be recommended
in place of the simpler and more approximate one to be used in the limiting cases of sealed and ideal
slots.

4. Numerical Results and Comparison with Experiment

The preceding methods are applied to the two planforms considered in Ref. 4. As defined in Fig. 6,
the origin is taken at the root leading edge, the dimensions are referred to the geometric mean chord ¢,
the cropped delta and unswept tapered wings have respective aspect ratios A = 2s/¢ = 2.64 and 4-33.
The unswept tapered wing has fore and aft pitching axes x = x4 = 0-25¢, and 0-75¢, ; those at rather
similar positions on the cropped delta wing are also defined in Fig. 6.

The basic theoretical lifting-surface calculations have been carried out on the cropped delta and un-
swept tapered wings at M = 0, 0-6 and 0-8 by the method of Ref. 11 with m = 23 spanwise and N = 3
chordwise collocation stations and with spanwise integration parameter g = 4. The aerodynamic
coefficients required in equations (48) and (49) are calculated from equations (33) of Ref. 11 and listed
in Table 4, and from equations (51) and (53) the necessary pitching derivatives of the respective wings
are given for both axes in Tables 5a and 7a. From these free-stream values of l,, I;, m, and m;, the cor-
responding theoretical windtunnel values have been calculated with the two extreme and three inter-
mediate porosity conditions for which the interference parameters are given in Table 3 (Section 3.2).
Equations (50), (45), (48) with I}, = —1,,., (49) and after iteration equation (52) are used to obtain these
results for the three Mach numbers and both pitching axes in Tables 5b and 7b for the Cropped delta and
unswept tapered wings respectively.

The experimental data for the cropped delta half-model have been smoothed against Mach number
and are available for round values including M = 0-6 and 0-8. Some of the data are tabulated in Table 5
of Ref. 3 and, excluding those without perforated screens (1/P, = 0), all are plotted in Figs. 6a to 9c of
Ref. 4. Itis sufficient here to list the smoothed uncorrected data in Table 6a over the range 0-40 < M < 0-85
for the extremes of porosity. For the unswept tapered wing on the other hand, the experimental derivatives
are unsmoothed and all the available uncorrected data in the range 0-405 < M < 0-886 are given in
Table 8. The corrections to free-stream cenditions have been made for both wings by the approximate
practical procedure in equations (58) of Ref. 1 where it is applicable (1/P; = 0 and o). The required
theoretical values of [, and m, from Tables 5a and 7a have been interpolated in M and used in the calcu-
lation of corrected experimental derivatives in Tables 6b and 9 respectively.

These numerical results from theory and experiment are analysed separately and then correlated for
the cropped delta wing in Section 4.1 and for the unswept tapered wing in Section 4.2.

4.1. Cropped Delta Wing

As the two half-models are of the same span ratio ¢ = 0-385, the smaller aspect ratio of the cropped
delta wing gives the higher area ratio S/C = 0-1428 and larger chord to height ratio ¢/h = 0-3751. The
theoretical interference calculations in Table 5b neglect certain terms of order (¥S/C)(¢/Bh)? included in
equation (47); although this approximation may be acceptable, that used in Table 6b ignores terms of
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lower order (¥S/C)(¢/Bh), as can be seen from equations (56) and (57) of Ref. 1. The uncertainty due to
this latter approximation proves not to be too important, because the investigation of Ref. 3 has provided
an independent interference-free datum from experiments on the same half-model in three larger tunnels.

The calculated derivatives of pitching moment in Table 5b for the aft axis are plotted against ‘¥ from
equation (23); Fig. 7 gives a curve for each Mach number, and in each case the free-stream value from
Table 5a is plotted as a circle on the curve, to indicate the value of the porosity parameter ¥ for which
there is no theoretical effect of wall interference. The limited range 0-40 < ¥ < 0-48 suggests that the
interference-free condition for both stiffness and damping derivatives is not very sensitive to changes in
Mach number.

The experimental results for the aft axis from Tables 6a and 6b are all plotted against Mach number
in Figs. 8 and 9. Although the corrected values of each derivative for the extreme roof and floor conditions
are much closer together than the corresponding uncorrected curves, the lift derivatives [, and [, are less
satisfactory than m, and m,. The full curves are drawn to represent mean corrected experimental data
between the two sets of crosses, which are assumed to be equally inaccurate as a consequence of the
approximations discussed above. It is remarkable how well these mean curves agree with those labelled
‘interference-free datum’ in Figs. 8a, 8¢, 8¢ and 8g of Ref. 3. Moreover, with the exception of /;, the mean
curves against M have shapes similar to the theoretical curves of long and short dashes in Figs. 8 and 9.
Also for the aft axis, the uncorrected experimental derivatives myz, mgr and Iy from Table 6a or from
Refs. 3 and 4 are plotted in Fig. 10 against \¥ as calibrated for the different hole sizes in Fig. 2. The curves
are drawn for M = 0-6 and 0-8, and in each case both corrected values from Table 6b (except the smaller
value of [; for M = 0-8) are plotted on the curves, as was done for the theoretical data in Fig. 7. The
average values of W for zero interference on myy are still in the range 040 < ¥ < 0-48, but the damping
derivatives seem to require smaller values nearer 0-25.

In the final analysis in Figs. 11 and 12, it is best to consider the derivatives of pitching moment about
two axes, because the experimental lift derivatives are merely deduced from measurements of pitching
moment (Section 5 of Ref. 4). Having established a reasonably consistent behaviour of wall interference
at different Mach numbers, we take M = 0-8 for which the effects are greatest. The theoretical and
uncorrected experimental curves of my7 and myy against ¥ are plotted. The theoretical free-stream values
again appear as circles on the curves, while the ‘interference-free datum’ from Ref. 3 is plotted at ¥ = 0-355
corresponding to the perforated screens with 006 in (1-6 mm) holes. There are encouraging similarities
in the trends of wall effects as calculated and observed, even as regards the minimum in the damping
about the fore axis in Fig. 11 near ¥ = 0-4. The theoretical interference-free condition clearly depends
on axis position and seems to require a larger value of ¥ than 0-355, which minimizes experimental
interference. The points (A) from experiments in the original NPL 93 in x 95 in (24 cm x 24 cm) slotted
tunnel (Figs. 8a to 9c of Ref. 4) show how the investigation of wall interference has reduced uncertainties
by an order of magnitude.

4.2. Unswept Tapered Wing

The higher aspect ratio of the unswept tapered wing makes it more susceptible to tunnel interference
despite its lower area ratio S/C = 0-0862 and chord to height ratio ¢/h = 0-2276. The wall corrections
can be expected to be larger and more accurate. The presentation of results in Figs. 13 to 18 follows a
similar pattern to that described in detail for the cropped delta wing.

Thus Fig. 13 shows a small effect of Mach number on the theoretical interference-free wall condition,
and the tendency for the optimum ¥ to increase with M is slightly greater than in Fig. 7 for the cropped
delta wing. It is fortunate, therefore, that in Fig. 2 a similar increase in the calibrated ¥ is found for
fixed wall geometry as M changes from 0-6 to 0-8. Smaller values of ¥ are required for damping than for
stiffness, but the inclusive range 0-35 < ¥ < 0-50 covers both wings. Figs. 14 and 15 are equally satisfac-
tory for pitching moment and lift. The mean corrected experimental curves of l; and [; against Mach
number for the aft axis carry some conviction, unlike those in Figs. 8 and 9. We can have sufficient con-
fidence in the practical interference correction of Ref. 1 to use the mean curves in place of an independent
experimental interference-free datum for the unswept tapered wing.
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The uncorrected experimental data in Table 8 only include two hole sizes of the perforated screen, so
that the curves in Fig. 16 are less well defined than those in Fig. 10. The Mach numbers M = 0-608 and
0-812 require interpolation in a few cases. The pairs of circles on the curves correspond to the sets of
corrected data shown as crosses in Figs. 14 and 15, and again they denote values of W for which particular
measured derivatives, myy, mg; and l;r, become free of interference. In each case the trend in optimum ¥
with increasing M is different for slots sealed and for slots open, but the theoretical trend in Fig. 13 is
reversed, if anything. The experimental condition ¥ = 045 is selected to minimize interference.

The synthesis of theoretical and experimental effects of wall porosity is accomplished in Figs. 17 and
18. The free-stream theoretical values for M = 0-8 appear as circles on the curves, while mean corrected
experimental values for M = 0-812 from Table 9 or Figs. 14 and 15 are plotted as triangles at the selected
position ¥ = 0-45. The practical success is measured by the closeness of the triangles to the dashed curves :
the discrepancies are of the order +3 per cent, except for —/; which is 6 per cent too high. These encour-
aging results could even be improved by choosing W = 0-60 for the stiffness derivatives in Fig. 17 and
¥ = 040 for the damping derivatives in Fig. 18. The theoretical success is judged by the qualitative
similarity between the full and dashed curves and by comparison of the predicted interference-free condi-
tions. The curves are remarkably similar throughout and, indeed, ¥ = 0-60 serves quite well theoretically
in Fig. 17, while ¥ = 0-40 is not far wide of the mark in Fig. 18.

Because the frequency parameter is small (v < 0-15), it is possible to estimate the pitching damping
as a function of axis position

Xg — X {xo — x\2
my = my, + ‘O—E'—l(lm — Mg} — \ ! 1) lo1 (55)

given the set of derivatives ly,, l;,, my, , my, for a particular pitching axis x = x,. In Fig. 19, parabolic
curves of —m; have been drawn from the uncorrected experimental data with slots open, with slots
sealed and interpolated to correspond to the optimum wall conditions ¥ = 0-355 for the cropped delta
wing and ¥ = 045 for the unswept tapered wing. The free-stream theoretical curves of large and small
dashes are included for comparison, and for both wings the resemblance in shape between these and the
interpolated full curves gives added confidence that the major effects of wall interference have been re-
moved.

5. Recommended Practical Procedure

Section 6.1 of Ref. 4 describes a general method of modifying ventilated walls to minimize interference
on dynamic measurements. The suggestions, by Moore and Wight, are paraphrased as follows:

(a) Choose a model, such as the unswept tapered wing, that is amenable to theoretical treatment,
sensitive to wall interference and preferably of area ratio §/C < 0-1.

(b) Seal the ventilated walls and measure pitching moment derivatives my; and m;, at M = 0-8 about
a pitching axis well aft of the aerodynamic centre.

(c) Estimate values of lyr, [;z, [, and m,, and then correct the measured derivatives for wall interference
by equations (58) of Ref. 1 with interference parameters 5, §{" and 5§" modified in the ratio (5("),/34".

(d) Determine by experiment suitable perforated screens which, when fitted behind the ventilated
walls, give the corrected value of m;.

They also suggest that, when there are perforated liners, there is greater danger that the wall condition
for interference-free measurements may be dependent on Mach number; in any case, it is advisable to
include a lower Mach number M = 0-6 in (b). Since the interference corrections are more dependent on
lift than on pitching moment or centre of lift a second pitching axis is also advantageous, because lpr
and l;; are then better defined ; moreover, the derivative l;; is especially sensitive to wall interference
and may provide a better criterion than m;;. The larger the model, the greater the uncertainty in (c).
The corrections to damping derivatives, though smaller for closed than for ideal slotted roof and floor,
are not necessarily more accurate. Indeed, the present analysis is based on the mean corrected experimental
curves in Figs. 8, 9, 14 and 15 giving equal weight to the results for slots closed and slots open. Thus,

16



in the case of walls with longitudinal slots wide enough to avoid viscous effects from the tunnel boundary
layer, say, with a > 0-02b, there is a case for repeating (b) and (c) with slots open and no perforated screen.
In (d) it is advisable to optimize the wall conditions for both I; and m; corresponding to the aft pitching
axis.

There is a clear indication from theory and experiment that the porosity parameter ¥ to minimize
interference on stiffness derivatives exceeds the optimum for [; and m,; with aft pitching axis. A glance at
equation (55) is sufficient warning that the optimum W for interference-free damping derivatives may
change with axis position. It is also necessary to deal with a practical situation without calibrated data,
such as in Fig. 2, when it is not possible to estimate what value of P, to use in theoretical calculations.
The following procedure is then recommended as a further extension to that of Ref. 4:

(1) Calculate interference parameters by the method of Ref. 7 for the known slot geometry, but variable
1/Pg, and allow for numerical errors and model span as described in Sections 3.1 and 3.2.

(i) With the aft experimental pitching axis x = x,, say, apply the theoretical method of Section 3.3
at M = 0-8 to discover the value of 1/P; for which /5, and m;, are approximately interference-free.

(iii) For this value of 1/Pg, calculate the theoretical quantities /- and my for the axis x = x,,and hence
the incremental corrections (I, — l,r) and (my — m,r); modify these in the ratio of the uncorrected ex-
perimental lp, to its theoretical value, and then add them to the measured derivatives to give Iy, and my, .

(iv) Convert the derivatives to arbitrary pitching axis by means of equation (55) and the simpler re-
lations

Xg — X3
Mg = My + Z lgs

and . (56)
xO t xl 191
C

lﬁ = l/il

This sequence of calculations will first be made for the unswept tapered wing, and application to the
cropped delta wing will then be simulated.

It is supposed that the pitching moments have been measured on the unswept tapered wingat M = 0-812
for two pitching axes and with slots both sealed and open. At stage (d) the roof and floor of the 9% in x 94 in
(24 cm x 24 cm) tunnel are optimized by choosing an experimental porosity condition W = 0-40 to
equate the measured and corrected experimental damping derivatives in Fig. 18 as well as possible.
Operation (i) of the extended procedure is covered in Tables 2 and 3. Operation (ii) comprises the calcula-
tions in Tables 4 and 7 for the unswept tapered wing at M = 0-8 and the circles on the top and bottom
full curves in Fig. 18, which give a mean theoretical condition W = 0-44. Operation (iii) is carried out
with interpolated quantities at M = 0-812 and W = 0-44 to correct the measured stiffness derivatives
for x, = 1-185¢ corresponding to ¥ = 0-40. The corrected values are obtained as

l meas.
+ E_"Il_..(le — lorhneory >

le1 = (IGT)meas. (Z )
8T Jtheory

= 2.34 + 0:92(2-50-2-55) = 2-29.
Similarly

Mgy = 1.56 + 0-92(1-72-1.74) = 1-54.

Both these values are in satisfactory agreement with the interference-free points (I, = 2-27, my = 1.52)
in Fig. 17.

The final check is to use the same porosity conditions ¥ = 0-44 theoretically and ¥ = 0-40 from
experiment, so as to deduce corrected experimental data for the cropped delta wing. For the pitching
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axis xo = 1-039¢ and M = 0-6 and 0-8, we have the following tabulated derivatives from Fig. 10 and from
similar interpolation in the measured values of [,.

Experiment . 0
P = 0.40 M =06 M =038
l()T 1'58 1‘71
lir 0-46 0-31
mGT 0‘59 0'63
-~ My 0-19 036

Corresponding to equation (57) and with data from Tables 5a and 5b (W = 0-44), there are corrected
stiffness derivatives

Iy = 1:58 + 0:96(1-60 — 1-65) = 1.53 for M = 0-6

i

1-71 + 093(1-74 — 1-.84) = 1.62 for M = 08

and the theoretical corrections to m,r are negligible. No corrections are applied to l;; and —m 7. In
Table 10, these results are compared with the two independent estimates of interference-free experimental
derivatives. Firstly, we use the mean corrected experimental curves from Figs. 8 and 9, which incorporate
equations (58) of Ref. 1: secondly, the ‘interference-free datum’ values, deduced from the previous experi-
ments in the three relatively large ventilated tunnels, are read from Figs. 8a, 8¢, 8¢ and 8g of Ref. 3. Only
in case of /; do the discrepancies exceed 4 per cent of I,, probably because the uncorrected values of /;
are notoriously difficult to determine experimentally. Provided that the span ratio ¢ < 0-4 and the area
ratio §/C < 0-15, it is realistic to conclude that, with sufficient care, the uncertainties of ventilated wall
interference on dynamic experiments with moderately small frequency parameter can be reduced to the
order of 5 per cent of the in-phase lift derivative, e.g., 0-05/;,. Models of larger span or area ratio should
be avoided, unless the required accuracy is relatively low.

6. Conclusions

(1) The theory of Ref. 1 for small frequency is now extended to subsonic rectangular tunnels with a
more general homogencous boundary condition representing a ventilated roof and floor with longitudinal
slots and perforated screens of arbitrary porosity.

(2) Instead of the usual three, there are six interference parameters to calculate ; all, except perhaps d,,,
are found to be highly non-linear functions of the porosity parameter ¥.

(3) On the basis of steady flow with elliptic spanwise loading, a simple analytical formula for (d,); has
been derived in Section 3.2. The ratio (8,),/3, shows important effects of span ratio g, which are magnified
by the large breadth to height ratio of the effective tunnel (b/h = 2-6).

(4) Given Y, the theoretical wind-tunnel conditions can be calculated by an iterative procedure. To
minimize wall interference on pitching damping derivatives in the 93 in x 93 in (24 cm x 24 cm) slotted
tunnel, the optimum porosity parameter is ¥ = 0-44 in remarkably close agreement with the value
¥ = 0-40 indicated by experiment.

(5) Theory and experiment combine to show that the optimum ventilated wall is hardly influenced by
Mach number, so that there are good prospects of eliminating the major interference effects at transonic
speeds.

(6) Each pitching derivative, when plotted against porosity parameter, shows qualitatively similar
behaviour theoretically and experimentally. While the best choice of ¥ is not greatly dependent on plan-
form, there is a consistent tendency for stiffness derivatives to require larger values corresponding to
more open perforated screens.
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(7) The practical procedure of Ref. 4 for choosing a suitable ventilated wall is extended to indicate how,
after the interference on damping derivatives with aft pitching axis has been minimized, residual correc-
tions to stiffness derivatives can be calculated, and hence residual corrections to damping derivatives
with arbitrary axis (Section 5).

(8) With sufficient care, the uncertainties of ventilated wall interference on dynamic measurements
with moderately small frequency parameter and subsonic Mach number can probably be reduced to
the order of 5 per cent of the in-phase lift derivative, provided that the span ratio ¢ < 0-4 and the area
ratio S/C < 0-15.

(9) At the end of Section 3.3 a possible direct evaluation of wall interference on measured pitching
derivatives is indicated. Aithough this is as yet untried because of its empirical element, it represents an
alternative approach when it is inconvenient to alter a wall of known porosity.

(10) The major limitations of the present theoretical analysis are the upper restrictions on frequency
and model size, lack of information on the spanwise variation of the out-of-phase interference upwash,
and the unsuitability of elliptic spanwise loading for elastic modes or part-span control surfaces. Some
progress in these respects is anticipated from extensions to Ref. 7 and other current work.
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LIST OF SYMBOLS

a Width of slot
Ao, dy,0a; Coefficients in equations (44) and (45)
A Aspect ratio of wing, 2s/¢
b Effective breadth of tunnel
bo, by, b Coefficients in equations (44) and (45)
Cpy €y Root chord, tip chord
¢ Geometric mean chord of wing, S/2s
C Cross-sectional area of tunnel
CL Lift/qS, C, &'
C, Complex lift coefficient, C;, + ivC,,
C, Pitching moment/qS¢, C,, ¢**
C, Complex pitching moment coefficient, C,,x + ivC,,
c* Second pitching moment/qSc? in equation (43)
d Periodic spacing of slots (Fig. 1)
F Non-dimensional slot parameter in equation (5)
g Gap between half-model and side-wall
h Height of tunnel
I, Coefficients in equations (32) and (33)
I Equivalent C, for incidence a;
L= —1I Equivalent C,, for incidence «;; defined in equations (33) of Ref. 11
Ik Equivalent C}; for incidence a;
Jq Bessel function of the first kind
{ Streamwise extent of planform
[ Non-dimensional loading Ap/q for incidence «;
l,m, Rotary pitching derivatives in equations (53)
lo, mg Pitching stiffness derivatives in equations (50) and (51)
l;,my Pitching damping derivatives in equations (50) and (51)
L Lift per unit streamwise distance
m Number of spanwise collocation sections
M Mach number of undisturbed stream
n Outward normal distance from tunnel boundary
N Number of chordwise collocation points
Ap Pressure difference between upper and lower surfaces
Ap; Complex pressure difference due to wall interference
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LIST OF SYMBOLS (Contd)

P Porosity parameter in equation (4), fPy
Py Measured porosity parameter in equation (9)
q Dynamic pressure of undisturbed stream, 1pU?
q Spanwise integration parameter in Ref. 11
s Semi-span of wing
S Area of planform of wing
t Time
U Velocity of undisturbed stream
v, Mean velocity normal to ventilated wall

Interference upwash velocity, w; &'

W; Complex interference upwash velocity
X Streamwise distance downstream from root leading edge
Xo Value of x at pitching axis
X modified streamwise distance, x/f
y Spanwise distance from wing root
z Upward distance from centre of tunnel
o; Steady distributions of incidence in equations (46) and (47)
o Function in equation (33)
B Compressibility factor, (1 — M?)*
0¢,01,0, Steady upwash interference parameters in equation (25)
0o, 01, 0% Interference parameters in imaginary part of equation (25)
] Non-dimensional spanwise distance, 2y/b
0, Function in equation (38)
Ay Approximate corrective factors below equation (40)
Ao Angle of sweepback of leading edge
v Frequency parameter, wc/U
P Density of undisturbed stream
o Span ratio, 2s/b
T Span of uniform loading as a fraction of b
¢ Perturbation velocity potential, ¢ &'
¢ Complex perturbation velocity potential
&; Complex potential due to wall interference
P, Complex potential due to lifting model
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LIST OF SYMBOLS (Contd)
Potential function in equation (12)
Porosity parameter in equation (23)
Angular frequency of oscillation
Modified frequency, w/f

Subscript denoting pitching axis x = x;

Subscript denoting elliptic spanwise loading

Subscript denoting effect of wall interference

Subscript denoting imaginary part in equations (43) or (29) and (30)
Subscript denoting incidence a;

Subscript denoting model only

Subscript denoting real part

Subscript denoting derivative with tunnel-wall constraint

Prefix denoting increment due to wall constraint

Superscript denoting closed tunnel

Superscript denoting closed side-walls, open roof and floor
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TABLE 1

Analytical Formulae for Interference Parameters for Rectangular Tunnels with Closed Side-Walls

Roof and floor do d, do (Do)g
Closed Ref. 1, Ref. 1, Ref. 1, Ref. 10,

eq. (20), eq. (22), eq. (28) eq. (3.84)
Open o0 and 8" oY and 0¥ Ref. 1, Ref. 1,

egs. (36), (28), (30) | eqs. (63) to (65)

Ideal slotted Ref. 9, — — Eq. (38)

eq. (6.68)"
Slotted- Ref. 9, — — Eq. (37)
perforated eq- (6.73)

TABLE 2

Interference Parameters for Small Wings in Rectangular Tunnel (b/h = 2-6) with Closed Side-Walls
and Variable Roof and Floor

Roof and floor

Approximate results (Ref. 7)

Exact

F 1/P, do Jo 0, 0, dg 01 0%
any 0 0-1713 0-191 0444 0-000 —0-005 —0-191 —0-205
0-233 7-0 0-148 0437 0-083 —0003. | —0-194 —-0211
0-233 30 0-0806 0093 0-404 0-176 0-009 —0-188 —-0-224
0-233 1.5 0018 0-317 0-268 0-037 —0-152 —0-240
0-233 1-0 —0:0351 —0-033 0232 0-293 0-062 —-0-103 —0-228
0-233 0-4 —0-1276 — - — - — —
0-233 0 —02216 | —0-215 —0-233 0-000 0-165 0-215 0118
0 0 —0-3403 | —-0-342 —0-507 0-000 0-205 0-342 0-247
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TABLE 3

Interference Parameters Used in the Calculations (b/h = 2-6, Closed Side-Walls, ¢ = 0-385)

Roof and floor
do 9 0, g & 0y

F 1/P;
0233 o0 01237 02701 0 - 00006 —-0-1237 —0-1350
0-233 3.0 00486 0-2838 0-1760 0-0077 —0-1436 —0-1746
0233 1.0 —0-0464 0-1852 0-2930 00529 —0-0896 ~0-2065
0-233 04 —0-1209 00308 0-2265 0-1011 00263 —01010
0-233 0 —0-1950 —0-2077 0 0-1452 0-1950 0-1038

TABLE 4

Theoretical Aerodynamic Coefficients for Two Wings (Method of Ref. 11 withm = 23, N =3, g = 4)

Cropped delta wing Unswept tapered wing
Coeff.
M=0 M =06 M =08 M=0 M =06 M =08

I, 2.952 2:564 2091 3-851 3469 2:959

I, 3:571 3131 2-592 4-153 3.755 3224

I3 0-540 0-752 0-868 —0-356 0-161 0618

I, 4.514 3982 3-329 4.797 4.344 3742

Iis 0-220 0-504 0-692 —0-837 —0:267 0-252
— {0 1-875 1-624 1-320 1:940 1-734 1-459
— 1 2:697 2:393 2014 2-568 2:342 24036
— 1,3 0-677 0-799 0-849 0-266 0513 0717
— 1 3735 3354 2-872 3-305 3-040 2-679
— L 0-509 0-676 0773 0-010 0-286 0-524
-1k, 1.465 1-260 1-012 1-294 1-145 0947
g 2.391 2-131 1-.807 2.010 1-840 1-608
—1I%, 3:545 3212 2787 2-820 2615 2:330
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TABLE 5

Calculated Theoretical Pitching Derivatives for Cropped Delta Wing

(a) Free stream (Table 4)

Xo/C M ly ls My —my I —my,
0-314 0 1-476 1-592 —0474 0-893 1-322 0-639
0-6 1-602 1-659 —0-512 1.037 1-454 0-720
0-8 1-743 1-738 —0:553 1-269 1-613 0-826
1-039 0 1-476 0-522 0-596 0-171 0-252 0-113
0-6 1.602 0-497 0-649 0-306 0-292 0-137
0-8 1.743 0-474 0-710 0-524 0-350 0-172
(b) Slotted tunnel with variable porosity
Xo = 0:314¢ Xo = 1039¢
M 1/Pg lor
lir — Myt —Mgr lyr Mgr — My
0 @ 1-598 1-649 0-523 0919 0-490 0-635 0-134
30 1-555 1-588 0511 0-891 0-460 0-616 0-186
1-0 1-484 1-598 0-486 0-887 0-522 0-590 0-156
0-4 1-417 1-653 0-458 0-905 0-626 0-569 0-120
0 1-340 1707 0-424 0926 0-735 0-548 0-085
0-6 ee) 1761 1-714 0-579 1075 0-437 0-698 0-338
30 1-715 1-620 0-569 1023 0-377 0675 0-338
1-0 1-628 1-646 0-537 1-012 0-465 0-644 0-286
04 1-540 1.751 0-498 1-046 0-635 0-618 0-225
0 1-436 1-859 0-449 1-086 0-818 0-592 0-167
0-8 o0 1-961 1.801 0-652 1-348 0-380 0-770 0-600
30 1921 1.615 0-649 1-228 0-222 0-744 0-596
1-0 1-813 1-642 0-608 1-180 0-328 0-706 0501
0-4 1-688 1-854 0-549 1-246 0-630 0-675 0-392
0 1-532 2076 0-468 1.329 0965 0-643 0-290
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(a) Uncorrected data

TABLE 6

Smoothed Experimental Pitching Derivatives for Cropped Delta Wing

Xo = 0-314¢ xo = 1039¢
Slots M lor
lir —Myr —Myr lir Mgt — Mt
Sealed 0-40 1.574 1-603 0-555 0-875 0-462 0-586 0-138
1 0-50 1-610 1-592 0-568 0-895 0425 0-599 0-175
P ®© 0-60 1-657 1-577 0-587 0923 0-376 0614 0-225
0-70 1.724 1.564 0-616 0969 0314 0-634 0-295
0-80 1-.818 1.531 0-656 1.055 0-213 0-662 0425
0-85 1.874 1.503 0-681 1-123 0-144 0678 0-525
Open 0-40 1-324 1.773 0450 0960 0-813 0510 0-044
1 0 0-50 1.368 1.758 0-470 0969 0-766 0-522 0073
Py 0-60 1.423 1-755 0494 0991 0723 0538 0-109
0-70 1-479 1.775 0-514 1.040 0-703 0-558 0-158
0-80 1-531 1-823 0-530 1-131 0713 0-580 0230
0-85 1.553 1-842 0-536 1-198 0-716 0-590 0290
(b) Corrected for wall interference (Ref. 1)
X = 0:314¢ Xo = 1039¢
Slots M ly
Iy —my —my Iy Mg - My
Sealed 0-40 1-452 1-532 0-503 0-845 0-475 0-551 0-137
1 0-50 1.480 1.523 0-512 0-864 0-446 0-563 0171
P @ 0-60 1.515 1.512 0-524 0-892 0-409 0-576 0216
0-70 1.564 1-504 0-543 0937 0-364 0-593 0-280
0-80 1.627 1-483 0-565 1-020 0-297 0618 0-396
0-85 1.659 1-467 0-575 1.087 0-256 0-632 0-485
Open 0-40 1-460 1-666 0-503 0929 0-614 0-554 0-117
1 0 0-50 1-515 1-616 0-528 0926 0-522 0-568 0-161
P 0-60 1.584 1.562 0-559 0930 0-415 0-588 0-219
0-70 1-659 1-511 0-588 0956 0-309 0612 0-299
0-30 1.737 1.445 0617 1-013 0-187 0-638 0-422
0-85 1777 1-367 0-634 1-051 0-081 0-650 0-524
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TABLE 7

Calculated Theoretical Pitching Derivatives for Unswept Tapered Wing

(a) Free stream (Table 4)

Xo/C M lo Iy My —my lq —m,
0-395 0 1-926 1-138 —0-210 0-584 1-316 0-381
06 2-168 0937 —-0-227 0-746 1-490 0-447
0-8 2.466 0-528 -0-242 1.055 1.713 0-539
1-185 0 1-926 —0-383 1-312 0721 —0-205 0-377
0-6 2-168 —0-776 1.485 1-179 —0-222 0-443
0-8 2-466 —1-420 1.706 1-986 —0-235 0-534
(b) Slotted tunnel with variable porosity
Xo = 0-395¢ Xo = 1:185¢
M /P, lor
lor — Myt —Myr —lgr Myt — Mgy
0 o0 2-033 1-113 0-226 0584 0-493 1:380 0-795
30 1-985 1-104 0-222 0-575 0-465 1-346 0-766
1-0 1916 1-220 0-213 0-583 0-294 1-301 0-647
0-4 1-857 1-365 0203 0-601 0-102 1-264 0-521
0 1.793 1-504 0192 0-622 0-087 1.225 0402
0-6 20 2:314 0-851 0-252 0-746 0976 1.576 1-319
30 2:254 0-840 0-247 0-725 0-941 1-534 1-.273
1-0 2:165 1-043 0-235 0732 0-667 1-475 1073
04 2-085 1-303 0-221 0-762 0-344 1-426 0-860
0 1-997 1-554 0-204 0-799 0023 1-374 0-656
0-8 o0 2:676 0-310 0-280 1070 1-804 1-834 2.273
30 2-604 0-262 0277 1-005 1.795 1.780 2.205
1-0 2-483 0-626 0-260 0995 1.336 1.701 1-845
04 2-368 1-131 0-238 1-051 0-740 1-632 1-447
0 2.236 1.631 0-208 1.123 0-136 1-558 1.066
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TABLE 8

Uncorrected Experimental Pitching Derivatives for Unswept Tapered Wing

XO = 0‘3956 XO = 1’1855

Hole M lyr
size lir — Mgt — Mgy —lir Myt - Mg
0 0-406 1.897 0-987 0234 0-616 0512 1-265 0-836
(slots 0-510 1.972 0-892 0-232 0-622 0-666 1-326 0-965
sealed) 0-616 2:104 0-795 0-256 0-662 0-867 1-406 1-145
0-718 2.248 0-668 0-265 0-736 1-108 1-514 1-402
0-823 2470 0-283 0-301 0-856 1-668 1-650 1-936
0-886 2634 —0-339 0-415 0917 2-420 1.666 2-501
0-06 in 0-608 2086 0-812 0-252 0-648 0-836 1-396 1-.109
1-6 mm 0-812 2-347 0-324 0-289 0-832 1-530 1.565 1-812
0-311in 0-608 1-983 1-204 0-237 0-697 0-362 1-329 0-796
7-9 mm 0-812 2-262 0976 0-265 0911 0-811 1-522 1-342
Slots 0-405 1.704 1-509 0-195 0619 —0-163 1-151 0-336
open 0507 1.781 1.526 0-205 0-646 —0-089 1-202 0414
0-609 1-864 1-425 0-212 0-682 —0:047 1-260 0-552
0710 1.933 1-375 0-220 0-769 —0-152 1-307 0-715
0-813 2071 1-168 0-253 0-889 —0-468 1-383 1059
0-865 2:243 0-975 0-303 1.014 —-0797 1-469 1-404

TABLE 9
Corrected Experimental Pitching Derivatives for Unswept Tapered Wing
X = 0395¢ Xo = 1.185¢

Slots M I
lo' — My —my - lé my — My
Sealed 0-406 1-800 1-010 0217 0-615 0-426 1-207 0-781
1 o 0-510 1-866 0-929 0-213 0624 0-559 1.262 0-896
Py 0-616 1-981 0-852 0-234 0-665 0-727 1-333 1.056
0718 2:103 0-754 0-238 0-741 0-923 1-426 1-283
0-823 2285 0-448 0-263 0-868 1-378 1-546 1-750
0-886 2414 | —0-055 0-361 0946 1.992 1.556 2.248
Open 0-405 1-825 1-155 0-213 0-578 0-268 1.228 0-622
1 0-507 1.915 1-106 0-225 0-598 0-425 1-287 0-755
P 0-609 2013 0-891 0-235 0-622 0-682 1-354 0974
0710 2098 0-698 0-246 0-695 0-936 1-409 1-238
0-813 2:269 0-157 0-288 0773 1-607 1-501 1-809
0-865 2:483 —0-465 0-349 0-834 2-405 1.607 2-441
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TABLE 10

Practical Estimates of Interference-Free Pitching Derivatives for Cropped Delta Wing (x, = 1-039¢)

Experiment Method M ly I My —my
With optimum 0-6 1.53 0-46 0-59 0-19
wall porosity Section 5

08 1-62 0-31 0-63 0-36
With open and 0-6 1-55 042 0-58 0-21
sealed slots Ref. 1, eq. (58)

0-8 1-68 0-24 0-63 041
In ventilated 0-6 1.55 0-35 0-56 0-22
large tunnels Ref. 3, Fig. 8

0-8 1-67 0-20 0-62 0-41
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Effective tunnel breadth b= 19in (482mm)

Height of tunnel h= 7-30in (I85mm)
Regular slot spacing d=19in (48mm)
Width of each slot a= 03in(7-6mm)
Span of half model s= 3-60in (91-5 mm)
Gap at side-wall g= 0-05in(I:3mm)

b/h =126, F=0-233, 6=2 (s+g)/b= 0385

Fic. 1. Working section of tunnel with five wide slots in roof and floor.
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Reproduced from Fig.5 of Ret.4
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FiG. 2. Porosity parameters for the slotted walls with variably perforated screens over a range of Mach
number.
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F1G. 3. Steady interference parameters for small wings in tunnel with roof and floor of varying porosity.
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FiG. 4. Additional unsteady interference parameters for small wings in slotted tunnel of varying porosity.
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FiG. 5. Effect of wing span on steady lift interference in tunnel with slotted roof and floor of variable
porosity.
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FiG. 6a and b. Definitions of planforms and locations of pitching axes.
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FiG. 7. Theoretical effect of wall porosity on aerodynamic stiffness and damping of cropped delta wing
in pitching oscillation.
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FiG. 8. Corrections to [, and m, against Mach number for cropped delta wing under two wall conditions.
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FiG. 12. Theoretical and experimental effects of wall porosity on m, and —m, for cropped delta wing
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F1G. 13.  Theoretical effect of wall porosity on aerodynamic stiffness and damping of unswept tapered
wing in pitching oscillation.
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F1G. 15. Corrections to —I; and —m; against Mach number for unswept tapered wing under two wall
conditions.
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