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Summary 
In parallel with a recent experimental study of the use of slotted tunnel liners with variable perforated 

screens to give interference-free aerodynamic damping derivatives, the corresponding problem is con- 
sidered theoretically. The principle, that wall interference usually changes sign when slots in the roof 
and floor of a rectangular tunnel are completely sealed, has prompted these complementary studies with 
systematic variation of a porosity parameter that can govern the intermediate wall conditions. A theory 
for small frequency parameter and subsonic compressible flow, which has already explained serious 
interference effects observed experimentally, is extended to the more general tunnel boundary conditions. 

With the aid of a special similarity rule for compressible flow, the six necessary interference parameters 
are determined by a judicious amalgam of exact and approximate data for incompressible flow, including 
allowance for elliptic loading over a finite wing span. The corrections to oscillatory lift and pitching 
moment are formulated. By iterative calculation the theoretical method is applied to pitching motion 
of the unswept tapered and cropped delta planforms chosen for the related half-model experiments. The 
most favourable wall porosity for low interference is similar in theory and experiment for the two wings. 
A recommended practical procedure for approximating to interference-free wall conditions is thus 
corroborated by theoretical calculation and is also extended to give residual corrections. 

The extended procedure is illustrated for the larger cropped delta half-model. It is concluded that the 
uncertainties from ventilated wall interference on pitching derivatives can be reduced to about 5 per cent 
of the in-phase lift derivative, provided that the model span does not exceed 40 per cent of the tunnel 
breadth, nor the planform area 15 per cent of the working cross section. Theory and experiment combine 
to show that the optimum ventilated wall is hardly influenced by Mach number, so that there are good 
prospects of eliminating the major interference effects at transonic speeds. 

* Replaces RAE Technical Report 71017--ARC 33 053. 
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1. Introduction 

The need for theoretical study of wall interference on oscillating models in ventilated tunnels has 
continued since the publication of Ref. 1 (Garner, Moore and Wight, 1966). Although that paper gives a 
mathematical explanation of the serious interference effects on pitching derivatives observed experi- 
mentally, it does not provide a complete remedy. Under conditions of small frequency parameter and 
small model area ratio, satisfactory interference corrections can be applied if the slotted or perforated 
walls are sealed; with such a configuration blockage or choking would prohibit transonic operation. 
Under the same model conditions but with open slots in the roof and floor of the tunnel, the wall inter- 
ference can be formulated satisfactorily unless the slots are too narrow or have perforated screens; 
unfortunately, the corrections in this case are liable to be of the same order of magnitude as the measure- 
ments, and cannot be applied with confidence. One remedy, suggested in Ref. 1, is to reduce the interference 
effects by having the side-walls ventilated but the roof and floor solid; however, operation at transonic 
and low supersonic speeds would impose severe limitations on model size to avoid interference due to 
reflected waves from the solid walls. In order to approximate to interference-free measurements over the 
operative speed range, it is best to utilize the result that wall interference usually changes sign when slots 
are completely sealed. This principle has led to experimental and theoretical studies with systematic 
variation of a porosity parameter that can govern the intermediate wall conditions. 

In a series of experimental papers by Moore and Wight 2'a'4 (1967 to 1969), considerable progress has 
been achieved towards the elimination of interference effects on half-model testing. It is shown in Ref. 2 
that, if wall effects are present in a ventilated tunnel at subsonic speeds, they are likely to persist through- 
out the low supersonic range. It is, therefore, necessary to remove as much of the interference as possible 
at subsonic speeds; then an empirical method, with/~ = 0.45 as suggested in Ref. 2, can reasonably be 
used to correct the measurements at transonic speeds. The investigation in Ref. 2 reveals a systematic 
influence of the side-wall boundary layer where the half-model is mounted. A simple method of allowing 
for the displacement thickness of the boundary layer is suggested iv_ Ref. 3, so that an experimental 
interference-free datum is established from measurements on a cropped-delta half-model tested in three 
relatively-large ventilated tunnels. The same model has also been tested in the smaller NPL 9½ in x 9½ in 
(24 cm x 24 cm) tunnel with longitudinally slotted liners fitted with perforated screens of adjustable hole 
size. As the porosity of the screens is changed, the measured oscillatory pitching moment passes through 
the interference-free datum to define an optimum wall condition that is practically independent of Mach 
number in the subsonic range. This conclusion is reached in Ref. 3, but a full account of the experiment is 
given in Ref. 4, which includes similar measurements on an unswept tapered half-wing. Pitching derivatives 
for the latter planform are known to be sensitive to slotted-wall interference ; nevertheless, the same wall 
condition is found to give measurements in fair agreement with those obtained when the slots are sealed 
and corrections are made by the method of Ref. 1. 

The variable porosity parameter, associated with the perforated screen, is determined from the rate of 
change of mass flow through the slot with respect to the pressure drop across the ventilated wall in steady 
flow. Calibration against Mach number is made for four sizes of perforation in Ref. 4, but has not played 
a crucial part in the subsequent analysis. However, the Appendix to Ref. 4 discusses the interpretation 
of the quantity PE from experiment as a porosity parameter in the boundary condition for a slotted- 
perforated wall. This provides the vital link between experiment and theory. In the present report the 
theory for small frequency parameter has been extended to the more general boundary condition in 
subsonic compressible flow. With interference parameters from approximate numerical analysis, theor- 
etical interference-free conditions are found to be reasonably consistent with those from experiment. 
This result offers the possibility of residual wall corrections when, in Ref. 4 for example, there is no choice 
of perforated screen that will eliminate interference effects on damping and stiffness derivatives simul- 
taneously. 

2. Treatment of Slotted-Perforated Walls 

Fig. 1 shows the working section of the NPL  9½ in × 9½ in (24 cm × 24 cm) tunnel and the identical 
spanwise extent of the cropped delta and unswept tapered half-models. The origin O is indicated on the 



side-wall, but is regarded as a point on the central axis of a rectangular tunnel of the given height h and 
an effective breadth b. The side-wall or reflection plane is denoted by y = 0 and, including the small gap 
g, the half-model has spanwise extent 0 ~< y ~< s; the z-axis is vertically upwards and, to complete a 
right-handed system, the x-axis out of the paper represents the direction of the undisturbed stream of 
velocity U, subsonic Mach number M and density p. 

The wing is made to oscillate harmonically with angular frequency co. The perturbation velocity 
potential is written in the usual form 

4~ = real part of {~(x, y, z) emt}. (1) 

Then the linearized flow is governed by the complex differential equation 

~2~0 ~2(0 (32(o 2iojM2 O~ o)2M2q~ 
[Ja6~X 2 -I- --Oy 2 4- ~,g2 U ~X 4- U2 - O, (2) 

where f12 = 1 - M 2. It is assumed that the complex potential (/5 m due to the model alone is known in 
terms of the oscillatory aerodynamic forces acting on it. Then we write 

(~ : (~m -}- (~i, (3) 

and the problem is to determine ~i in the region of the model subject to certain boundary conditions on 
tile tunnel walls. 

The effective tunnel has solid walls on the sides y = + ~b and the combination of ten longitudinal 
slots and perforated screens on the doubled roof and floor z = _+ }h. The relevant details of slot geometry, 
width a and spacing d, are given in Fig. 1 ; the adjustable screens are illustrated in Fig. 2 of Ref. 4. The 
general boundary condition on qS, with arbitrary slot geometry and porosity, is discussed and formulated 
in Section 2.1. Subject to this condition and small frequency, the treatment of equation (2) is considered 
in Section 2.2. 

2.1. Boundary Conditions 

The theoretical treatment of slotted walls is discussed in Section 2 of Ref. 1. Instead of separate con- 
ditions on the slots and slats, the mixed boundary is represented by a homogeneous condition, which 
presupposes that the slots are neither too few in number nor too large in width. The boundary condition 
for steady flow is that proposed by Baldwin, Turner and Knechtel s (1954) 

¢?q~ 1 F (92(/~ 1 aqb 
(?x + 2  h ~ + p  an - 0 '  (4) 

where n is the outward normal distance from the boundary, 

2d r~a 
F = ~ log e cosec }.~ = 0.233 (5) 

and the porosity parameter P, by allusion to a perforated wall, regulates the pressure drop through the 
slots from tunnel to plenum chamber in proportion to the outflow. The value of F corresponds to the data 
in Fig. 1 and is unaffected by the reflection plane. The generalization of equation (4) to oscillatory flow 
is not certain, but it is plausible to take the boundary condition 

1F ~c~ 1 r?~ O. (6) 



There is no physical reason why P should not be complex, but it is taken to be real as there is no positive 
evidence of any phase lag between pressure drop and outflow. Equation (6) reduces to the accepted 
linearized boundary conditions in the limiting cases of steady flow (~o = 0) and ideal slots (P --, ~),  and 
in particular to 

0~ 
- -  = 0 (7) 
On 

on the solid walls, which may be interpreted as either P --, 0 or F -~ oe. 
The slots are thought to be wide enough to prevent much effect of the boundary layer on the wall 

condition. The porosity parameter P is therefore supposed to relate to the size of hole in the perforated 
screen. The interpretation of P in compressible flow is not straightforward, but a reasoned discussion of 
the problem is found in the Appendix to Ref. 4. To be consistent with what is observed at transonic speeds, 
it is considered necessary to write 

P = flPE, (8) 

where Pe is determined experimentally with the tunnel empty. The mean outward mass flow pv, per unit 
area is plotted non-dimensionally against the pressure drop Ap from working section to plenum chamber 
to give a linear calibration, as illustrated for four hole sizes in Fig. 4 of Ref. 4. The slopes then determine 

20(v,/U) 
P ~ -  O(Ap/q)' (9) 

where q = lpg2 is the dynamic pressure of the undisturbed stream. The small, but significant, dependence 
of PE on Mach number for each hole size is reproduced in the upper diagram of Fig. 2. With substitution 
from equation (8), the boundary condition (6) becomes 

1 
+ Un l + 13P  - o. (lo) 

2.2.  S imi lar i ty  Rule  for Comp res s ib l e  F low 

The basic principle underlying the simple analytical solutions for wall interference in Ref. 1 is the 
integral relationship between the steady and oscillatory velocity potentials for incompressible flow in 
equation (10) of that report. The result is generalized to the case of low-frequency subsonic compressible 
flow, and there follows a convenient interdependence of the real and imaginary parts of the interference 
upwash 

w i -  Oz' (11) 

which continues to hold for i~teal slots (P~ -~ oo). The principle no longer applies when P~ is finite and 
non-zero, and we are faced with a formidable combination of differential equation (2) and boundary 
condition (10). 

Some simplification results from the use of the potential function ~ such that 

(io)M2 X ] 
(12) 



where X = x/ft. Then ¢ satisfies the differential equation 

a2¢ a2~9 c32¢ m2M2~, 
~-aX 2 -[- - - a y  2 -[- ~ -}- / j 2 U  2 - -  O, (13) 

which reduces to Laplace's equation in the limit of small frequency when 0((0 2) is negligible. The model 
potential 

i(0M2X~ (14) 
¢~ = ~exp f lu ~' 

and hence the corresponding interference potential 

O, = 0 - 0~,  (15) 

both satisfy the same governing differential equation• With substitution from equation (12), the boundary 
• condition (10) becomes 

Ux + ~' + ~ ]  + n~, ~ - 
(16) 

where Y~ = (0~ft. Thus the interference potential satisfies 

+P~an- ~ + ~" + U  ~V~]-~'~ ~n 

on the roof and floor, while on the solid side-walls (PE ~ 0) 

a~i a~m 
- ( 1 8 )  

an an 

Starting from the elementary perturbation velocity potential of a small area S with lift coefficient C L 
at the origin in steady incompressible flow 

I x l USCLz 1 q- y2 (19) 
~bmO --  8T[(y2 -[- Z 2) (X 2 -[- ~- Z2) ½ ' 

we use equation (11) of Ref. 1 to construct the corresponding quantity 

= e x p ~  - -  ~ - -  d~ (20) 

in oscillatory compressible flow. By equations (14), (19) and (20) it is easily shown that 

uscL S z {ir~(~ x)} 
Cm - 8n 0o (42 + Y~ + z2) ~exp d~. (21) 

Apart from the substitutions X = x/fl and fl = (0/fl, equations (17) and (21) are invariant for M < 1. 
With a fixed value of Pe and low frequency, the similarity rule for compressible flow is first to solve for 

? 
Oi = qSi(x, Y, z ; (0, 0) with M = 0, 



and then to take 

iooM2x ~ 
(oi(x , y, z ; 09, M) = ~,(x/~, y, z ; co/~, 0) 1 + ~2 U J '  (22) 

A necessary condition for the similarity rule is that PE is real. While this is fundamental, it is of little 
consequence that Pe shows a minor dependence on  Mach number. Theoretical calculations must cover 
the range of hole size in Fig. 2, and we shall take Pe = 0.3, 1.0 and 2.5. A convenient porosity parameter 
for purposes of interpolation is the quantity 

qJ = (1 + P~ 1)- 1, (23) 

plotted in the lower diagram of Fig. 2. There are limiting values q~ = 0 for a solid boundary and q~ = 1 
for an ideal slotted wall, both of which play an important part in the subsequent analysis. 

3. Method of Interference Correction 

The similarity rule in Section 2.2 has reduced the problem to that of solving Laplace's equation subject 
to the boundary conditions (17) and (18), where ~b,, is known. A numerical finite-difference technique, 
known as dynamic relaxation, has been developed by Rushton and Laing 6 (1968) for the case of a small 
model in steady flow. In Ref. 7 they have extended the treatment to oscillations of low frequency and 
have applied their method to the present wall configuration in incompressible flow. These results for 
zero span are discussed in Section 3.1. 

Fhe calculations by dynamic relaxation are only approximate, and where analytical solutions are 
available they have been preferred. Furthermore, the span of the half-models in Fig. 1 is large enough to 
warrant adjustments to the interference parameters, as derived in Section 3.2. Use is made of Holder's 8 
(1963) result for finite wings in rectangular tunnels with ventilated roof and floor and also of various 
formulae from Refs. 1, 9 and 10 (Table 1). 

From equations (11) and (22) the complex interference upwash becomes 

i oM2x], 
wl  = 1 + - ~  ~ (x/[3,  y, z ; o~/~, 0). (24) 

In the most general case, when PE is finite and non-zero, six interference parameters are needed to define 
O(oJOz in place of the three in Ref. 1. Some re-formulation of the corrections to pitching derivatives is 
therefore required in Section 3.3. 

3.1. Interference Parameters for Small Wing 

It follows from Section 2.2, that the expression for the complex interference upwash in equation (15) 
of Ref. 1 is no longer valid when there is an arbitrary porosity parameter in the homogeneous boundary 
condition on the ventilated walls of the tunnel. Instead we write for incompressible flow 

~i(X) OSCLI{(~o _~. (~lX (x)21 i(DhI( ~ , x (h)21 (h)31 
c + - 6 -  + o  , (25) 

where C = bh and the complex lift coefficient C" L is defined by 

lift = real part of {½pU2SCL el"}. (26) 



By equation (24) the corresponding result for compressible flow becomes 

Wi(X) -- U S C L  1 .4- -I- (~1 At- (~2 
c 13 v o 

(;)21 (27) 

With fixed slot parameter F, the integral for 6~ in equation (16) of Ref. 1 and the simplifications 

62 = 0, G = - 6 0 ,  G = - ½ G  (28) 

hold only when Pa - ,  0 or .~. In general, all six of the interference parameters from equation (25) need 
to be determined. 

The method of solution in Ref. 7 is to split 

q5 = q5 R + iqSt (29) 

into its real and imaginary parts, both of which satisfy Laplace's equation in incompressible flow. 
Similarly 

~m = ~mR -~- i0.,1 - USCI.  fo  ~ z e - i°~'/v 
8~  E(X --  X') 2 @" y2 -t- Z2] ~ dx', (30) 

the interference potential ~i and the boundary condition (10) are separated into their real and imaginary 
parts. The components 0iR and qSi~ are linked by both parts of the boundary condition on the ventilated 
roof and floor. A very small value ~oh/U = 0.01 is substituted into equation (30). Then q5 m and (?~m/?,n 
are evaluated on the tunnel walls, and the finite-difference equations for 0~R and 0~t at an array of mesh 
points are set up and solved by an extension of the dynamic relaxation method of Ref. 6. The results are 
readily expressed in terms of equation (25); the interference parameters, taken from Table 3 of Ref. 7, 
are reproduced in Table 2. For fixed b/h = 2-6 with solid side-walls and F = 0.233 on the roof and floor, 
all six interference parameters are tabulated for variable porosity parameter P = Pe; the limiting case 
of an open roof and floor (F = 1/P = 0) is also included. 

Restrictions on the total of mesh points make it necessary to consider the accuracy of the approximate 
results from Ref. 7. The analytical result due to Holder 8 in equation (6.73) of Ref. 9 gives 

60 = 6(o n -  L Ik, (31) 
k=O 

where 6~01~ denotes the value for a closed rectangular tunnel from equation (20) of Ref. 1, 

1 dq 
I° - 2~Pe (sinh q + Fq cosh q)2 -t- (PE- 1 cosh q)2' (32) 

and for k ~> 1 

, do 
lk = ~ (q/ek)2(sinh C~ k + Fc~ k cosh ek) 2 + (P~ 1 cosh ~k) 2 

(33) 

where 

O~ k = Eq 2 q- (kr~h/b)2] ~. 



The exact values of 60 in Table 2 have been computed from these equations and others listed in Table I. 
The plot in Fig. 3 against the porosity parameter ~d from equation (23) shows that Ref. 7 is least accurate 
near ~P = 0, that is, when the perforated screens are almost closed. All the interference parameters have 
been calculated exactly for the limiting case ~ = 0 from equations in Ref. 1 and from the simple relations 
(28) that also apply to ideal slots (~  = 1). These exact data have been plotted in Figs. 3 and 4, and it 
appears that the broken curves from Table 2 must be adjusted in the range • < 0-4. At the other extreme, 
open roof and floor, the results from Ref. 7 are accurate within I or 2 per cent. It is significant that 6o, 
the leading coefficient of the real part of the interference upwash, vanishes at a larger value of • than 
does the all-important imaginary term in 6;. 

3.2. Effect of Model Span 

Of greater importance than the numerical approximations in Ref. 7, the effect of model span has to be 
taken into account. We have to consider a breadth to height ratio b/h = 2.6, and Fig. 17 of Ref. 1 shows 
how the steady lift interference parameter ((5o) ~ becomes more sensitive to wing span as b/h increases 
from 1 to 2. 

It follows from equations (6) to (8) of Ref. 8, that for a uniformly loaded wing of span br the spanwise 
distribution of interference upwash across a rectangular tunnel with ventilated roof and floor is given by 

Cwi(y) 
- -  - '~o(~/,  r )  
USCL 

= 6(o')(q, r) - ~ lk c°s(kral) sin(knr) 
k=0 k~r ' (34) 

where the first term corresponds to a closed tunnel with the same b/h, tl = 2y/b and I k is defined in 
equations (32) and (33). The general formulation of (6o) ~ in equation (3.46) of Ref. 10 may be written as 

( 3 5 )  

where a = 2s/b. Its value (6Co'))e for the closed tunnel is readily calculated from equation (3.84) of Ref. 10. 
It follows from equations (34) and (35) that 

16 ~ f":~/'~" cos(k~cr sin 0)sin(k~cr sin 0) 
(6o)E = (6(ol))e - ~ ~ Ik J o  I sin 0 cos 2 0 dO dO, 

k=o ~o k~a 
(36) 

where we have substituted ~ = ~ sin 0 and r /=  cr sir~ 4- By separation of the variables 0 and 0 it can be 
shown that 

I F2J ' ( k~ ) l  ~ (6o)E= (6(oI')e- IO -- k:1 ~ kl_- ~ _] ' (37) 

which is formally similar to the result in equation (10) of Ref. 8, except that sin (k~r) is replaced by the 
Bessel function 2Jl(kzw ) in changing from uniform to elliptic spanwise loading. Special care is needed in 
the evaluation of the integrals for I k, but once these are known it is relatively simple to compute (6o) e 
as a function of a. 

With reference to equations (6.68) of Ref. 9 and (3.17) of Ref. 10, the corresponding result for an ideal 
slotted roof and floor is 

(ao)~ = (6(0'))E 4(1 + F) b k=, Ok e2k~'b -- i + e 2k~h/b + 1 J L  J (38) 



where 

b + k ~ h F  
0 k - 

b - kr&F" 

The limiting case of closed side-walls and open roof  and floor is obta ined by substi tuting F = 0 and Ok = 1 
in equat ion (38); it has been checked numerical ly that  this more  elegant and convenient  formulat ion is 
consistent with the method described in equat ions (63) to (65) of Ref. 1. 

The pa ramete r  (6o)e has been evaluated from equat ions (32), (33), (37) and (38) and plotted against  a 
in Fig. 5 for F = 0-233 and five values of I /Pe .  The present appl icat ion requires a = 0.385, when the 
effect of span is to reduce 6~o 1) for the closed tunnel by 28 per cent. The values of (~o)E for a = 0.385 are 
used for 6o in Table 3; apar t  f rom 62 and 6'~ for the special cases 1/P E = 0 and oo, there is an element 
of guesswork in all the other interference parameters .  For  the closed roof  and floor, we have ignored 
Ref. 7 and applied the correct ion factor 

(6(°~))E - 0 . 7 2 2  (39) 
a(ol, 

to the exact values for the small wing plot ted in Figs. 3 and 4. For  the ideal slotted roof  and floor (lIPs,: = 0), 
a trivial adjustment  has been made to Table 2 before applying the correction factor 

(ao)e - 0.880 (40) 
60 

to each interference parameter .  For  the intermediate  cases l /Pe  = 3.0, 1.0 and 0.4, each approx imate  
value in Table  2 has been corrected by an amoun t  

21 x (known error when 1/P E = o~) 

with respective values 21 = 0.63, 0-11 and 0. Finally the increment  due to a = 0.385 is calculated to be 

)-2 (increment when 1/Pt: = 0) + (1 - 2 2 ) ( i n c r e m e n t  when 1/PI.: = oc), 

where the respective values 22 = 0.21, 0.49 and 0.73 are determined from the exact values of(5 o and ((~ob. 
For  example,  the est imated 6~ in Table  3 is 

(),  = ( ( J l )Ref .  7 Jr" 21[ (5~  1) - -  ( ( ) l )Ref .  7,c*,] - -  0 " 1 2 0 2 2 ( ( ~ l ) R e f .  7 ,0  - -  0-278(1 - ,:~2)6~ ~', ( 4 1 )  

where #1 l) = 0.3741, (~Sl)R~r. 7 .... = 0.444 from Table 2 and there is a trivial adjustment  in ((3l)R~r. 7,o from 
-- 0.233 to 0.236 to be consistent with the corresponding value of - 26~. Except for the rough al lowance 
for finite span included in the interference parameters  of Table  3, the method of interference correct ion 
proceeds as if the wing were of negligible span. 

3 .3 .  C o r r e c t i o n  to P i t c h i n g  D e r i v a t i v e s  

The present study requires two types of wall-interference correction. In the cases when the perforated 
screens are sealed (1/P e = oc) or completely  removed ( l I P  E = 0), equat ions (28) and the analysis in 
Ref. 1 hold good. With the effects of slot pa ramete r  F and span rat io a included in the interference para-  
meters, certain terms in the analysis are omit ted and the practical procedure  in equat ions (58) of Ref. 1 
is followed. The tunnel values of the pitching derivatives lot ,  m o t ,  l(ir and m~)r are taken from uncorrected 
experiment ,  the rotary derivatives lq and mq a r e  taken from theory, and the equat ions are solved for 
corrected experimental  derivatives l o, too, l~.) and m,i. The other type of correction, which will now be 

10 



developed, is to take Io, mo, li~ and mo from theory and to calculate lot, mot, I~'jr and m~)r for arbitrary 1/P E . 
The starting point is equation (27) associated with a streamwise distribution of lift L(x) per unit length. 

In place of equation (38) of Ref. 1, we now have 

v - J o ~  1 + 

+ icoh ~(~, - -  2 

(42) 

where 0 < ~ < l denotes the streamwise extent of the wing. Then, as in Ref. 1, we write 

and 

fl L(~)d~ = ½pU2S(CLR + iVCLl ), 

L - L(~)~ d~ = ½pU2Sg(CmR + i~C,,~) 

j L(~)~ 2d~ ' 2 -e , i~C*,). - -  = - ~ p U  S c  ( C m R  "~- . 
0 

(43) 

where the geometric mean chord g = S/(2s) and the frequency parameter ~ = wUU. By equations (42) 
and (43) 

U- - a° q- a l c  + a2 c -t- iv b o -t- bl-c + b2 q- O(v2)' (44) 

where 

and 

ao = ~ ~oC~. + ~ - C , . .  - ~ C , * . R  , 

S F61~ 262~ 2 I 

s F ~  1 
a~ = C L ~ . ] ,  

S [6'oh 6'~ + MZfio (6~ + M26,)g_ 1~1{2 1 
bo = ~_~2c,~R + ~2 c.,. ? ~  ~*~. + ~oCL, + ~ c . , ] ,  

S [0'  1 + M2C~o 2(6~ + M Z 6 t ) g  Ii~lg 1 
b l -C ~2 C LR -I- -~ ~h ('~mR -[- ~ C LI ] 

S [(~ q- M2~1)C ~ l 

(45) 

II 



In order to convert the complex interference upwash into an increment in aerodynamic loading, we 
shall use the subsonic low-frequency lifting-surface theory of Ref. 11. Following equation (5) of Ref. 11, 
we obtain 

U{1 icoM2x [ 
~ F  ~ = (aoC~ + a ~  + a , ~ )  

[ M2 ] 
+ i9 (bo~ 1 + b~2  + b294) - f12 (aoC~2 + alo~ 4 + a20~6) , (46) 

where c~ ~ = 1, ~2 = x/(', c% = ( x / ~ ; )  2 and % = (x/?) 3. Then by equations (4), (24) and (25) of Ref. 11, the 
load distribution corresponding to i~i/U is 

Af3i [ M2x 

+ [j2(ao13 + al15. + a217) -- ~2(ao12M2 + all4 + a216)], (47) 

where lj is the steady loading coefficient corresponding to the incidence c~i, and respectively ~3, c~s and 
c% are related to l~, l 2 and 14 by equation (23) of Ref. 11. When terms of order (vg/C)(c/flh) 2 are neglected, 
the coefficient a 2 disappears from the imaginary part of equation (47). In terms of the coefficients l~.j 
and I* i = - I,,,i in equations (33) of Ref. 11, which may be regarded as known, we can integrate A~i 
over the planform to give real and imaginary parts of the incremental lift coefficient 

and 

1 
6CLR = 5(aolL~ + aalL2 + a2IL4 ) 

I o 

M2 
6CL1 = (boiL1 + b, l m +  bzlL4) + ~T(aoI*l  + alI*2) 

1 M2 ] 
+ fi~(aolL3 + a l I L 5 ) -  ~-(aolL2 + allL4) 

(48) 

These increments are defined similarly to CLR and C H in equations (43), and there are corresponding 
formulae 

and 

1 
6CmR = ll(aol.,1 + aL1m2 + a21m~), 

6C,,,1 i F M2 a,1"2) (boIml + b1I,,,2 + b21m4) + ~5-(aoI*,*ml + 

+ ~(aolm3 +allms)--~22(aoI,.2 + a l lm4)]  

'SC*R l(aoI*l + a~i*2 + a21"4) 
P 

(49) 
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for the increments to the other force coefficients occurring in equations (45). An iterative procedure can 
now be established. Given initial free stream theoretical values of the five quantities CLR, CLI, Crag, Cmt 
and C'R, we calculate the coefficients ao, a l ,  as, bo, bl and b 2 from equations (45) and then the increments 
t~C LR , (~CLI , ~CmR , t~Cml and 6C~R from equations (48) and (49). The quantities ( C LR -I- (~CLR), ( C L1 "~- t~C LI ), 
etc., are first approximations to the theoretical windtunnel values to be substituted in equations (45). 
Successive approximations to 6CLR, g~CL,, etc., can be obtained by repeating the process until convergence 
is achieved. 

The procedure just described applies to arbitrary wing motion. The simplification in the case of pitchirg 
motion is that the coefficients ILj, I, o and I*j occurring in equations (48) and (49) also determine the free- 
stream aerodynamic forces. Initially, with unit amplitude of pitching oscillation 

CLR = 21o, CLI = 21ri ] 

and i "  (50) 
C,,R = 2mo, Cmt = 2m6 

where by equations (39) of Ref. 11 with pitching axis x = Xo 

and 

1 1 lo = ~-f~ L1, 

;no= ~ I,,1 + Icl , 

_ M s 1 M2 ] 
I m +  -fif lL3 -- ~ -  I,,1 - X~-~ ILI 

l~_f l  2 - M 2  l i M 2 

+ - - 

(51) 

Finally, after the iterative procedure has converged, 

loT = I(CLR -~ 6CLR), 

and rno~ = ½(C,.R + bCmR), 

l,ir = ½ ( C u  + 3 C L I ) ,  

m~ir = ½(C,,x + 6C,,~) 
(52) 

The rotary derivatives required in the first type of interference correction are defined in equations (53) 
of Ref. 1 

and . (53) 

With these quantities substituted in equations (58) of Ref. 1, the appropriate sets of measured pitching 
derivatives (1/P E = 0 or oo) can be corrected to free-stream conditions. When Pe is finite and non-zero, 
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equations (45), (48) and (49) can be used to correct measured derivatives. The theoretical free-stream 
derivatives in equations (50) are replaced by experimental tunnel values. It is necessary to simulate a 
measurement of the real part of the second aerodynamic moment  C*R from equation (43) and also to 
devise semi-empirical coefficients IL~, Im~ and I*~ in place of the theoretical values. With such artifice 
equations (45) lead to the final values of ao, a l ,  a2, b0, bl and b z, and without iteration ~CLR, 6 C m ,  etc., 
can be calculated. The corrected experimental values are then 

and 

I 0 = lOT - -  I ~ C L R  , 

m o =  mot  - ½6CmR, m~i = m~ir - ½5Cml 

(54) 

Provided that the empirical stages can be handled satisfactorily, the same procedure can be recommended 
in place of the simpler and more approximate one to be used in the limiting cases of sealed and ideal 
slots. 

4. Numerical Results and Comparison with Experiment 

The preceding methods are applied to the two planforms considered in Ref. 4. As defined in Fig. 6, 
the origin is taken at the root leading edge, the dimensions are referred to the geometric mean chord 6, 
the cropped delta and unswept tapered wings have respective aspect ratios A = 2s/6 = 2.64 and 4.33. 
The unswept tapered wing has fore and aft pitching axes x = x 0 = 0.25c r and 0.75c r; those at rather 
similar positions on the cropped delta wing are also defined in Fig. 6. 

The basic theoretical lifting-surface calculations have been carried out on the cropped delta and un- 
swept tapered wings at M = 0, 0.6 and 0.8 by the method of Ref. 11 with m = 23 spanwise and N = 3 
chordwise collocation stations and with spanwise integration parameter  q = 4. The aerodynamic 
coefficients required in equations (48) and (49) are calculated from equations (33) of Ref. 11 and listed 
in Table 4, and from equations (51) and (53) the necessary pitching derivatives of the respective wings 
are given for both axes in Tables 5a and 7a. From these free-stream values of Io, l i ,  mo and m~i, the cor- 
responding theoretical windtunnel values have been calculated with the two extreme and three inter- 
mediate porosity conditions for which the interference parameters are given in Table 3 (Section 3.2). 
Equations (50), (45), (48) with l~j = - lm~ , (49) and after iteration equation (52) are used to obtain these 
results for the three Mach numbers and both pitching axes in Tables 5b and 7b for the cropped delta and 
unswept tapered wings respectively. 

The experimental data for the cropped delta half-model have been smoothed against Mach number 
and are available for round values including M = 0.6 and 0.8. Some of the data are tabulated in Table 5 
of Ref. 3 and, excluding those without perforated screens (1/P~ = 0), all are plotted in Figs. 6a to 9c of 
Re['. 4. It is sufficient here to list the smoothed uncorrected data in Table 6a over the range 0-40 ~< M ~< 0-85 
for the extremes of porosity. For the unswept tapered wing on the other hand, the experimental derivatives 
are unsmoothed and all the available uncorrected data in the range 0.405 ~< M ~< 0-886 are given in 
Table 8. The corrections to free-stream conditions have been made for both wings by the approximate 
practical procedure in equations (58) of Ref. 1 where it is applicable (1/P E = 0 and o0). The required 
theoretical values of 1 o and rn~ from Tables 5a and 7a have been interpolated in M and used in the calcu- 
lation of corrected experimental derivatives in Tables 6b and 9 respectively. 

These numerical results from theory and experiment are analysed separately and then correlated for 
the cropped delta wing in Section 4.1 and for the unswept tapered wing in Section 4.2. 

4.1. Cropped Delta Wing 

As the two half-models are of the same span ratio a = 0.385, the smaller aspect ratio of the cropped 
delta wing gives the higher area ratio SIC  = 0.1428 and larger chord to height ratio Uh = 0.3751. The 
theoretical interference calculations in Table 5b neglect certain terms of order (gS/C)(U[3h) 2 included in 
equation (47); although this approximation may be acceptable, that used in Table 6b ignores terms of 
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lower order (~S/C)(g/ f ih) ,  as can be seen from equations (56) and (57) of Ref. 1. The uncertainty due to 
this latter approximation proves not to be too important, because the investigation of Ref. 3 has provided 
an independent interference-free datum from experiments on the same half-model in three larger tunnels. 

The calculated derivatives of pitching moment in Table 5b for the aft axis are plotted against • from 
equation (23); Fig. 7 gives a curve for each Mach number, and in each case the free-stream value from 
Table 5a is plotted as a circle on the curve, to indicate the value of the porosity parameter • for which 
there is no theoretical effect of wall interference. The limited range 0.40 < W < 0.48 suggests that the 
interference-free condition for both stiffness and damping derivatives is not very sensitive to changes in 
Mach number. 

The experimental results for the aft axis from Tables 6a and 6b are all plotted against Mach number 
in Figs. 8 and 9. Although the corrected values of each derivative for the extreme roof and floor conditions 
are much closer together than the corresponding uncorrected curves, the lift derivatives l o and l(i are less 
satisfactory than m o and m o. The full curves are drawn to represent mean corrected experimental data 
between the two sets of crosses, which are assumed to be equally inaccurate as a consequence of the 
approximations discussed above. It is remarkable how well these mean curves agree with those labelled 
'interference-free datum' in Figs. 8a, 8c, 8e and 8g of Ref. 3. Moreover, with the exception of I~i, the mean 
curves against M have shapes similar to the theoretical curves of long and short dashes in Figs. 8 and 9. 
Also for the aft axis, the uncorrected experimental derivatives m o t ,  mOT and lOT from Table 6a or from 
Refs. 3 and 4 are plotted in Fig. 10 against • as calibrated for the different hole sizes in Fig. 2. The curves 
are drawn for M = 0.6 and 0.8, and in each case both corrected values from Table 6b (except the smaller 
value of l 0 for M = 0.8) are plotted on the curves, as was done for the theoretical data in Fig. 7. The 
average values of • for zero interference on mOT are still in the range 0.40 < ~ < 0.48, but the damping 
derivatives seem to require smaller values nearer 0.25. 

In the final analysis in Figs. 11 and 12, it is best to consider the derivatives of pitching moment about 
two axes, because the experimental lift derivatives are merely deduced from measurements of pitching 
moment (Section 5 of Ref. 4). Having established a reasonably consistent behaviour of wall interference 
at different Mach numbers, we take M = 0.8 for which the effects are greatest. The theoretical and 
uncorrected experimental curves of mot  and m~T against • are plotted. The theoretical free-stream values 
again appear as circles on the curves, while the 'interference-free datum' from Ref. 3 is plotted at • = 0.355 
corresponding to the perforated screens with 0.06 in (1.6 mm) holes. There are encouraging similarities 
in the trends of wall effects as calculated and observed, even as regards the minimum in the damping 
about the fore axis in Fig. 11 near tp = 0.4. The theoretical interference-free condition clearly depends 
on axis position and seems to require a larger value of • than 0.355, which minimizes experimental 
interference. The points (A) from experiments in the original NPL 9} in x 9} in (24 c m x  24 cm) slotted 
tunnel (Figs. 8a to 9c of Ref. 4) show how the investigation of wall interference has reduced uncertainties 
by an order of magnitude. 

4.2. Unswept Tapered Wing 

The higher aspect ratio of the unswept tapered wing makes it more susceptible to tunnel interference 
despite its lower area ratio S / C  = 0.0862 and chord to height ratio ~/h = 0.2276. The wall corrections 
can be expected to be larger and more accurate. The presentation of results in Figs. 13 to 18 follows a 
similar pattern to that described in detail for the cropped delta wing. 

Thus Fig. 13 shows a small effect of Mach number on the theoretical interference-free wall condition, 
and the tendency for the optimum ~P to increase with M is slightly greater than in Fig. 7 for the cropped 
delta wing. It is fortunate, therefore, that in Fig. 2 a similar increase in the calibrated V is found for 
fixed wall geometry as M changes from 0.6 to 0.8. Smaller values of ~F are required for damping than for 
stiffness, but the inclusive range 0.35 < ~P < 0.50 covers both wings. Figs. 14 and 15 are equally satisfac- 
tory for pitching moment and lift. The mean corrected experimental curves of 1o and 1~) against Mach 
number for the aft axis carry some conviction, unlike those in Figs. 8 and 9. We can have sufficient con- 
fidence in the practical interference correction of Ref. 1 to use the mean curves in place of an independent 
experimental interference-free datum for the unswept tapered wing. 
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The uncorrected experimental data in Table 8 only include two hole sizes of the perforated screen, so 
that the curves in Fig. 16 are less well defined than those in Fig. 10. The Mach numbers M = 0.608 and 
0-812 require interpolation in a few cases. The pairs of circles on the curves correspond to the sets of 
corrected data shown as crosses in Figs. 14 and 15, and again they denote values o f ~  for which particular 
measured derivatives, mot , m~.~r and loT, become free of interference. In each case the trend in optimum u? 
with increasing M is different for slots sealed and for slots open, but the theoretical trend in Fig. 13 is 
reversed, if anything. The experimental condition u? = 0.45 is selected to minimize interference. 

The synthesis of theoretical and experimental effects of wall porosity is accomplished in Figs. 17 and 
18. The free-stream theoretical values for M = 0.8 appear as circles on the curves, while mean corrected 
experimental values for M = 0.812 from Table 9 or Figs. 14 and 15 are plotted as triangles at the selected 
position h u = 0.45. The practical success is measured by the closeness of the triangles to the dashed curves ; 
the discrepancies are of the order _+3 per cent, except for - I  0 which is 6 per cent too high. These encour- 
aging results could even be improved by choosing ~g = 0.60 for the stiffness derivatives in Fig. 17 and 
~P = 0-40 for the damping derivatives in Fig. 18. The theoretical success is judged by the qualitative 
similarity between the full and dashed curves and by comparison of the predicted interference-free condi- 
tions. The curves are remarkably similar throughout and, indeed, ~' = 0.60 serves quite well theoretically 
in Fig. 17, while ~ = 0.40 is not far wide of the mark in Fig. 18. 

Because the frequency parameter is small (~ < 0-15), it is possible to estimate the pitching damping 
as a function of axis position 

X 0 - -  X 1 I X  0 - -  X1 \2 
m,'~ = mo1 + (/~h - moo - [ I loa, (55) 

I 

given the set of derivatives lOl , 101, mol,  m¢i~ for a particular pitching axis x = x 1 . In Fig. 19, parabolic 
curves of - m  0 have been drawn from the uncorrected experimental data with slots open, with slots 
sealed and interpolated to correspond to the opt imum wall conditions u? = 0-355 for the cropped delta 
wing and h u = 0.45 for the unswept tapered wing. The free-stream theoretical curves of large and small 
dashes are included for comparison, and for both wings the resemblance in shape between these and the 
interpolated full curves gives added confidence that the major effects of wall interference have been re- 
moved. 

5. Recommended Practical Procedure 

Section 6.1 of Ref. 4 describes a general method of modifying ventilated walls to minimize interference 
on dynamic measurements. The suggestions, by Moore and Wight, are paraphrased as follows: 

(a) Choose a model, such as the unswept tapered wing, that is amenable to theoretical treatment, 
sensitive to wall interference and preferably of area ratio S I C  < 0.1. 

(b) Seal the ventilated walls and measure pitching moment  derivatives mot and mOT at M = 0.8 about  
a pitching axis well aft of the aerodynamic centre. 

(c) Estimate values of lOT, I¢iT, 14 and ms, and then correct the measured derivatives for wall interference 
by equations (58) of Ref. 1 with interference parameters ~o ~}, S~11) and 6~ t} modified in the ratio t~<~)~ /~l~) 

~ v O  ] E / " O  • 

(d) Determine by experiment suitable perforated screens which, when fitted behind the ventilated 
walls, give the corrected value of m 0. 

They also suggest that, when there are perforated liners, there is greater danger that the wall condition 
for interference-free measurements may be dependent on Mach number;  in any case, it is advisable to 
include a lower Mach number M = 0-6 in (b). Since the interference corrections are more dependent on 
lift than on pitching moment  or centre of lift a second pitching axis is also advantageous, because lot 
and 10T are then better defined; moreover, the derivative l~) T is especially sensitive to wall interference 
and may provide a better criterion than rn,) T. The larger the model, the greater the uncertainty in (c). 
The corrections to damping derivatives, though smaller for closed than for ideal slotted roof and floor, 
are not necessarily more accurate. Indeed, the present analysis is based on the mean corrected experimental 
curves in Figs. 8, 9, 14 and 15 giving equal weight to the results for slots closed and slots open. Thus, 
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in the case of walls with longitudinal slots wide enough to avoid viscous effects from the tunnel boundary 
layer, say, with a > 0.02b, there is a case for repeating (b) and (c) with slots open and no perforated screen. 
In (d) it is advisable to optimize the wall conditions for both l~ and rn~) corresponding to the aft pitching 
axis. 

There is a clear indication from theory and experiment that the porosity parameter  qu to minimize 
interference on stiffness derivatives exceeds the opt imum for l~) and m~) with aft pitching axis. A glance at 
equation (55) is sufficient warning that the opt imum q? for interference-free damping derivatives may 
change with axis position. It is also necessary to deal with a practical situation without calibrated data, 
such as in Fig. 2, when it is not possible to estimate what value of Pe to use in theoretical calculations. 
The following procedure is then recommended as a further extension to that of Ref. 4: 

(i) Calculate interference parameters by the method of Ref. 7 for the known slot geometry, but variable 
1/Pe ,  and allow for numerical errors and model span as described in Sections 3.1 and 3.2. 

(ii) With the aft experimental pitching axis x = x 1, say, apply the theoretical method of Section 3.3 
at M = 0.8 to discover the value of 1 / P  E for which 101 and m~i I are approximately interference-free. 

(iii) For this value of 1/PE, calculate the theoretical quantities lot  and m o t  for the axis x = x l ,  and hence 
the incremental corrections (l o - lot  ) and (m o - moT,); modify these in the ratio of the uncorrected ex- 
perimental lo~ to its theoretical value, and then add them to the measured derivatives to give 1ol and mol .  

(iv) Convert the derivatives to arbitrary pitching axis by means of equation (55) and the simpler re- 
lations 

and 

X o - -  X 1 
mo = mol + - - I o l  

It) = It) 1 X o  - -  X 1 I01 

(56) 

This sequence of calculations will first be made for the unswept tapered wing, and application to the 
cropped delta wing will then he simulated. 

It is supposed that the pitching moments have been measured on the unswept tapered wing at M = 0.812 
for two pitching axes and with slots both sealed and open. At stage (d) the roof and floor of the 9½ in x 9½ in 
(24 cm x 24 cm) tunnel are optimized by choosing an experimental porosity condition W = 0-40 to 
equate the measured and corrected experimental damping derivatives in Fig. 18 as well as possible. 
Operation (i) of the extended procedure is covered in Tables 2 and 3. Operation (ii) comprises the calcula- 
tions in Tables 4 and 7 for the unswept tapered wing at M = 0.8 and the circles on the top and bot tom 
full curves in Fig. 18, which give a mean theoretical condition ~ = 0.44. Operation (iii) is carried out 
with interpolated quantities at M = 0.812 and • = 0-44 to correct the measured stiffness derivatives 
for x o = 1.185g corresponding to q~ = 0.40. The corrected values are obtained as 

(IOT) . . . . .  

loi = (loT) . . . . .  + y(loT)theo lo -- loT)theory (57) 

= 2.34 + 0.92(2.50-2.55) = 2-29. 

Similarly 

mol = 1.56 + 0.92(1.72-1.74) = 1-54. 

Both these values are in satisfactory agreement with the interference-free points (l o = 2.27, m o = 1.52) 
in Fig. 17. 

The final check is to use the same porosity conditions ~ = 0-44 theoretically and • = 0.40 from 
experiment, so as to deduce corrected experimental data for the cropped delta wing. For the pitching 
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axis x o = 1-039g and M = 0.6 and 0.8, we have the following tabulated derivatives from Fig. 10 and from 
similar interpolation in the measured values of lot. 

Experiment 
't j = 0.40 

loT 

l~ir 
mOT 

--  m~) T 

M = 0.6 

1.58 
0-46 
0.59 
0.19 

M = 0.8 

1.71 
0.31 
0.63 
0.36 

Corresponding to equation (57) and with data from Tables 5a and 5b 0t' = 0.44), there are corrected 
stiffness derivatives 

°Z} 1ol 1.58 + 0.96(1.60 - 1.65) = 1.53 for M = 

= 1.71 + 0 . 9 3 ( 1 - 7 4 -  1.84)= 1.62 f o r M = 0 -  

and the theoretical corrections to mot are negligible. No corrections are applied to l~) r and -m07-. In 
Table 10, these results are compared with the two independent estimates of interference-free experimental 
derivatives. Firstly, we use the mean corrected experimental curves from Figs. 8 and 9, which incorporate 
equations (58) of Ref. I : secondly, the 'interference-free datum'  values, deduced from the previous experi- 
ments in the three relatively large ventilated tunnels, are read from Figs. 8a, 8c, 8e and 8g of Ref. 3. Only 
in case of l~ do the discrepancies exceed 4 per cent of l o, probably because the uncorrected values of l~; 
are notoriously difficult to determine experimentally. Provided that the span ratio a < 0.4 and the area 
ratio S / C <  0.15, it is realistic to conclude that, with sufficient care, the uncertainties of ventilated wall 
interference on dynamic experiments with moderately small frequency parameter  can be reduced to the 
order of 5 per cent of the in-phase lift derivative, e.g., 0.05/0. Models of larger span or area ratio should 
be avoided, unless the required accuracy is relatively low. 

6. Conclusions 

(1) The theory of Ref. 1 for small frequency is now extended to subsonic rectangular tunnels with a 
more general homogeneous boundary condition representing a ventilated roof and floor with longitudinal 
slots and perforated screens of arbitrary porosity. 

(2) Instead of the usual three, there are six interference parameters to calculate; all, except perhaps 60' 
are found to be highly non-linear functions of the porosity parameter  u?. 

(3) On the basis of steady flow with elliptic spanwise loading, a simple analytical formula for (,5o)~: has 
been derived in Section 3.2. The ratio (g~o)e,/3o shows important effects of span ratio ~r, which are magnified 
by the large breadth to height ratio of the effective tunnel (b/h = 2-6). 

(4) Given ~P, the theoretical wind-tunnel conditions can be calculated by an iterative procedure. To 
minimize wall interference on pitching damping derivatives in the 9½ in x 9½ in (24 cm x 24 cm) slotted 
tunnel, the opt imum porosity parameter  is ~P = 0.44 in remarkably close agreement with the value 
'I ~ = 0.40 indicated by experiment. 

(5) Theory and experiment combine to show that the opt imum ventilated wall is hardly influenced by 
Mach number, so that there are good prospects of eliminating the major interference effects at transonic 
speeds. 

(6) Each pitching derivative, when plotted against porosity parameter, shows qualitatively similar 
behaviour theoretically and experimentally. While the best choice of • is not greatly dependent on plan- 
form, there is a consistent tendency for stiffness derivatives to require larger values corresponding to 
more open perforated screens. 
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(7) The practical procedure of Ref. 4 for choosing a suitable ventilated wall is extended to indicate how, 
after the interference on damping derivatives with aft pitching axis has been minimized, residual correc- 
tions to stiffness derivatives can be calculated, and hence residual corrections to damping derivatives 
with arbitrary axis (Section 5). 

(8) With sufficient care, the uncertainties of ventilated wall interference on dynamic measurements 
with moderately small frequency parameter and subsonic Mach number can probably be reduced to 
the order of 5 per cent of the in-phase lift derivative, provided that the span ratio a < 0-4 and the area 
ratio S/C < 0.15. 

(9) At the end of Section 3.3 a possible direct evaluation of wall interference on measured pitching 
derivatives is indicated. Although this is as yet untried because of its empirical element, it represents an 
alternative approach when it is inconvenient to alter a wall of known porosity. 

(10) The major limitations of the present theoretical analysis are the upper restrictions on frequency 
and model size, lack of information on the spanwise variation of the out-of-phase interference upwash, 
and the unsuitability of elliptic spanwise loading for elastic modes or part-span control surfaces. Some 
progress in these respects is anticipated from extensions to Ref. 7 and other current work. 
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Cross-sectional area of tunnel 
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Complex lift coefficient, CL~ + i~CL~ 

Pitching moment/qS?, C--~ m d°t 

Complex pitching moment coefficient, CmR + i~Cml 

Second pitching moment/qS(  2 in equation (43) 
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J 
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/ 

Equivalent C* for incidence % J 

Bessel function of the first kind 

Streamwise extent of planform 

Non-dimensional loading Ap/q for incidence % 

Rotary pitching derivatives in equations (53) 

Pitching stiffness derivatives in equations (50) and (51) 

Pitching damping derivatives in equations (50)and (51) 

Lift per unit streamwise distance 

Number of spanwise collocation sections 

Mach number of undisturbed stream 

Outward normal distance from tunnel boundary 

Number of chordwise collocation points 

Pressure difference between upper and lower surfaces 

Complex pressure difference due to wall interference 

in equations (33) of Ref. l 1 
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Time 
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Steady distributions of incidence in equations (46) and (47) 

Function in equation (33) 

Compressibility factor, (1 - MZ) ~ 

Steady upwash interference parameters in equation (25) 

Interference parameters in imaginary part of equation (25) 

Non-dimensional spanwise distance, 2y/b 

Function in equation (38) 

Approximate corrective factors below equation (40) 

Angle of sweepback of leading edge 

Frequency parameter, o~UU 
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LIST OF SYMBOLS (Contd) 
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Porosity parameter in equation (23) 

Angular frequency of oscillation 
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Subscript denoting pitching axis x = xl 

Subscript denoting elliptic spanwise loading 

Subscript denoting effect of wall interference 

Subscript denoting imaginary part in equations (43) or (29) and (30) 

Subscript denoting incidence c~j 

Subscript denoting model only 

Subscript denoting real part 

Subscript denoting derivative with tunnel-wall constraint 

Prefix denoting increment due to wall constraint 

Superscript denoting closed tunnel 

Superscript denoting closed side-walls, open roof and floor 
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TABLE 1 

Analytical Formulae for Interference Parameters for Rectangular Tunnels with Closed Side-Walls 

Roof and floor 60 ~1 15() (60) E 

Closed 

Open 

Ideal slotted 

Slotted- 
perforated 

Ref. 1, 

eq. (20)~ 

6 ~ a n d  6~ j 

Ref. 9,  

eq. (6.68)" 

Ref. 9, 
eq. (6.73) 

Ref. 1, 
eq. (22), 

6~ 1land 6~ ~ 

Ref. 1, 
eq. (28) 

Ref. 1, 
eqs. (36), (28), (30) 

Ref. 10, 

eq. (3.84) 

Ref. 1, 
eqs. (63) to (65) 

Eq. (38) 

Eq. (37) 

TABLE 2 

Interference Parameters Jor Small Wings in Rectangular Tunnel (b/h = 2.6) with Closed Side-Walls 
and Variable Roof and Floor 

Roof and floor 

F lIP E 

any 
0.233 7.0 
0-233 3.0 
0.233 1.5 
0.233 1.0 
0.233 0.4 
0.233 0 
0 0 

E x a c t  

6o 

0.1713 

0.0806 

-0.0351 
-0.1276 
-0.2216 
-0.3403 

6o 

0.191 
0.148 
0-093 
0.018 

- 0-033 

-0 .215 
- 0.342 

Approximate results (Ref. 7) 

61 

0.444 
0.437 
0.404 
0.317 
0.232 

-0 .233 
- 0.507 

62 

0-000 
0.083 
0.176 
0.268 
0.293 

0.000 
0-000 

6; 

- 0.005 
- 0.003 

0.009 
0.037 
0.062 

0.165 
0.205 

61 

-0.191 
-0-194 
-0.188 
-0-152 
-0.103 

0.215 
0.342 

61 

-0 .205 
-0.211 
-0 .224 
- 0.240 
-0 .228 

0.118 
0.247 
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TABLE 3 

Interference Parameters Used in the Calculations (b/h = 2.6, Closed Side-Walls, a = 0.385) 

Roof and floor 

F 1/P~ 

0.233 
0.233 3.0 
0.233 1.0 
0.233 0.4 
0-233 0 

6o 

0.1237 
0.0486 

-0 .0464 
-0.1209 
-0 .1950 

61 

0.2701 
0.2838 
0.1852 
0.0308 

-0 .2077 

62 

0 
0-1760 
0.2930 
0.2265 
0 

6; 

-0 .0006 
0.0077 
0.0529 
0.1011 
0-1452 

6'1 

-0 .1237 
-0 .1436 
-0 .0896 

0.0263 
0.1950 

61 

-0 .1350 
-0 .1746 
-0 .2065 
-0 .1010 

0.1038 

TABLE 4 

Theoretical Aerodynamic Coefficients for Two Wings (Method of Ref 11 with m = 23, N = 3, q = 4) 

Cropped delta wing Unswept tapered wing 
Coeff. 

M = 0  M = 0 . 6  M = 0 . 8  M = 0  M = 0 . 6  M = 0 . 8  

ILl 
IL2 
IL3 
I L4 
IL5 

--lml 
- -  Ira2 
--Im3 
- -  Ira4 
- -  I , n  5 

[ml 
--1,~2 
- I %  

2.952 
3-571 
0.540 
4.514 
0.220 

1.875 
2.697 
0.677 
3.735 
0.509 

1.465 
2.391 
3.545 

2.564 
3.131 
0.752 
3.982 
0.504 

1.624 
2.393 
0.799 
3.354 
0.676 

1.260 
2.131 
3.212 

2.091 
2-592 
0.868 
3.329 
0.692 

1.320 
2.014 
0.849 
2.872 
0.773 

1.012 
1.807 
2.787 

3.851 
4.153 

-0 .356  
4.797 

-0 .837  

1.940 
2.568 
0.266 
3-305 
0-010 

1.294 
2.010 
2.820 

3.469 
3.755 
0.161 
4.344 

-0 .267  

1.734 
2.342 
0.513 
3.040 
0.286 

1.145 
1-840 
2.615 

2.959 
3.224 
0.618 
3.742 
0.252 

1.459 
2.036 
0.717 
2-679 
0.524 

0.947 
1-608 
2.330 
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TABLE 5 

Calculated Theoretical Pitching Derivatives for Cropped Delta Wing 

(a) Free stream (Table 4) 

Xo/O M lo 

0-314 

1.039 

0 1-476 
0.6 1.602 
0.8 1.743 

0 
0.6 
0-8 

1.476 
1.602 
1.743 

1-592 
1.659 
1-738 

0.522 
0.497 
0.474 

m 0 

-0 .474 
-0 .512 
-0.553 

0.596 
0.649 
0.710 

- - m  O 

0.893 
1.037 
1.269 

0.171 
0.306 
0.524 

lq 

1.322 
1.454 
1.613 

0.252 
0-292 
0.350 

- -  m q  

0.639 
0.720 
0.826 

0.113 
0.137 
0.172 

(b) Slotted tunnel with variable porosity 

M 

0 

0-6 

0.8 

I/PE 

3(2 

3.0 
1-0 
0-4 
0 

3.0 
1.0 
0.4 
0 

3.0 
1.0 
0-4 
0 

lot 

1.598 
1-555 
1-484 
1.417 
1.340 

1.761 
1.715 
1-628 
1-540 
1-436 

1.961 
1.921 
1.813 
1.688 
1.532 

lor 

1.649 
1.588 
1-598 
1.653 
1.707 

1.714 
1.620 
1.646 
1.751 
1.859 

1.801 
1.615 
1.642 
1.854 
2.076 

Xo = 0.3140 

-- mOT 

0.523 
0.511 
0.486 
0.458 
0.424 

0.579 
0.569 
0.537 
0.498 
0.449 

0-652 
0.649 
0.608 
0.549 
0.468 

- -mOT 

0.919 
0-891 
0-887 
0.905 
0-926 

1.075 
1.023 
1.012 
1.046 
1.086 

1.348 
1.228 
1.180 
1-246 
1-329 

0.490 
0.460 
0.522 
0.626 
0.735 

0-437 
0-377 
0.465 
0-635 
0-818 

0.380 
0.222 
0.328 
0.630 
0.965 

x o = 1.0390 

mOT 

0-635 
0-616 
0-590 
0.569 
0.548 

0.698 
0.675 
0.644 
0.618 
0.592 

0.770 
0.744 
0-706 
0-675 
0.643 

- -mOT 

0.184 
0.186 
0.156 
0.120 
0.085 

0.338 
0.338 
0.286 
0-225 
0.167 

0-600 
0.596 
0.501 
0.392 
0.290 
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TABLE 6 

Smoothed Experimental Pitching Derivatives for Cropped Delta Wing 

(a) Uncorrected data 

Slots 

Sealed 
1 

Open 
1 N=O 

M 

0.40 
0.50 
0-60 
0-70 
0-80 
0-85 

0-40 
0.50 
0-60 
0.70 
0.80 
0-85 

lot 

1.574 
1.610 
1.657 
1.724 
1.818 
1.874 

1.324 
1.368 
1.423 
1.479 
1.531 
1.553 

1.603 
1.592 
1.577 
1.564 
1.531 
1.503 

1.773 
1-758 
1-755 
1.775 
1-823 
1.842 

x o = 0.314~ 

- -  m O T  

0.555 
0.568 
0.587 
0.616 
0.656 
0.681 

0.450 
0.470 
0.494 
0.514 
0.530 
0.536 

- -  m(~ T 

0-875 
0-895 
0.923 
0.969 
1.055 
1.123 

0.960 
0.969 
0.991 
1.040 
1.131 
1-198 

0.462 
0.425 
0.376 
0.314 
0-213 
0-144 

0-813 
0-766 
0-723 
0-703 
0.713 
0-716 

Xo = 1-0397 

m O T  

0.586 
0.599 
0.614 
0.634 
0.662 
0.678 

0.510 
0.522 
0.538 
0.558 
0.580 
0.590 

- -  m(~ T 

0.138 
0.175 
0-225 
0.295 
0-425 
0-525 

0-044 
0.073 
0.109 
0.158 
0.230 
0.290 

(b) Corrected for wall interference (Ref. 1) 

Slots 

Sealed 
1 

Open 
1 ~=0 

M 

0-40 
0.50 
0.60 
0-70 
0.80 
0-85 

0-40 
0-50 
0.60 
0-70 
0-80 
0.85 

1.452 
1.480 
1.515 
1.564 
1.627 
1.659 

1.460 
1.515 
1.584 
1.659 
1.737 
1.777 

lo 

1-532 
1.523 
1.512 
1-504 
1.483 
1.467 

1.666 
1-616 
1.562 
1.511 
1.445 
1.367 

x o = 0.3146 

m m  0 

0.503 
0.512 
0.524 
0.543 
0.565 
0-575 

0.503 
0.528 
0.559 
0.588 
0.617 
0.634 

- m  0 

0.845 
0-864 
0.892 
0.937 
1.020 
1.087 

0.929 
0.926 
0.930 
0.956 
1.013 
1.051 

lo 

0-475 
0-446 
0.409 
0.364 
0-297 
0-256 

0.614 
0-522 
0.415 
0.309 
0-187 
0.081 

Xo = 1.0396 

m o  

0.551 
0.563 
0.576 
0.593 
0.618 
0.632 

0.554 
0-568 
0.588 
0.612 
0.638 
0.650 

--m~ 

0-137 
0.171 
0.216 
0.280 
0.396 
0-485 

0-117 
0-161 
0-219 
0.299 
0.422 
0.524 
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TABLE 7 

Calculated Theoretical Pitching Derivatives Jor Unswept Tapered Wing 

(a) Free stream (Table 4) 

Xo/~ M 

0-395 

1.185 

0 1.926 
0.6 2.168 
0.8 2.466 

0 1.926 
0.6 2.168 
0.8 2.466 

1.138 
0.937 
0-528 

-0-383 
-0 .776 
- 1.420 

m 0 

-0-210 
-0-227 
-0 .242 

1.312 
1.485 
1.706 

- - m  0 

0.584 
0.746 
1.055 

0.721 
1.179 
1.986 

lq 

1.316 
1.490 
1.713 

-0 .205 
-0-222 
-0-235 

- -  m q  

0.381 
0.447 
0.539 

0.377 
0.443 
0-534 

(b) Slotted tunnel with variable porosity 

M 

0 

0.6 

0.8 

l/e  

c~ 

3.0 
1.0 
0.4 
0 

72 

3.0 
1-0 
0.4 
0 

O(3 

3.0 
1.0 
0.4 
0 

lOT 

2.033 
1.985 
1-916 
1.857 
1.793 

2.314 
2.254 
2.165 
2.085 
1-997 

2.676 
2-604 
2.483 
2-368 
2.236 

16T 

1.113 
1-104 
1.220 
1.365 
1.504 

0.851 
0.840 
1-043 
1.303 
1-554 

0.310 
0.262 
0.626 
1.131 
1.631 

Xo = 0.3957 

--mOT 

0-226 
0-222 
0-213 
0.203 
0.192 

0.252 
0.247 
0.235 
0.221 
0.204 

0.280 
0.277 
0.260 
0-238 
0-208 

--mOT 

0.584 
0.575 
0.583 
0.601 
0.622 

0-746 
0.725 
0.732 
0.762 
0.799 

1.070 
1.005 
0.995 
1.051 
1.123 

- -  l ~ T  

0-493 
0.465 
0-294 
ff102 
0.087 

0.976 
0.941 
0.667 
0.344 
0.023 

1-804 
1-795 
1.336 
0-740 
0.136 

Xo = 1.1857 

mOT 

1.380 
1.346 
1.301 
1.264 
1-225 

1.576 
1.534 
1.475 
1.426 
1.374 

1.834 
1.780 
1.701 
1.632 
1.558 

--mOT 

0-795 
0-766 
0.647 
0.521 
0.402 

1.319 
1-273 
1.073 
0.860 
0.656 

2.273 
2.205 
1-845 
1-447 
1.066 
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TABLE 8 

Uncorrected Experimental Pitching Derivatives for Unswept Tapered Wing 

Hole 
size 

0 
(slots 

sealed) 

0,06 in 
1.6 mm 

0.31 in 
7.9 mm 

Slots 
open 

M 

0.406 
0.510 
0-616 
0-718 
0-823 
0.886 

0.608 
0.812 

0.608 
0,812 

0.405 
0,507 
0.609 
0.710 
0.813 
0.865 

lot 

1,897 
1.972 
2.104 
2,248 
2.470 
2.634 

2.086 
2.347 

1.983 
2.262 

1.704 
1.781 
1.864 
1.933 
2-071 
2.243 

lot 

0.987 
0.892 
0.795 
0.668 
0.283 

-0 .339  

0-812 
0.324 

1-204 
0.976 

1-509 
1.526 
1.425 
1.375 
1.168 
0.975 

x o = 0-395~ 

- -  mOT 

0.234 
0.232 
0.256 
0,265 
0-301 
0.415 

0.252 
0.289 

0.237 
0.265 

0.195 
0.205 
0-212 
0.220 
0-253 
0-303 

- - m O T  

0.616 
0.622 
0.662 
0.736 
0.856 
0.917 

0,648 
0.832 

0.697 
0.911 

0.619 
0.646 
0.682 
0.769 
0,889 
1.014 

- l o t  

0.512 
0.666 
0.867 
1.108 
1.668 
2.420 

0-836 
1.530 

0-362 
0.811 

--0-163 
--0.089 
--0.047 
--0.152 
--0.468 
-0 .797  

x o = 1-1857 

mOT 

1.265 
1.326 
1,406 
1.514 
1.650 
1,666 

1.396 
1,565 

1,329 
1.522 

1-151 
1.202 
1.260 
1.307 
1.383 
1.469 

- -  mOT 

0.836 
0.965 
1-145 
1.402 
1.936 
2-501 

1.109 
1-812 

0.796 
1.342 

0.336 
0.414 
0.552 
0.715 
1.059 
1.404 

TABLE 9 

Corrected Experimental Pitching Derivatives for Unswept Tapered Wing 

Slots 

Sealed 
1 

Open 
1 ~=0 

M 

0.406 
0.510 
0.616 
0.718 
0.823 
0.886 

0.405 
0.507 
0.609 
0.710 
0.813 
0.865 

lo 

1.800 
1.866 
1.981 
2.103 
2.285 
2.414 

1.825 
1.915 
2.013 
2.098 
2.269 
2.483 

lo 

1-010 
0-929 
0-852 
0-754 
0.448 

-0-055 

1-155 
1-106 
0-891 
0.698 
0-157 

-0-465 

x o = 0.395~ 

- -  m 0 

0.217 
0.213 
0.234 
0.238 
0.263 
0.361 

0.213 
0.225 
0.235 
0.246 
0.288 
0.349 

- - m  0 

0.615 
0.624 
0-665 
0,741 
0.868 
0.946 

0.578 
0.598 
0.622 
0.695 
0.773 
0.834 

- l0 

0.426 
0.559 
0-727 
0-923 
1-378 
1-992 

0-268 
0-425 
0.682 
0-936 
1-607 
2.405 

Xo = 1.185~ 

m0 

1.207 
1.262 
1,333 
1.426 
1.546 
1.556 

1.228 
1.287 
1.354 
1.409 
1.501 
1,607 

- - m  0 

0.781 
0-896 
1-056 
1.283 
1-750 
2.248 

0-622 
0-755 
0-974 
1-238 
1-809 
2.441 
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TABLE 10 

Practical Estimates of  Interference-Free Pitching Derivatives for  Cropped Delta Wing (x o = 1.039~3) 

Experiment Method M mo - m~i 

0.6 1.53 0.59 With opt imum 
wall porosity 

With open and 
sealed slots 

In ventilated 
large tunnels 

Section 5 

Ref. 1, eq. (58) 

Ref. 3, Fig. 8 

0.8 

0.6 

0.8 

0.6 

0.8 

I o l~) 

0.46 

0.31 

1.55 0.42 

1.68 0.24 

1.55 0.35 

1.67 0-20 

1.62 0.63 

0.58 

0-63 

0.56 

0.62 

0.19 

0-36 

0.21 

0.41 

0.22 

0.41 

f 
f 
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EFFective tunnel breadth b= 19in (482mm) 
Height oF tunnel h= 7.30in (,IB5mm) 

Regular slot spacin 9 d= I.gin (4Bmm) 
Width oF each slot a= 0.3in(7.6mm) 
Span oF half model s= 3.60in(91-~mm) 
6ap at side-wall g= O.05in(,l']mm) 

b/h = 2.6, F=0-233, o'=2 ( s+9) /b=  0"585 

FIG. 1. Working section of tunnel with five wide slots in roof and floor. 
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Porosity parameters for the slotted walls with variably perforated screens over a range of Mach 
number. 
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FIG. 4. 
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