C.P. No. 282
A R.C. Technical Report

C.P. No. 282
$(17,613)$

A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Flight Investigation of the Wake behind a Meteor Aircraft, with some Theoretical Analysis

By
D.R.Andrews, B.Sc., B.Sc.(Eng.), A.F.R.Ae.S.

U.D.C. Nos. 533.69 .048 .3 : 533.695.75

Technical. Note No. kero. 2283
December, 1954

A Flight Investigation of the Wake
Behind a Meteor Aircraft, with
some Theoretical Analysis
by
D. R. Andrews, Bosc., E.Sc(Eng) A.F.R.he.S.

STMMARI

In experimental investigation of the wake behind a Meteor 4 airaraft has been carried out, and theory usod wherover possible to confirm and exterd the results obtainca.

Weasurements chow that for the conditions oovered in these tests, the jet velocity has fallen to a negligible value by about 200-300 ft behind the jet exit. The jet mould be uxpected to persist Longest under takemor conditions al thourh no measurements were made of this specific case.

The major disturbances behind on aircraft are due to the trailing vortices and tnese docay only slowly. Tests with a Vampire flying in the wake of the deteor show that the strength of these vortices has only fallen to about half its initial value by 8000 ft behind the aircraft.

Theory and flight test experinnce show that the rolling moment impnsed on a tracking aircraft constitutes the most severe disturbance from those vortices, ard that in somo circumstances this rolling moment can be sufficiently large to overpower the ailcron control of the tracking aircraft,

Theory indicates that the disturbances from the trailing vortices will be very severe for a mall slow tircraft flying in the make of a large heavily loaded airoraft at low speed. The disturbances encountered by a missile attacking an aircraft will depend largely upon the relative sizes of the missile and aircraft, but in mny cases may be small, as the closing speeds are usually high and the missile wing span small.

LIST OF CONTENTS

Page
I Introduction 4
2 Visualisation of the wake 5
3 Characternstios of the Jet 5
3. 1 Determanation of Rate of Decay of Jet Velocity 5
3.1.1 "Pitot Traverse" Method 5
3.1.2 Photographic Method 6
3. 2 Turbulence in Jet 7
3.3 Summary of conclusions from Jet Investigations 7
4 Extent of Vake behind Fuselage and other Drag Producing Bodies 8
5 The Vortex sheet and 'raiIing Vortices a
5.1 "Rolling-up" of the Vortex Sheet 8
5.2 Inclination to Flight Path of Vortex Sheet end Trazlinc Vortices 9
5. 3 Strength and Theoretical Effects of Fully Rolled-up Vortices 11
5.3.1 Iongitudinal Effects on a Tracking Aircraft 11
5.3.2 Lateral Effects on a Tracking Aircraft 12
5.4 Rawe of Decay of Trailing Vortices 14
5.4.1 Variation in Waxam Aileron Angle to Trim with Distance behind Target Aurcraft 14
5.5 General Discussion Regarding Irailing Vortices 16
6 Recommendations for Further Work 17
1 Conolusions 17
List of Symbols 19
References 20

	Figure
Decay of Jet Velocity with Distance behind Aircraft m "pitot traverse" technique	$\begin{gathered} 1(a),(b) \\ \text { and }(c) \end{gathered}$
Enlargement of a typical ciné film used for determination of jet velocity	2
Plot showing decay of jet velocity as obtained by photographic technique mesults obtained from prints of figure 2	3
Plot showing decay of jet velocity as obtained by photographic technnque	4(a), (b)
Theoretical distance for vortex sheet to roll up	5
Theoretical inclination to flight path of vortex sheet and vortzices	6
Smoke canister installation on Meteor	7 (a)
Photos obtained with smoke canisters in operation	$7(b)$
Theoretical velocity distribution due to filly rolled up vertices behind a Meteor at 248 knots EAS and 15,000 ft altitude	8
Calculated variation in alleron angle to trim for a Vampire aircraft moving across the velocity fizeld of figure 8	9
Flight record of lateral change of trim on a Vampire aircraft traversing the wake of a Meteor	10
Effect of distance downstream from target aircraft on maximum aileron anple to trim in wake	II
Effect of size of track* aircraft on maximum aileron to trim in wake as calculated from velocity distribution of Fig. 8	12

Some brief teats were recently carried out by Armament Department to determine the position of the wake of a target aircraft and its general effect upon a tracking aircraft. These teats showed that the disturbances in the wake were severe even at extreme range and that a stern attack would only be practicable if the wake was avoided. To enable the guns of an attacking aircraft to be pre-set to avozd the wake of the target, measurements of the angle of the wake to the flight path of the target aircraft were made. Aithough the information obtained in these tests was thought sufficient from the point of view of an air-to-air combat, it was not considered sufficient for guided weapon purposes, since in many instances it would not $b 3$ possible to arrange the flight path of a guided missile to avoid the wake of the target aircraft. Some quantitative idea of the magritude of the disturbances likely to be encountered by such a missile was therefore required.

At the opposite end of the speed range difficulty was being experienced, and even accidents caused, by light airoraft flying into the wakes of larger aircraft under approach conditions at busy civil airports. Information on the nature of the wake and the factars affecting its decay were required to enoble existing airfield control procedure to be modufied to ensure the safety of the small aireraft.

The series of teats and the theoretical work described in this note were carried out with the abuve objects in view.

It is convenient to consider the wake behind a jet aircraft as having the following components:

1. The jet (or jets). This consists of a small diameter region having a large longitudinal velocity combined with perhaps a relatively smail rotation due to swirl. Considerable small scale turbulence would be expected to be present.
2. The body and other wakes. These are characterised by regions of turbulence and reduced total head behind drag producing components. In most cases, the largest region would be behind the fuselage.
3. The vortex sheet and trailing vortices. The vortex sheet shed from the wing rapidly rolls up into a pair of trailing vortices. These trailing vortices may be represented by a double rotational motion of the classical form. Small scale turbulence is confined to the cores of these vortices.

The teats were planned in such a way as to investigate each of the above components separately, an attempt being made to measure the magnitude of these components as well as their rate of decay with distance behind the aircraft. Since the difficulties involved in teats of this nature were considerable, both the successful as well as the unsuccessful techniques have been detailed rather more fully then is perhaps usual so as to guide any further investigations of this nature.

A theoretical approach has been used to estimate the disturbances to a tracking aircraft or masslle flying in the wake and to predict the way In which these disturbances would very with apeed, altitude, and size of the target and tracking aircraft, The estimates have been checked, wherever possible, against the observed filight teat results.

Early in the tests it was found that consistent results could only be obtained when the pilot of the tracking aircraft could "see" the wake. Extensive use was uherefore made of the Meteor 4 airoraft used in the tests of Reference 1 . This aircraft was equapped with means for injecting a low viscosity oll into the jet pipe to produce a dense white smoke. The oil was carried in underwing tanks which were pressurised with nitrogen to provide the necessary pressure feeding. Each tank fed only to the engine on its own side, but the pilot could select either port, starboard, or both engines. The smoke, as well as defining the boundaries of the jet, also showed the positions of the trailing vortices, since when the vortex sheet from the wing rolled up, the smoke was wrapped round these vortices. This system was not entirely satisfactory as care had to be taken that the tracking aircraft did not become completely immersed in the smoke, otherwise its windscreen became covered in unburnt oll. a fair mount of practice was necessary to perfect a technique of switching the smoke on and off at the right times so that the tracking aircraf't never became completely immersed in the smoke. The total duration of the smoke was only about 30-40 seconds, even though a considerable amount of oil was carried, and this short duration proved a severe limitation.

At high altitudes use was made of condensation trails to visualise the trazling vortices. This was found preferable to using the oil smoke as it eliminated the difficulties mentioned above.

It is felt that if further tests of this nature are to be carried out, a smoke trail obtained by injecting cressylic acid into the Jet pipe would probably give a considerable improvement. The smoke trail produced by this system is not unduly dense, persists far a considerable time and can, of course, be switched on and off at will. Further, sufficient acid can be carried to produce a long duration of smoke.

Snoke canisters positioned at suitable points on the aircraft were found useful for investigating the rolling up of the vortex sheet behind the wing. However, as the type of canisters used vould not ignite at altitude their use was limited to flıghts at altitudes less than about 5,000 ft. At theselow altitudes, care had to be taken to choose calm conditions so that the tendency for atmospheric turbulence to break up the smoke pattern was reduced.

There IS little doubt that the success of a series of tests to investigate the wake behind an aircraft depends almost fundamentally upon an adequate means of visualising the wake.

3 Characteristics of the Jet

3.1 Determination of the Rate of Decay of Jet Velocity

3.1.1 "Pitot Traverse" Irothod

The first technique usud to measure the velocity in the jet was surprisingly successful. A two-seat Meteor 7 was flown in formation with the target Meteor and to its starboard side. The snoke (para.2) was then switched on and the tracking licteor 7 edged in until its wing tip pitotstatic heak was mmersed in the centre of the smoke. The observer in the Meteor 7 then read the increase in ASI reading. The distance between the two aircraft was obtained vith a fixed ring gun sight. The closest distance that the tracking aurcraft was flown to the target aircraft was dictated by the strength of the tip vortex effects and the controllability of the Meteor at the particular flight speed. Thus, although at 250 knots a traverse could be made only a few feet behind the fin, it was not deemed safe to fly closer than about 40 ft from the tail of the target at other specds.

The results obtained in tests at $10,000 \mathrm{ft}$ altitude and at speeds of 178, 250 and 346 knots are shown in figures 1 (a), (b) and (c), together with estimated values for the mean velocity at the jet exit as derived from Dervient 5 brochure data.

The results are plotted as the difference, $\Delta V_{;}$, between the $\mathbb{E A S}$ in the jet stream and the flight FAS (V_{i}). It is see\& that the jet velocity falls to a low value very rapidly and that fcr the particular flight conditions of these tests, the jet velocity can be considered negligible at distances greater than about 200-300 ft behind the aircraft. The jet velocity persists longest at high R.P.M. and low speed (Fig. 1(a)). It may be noted that in deriving jet velocity from the AS1 reading it is assumed that the static pressure in the jet is atmospheric. This is almost certainly true \ln all cases considered here as the jet exit is not choked.

When the engine IS at low R.P.M. or idling there is a drop in ASI reading in the jet signifying a loss of total head.

This "pitot traverse" method demanded appreciable flying skill, since the disturbances due to the trailing vortices were so severe that the pilot could only hold the patot-static head in the jet strcam for a short space of time. This was partacularly true at the very close ranges, where often tie jet velocity has to be obtained from a monontary jump in AS1 reading as the pitot-static head traversed through the jet stream. Where this jump in ASI reading was large, it was felt that errors due to lag in the ASI system could be appreciable. Further there was no quarantee that the velocity at the centre of the jet (i.e. the peak velocaty) was being measured every tune. These uncertainties mainly applied to the closer ranges and it is felt that the values of Jet velocity obtained at the larger ranges are reasonably accurate.

3.1.2 Photographic liethod

In an attempt to confirm the results obtained above, another technique was used.

A Meteor 7 was $170 m$ in formation with the target aircraft but a few thousand feet directly below it. The observer in the rear seat then took a cine record of the smoke as jt emerged from the jet pipes of the target aircraft. A specimen record obtained in this way is shown in Figure 2. The camera used was a canefiox Eclair camera set for its maximum speed of about 50 pictures per sec. and equipped wi.th a 35 mm focal length lens. This camera was found convenient in that the sight could be rotated through 90° to enable the camera to be sighted with the lens pointing vertically upwards. To assist the operator in keeping the camer level, a spirit level bubble was attached to the side of the camera. The comers. speed was obtained by photographing a high speed watch (3 secs per rev.) in flight immediately after the test.

From the cine record a plot of the distance of the end of the smoke from the jet exit against tume can be obtained, the linear scale being obtained by measuring the size of the aircraft on the film and the time scale from the measured camera speed. Figure 3 shows the plot obtained from the photographs of Figure 2, which were taken at $30,000 \mathrm{ft}$ and at 255 knots EAS. The slope of the curve at any point clearly represents the true velocity of the jet at that point plus the true airspeed of the aircraft. For the example of Figure 3, it appears that this total velochty has fallen to a stabilised value of 418 knots by a distance of about 150 ft behind the jet exit. The true air speed of the aircraft, as derived from the IAS ana ambient temperature is 426 knots. Attributing the 2 per cent difference between these two speeds to experimental errors
it follows that the velocity of the Jet has fallen to zero by about 150 ft behind the Jet exit. At $10,000 \mathrm{ft}$ altatude the correspondingdistance at the same r.p.m. and speed 15 about 250 ft (traverse method Fig.l(b)). This difference between the results obtained at the two altitudes might be expected, for, at a given r.p.m. and speed, the E.A.S. at the Jet exit decreases with increasing altitude. Hence the Jet wrould be expected to persist longest at low altitude.

The record shown at Figure $\mathbf{3}$ is on of two taken at $\mathbf{3 0 , 0 0 0} \mathrm{ft}$ to illustrate that the rapid decay of jet velocity shown by the results of the traverse method (para.3.1.1.) Tras also true at high altitude. A series of records, of whach Figures $4(a)$ and $4(b)$ are typical, were also taken at about $10,000 \mathrm{ft}$ altatude to give a direct comparison with the curves of Figure 1.

Figure 4 (a) suggests that at 178 knots at $13,000 \mathrm{ft}$ altitude and at 12, 200 r.p.m., the Jet velocity has fallen to zero by about 500 ft behind the jetexıt. The results obtained from the traverse method (Fig. $1(\mathrm{a})$) give a value of about 300-350 ft. Thus the two different techniques produce an answer of tho same order, if not exactly of the same magnztude. However, exact agreement could hardly be expected, as the almost asymptotic decay of jct velocity makes it most difficult to aetermine the exact point where it has fallen to zero.

Figure $4(\mathrm{~b})$, Is a record taken with the starboard engine idlung and gives a good idea of the possible errors in the method. The steady flight speed vas recorded as 221 knots, while the stabılised speed Jetermined from the port engine smoke trail is 213 knots and from the starboard engine 207 knots. Although these three figures agree to only about 7% accuracy, there is still little doubt of the order of the distance downstream for the Jet velocity to decay to a small value.

As the above particular examples show, the results of this method confurm conclusively the results of the traverse method in showing that the Jet velocity decays to a small value vith several hundred feet of the target aircraft. This photographoc technique 3 s , however, not accurate enough to be used for a gencral investigation of the effects of speed, altitude and ongine r. $\mathrm{D} . \mathrm{m}$. on the decay of the Jet.

3.2 Turbulence in the Jet

The turbulence in the jet could be felt as a high frequency buffet on the tracking aircraft. This turbulence scemed to die away in much the same manner as the jet velocity and was not apparent at large range.

A vibrograph was installed in a Vampire aircraft to measure the magnitude and rate of decay of this turbulence (at least, as far as its crfect on the Vampire was concerned). Some trial records were taken to prove the method, but no systematic tests were made owing to lack of time.

3.3 Surmary of conclusions from the Jet Investigation

is two widely different technıques of measuring the velocity in the Jet had given practically the same result, and as the real interest lay in the characteristics of the wake at further distances downstream than where the jet had been shown to exist in any serious form, no further tests were carried out.

Before proceeding further, it is convenient to summarise the main results, together wh the Inferences that can be drawn from them:

1. For the speed range $178-350$ knots EAS at $10,000 \mathrm{ft}$ and for engine speeds up to $\mathbf{1 3}, \mathbf{5 0 0}$ r.p.m., the jet velocity has fallen to a negligibly low value by about 200-250 f't behind the jet exit.
2. It seem probable from the results that the distance for which the jet persists is mainly dependent upon the difference between the speed of the jet at the jet exit and the speed of the aurcraft, the larger this difference the longer the jet persists.
3. For a given r.p.in, and flight FAS, this excess speed will be greatest at low altitude. Hence the conditions favcuring a long pursistence of the jet velocity might be expected to be low altitude, high engine power, and low aircraft speed: e.g. take-off conditions.

4 Extent of Rake behind Fuselage and Cther Drag Producing Bodies

The wake behind the fuselage and other drag producing bodies is defined by a regıon of reduced total head and of small scale turbulence.

Some brief tests using the traverse technique (para.3.1.1.) Indicated that the loss in total nead in the wake of the fuselage was relatively small. For example, at 250 knots at $10,000 \mathrm{ft}$ altitude, the drop in ASI reading at about 40 ft behind the fuselage was only about $5-10$ knots. No systematic tests were made.

5 The Vortex Sheet and Trailing Vortioes

The investigation of paras. 3 and 4 nave shown that the disturbances at large distances behind a turbo-Jet aircraft can only be due to the trailung vortex system. Indeed, it is probable that at all distances kehind the target, the trailing vortices predominate in their effect on a tracking aircraft and this might be expected to be equally true for a propeller drıven aircraft.

In the following paragraphs, the theoretzcal characteristics of the trelling vortex sheet and vortices will be discussed and their effects on a tracking aircraft ostimated. Flight measurements of the disturbances in the wake and of the decay of these disturbances with aistance behind the target aircraft will thon bo presented and compared with theory.

The characteristics and basic theory of the vortex sheet and trailing vortices are givon in many text-books, and reference should be made to these standard works for more detailed information than is given in the following outline.

5. 1 "roling -up" of the Vortex Sheet

The vortex sheet shed from the wing, being unstable, rapidly rolls up into two finite vortices commonly referred to as the trailung vortices. Theoretical and experimental investigations of this rolling-up prccess are detailed in Reference 2 .

The point where the vortices are fully rolled-up is herd to specify precisely as the vortices approach the fully rolled-up condition asjmptotically as the distance from the wing approaches infinity. However it can be shom ${ }^{2}$ that the distance, e, for the vortex sheet to become essentially rolled-up is of the form

$$
\begin{equation*}
\mathrm{e}=\mathrm{K} \cdot \frac{\mathrm{~A}}{\mathrm{C}_{\mathrm{I}_{1}}} \mathrm{~b} \tag{1}
\end{equation*}
$$

```
where A = aspect ratio of' wing
b = wing span
K = some constant
```

To illustrate the order of magnitude of this quantity for a Metecr aircraft, it will be assumed that the Meteor has elliptic span loading and hence that a value for K of 0.28 can be used. (Reference 2). Substituting in equation (1) we obtain Figure 5, which shows that the vortex sheet becomes essentially rolled up Il quite a short distance behind the aircraft. Hence as far as a tracking aurcraft is concerned, little error will be involved by assuming that the disturbances at all practicable ranges are due entarely to the fully rolled-up vertices.

Experimental checks of the distance for the vortex sheet to roll up and of the distance apart of the fully rolled-up vortices can be obtained by using surtably positioned smoke canisters. No tests were carried out with this speoufacally in mind but Figure $7(\mathrm{~b})$ is typical of the results that can be obtained. The canisters mere in this case positioned one at the wing tip to mark the centre of the vortex and the cther midway between the nacelle and fuselage (Fig.7(a)). The photo at 160 knots shows clearly how the centre of the vortex moves inboard to its stabilised position, the smoks from the inner canster meandhle wrapping itself around this centre. The diffusion of the smoke from the inboard canister 1 s very rapid. This is perhaps duo to the smoke becoming mixed with the jet or with the turbulent air an the core of the vortex. In any event, the smoke seems to become eventually mrapped in a cylunder abovs the centre of the vortex instead of remaining as a single filament. Unless particularly calm conditions are chosen, atmospheric turbulence rapidly breaks up the smoke pattern (para.2). This can bo seen happening towards the bottom of the photograph at 260 knots , although conditions at the time when this phote Was taken were admittedly very turbulent.

5.2 Irclination to Plight Path of Vortex Sheet and Trailing Vortices

To shorr the positıon of the wake behind the target aircraft and how this varies with flight speed, the anclunation to the flight path of the vortex sheet and of the fully rolled-up vortices will be calculated.

Assuming elliptic s-pan loadinge.. the downard velacity of the vertex sheet umediately behind thu wing is ${ }^{3}$

$$
\omega_{0}=\frac{\Pi_{0}}{\boldsymbol{b}}
$$

where $\Gamma_{0}=$ circulation at mid span.
b = span of aircraft
and $\quad \omega_{0}=$ downard velocity
For level ficight

$$
\begin{equation*}
\nabla=p \cdot \frac{\pi b}{4} \quad \Gamma_{0} U \tag{2}
\end{equation*}
$$

where $\quad W=$ weight of aircraft

$$
U=\text { true air speed of aircraft }
$$

Hence the dovrmard inclination of the vortex sheet immediately behind the wing is

$$
\begin{equation*}
\frac{\omega_{0}}{U}=\frac{188 W}{b^{2} v_{i}^{2}} \quad \text { radians } \tag{3}
\end{equation*}
$$

Where $\quad V_{i}=$ EAS cf aircraft (Knots)
The vortex sheet rapidly rolls up into two finite vortices (para.5.1) and once these are formed they inpart to each other a downward velocity of

$$
\begin{equation*}
\omega=\frac{\Gamma_{0}}{2 \pi b^{\prime}} \tag{4}
\end{equation*}
$$

where $\quad b^{\prime}=$ distance apart of fully rolled-up vortices.
If it is assumed that $\mathrm{b}^{\prime}=\pi / 4 \mathrm{~b}$ (elliptic loading) then (4) becomes after rearrangement

$$
\begin{equation*}
\frac{\omega}{⿹}=\frac{38}{b^{2}} \frac{V}{V_{1}^{2}} \quad \text { radians } \tag{5}
\end{equation*}
$$

The inclınations given by (3) and (5) for a lieteor aircraft are shown in Figure 6. As the vortex sheet rolls up its inclination to the flight path decreases rapidly until the value for the fully rolled-up vortices is rached. Thereafter thi inclunation below the flight path decreases only slovily as the vortices decay.

The curves of Figure 6 together with the calculated distances for the vortex sheet to roll up (Figure 5) enable the position of the wake to be derived. For example, if it is assumed that the inclination of the wake decreases linearly from its value close behind the wing to its valuefor the fully rciled-up vortices, then at 250 knots the distance of the wake below the flight path is about 4 ft at 200 ft behind the aircraft, this distance thereafter increasing by about 0.6 ft for every 100 ft increase in range. Thus, except at very Iow speeds, the centre of wake will lie only slightly below the flight path.

Some measurements of the inclination of the centre of the wake to the flight path are reported in Reference 1. For speeds of $250-450$ tits the inclination at about 400 ft behind the aircraft was abcut $\frac{10}{2}$. This is of the same order as the theoretical values for the fully rolled-up vortices (Figure 6). Hence we may conclude that a theoretical treatment such as given above will give a good guide to the position of the wake.

5. 3 Strength and Theoretical Prfects of Fully Rolled-up Vortices

In this section the theoretical effects of the vortaces upon a tracking aircraft will be discussed. It will be assumed that the vortices have just become rolled-up and have not had time to decay appreciably.

The velocity pattern dut to the fully rolled-up vortex pair can be readily derived from the standard theory which, as already mentioned, is presented in most text books. Thus if the oragin is taken midray betreen the two vortices and if y is measured horizontally and perpenducular to the flught path and z vestrer li, dommards, then the domward velocity at any point on the y axis is

$$
\begin{equation*}
\omega=\frac{r_{0}}{2 \pi} \frac{b^{\prime}}{\left(\frac{b^{\prime}}{4}-y^{2}\right)} \tag{6}
\end{equation*}
$$

Where I_{0} is given by cquation (2) ard $b^{1}=\pi / 4 \cdot b$ (assumng againellaptic spen loading). Tu avoid the infinite velocity at the centre of each vortex, it 1 generally assumed that each vortex has a "core" rotating with constant anomigr velocity. The diametex of this cere Id about $0.2 \mathrm{~b}^{\prime}$ for elliptic loading ${ }^{2}$.

The variation of ω, derived from equation (6) for a leteor aircraft, is shorm in Figure 8 for \mathfrak{a} flight speed of' 248 knots EAS at 15,000 ft altitude. The distance downstroam where this velocity distrabution vould be expected is $3 t$ the point where the vortex sheet is Just fully rolled-up, that is, at about 200 ft range (Figure 5). As the distance downstreann increases beyond this range, so the cores spread and the vortex systom decays.

Notc that the velocity ω in equation (6) is rel ative to axes moving whith the vortices. The velocity rolative to axes fixed in space must anolvade the velocituy ie to the downard movement cf the vortzces themselves (equation 4). Ilowever, for a tracking circraft flying continuously an the Wake, it is the velocity relitive to the moving axes that is of importance.

The vortices wall cadse both longitucinal and lateral disturbances to a tracking airoraft and we will now mroceed to examine each of these effects separately.

5.3.1 Longltudiral Effocts on a Irackong Parorafit

Tho longitudinal trim change as an aircraft traverses slowly through the wake from top to bottom 1 s difficult to define and calculate, but the folloring will andicate the general order of magnatude of the disturbance.

The longatudinal change of trim will clearly be a maximum when the aircraft is at the contre of the vortex pattern. is the velocity distribution here will bo of the type shown in Figure 8, at is apparent that the trim change will bo dufluenced by three man factors:

1. The domnard velocity betreen tno two vortaces will reduce the lift on the tallplane and hencc produce a nosemp momont on the purcraft,
2. The dummord velocity will aj.so reduce the lcading over the root of the wing and honce reduce the domvash at the tail. This will cause 3 nosemdorn mment.
3. In order to monntan equilibrium of lift $=$ weight, the incidence of "the whole alroraft will have to be incroased. The effect of this in reducing the change of incidence at the tazl caused by (1) will bocome of greater importanco as the span of the tracking aircraft is decreased, so that more of the wing is inmersed in the downard velocity field between the two vortices.

Consider now a Meteor aircrait beang tracked by a Vampire, both aircrait flying at the same speed of 248 knots and at $15,000 \mathrm{ft}$ alritude. Figure 8 shows that the mean downward velocity over the tailplane of the Vargire, when it is at the centre of the wake, wall be about $14 \mathrm{ft} / \mathrm{sec}$. The down clovator requared to balance out the increased lift on the
taililene will be $\frac{a_{1 t}}{a_{2 t}} \cdot \frac{14}{u}$, which gives a value of about $2^{\frac{1}{2}}{ }^{\circ}$. The
stick force corresponding to this will be about 5 lb . This elevator angle to trim will however be reduced by probably about half by the second of the factors mentioned above. Further, as a large proportion of thewingof the Vamoire will be immersedin the downward velocity field between the trio vortices, the change in attitude required to maintain lift $=$ weight will be large and will again considerably reduce the elevator angle to trim.

The longitudinal change of trim would thus be expected to be small. phlots' opinions from flight tests using lieteor and Vampire aircraf't confirmed that this was the case. The lateral disturbances were in all caves stated to be the most severe and difficult to control.

5.3.2 Lateral Effects on a Trackang Alroraft

The way in which the lateral disturbance varies as the tracking aircraft moves across the wake from one side to the other can best be illuscratod by reference to Figure 8. As the tracking aircraft moves in from the right so the port wing will become affected by the upward velocity. This will impose a rolling moment on the aircraf't tenting to roll it to the right. As the aircraft moves fur cher into the certre of the wake, so the roliling moment will increase to a maximum end then decrease as the port wng becomes affected by the downward velocity betwoen the two vortices. As more and nore of the port wing becomes immersed in this downward velocity and the starboard wing bocones influcnecd by the upward velocity, the rolling moment will ahange to one producing a roll to tie loft. This will probably roach a maximum value whon the aircraft centre-line is at or near tho cencre of the right hand vortox. Movenc nt of the aircraft further into tho concre of the wake will cause this rolling moment to decrease untal it beconss zero whon the aircraft centroline is at the centre of the vortex pattern. The reverse sequence will apply as the azreraft then moves out of the wake to the left,

Let us now try to estimate the magnitude of these rolling momonts and the oileron angles required to trim.

If L is the rolling moment imposed by the vortex pattern at any particular instant, then the ailcron angle, ξ, required to trim is given by

Now

$$
L=\ell_{\xi} \xi \frac{1}{2} \rho U^{2} S b .
$$

$$
\ell_{\varepsilon}=\ell_{p} \cdot \frac{\mathrm{pb}}{2 \mathrm{~J} \xi}
$$

Hence

$$
\begin{equation*}
I=\ell_{p} \cdot \frac{p b}{2 U \xi} \cdot \xi \cdot \frac{1}{2} p U^{2} \mathrm{Sb} \tag{7}
\end{equation*}
$$

If we assume that the rolling moment, L, and the damping in rall derivative, $\ell_{\text {p }}$. obey the same law of variation with Mach number then at any Mach number, M, we can write (7) as

$$
\begin{equation*}
(I)_{M=0}=\left(e_{p}\right)_{M=0}\left(\frac{p b}{2 U \xi}\right)_{M} \cdot \xi \cdot \frac{1}{2} P U^{2} S b \cdot \tag{8}
\end{equation*}
$$

Hence we can obtain the aileron angle to trim by estimating the icw speed values of L and ℓ_{p} and by substituting them in equation (8), together with the value of $(\mathrm{pb} / 2 \mathrm{~J})_{\mathrm{M}}$ obtained from flight tests at the appropriate Nach number and EAS.

Both J and ℓ_{P} have been estimated here by simple strip theory assuming that the increase in local $C L$ at any point along the span is equal to (the change in incidence at that position) \times (the section lift curve slope). A check on the accuracy of this strip method was obtained using the more exact theory of Reference 4. The difference was, however, found to be insufficient to warrant the use of this more complicated method.

The particular case of a Vampire 5 aircraft tracking a Meteor will now be considered. Both aircraft will be assumed to be flying at 24.8 knots and at $15,000 \mathrm{ft}$ altitude. The velocity distribution in the wake of the Metecr at fairly close range has been estimated in para. 5.3, and is given in Figure 8. Using this velocity distribution, the rolling moment imposed on the Vampire when it is at any specafied distance from the centre of the wake has been calculated, and the aileron angle to trim derived in the manner outlined above. Figure 9 shows the variation in this aileron angle to trim as the Vampire traverses across the wake. It is seen that the initial roll to the right as the anrcraft traverses in from the right is relatively small compared with the ensuing roll to the left caused by the port wang becoming imnersed in the downard velocity field between the two vortices. The maximum aileron angle to trim amounts to 8 (or about 0.8 of the total aileron travel) and occurs when the centre-line of the Vampire is 11 ft from the centre of the wake. This rapidly changes to 8^{8} in the other direction as the aircraft traverses further across the wake, the distance between the two peak values being only 22 ft . The large magnitude of this trim change coupled with the rapid change-over from maximum one way to maximum the other, accounts to a large extent for the difficulty of controlling a tracking aircraft in the wake of another aircraft.

To indicate how the aileron angle to trim in the wake varies with the flight speed let us assume that the core diameter and distance apart of the vartices are unaffected by speed, altitude or Mach number. The vertical velocity ω, at any point in the wake will thus be proportional 'cc Γ_{0} (equation (6)) and hence to $\frac{1}{\rho \tilde{J}}$ (equation (2)). It therefore follows that the rolling moment L induced on the tracking aircraft till be independent of speed and altitude, since L is proportional to $\frac{\omega}{U} \cdot \frac{1}{2} \rho U^{2}$.

Hence the aileron angle to trim will vary as $\frac{1}{\frac{1}{2} \rho J^{2}} \cdot \frac{1}{\frac{p b}{2 U \xi}}$ (Eqn.7) or as $\frac{1}{V_{i}^{2}} \cdot \frac{1}{\frac{p b}{2 U \xi}}$ where V_{i} is the flight EAS. The lateral control difficulties
would therefore be expected to become more serious as speed is reduced. For the particular example considered above, the aileron control of the Vampire will be insufficient to trim out the lateral disturbances for speeds less than about 226 knots HAS. We see then that the rolling moments mposed on a tracking aircraft flying in the wake can be large and that at low speed it is possible to have insufficient aileron control available to counter the severe lateral disturbances. It should be borne in mind that the above calculations apply to ranges of the order of 200 ft . As the distance behind the target aircraft increases and the trailing vortices decay so the disturbances will decrease and the amount of aileron control required be reduced accordingly.

5.4 RRate of Docay of Trailung Vortices

From what has been said above it is clear that the important characteristic governing the severity of the disturbances in the wake at moderate $\mathrm{dystances}^{\text {stom the target is the rate of decay of the trailing }}$ vortices. We will now proceed to describe attempts to measure the rate of decay in flight, as there appears to be little information available on the subject.

As the rotational velocity in the wake is small compared with the flight speed, it was found dufficult to devise a technique which would enable the quantity measured to be large in comparison with possible experimental errors. In the end two methods were tried.

The first of these was an attempt to measure the actual rotational velocity in the wake by using smoke caxisters suitably positioned on the target aircraft (e.g. Figure 7). Unfortunately the smoke was found to diffuse too rapidly makark, this method unsuitable for exploring the wake at large dastanoes downstream. It was therefore not pursued further, but as the technique could be used to give anformation of value on the manner of the rolling-up of the vortex sheet behind the wing it has been briefly described in para. 5.1 rather than in this section.

In the second method the difficulty of measuring directly the velocity pattern due to the vortices was avoided, an attempt being made instead to measure the maxmum aileron angle to trim as an aircraft traversed the wake at various distances domstream. Using an argument roughly the converse of that developed in para. 5.3.2, it was then posszble to work back from the measuredmaximmaileron angles and obtain the rate of spread of the vortex core. This second method proved quite successful and it is therefore discussed in more detail.

5.4.1 Variation in Iraximum Aileron Angle to Trim with Distance behind Target Aircraft

A Vampire 5 aircraft was instrumented to measure port aıleron angle, aileron stick force, and normal acceleration on a desynn type continuous trace recorder. A 16 mm G.S.A.P. camera was fitted in the nose of the aircraft to measure range. A typical record obtained as the Vampire traversed from right to left across the centre of the wake is shown in Figure 10. Comparing this inth the theoretical curve of Figure 9, it is seen that the genoral shapes of the aileron angle to trim curves are similar except that the small peak predicted at about 35 ft from the
centre of the wake does not occur so markedly on the flight record. The flight tests showed that although the pilot could control the aircraft to just beyond the first maximum aileron angle reached, the changeover from maximum aileron angle one way to maxumum the other was so rapid that he had difficulty in keeping the auroraft under control. The record shown in Figure 10 is perhaps one of the better ones, as in general the flight record of the variation in aileron angle beyond the first peak does not agree well with the theoretical variation. It was felt however that some reliance could be placed in the first peak value of aileron angle obtained in this way. A series of tests were accordingly carried out to measure the variation of this peak aileron angle with range, speed and altitude. To enable the pilot to "see" the wake, smoke was used at low altitude and vapour trails at high altitude (pera.2).

Only a proportion of the flight records obtained could be used as the pilot found it difficult to traverse always through the centre of the wake. Also, as pilots estimates of range were found to be considerably in error (no gun sight was fitted), only those records where the range cculd be derived from the G.S.A.P. camera film were used, The difficulty of tracking through the centre of the wake and cf estimating range from the G.S.A.P. film increased as range increased. This accounts to some extent for the few points obtained at large range. Those records where the pilot reported that he had allowed a wing to drop before the maximum aileron angle was reached were also ignored.

The results obtained are shown in Figure 11. In these the maxinum port aileron angle to trim as measured from the records has been corrected to a mean angle using ground measurements of the aileron differential movement. No correction has been made for variation in weight of the target aircraft. It is seen from Figure 11 that the vortices persist for a considerable time and have decayed only to about half their initial strength by 8000 ft behind the target aircraft. For the two speeds at $30,000-35,000 \mathrm{ft}$ altitude, the disturbances close behind the aircraf't were so strong that although maximum stick travel vas used, the wings could still not be kept level. Theoretical values for the maximum aileron angle to trum as derived by the method of psra.5.3.2 are also shown plotted. It has been assumed that these theoretical values apply at the point where the vortices are just fully rolled-up. The agreement between theory and experiment is quite encouraging.

It should be noted that with the limated number of points obtained at the larger ranges there is no real guarantee that the maximum values of aileron angle to trim have been reached. A considerable number of points at eaoh range would be necessary to enable curves to be drawn with confidence. however, it is felt that sufficient has been done here to establish beyond doubt the general order of the rate of decay of the strength of the trailing vortices.

Probably the major difficulty encountered in these tests was in determining range with a camera. Thus at ranges greater than say 5000 ft it was difficult to see the target aircraft distinctly or the film because of haze and the general lack of definition of a $\mathbf{1 6} \mathrm{mm}$ film. Further when vapour trails were used it was necessary for the tracking aircraft to climb several hundred feet above the wake to photograph the target. Radar ranging equipment would be a satisfactory solution to thesedifificulties. The smoke producing system used for visualization of the wake at low altitudes was also not entirely satisfactory, the difficulties encountered having been mentioned already in para.2. A smoke system using cressylic acid would probably give much improved results.

It was because of the above difficulties that the programme was Imited to those tests necessary to prove that the technique was a workable one and to give some general guide to the rate of decay of the trailing vortices.

5.5 General Discussion

It has been demonstrated here, both by theory and by flight tests, that the rolling moments amposed by the trailing vortices are the most serious of the disturbances felt by an aircraft flying in the wake of another aircraft. It has also been shown that at low speeds these rolling moments become of such magnitude that in general insufficient aileron power is available to counteract them. Purther, as the rolling moment changes sign from its maximum in one direction to its maximum in the other in a very short distance laterally across the wake, control of the tracking aircraft will be very difficult. In fact, unless the wake is traversed slowly and by a pilot who knows what disturbances to expect, the aircraft will in many instances be thrown out of control. This is no doubt the reason underlying many of the accidents that have occurred to aircraft flying inadvertently into the wakes of other aircraft.

An estimate of the maximum disturbance likely to be encountered close behind the target aircraft can be obtained by using the method of para. 5.3 .2 in conjunction with the core diameter of $0.2 \mathrm{~b}^{\prime}$ assumed there. As the actual magnitude of the disturbances depend fundamentally upon the type of aircraft in question, let us consider, briefly by the general methods of dimensional analysis the effects of the various parameters, speed, altitude, size of aircraft, etc.

It has already been shown in para. 5. 3.2 that for both target and tracking aircraft flying at the same speed, the aileron angle to trim in the wake is proportional to $\frac{1}{V_{i}^{2} \frac{p b}{2 V \xi}}$. Hence the control difficulties will increase rapidly as the speed is reduced, or as the rolling power of the allerons decreases. The most severe disturbances would be expected
(1) at low equivalent airspeeds
or (2) at transonic speeds where $\frac{\mathrm{pb}}{2 \sqrt{\xi}}$ may become small
or (3) at speeds near the aileron reversal speed.
To show the effect of the size of the tracking aircraft on the maximum aileron angle to trim Figure 12 has been prepared by scaling the Vampire planform used for the previous calculations. The speed and altitude are again 24.8 knots EAS and $15,000 \mathrm{ft}$ respectively. The effect on the -tracking aircraft is seen to be most severe when Its span IS about $\overline{4}$ that of the target. Thus a fighter of 40 ft span attacking a bomber of 160 ft span would, other things being equal, expect to encounter more severe disturbances than would a large aircraft flying in the wake of a smaller aircraft. On the other hand, a guided missile attacking a large aircraft would probably encounter relatively small disturbances as its span is usually very small relative to that of the target. It should be noted that the curve of Figure 12 applies only to the particular core diameter assumed for Figure 8. As the vortices decay and the core diameter increases so the value of the ratio span of tracking aircraft/span of target arceraft for maximun disturbance will increase, although of course the overall level of the disturbances will be less.

The disturbance in the wake will also clearly be proportional to the span loading (W / b) of the target airoraft.

It has been assumed in the above discussion that the speed of the tracking aircraft is the same as that of the target aircraft. If, however, the tracking aircraft flies in the wake at a speed which is different from that of the target, then the aileron angle to trim can easily be shown to be proportional to

$$
\frac{1}{V_{i} V_{i}^{\prime}\left(\frac{p b}{2 U \xi}\right)^{\prime}}
$$

whore the dashed quantities refor to the tracking aircraft. Thus, for a given target aircraft speed, V_{i}, the lateral disturbance to a tracking aircraft will be greatest when its speed is low.

To summarise, it appears that. a small slow aircraft flying in the wake of a large heavily loaded aircraft flying at low speed will encounter exceptionally severe disturbances. The disturbances encountered by a missile attacking on aircraft will depend to a large extent upon the relative slzes of the aircraft and missile, and in many circumstances may be small espeoially as the closing speeds are usually high.

6 Recommendations for Further Work
It is felt that sufficient work has been carried out here to show that the major disturbances in the wake at all ranges are due to the trailing vortices. The main problem now outstanding is the determination of the laws governing the rate of decay of these vortices. With these laws established it would then be possible to predict the disturbances likely to be encountered ky an airoraft or missile flying in the wake of any other airoraft.

It is considered that the first step should be the establishment of an adequate theory for the decay of a pair of trailing vortices, backed in the first instance by laboratory experiments. Further flight experiments would then be required to check the validity of this theory under flight cunditions and to determine the values of the empirical constants.

The experimental technique using the values of maximum aileron angle to trim can, it is thought, be used successfully for any further flight experiments. To enable these measurements to be related to the velocity distributions due to the vortices, accurate measurement of the aileron Rower of the tracking aircraft and of the distance apart of the vortices will be required. This latter can be accomplished by the smoke technique mentioned in para5.1.

7 Conclusions

1. Measurements show that, for a Meteor flying within the speed range 175-350 knots at 10,000 ft, altitude, the jet velocity has fallen to a negligibly low value by about 200-300 ft behind the jet exit.
2. The jet velocity would be expected to persist longest at low altitude, at low forward speeds, and at high engine r.p.m. The conditions favouring a long persistence of the jet might thus be expected at take-off.
3. The major disturbances at all distanoes behind an aircraft are due to the trailing vortices and these decay only slowly. Tests using a Vampire aircraft flying in the wake of a Meteor show that the strength of these
vortices has fallen to only about half its Initial value by 8000 ft behind the aircraft. Although insufficient experimental work has been carried out here to draw any general conclusions on the decay of the trailing vortices, it is felt that a satisfactory flight technique has been established for further tests.
4. Theory and flight experience show that the rolling moments imposed on a trackıng aircraft by the vortices constitute the most severe disturbance due to the wake, and that under some conditions the rolling moments so imposed. cannot be controlled oven with full aileron applied.
5. Theory inducates that the effect of the trailing vortices on an aircraft or missile flying in the wake at a given range increases as
(a) the speed of the target decreases
(b) the gpan londing of the target increases
(c) the speed of the tracking aircraft relative to the target aircraft decreases
(d) the span of the tracking aircraft relative to the target decreases. The ratio of span of tracking aircraft to span of target to give maximum disturbance will depend largely upon the vortex core diameter at the particular range in question.
(e) the anleron effectiveness of the tracking aircraft decreases.

Thus a small slow aircraft flying in the wake of a large heavily loaded aircraft flying at low speed would be expected to encounter exceptionally severe disturbances. The disturbances encountered by a missile attacking an aircraft will depend largely upon the relative sizes of the aircraf't and missile, but in many circumstances may be small especially as the closing speeds are usually high and the missile wing span small.

NOTATION

```
W = weight of aircraft (lbs)
    b = aircraft span (ft)
    A = aspoct ratio of ring
    s = wing area (sq ft)
    b' = distance apart of tramling vortices (ft)
    e = distance for vortex sheet to roll up fully (ft)
    V
    U = TAS of aircrart (rt/sec)
    \rho = air density (slugs)
    \rho
    C
    \Gamma
    \omegao =
    \omega}=\mathrm{ downward velocity at any point due to the fully rolled up
        vortices (ft//sec)
    \DeltaV
        (knots)
    \xi = mean aileron angle (acgrees)
    p = rate of roll (degrees/scc)
    \ell}\mp@subsup{|}{\xi}{}=\mathrm{ rate of change of rollung moment coefficient with aileron
        angle = L//\frac{1}{2}\rho\mp@subsup{U}{}{2}\textrm{sb\xi}
    l
        velocity = L/ /\frac{1}{2}\rho\mp@subsup{U}{}{2}& b \frac{pb}{2v}
    M = Mach number
    a}1t=\mp@subsup{}{}{dC
    a
    \eta = elevator angle (degrees)
```


RIMTHNCES

No. Author
1 R.H. Prancis and M.S. Igglesden

2 J.R. Spreiter and A.R. Sacks

3 W.F. Durond
4 H.A. Pearson end
LT. Jones

5 N.P. Durond

Thtle, etc.

Sone experiments on jet aircraft wakes. R.A.E. Tech. Note hm1.506. Sept.1952. A.R.C. 15,529 .

The rolling up of the trailing vortex sheet and its effect on the downwash behind wings. Journal of Aeronautical Sciences. Jan. 1951.

Aerodymanc Theory Vol. 11 page 324.
Theoretical stability and control characteristics of rings with various ancunts of taper and twist . NACh Report No.635. 1938.

Aerodynamic Theory Vol. III page $68-69$.

TABLE 1

Aircraft Data

Meteor 4 EE. 522

Wing span	$37^{\prime} 4^{\prime \prime}$
Wing area	350 sq ft
Aspect ratıo	3.98
Taper ratıo	2.2 :1
Wing section	EC 1240/0640 root
Wi 0940/0640 tip	
Wing setting to fuselage datum	1.0°
Aerodynamic mean chard	116.6 ins.
Fuel capacity	325 gals
Fcg oil capacity (for smoke)	120 gals
All-up weight	16320 lb
C.G. position with full fuel,	2.4 ins aft of datum

FIG. 1 (a) DECAY OF JET VELOCITY WITH [

FIG.I.(b \& c) DECAY OF JET VELOCITY WITH DISTANCE BEHIND AIRCRAFT -"PITOT TRAVERSE" TECHNIQUE.

fIG.3. PLOT SHOWING DECAY OF JET VELOCITY OBTAINED BY PHOTOGRAPHIC TECHNIQUE -RESULTS OBTAINED FROM PRINTS OF FIG.2.

(fEET Full SCALE)

FIG. 4 (a). PLOT SHOWING DECAY OF JET VEL

FIG. 5. THEORETICAL DISTANCE FOR VORTEX SHEET TO ROLL UF?

FIG. 6. THEORETICAL INCLINATION TO FLIGHT PATH OF VORTEX SHEET \& VORTICES.

a. SMIOKE CANISTER INSTALLATION ON METFOR

b. PHOTOS OBTAINED WITH SMOKE CANIITERS IN OPERATION

FIG. 7 a \& b

FIG.8. THEORETICAL VELOCITY DISTRIBUTION DUE TO FULLY ROLLED -UP VORTICES BEHIND A METEOR AT 248 KNOTS (EAS) AND 15,000 FT. ALTITUDE,

FIG.9. CALCULATED VARIATION IN AILERON ANGLE TO TRIM FOR A VAMPIRE AIRCRAFT MOVING ACROSS THE VELOCITY FIELD OF FIG. 8.

FIG. 12.EFFECT OF SIZE OF TRACKING AIRCRAFTON MAXIMUM AILERON TO TRIM IN WAKE AS CALCULATED FROM VELOCITY DISTRIBUTION OF FIG. 8.

Crown copyright reserved

Pubbshed by
Her Majesty's Stationery Orfice
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London W I
P 0 Box 569 , London S.E.I
13A Castle Street, Edinburgh 2
rog St. Mary Street, Cardiff
39 Kıng Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

PRINTED IN GREAT BRITAIN

