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The Measurement of Reynolds Stresses 
in Low Intensity Turbulent Flow 

By H. J. PERKINS 
Department of Engineering, University of Cambridge 

Reports and Memoranda No. 3668* 
January 1970 
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R O " ¢ A  L ,~,, ! ' .... : ' "  !'"F'~ 
Summary .  ~ • 

Some of the fundamentals of hot wire anemometry are reviewed and given a new interpretation. 
Methods, employing either the inclined single sensor or the X-probe, are described for measuring all 
six components of the symmetric Reynolds stress tensor in flows where both the mean secondary velo- 
cities and the r.m.s, turbulence fluctuations are less than about 5 per cent of the primary velocity. Various 
methods are compared and general rules established for obtaining high accuracy. 

FIGURE 1. 
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1. Introduction.  

Several full accounts of hot wire anemometry are hsted in the bibliography as Refs. 1 to 8. Only a 
summary of the salient points will be given here. 

* Replaces A.R.C. 31 748. 
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The observed convectwe heat loss from a thin heated wire or cylindrical film exposed to a fluid stream 
can be used to deduce the local instantaneous velocity field. The wire, which constitutes one arm of a 
Wheatstone bridge circuit, Fig. 1, can be operated either by 

(a) applying a 'constant current' to the wire (Ro ~, 0) and observing the instantaneous voltage at B, 
relating this to the instantaneous wire temperature, or by 

(b) using the out of balance voltage at B to modulate the applied bridge voltage at A in such a way 
as to maintain the wire at 'constant temperature'. The instantaneous bridge voltage at A will then 
be related to the wire heating current. In this case the thermal inertia of the wire is eliminated from 
consideration but at the expense of an elaborate electronic control circuit. The operating tempera- 
ture of the wire is set by adjusting the value of the resistance R o. 

Advances in electronic circuitry during the last decade have so improved the latter mode of operation 
that its use is now almost exclusive, and so it is to this case that further discussion is restricted. 

1.1. The Response Equation.(or a Hot Wire. 
The heat balance for a hot wire having resistance Rw at its operating temperature, and excited by an 

instantaneous bridge voltage E, can be written 

Heat input = E2/R~, = LR + Lc + Lrc + Lnc 

L R the radiation loss, will in general be very small for tungsten or platinum wires operated below 
300°C. 

L c represents the heat lost by conduction to the wire support needles and usually constitutes 
about 10 per cent of the heat input. 

Lpc the forced convection loss, is intuitively a function of the flow velocity, wire and fluid properties 
and temperatures, and the wire geometry, particularly its size and inclination to the flow. 
This can be written conveniently as 

Lcv = C1 '~'C 2 unff 

where Ue:: is the effective flow velocity, and n ~- ½ 

Lnc represents the natural convection loss (E2/Rw-Lc),  where E o is the bridge voltage at zero 
flow, and is unimportant above wire Reynolds number of 0'1. It is coincidental that for most 
wires 2 Eo/R, . is approximately equal to C1, the limiting form of the above expression for Lvc 
as the wire Reynolds number approaches zero. 

Hence the response equation for the heated sensor can be written, 

( E 2 - E  2) = KU"J'(y) (1) 

where (E 2 -E2o) is determined from the measured bridge voltages, 
U is the instantaneous fluid velocity, 

n is a power law index, n --- ½, 

K embodies the wire and fluid properties and temperatures, 

and fl).) is a function describing the yaw response of the heat loss, 7 being the included angle between 
the instantaneous velocity vector and the plane normal to the wire. 

The right hand side of equation (1) traditionally represents the product of three separable functions 
of wire temperature, flow velocity, and yaw angle for a given wire operating in a given fluid. In general, 
K, n and./(?) are all functions of the flow velocity, as demonstrated by Brunn 9, although over the limited 



velocity range encountered in the typical experiment the U dependence can legitimately be dropped. 
The simplest yaw response equation, used by early experimenters, isfly) = cos"v, the cosine law, implying 
that only the velocity component perpendicular to the wire, U cos ?, is responsible for the cooling. This 
would indeed be so, up to quite large yaw angles, if the wire was infinite in extent and maintained at a 
constant temperature throughout its entire length. Unfortunately the real hot wire must be finite, having 
a non-uniform temperature distribution due to heat conduction to the supports. 

When such a sensor is inclined to the fluid stream the heat loss is greater than that suggested by cosine- 
law cooling. The classical explanation for this effect suggests that the velocity component parallel to the 
wire skews the temperature distribution thus increasing the conduction loss to the downstream support. 
That this is not the case has been demonstrated recently by Champagne et al 1°, by actually measuring 
the temperature distribution along hot wires 'normal' and yawed to the fluid stream. The slightly increased 
loss to the downstream support is almost entirely balanced by a reduction in the loss to the forward 
support. 

A more plausible explanation is attempted here involving an interaction between aerodynamic 'end 
effects' and the 'transition' in heat transfer mode which takes place as the yaw angle is increased. As the 
wire is rotated to lie parallel to the fluid stream the heat transfer, which takes place through a shear layer 
developing along the wire, settles to about 40 per cent of the 'normal' heat loss, retaining its U ½ depend- 
ence but becoming erratic due to upstream support interference. At low yaw angles the boundary layer 
on the wire remote from the supports, although skewed, is essentially two-dimensional so that the cosine 
law of cooling ought to be adequate. During transition the flow must become three-dimensional over 
the entire length of the wire. The yaw angle at which transition begins will therefore depend primarily 
on the three-dimensionality of the flow over the wire, starting earlier on shorter wires. Hence, the increase 
in heat transfer above that suggested by the cosine law must depend strongly upon the length to diameter 
ratio of the sensor l/d, and the ratio of support diameter to wire diameter ds/d. Fig. 2(a) shows the postu- 
lated yaw response, which is described by an expression of the form, 

fly) = cos"y +f l  (I/d, ds/d, ?) 

such as 

j '(y) = [ cos2y - J  - C 3 s i n  C4 y]./2 

where C4 is a function primarily of I/d and C3 a function of ds/d. 
Many other improvements to the cosine law have emerged over the years, each introducing a new yaw 

parameter. Notable among these are, 

(1) Hinze 8, Fig. 2(b) 

.]'(y) = (COS2y "1"- k 2 sin2y) "/2 , with n = ½ 

(2) Newman and Leary 1 l, Fig. 2(c), 

fly) = cosmy, with m < n, 

and most recently, 

(3) Friehe and Schwartz 12, Fig. 2(d), 

f(y) = (1 - b  (1 -cos~y) )2, 
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the quantities k, m and b being intuitively dependent upon the I/d and ds/d ratios, and to a lesser extent, 
the yaw angle and flow velocity. The difference between the three expressions, as indicated in Fig. 2, is 
demonstrative of the difficulties involved in establishing the yaw response experimentally. Each of 
k, m and b are claimed to be independent of yaw angle for - 60 ° < 7 < + 60° by the various proponents, 
but clearly they cannot all be right. Dependence on the flow velocity is in general only slight although 
the choice of n, the power law exponent, crucially affects all three parameters. The l/d dependence, and in 
the case of k the ds/d dependence, is summarized in Fig. 3. The advantages and disadvantages of each 
expression are discussed more fully in Refs. 9-13, the hot-wire theoreticians logically favouring Hinze's 
formulation whilst the hot-wire users prefer the second expression for its inherent simplicity in low 
turbulence flow. 

Concentrating now on the latter; it has been demonstrated by Brunn 9 that for a given sensor operated 
at a given temperature, m is sensibly constant for 20 ° < 3' < 70 ° and has a U dependence which is so 
much like that of n that the ratio m/n emerges as a very weak function of U. In summary then, a very 
useful and simple form of the response equation for use in flows where ~, is less than 70 ° will be 

( E  2 - E 2) = KU" cos"3' (2) 

where n is determined from a constant-temperature velocity calibration with 7 = 0°, n being either the 
local slope of the curve log (E 2 -  E 2) versus log U, or an average slope over the experimental velocity 
range, 

K is given by (E2-E2)/U'~, Ec and Uo being calibration values of E and U; 
and m, or re~n, is deduced from a yaw calibration. The latter can be performed in two different ways. 

(1) The steady flow yaw response in a uniform stream is obtained by comparing the response at 
7 = constant to that at ~ = 0 (normal). From the expression, 

(E2._E 2) 2 2 (E ~, = o - E o) = cos"3' 

the quantity m can be deduced if 7 is known accurately ; the estimated error in m produced by a 1 ° 
degree error in 3' is tabulated below. 

DEGREES 10 20 30 40 50 

PERCENTAGE ERROR IN 2 2 " 5  10-2 7-0 5.6 4-8 
m/1 ° ERROR IN 7 

(2) As will be demonstrated in Section 6, it is possible to obtain an indirect calibration for m from actual 
Reynolds stress~ measurements in a known shear flow, fully developed flow along a straight circular 
pipe. 

2. The Measurement of Reynolds Stresses in the Presence of Small Secondary Flows. 
Consider a three-dimensional flow in which the three mean velocity components, Ui, and the six 

elements oJ the symmetric Reynolds stress tensor uluj are all non-zero. Referring to the co-ordinate 
system of Fig. 4, the instantaneous velocity, U, will be 

tDouble velocity correlations, at a point in the flow will be referred to as Reynolds 'stresses'. The 
omission of the density multiplier is a convenience in incompressible flow. 
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or equivalently 

(U --~ u 1)2 --]- (U2 --~ u2) 2 --~- (U 3 -{- u3)2] ~, 

I(U -[- -[- (U 4 -q- -.[- (U 5 -/,/5)2/"~" 
-] 

Ul) 2 U4) 2 

where xs is the co-ordinate perpendicular to the x ~ - x 4  plane. The angle ~ will be the included angle 
between the above vector and the plane normal to the wire, that is, 

sin ~ ~- cos (0 + if) cos ~b', referring to wire 'a' of Fig. 5, 

where 
0 is the inclination of the wire to the xx axis, 

is the time mean inclination of the velocity vector in the x l -  x4 plane, 

and O'is the time mean inclination in the x l -  x5 plane. 

Suppose initially that the steady secondary flow velocities are comparable in magnitude to the r.m.s. 
turbulence fluctuations and that both are always less than 5 per cent of the primary velocity, U,. Removing 
secondary quantities from the velocity statement above~, then, 

U ~.~ U1--~u 1 

and the angle between the velocity vector and the wire direction becomes (0 + @ + d@). Inclining this 
projected vector out of the x l - x 4  plane by up to 10 ° produces only a 1 ° change in the effective yaw 
angle, that is, the effect of a small U5 or us velocity component on the yaw angle is negligible. Both the 
velocity and yaw response of the sensor are thus implicitly linearized. 

A method is required for measuring the nine dependent variables under these circumstances whilst 
maintaining the probe axis parallel to the primary direction for experimental convenience. Unfortunately 
there exist two conflicting requirements here. In order to measure the secondary flows, the yawed sensor 
must be arranged to have maximum sensitivity to the mean transverse velocity component, that is 
dE/dy must be maximized; this occurs when y is approximately 75 °. For the Reynolds stress measure- 
ments, on the other hand, y must be about 45 °, giving approximately equal sensitivity to longitudinal 
and transverse velocity fluctuations. It is therefore clear that a single probe of either inclination is un- 
suitable for measuring all nine variables, two separate experiments being required. However, it will be 
necessary, in determining the Reynolds stresses to include the influence of the secondary flows, implying 
added complexity. A discussion of the interpretation of hot wire signals in the presence of mean transverse 
convections will be postponed until Section 3, the case of small secondary flOWS, that is, secondary flow 
velocities considerably less than the r.m.s, turbulence fluctuations, being considered first. 

2.1. A Single Sensor Method (METHOD 1). 
The inclined hot wire sensor shown in Fig. 4 and again as wire 'a' in Fig. 5 is to be used to deduce 

the Reynolds stresses. From the previous section the response of the sensor may be written 

2 2 K .  U'I sin" (0 + ~k) E~-Eo. = (3) 

which under the above conditions, sin ~k -~ ~b ~- U4/UI and cos ~, -~ 1 gives for the steady response, 

} ( - Eo\) 
1/n mln 

U4 
=U'Fl+u-~lc°t0]Uo[_ = a  

t i t  should be noted that even in low turbulence flow many of the secondary terms in the series expansion 
for U, are not negligible under certain conditions. 



eliminating K`, via calibration at a point where E = Ec, U, = Uo and U2 = U3 = U4 = 0. Expanding 
the bracketed term as a binomial series, and taking only the first two terms of that series, 

_• U4 
A = (4 )  

or A = U1/Uo for small secondary flows. 
The quantity fl -- m/n cot 0 is a constant for a given wire and must be determined by a yaw calibration, 

as outlined in Sections 1.1 and 6. 

The instantaneous wire response can be examined, in this simple case, by differentiating equation 
(3) to give 

2E. dE,, = K`, nU"] x d[ r sinm(0 + 0) + Ka unl m sin"-  1 (0 + 0) cos (0 + 0) dO, 

which on substituting G for dE,,, u, for dU1, and u4/U 1 for dO, becomes 

G n(E`,-Eo,) ul m u4 
-- + ~- cot (0 + 0) 

2E`, 

or, writing m/n cot (0 + 0) =/~ in the absence of appreciable secondary flows, 

(5) 

where 

U l  - U 4 

%e a = G-b]5 G (6) 

e a 

Taking he time averaged square of equation (6) 

2E. A 

2 u4Z 2 ~ U l  l l l  U4 2 _ _  

e . e .  = ~-~+2/~--7W-+/~,~o ,~o U02 (7) 

an equation for the Reynolds stresses. 
The interpretation of the quantities U4 and u4 will depend upon the choice of the angle 4) in Fig. 4. 

For example, when 4) = 0 °, orientation (i), U4 = U2 and u4 = uz, or when the probe is rotated to ~ = 45 °, 

orientation (ii), U4 = (Uz + U3)/x/2 etc. In general, then, equation (7) will have the form 

2 2 2 
- -  U l  lA2 . /-, R3 U l  U2 lA1 / /3 I /2 113 

e 1 e,=2 C1 r_u_.~o+C2 + C  4 C5 , 
,Jo ~.-'o 

using r to denote the various orientations and dropping the subscript a temporarily from • and e. By 
rotating the sensor about the Xl axis in increments of 45 ° from q~ = 0 °, eight equations for the six Reynolds 
stresses are given, having the following coefficients. 



M E T H O D  1 

ORIENTATION q5 ° C1 C 2 C3 C4. C 5 C6 

I f12 0 2 f l  0 0 

ii 45 1 ,82/2 fl2/2 w/-~fl ,v/~ fl f12 

iii 90 1 0 fie 0 2fl 0 

iv 135 1 fl2/2 fl2/2 _ x / ~ f l  ,,/'~fl _ f12 

v 180 1 f12 0 - 2 f l  0 0 

vi 225 1 /~2/2 /~2/2 -x/2/~ -.,/5/~ /~ 

vii 270 1 0 /~2 0 - 2fl 0 

..° 
Vlll 

315 1 a2/~ t~212 . / 2 ~  --./21~ - I~ 2 

The quantities a and fl, which are orientation dependent in the general case, can be considered constant 
when the secondary flows are small. Hence, from the steady response 

U--Z = Ai or A.  etc. 
U0 

and from the time-averaged response 

Ul U 2 O~ 2 
- 

Uo 2 

u, u3 2[ ] 
. = m -T2 -2~ U 2 4fl ( em-e~u) ,  

" 2 2 2 -~ _~  eu +eoi)-- (ei~ + e~ui) 



and U2 - 2fl 2 (e i + e ~)-- (eu, + eou) • 

The two stresses u--~ and u-] cannot be separated unless hn independent measurement of ul z is made 
with a second sensor placed normal to the flow. Calling this orientation (ix), we have finally, 

u~ ~2 1 ( u Z )  
_ _  _ ~-~ (e2 +e~)-fl-~ ul - 

and U l  _ _ - -  2 e 2 ~ ( e . i +  r iD-  ~ ~ • 

All six Reynolds stresses are thus determined from a total of 9 r.m.s, voltage readings. 

2.2. X - P r o b e  Me thod .  

Multi-sensor probes, usually in an X-array for Reynolds stress measurements, have largely superseded 
the single sensor by offering a reduction in labour and an improved accuracy. If it is assumed that the 
two wires of the X-probe are sufficiently close together that they see the same approaching flow, or put 
another way, the instantaneous signals from the two wires are highly correlated, then in addition to the 
signals ea and eb it is possible to extract meaningful composite signals such as %+b, e~-b or more complex 
combinations like %+b e~-b or %+b e,Z-b etc. In determining the Reynolds stresses, by the present method, 
only addition and subtraction facilities are required. 

Assuming wire 'b' in Fig. 5 is equally inclined to the xl-axis and has the same index n hnd ratio m/n 

as wire 'a', then equations (4) and (5) can be rewritten, 

B = U , _  fl U___~4 ~ U__ ! (8) 
Uo Uo Uo' 

ul u4 (9) 
= Vo 

and for instantaneous sum and difference composite signals 

U 1 U¢ 
% %  e,,+b = ( % + % )  ~ + ( % - % )  

U o '  Vo 
(10) 

U t U4 
%Ub%-b = (% - - % ) ~  + (%+%);7-~, 

UO C/o 
(11) 

Taking the mean square of equations (9), (10) and (1 I), 

_ z~- ..-zT 
~ e 2 = u~ _ 2  8 u l  U4+B2 u ~  

i T  2 r TT2 - -  r TT2 " 
" '~0  t 'JO v O  

- -  U ~  U 1 bl 4 
a2 2 = 4 ~ + 8 f l D  ea+b Uo rr2 ' 

L.t 0 

(12) 

(13) 



Ul /'g4 • A~2 U4 2. 
0~2-2 =8flD--TW-+'qJ Ti~ 

ea - b wO '-" 0 
(1) 

neglecting terms in D 2 

where c~ = 2 c%c% (c% + eb) and D = (eb- ~a) (~a "t" IXb). 

The ratio 'D' expresses the non-dimensional difference between the two wires of the X-array and can 
be made equal to zero during calibration by adjusting the temperature of one wire to give, 

E e  a 2 2 2 

a relatively simple but not essential operation. 
If 'zeroed' in this way then subsequent differences arising away from calibration will be caused by 

a combination of, 

(a) secondary flows, 

(b) deviations in the two response characteristics, 

and (c) velocity gradient errors, the two wires seeing slightly different velocity vectors. 

Again the interpretation of the quantities U4 and u4 depends on the rotation ~b of the plane of the 
X-probe. In each orientation six possible signals Ea,  Eb ,  ea, eb, ea+ b and e,_ b can be extracted but the choice 
of which signals to observe and in which orientations will determine both the economy and the accuracy 
of the method. It is possible to deduce a method having maximum economy, see table below, in which 
the six Reynolds stresses are determined from only six r.m.s, voltage readings. (METHOD 2). 

PROBE ~b PLANE OF 
ORIENTATION X-PROBE 

(i) 0 ° xl - x 2  

(ii) 45 ° 

(iii) 90 ° xl - x3 

OBSERVED QUANTITIES 

STEADY (DC)[ 

E a , E b  

INTEGRATED (rms) 

2 e 2 
eai , bi 

e 2 e 2 
a+bi i  , a - b i i  

2 2 
eaii i .~ ebl u 

CALIBRATION 

ZERO FLOW 

Eoa  

Eob 

I 
U1 = Uo 

Eta  

However, as will be shown later, such a method has very poor accuracy for certain of the stresses 
and is not recommended. Maximum accuracy can be achieved by taking measurements in four planes 
and this method will be developed in more detail. (METHOD 3). 

ORIENTATION (i) 
METHOD 3 

~b = 0 so that u4 = u2, 

2 2 
- -  U 1 _L.,~/? Ul U2 j_R2 U2 

2 2 = ~ - - - - - 7 7 2 - - ~ "  77~, (15) 
O~a ea~ ".J O "../0 L/ O 



- u'~ 2 u ,u~  / ~ u ~  (16) 

ORIENTATION (ii) 

ea + bi 

2 2 
ea - bii 

O R I E N T A T I O N  (iii) 

2 -5~ 8flD ~ u %  2 + 4fl 2 u2 
e"-b' = Uo Uo z" 

(u2 + u3) q~=45  ° , u 4 = - - ,  
,/5 

4~o2+4v/~/~ /ul uz /3, u3~ 
= v ( - - o a + - W ,  

= 4 x / 2 f l D  + 2fl2 ( ~ z  + ,~-~2 + 2 
-Wo~+--OT) \Uo Uo v~ J 

= 9 0 ° , U 4  = U 3 

(17) 

(18) 

(19) 

- -  13 2 2 2 1 +2t~ul /33_{_/:~2 /332 
° tae  .... = ~ o  r - - - ~ o  r U 2,  (20) 

__ U~ 2fl/31/33 /3~ 
~ e 2 -- 

~,,, u ~ -07-0 + & u ~ 
(21) 

ORIENTATION (iv) 

~ 2 e - 2  /31 /33 2 /3~ 
o-b , , ,  = 8~D U--~-+4~ ~. 

= 1 3 5 ° , u 4  - -  

(U 3 --/22) 

- -  Ul U 2 )  2 2 2 o~2 = = 4 x /  ~ fl D (Ul_R3 (/-/2 . u3 2 U g U 3 "] 
\ * a O  ~-~0 

From equations (15) to (23) it follows that 

O1 
- Ai or Bi etc., 

Uo 

or more exactly 

U, ( & + B 3  

Uo 2 ' 

(22) 

(23) 

10 



if secondary flows are present, and for the Reynolds stresses, 

121 l'12 = 0~2 e a i - - ~ b  bi 

12*ua-[ot2~ 2 7~b2~ ; / 4 / ~ ,  

127 ~ = -  , =  ~ _ / u ,  12,_ 12,12;~ 

_ _  _ - -  2 2 ut  122 12{ ~ d-~,/4/~ - ~  z) 
Vo ~ - v~ ' 

u~ =o~ 2--g 2 2 u tu3  v~ e°_ ~,,,/4~ --~ D vg ' 

or  

and 

(12~-u~) 
= 

v0 ~ 

U2 U3 
ug 

r 
L 

I ~ 2 - ~  2 - ~  - ] /  2 w /~  ut  u2 ea-b,,-c~ ea-b,oJ/8fl----fl-D U~" 

The 'D' terms will in general be small and negligible for a well constructed X-probe, when the cross 

flows are small, thus simplifying the analysis. Since the longitudinal stress u2~ can be measured in any 

orientation in terms of e,+ b2  and the local D-term, the significance of these extra difference terms can be 

B 

estimated by comparing the values of Ca+ b2 in different orientations; a very quick and useful check. A 
constant-current method of the above form has been presented by Gessner 15, but unfortunately it was 
assumed that the two wires of the X-probe were identical and cooled only by the normal velocity com- 
ponent. 

2.3. Comparison of the Methods. 
In order to determine the Reynolds stresses with maximum accuracy each must depend on a minimum 

number of measured quantities. A table can be drawn up to compare the three methods discussed, on 
this basis. 

11 



REYNOLDS 
STRESS 

2 '  U2 , b/2 

Ul  U 2 , b/1 b/3 

U2 U3 

NO. OF M E A S U R E M E N T S  R E Q U I R E D  

S I N G L E  
I N C L I N E D  SENSOR 

M E T H O D  1 

1 (NORMAL WIRE) 

3 

4 

2 

4 

X-PROBE 
(MAX. ECONOMY)  

M E T H O D  2 

3 

4 

2 

6 

X-PROBE 
(MAX. ACCURACY) 

M E T H O D  3 

The X-probe, used in conjunction with an addition/subtraction device is clearly a superior instrument 

for the measurement of the transverse direct stresses, u~ and u--~, their difference, (u2 z - u32) and the secondary 

shear stress, Uz u3. The reliability of the X-probe estimates of u 2, u~ u2 and ul u3 will depend upon the 

lengths to which one is prepared to go in allowing for small differences which might occur in the behaviour 
of the two wires. Differences caused by a local velocity gradient cannot however be simply eliminated, 
making the X-probe a secondary device for such measurements. These three stresses must therefore 

be measured using a single sensor method, a 'normal wire' for u 2 and a 45 ° inclined wire for the shear 

stresses, u~ u2 and Ul u3. When all six Reynolds stresses are required it is often necessary to bypass the 
latter rule both to avoid unnecessary experimental complications and to improve the local consistency 
between the stresses. Installing a slightly different shaped probe into a slightly different flow some hours 
or days later to obtain the remaining components of the stress tensor will probably introduce more 
errors than using the X-probe to measure the entire tensor in the first place. Such a test might however 
constitute a check on the X-probe performance. 

2.4. Sources of Error. 

Two additional sources of error in the Reynolds stress measurements, not discussed in the previous 
sections, will be covered here. The first arises due to instrument or reading errors and the second from 
a mechanical misalignment of the probe plane. 

It is required to estimate the likely error produced in each stress by a given percentage error in the 
r.m.s, voltage measurements. In general the r.m.s, readings arising from the integration of ea, 1 %, ~ea + b and 
e,_b do not differ greatly at a point in the flow, so that the stresses very often emerge from the subtraction 
of two very nearly equal quantities. If e is defined to represent the average of these r.m.s, voltages, in 

2 2 which a reading error of r/ can occur, then a quantity such as (G--eb) can be assigned the tolerance 
+_ 4 be. The tolerance on each stress can now be estimated in this way (see table below) and further, 
by assigning typical values to the variables, the percentage error in the stress can be assessed. 

Example Suppose we are situated near to the wall, x2 = 0, in a zero pressure gradient two-dimensional 
turbulent boundary layer, and the following readings are observed. E = 2v, E o = 1.4v, n = -5, 
U1/Uo = .5, so that a = 2, e = 25mV, fl = 1 and q, the reading error, is, say, 1 per cent of e. 
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Under these circumstances, which are fairly realistic, the tolerances on the stress readings are as 
given in the table and where an appropriate value for the stress can be postulated this tolerance is written 

also as a percentage error /1 per cent reading error. Estimates for the error in u2 ua can be made using 
a different example, the square duct flow. Errors of as much as __ 100 per cent for the single sensor method 
or __ 25 per cent using the X-probe are suggested. It should be mentioned in concluding the argument 
that in the author 's  experience reading errors of ___ 3 per cent are frequently unavoidable in r.m.s, tur- 
bulence measurements even with extremely long integration times. In general the errors are distributed 
randomly through the results, within the tolerances given, so that the percentage errors above orobably 
represent overestimates. 

The second source of error worthy of mention arises when a small misalignment of A ° occurs in the 
angle ~b. If it is assumed that the 45 ° indexing device operates correctly but has a constant misalignment, 
with respect to the x 2 -  x3 frame, of A °, then the interpretation of the quantity u4 must be revised slightly. 
In orientation (i), for example, 

u4 = u2 cos A+u3 sin A 

= u2 + u3 A when A is small. 

Hence for the X-probe 

Similarly, in orientation (iii), 

= + , ,  
\ Uo Uo ) 

e o -  - A VOW/. 
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From these equations it is possible to solve for the two stresses ul u2 and ul u3 despite the misalign- 

ment. Returning to the example used above, where ul u2 is very much greater than ul u3 it is clear that 

the estimate of u~ u3 will depend very heavily on the value of A. 
Taking the more complex case, 

- - u uq 
(e2 e a_b, -- C~2 ea z-b . )  = 4/~z L- N ~4A U~-o _I 

and 
[ 22] 

(~2 e-~ - t~ 2 ~ 2 -~,2-u2 ua _ 2A - - ; 7 T - ~ 2  - ( u 2  - u3) 
, a - b .  ea-b,o) = 4f l  2 Uo Uo 

neglecting the 'D' terms. 

Again these two equations can be solved for u2 u3 and (u z-u3z). In situations where (uZ~-u~) > > u2 u3, 

large errors will be induced in u2 u3 if the A terms are neglected, and vice versa. This represents a sig- 
nificant source of error since it is, in general, difficult to align the probe correctly, even though its final 
position can be checked very accurately. 

3. Reynolds Stress Measurements in the Presence of Large Secondary Flows. 

At the beginning of Section 2 attention was concentrated on the case where the secondary flow velo- 
cities are very much less than the r.m.s, turbulence fluctuations. It is instructive to see how this analysis 
can be extended to deal with the transverse flows originally postulated in the range + 5 per cent of the 
local primary velocity. Rewriting equations (4), (6), (8), (9), (10) and (11) for the X-probe, for example, 

A = +/~ Uo'  

Uo Uo' 

Ul r U4 
Ota ea = -Uoo + fla -u~ O, 

Ill u 4 

= U o  - /3; ' Uo 

Ul u 4 % eb e ,  +b = (e ,  + c~b) ~ + (/3; e b - / ? ;  %) vv-.. 
Uo u o  

% eb e,-b = (%--%)-~-o+(/3; C~b+/3; %) U~ 
U o  ' 

where /3 = m/n cot 0, 

% = 2Ea U o  2 
(n(E.-Eo°) 

U1 (A+B) 

Uo 2 
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,6'. = m/n cot (0 + ~) 1 U4 _ (A - B) 

and ill, m/n cot ( 0 -  O) I ~ - U1 f l (A~B) 

Retaining the previous definitions for c~ and D, two further quantities are introduced, 

D' = (fl~ c~b-fl; % ) / ( % + % )  and S' = (fl~ %+ill, c~a)/(cta+%) 

So that the mean square equations can be written, 

- -  U 2 U 2 
z 2 = -i 4-2R' ui u44_t~,2uT~ 

aa ea I l 2 - -  t 'a  !" 12 - -  t-'a ! r2 ~ 
w O  *"'0 "wO 

_ _  2 2 

a~ eb 2 = ~ z - 2 f l ;  ~uz* + fl;2 -~z, 
0 0 0 

7.2  
2 -£2 D2 UT Ut U4 4 t2 u 2  

ct e._b = 4 ug +8DS' U2 + S U2, 

- -  / 2  2 ~2 2 4 t 8D'U~U4' u 2 
e.+ b = 77i+ r-TW-+4D '2 

,~o ~ o  U o  2 '  

The quantities a., ab, fl'a and fl; hnd hence a, D, D', and S' are now functions of both position in the 
flow and orientation of the probe, so that no simple expressions for the Reynolds stresses arise. Using the 
maximum accuracy method, six equations involving the six Reynolds stresses can be derived for simul- 
taneous solution. At each point and in each orientation ~, the mean inclination of the velocity vector 
must be calculated from readings of Ea and Eb. As mentioned in the introduction to Section 2, the 45 ° 
X-probe is not suitable for yaw measurements so that the accuracy of the resulting Reynolds stresses 
is likely to be low, the errors arising in estimating coefficients such as (fi'.-fi;) = m/n [cot (0+ O ) - c o t  

( 0 - 0 ) ]  • 
For the mean velocity components, 

U(~_~) = (A~ + A u + Aui + Air + Bi + Bu + Bui + Biv)/8 

where 

U(~o), = (A~- 83/23, 

~oo 2 = [ (Au-  B u ) - ( A ~ ' -  B")]/2x/~fl 
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and 

where 

(~-~) = [ (~-~3o)i + (U3"~ -I/2 
kVo) J 

( U~o) t = ( A i i i -  Biii)/2fl ' 

and, for the turbulence correlations, 

oc2. 2 4_~2+4x/~D, u ut uz u, u3 ,2 u2 ,, - ~ - - + ~ - . 2  +2Du +77~ + -;Z~ = ], ea+b" = Uo Uo Uo '.-'o t-'o / 

- -  i ,  t 2  

o~ 2 2 =' 4Dr ~o  + 8D fl; u l_~_ + 4S}2 u~ 
ea- b~ Uo U---~o ' 

- -  2 

2 e 2 = 4D~i Ux , Ul  u3 .  4.~,.2. u~ 
O~iii a-bili U~-~o -I-8DiiiSiii t-'oft2 --  ~ u ,  U--~o, 

2 
. r~p x/'/l U2__zo,2 ~ 0  2 (e2 ~ 2 e~,) = 2(ffa,'t-Pb,)--~o-t-tpa, _fl;2) 

2 - -  2 - -  Ut U3 +(R,2 t~,2 ~ u2 
(%,. d , . -  % .  e~.,) = 2([3'.,. + fl~.,.) -77r-.~o '~" " ' -  ~'b,,,, U--~' 

2 
2 ~ "  2 - '2 -  2 2 U~ 4 ' ' (Ctue._b,--ai~e._b,~) . . . . .  4(D. D,~)~o x/~(DuSu+D~Sio) 

uA s,2 {u  ,lui'  
- -  iv; T~r2"l--i"-r2r2 t-O-g-o )+ 2(slt t, Uo UoJ 

+4(S;2, + S;~) u-~u2 3 . 
Uo 

4. The Use of  a Linearizer. 
Consider the general response equation developed at the beginning of Section 1. 

(E 2 - E  2) = KU~ff  = KU"f(7) 

1¢ 



When the r.m.s, turbulence level, say Vul exceeds the 5 per cent limit used in the previous linearized 
U1 ' 

analysis, the separation of the above equation into its steady and instantaneous parts becomes extremely 
difficult. If however the instantaneous bridge voltage is electronically squared, a quantity C (correspond- 
ing approximately to E~) subtracted from it and the difference raised to the power 1/n, then the response 
equation for the 'linearizer' output has the form, 

EL = K'Ueyf = K'U[f(y)]l/n 

which is very much simpler to separate. 
This operation effectively linearizes only the response to longitudinal fluctuations, the yaw response 

remaining non-linear and, in general, ill-defined for all but small velocity fluctuations. The K'Ueff form 
of the response equation is to be preferred under these circumstances. Clearly the effective velocity will 
take the form, 

Uef f = in20(Ul+ul+klcotO(U4+u4))2+k~(Us+us) 

where k~ is equivalent to m/n used previously and represents the ratio of u4 to u 1 sensitivity 
and k 2 is the ratio of us to ul sensitivity; both k~ and k2 being functions of yaw angle in the general 
case. This expression is easier to handle than a velocity vector of length, 



E + e  = K'[U +ul[ 

This has very unfortunate consequences in flows where [u~l can exceed U~, that is, in low velocity, 
highly turbulent flows where reversal of the instantaneous velocity vector can occur. Such reversals 
are found in the bluff body wake and in the turbulent boundary layer approaching separation, where 
the velocity scale of the eddy motion exceeds the local mean velocity. 

Fig. 6a shows the normal response of the hot wire when ]ul[<< U~ and Figs. 6b a__nd 6c show the 
abnormal effect of recification. It is clear that simply measuring the quantities E and e 2 is not sufficient 
to separate the variables U~ and u~. The distorted signal e(t) is unfortunately meaningless so that its 
integration yields an equally meaningless quantity. A governing equation exists, however, to relate 
the four quantities, viz: 

e2+E 2 = K '2(U~+u~) (24) 

Hot wire measurements in a separated boundary layer are shown in Fig. 7. The flow reversal suggested 

by the total pressure-tube traverse is not present in the hot-wire results, but by adjusting U1 and u~, 
according to equation (24), it is possible to recreate the correct form for U~ and a pla~Jsible distribution of 

u 2. Such a one-dimensional view of the turbulence, although grossly inaccurate, s'affices to illustrate the 
point. 

In the highly turbulent flow an alternative measuring device is clearly need~J. Such a device has been 
designed and is presently being developed by Bradbury 2°. The probe consists e,i two parallel fine filaments 
which detect a heat pulse released from a central wire. The time taken for the pulse to reach either of 
the filaments, the 'time of flight', is recorded and via calibration can be used to estimate the instantaneous 
local velocity. By repeated sampling at a point in the flow, the time mean velocity and its r.m.s, fluctuating 
component can be deduced. The principle can be extended to the measurement of Reynolds stresses 
other than the longitudinal intensity. 

6. Yaw Calibration in Fully Developed Turbulent Pipe Flow. 

The axial momentum equation in fully developed turbulent flow along a straight smooth circular 
pipe, has the form 

dz • 1 dp 
p dx - o 

for which the solution is 

dU1 r dp 
z = v ~ -  ut u.. = 2 p d x l '  

the total shear stress varying linearly across a diameter from zero on the axis to a value D/4p dp/dx~ 

at the wall. In the region away from the pipe wall the viscous stress will be negligible, u l ur representing 

the local total shear stress. Using either the single inclined sensor or the X-probe it is possible to measure 
this stress and thence deduce the quantity m, m/n or fl for the probe, as demonstrated by Newman and 
Learyt i. Consider the X-probe situated at a radius r with its axis parallel to the axis of the pipe and the 
X-array lying in the x l -  r plane, then 

r dp U2,  2 ~  2-~, 
u l  ur = Ux l  - eo 
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or rewriting 

- - /  = ea-e~e~) r dp 
Pd dxl 

where p is the wall static pressure, 

Pa the centreline dynamic pressure when ~ is written in terms of the calibration voltage at the centre- 
line, and all other quantities are as defined in Section 2.2. 

The calibration procedure for an inclined sensor is as follows : 

(1) measure 0, preferably on a magnified image in order to obtain an accuracy of better than 0.1 °, 

(2) calibrate for n in a uniform variable velocity stream with the sensor placed normal to the mean 
velocity vector 

and (3) measure the shear stress distribution across a pipe in the fully developed region. 

Step (2) is carried out over a velocity range exceeding that encountered in the subsequent experiments, 
whereas (3) is conducted at a representative velocity, noting that 1~ is largely insensitive to changes in 
flow velocity. Fig. 8 shows details of the calibration of a DISA 55 A 38 miniature X-probe used in a 
boundary-layer experiment where the free stream velocity was 60 ft/second. The wires, which were of 
platinum plated tungsten, had an I/d ratio of 240, suggesting a value for m/n of approximately 0.9, from 
the work of Brunn 9. 

The pipe flow calibration facility and the rack and pinion turnover probe holder are shown schematic- 
ally in Fig. 9. 
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