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Summary. 
A lifting-surface theory of Multhopp-type has been revised to include an improved method of spanwise 

integration and programmed in Fortran IV. Generalised airforces have been calculated for three wings 
and the effects of varying the number of collocation points and the accuracy of spanwise integration are 
discussed. 
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Detachable Abstract Cards 

1. Introduction. 

In Ref. 1 a method for calculating generalised airforces on a thin wing oscillating harmonically at 
general frequencies in subsonic flow is described. This is a numerical technique which solves the integral 
equation by a method of collocation ~imihtr to that used originally by Multhopp ~. Garner ~ has observed 
that in this approach the method o[ spanwisc integration becomes inaccurate when the upwash points 
are close to the leading or trailing edge as happens when n, the number of chordwise points, is large, and 
has proposed an alternative technique which is significantly more accurate for large values of n. In this 
technique the number of integration points is increased from m, the number of spanwise upwash points, to 

= q ( m + l ) -  1 

without increasing the number of collocation points. The factor q is an arbitrary positive integer which 
can be increased in value until the desired accuracy of integration is achieved. 

In this report the method of Davies ~ has been revised to include this improvement, and reprogrammed 
in Fortran IV. Generalised forces have been calculated for a number of wings for various values of the 
parameters m, n and q. The results show improved convergence properties of the generalised force co- 
efficients with increasing m and n, compared with the basic method of Ref. 1. 

2. Theory. 

In linearised potential flow the integral equation relating the loading Po V2 2 (x, y) e i~°' and the upwash 
V c~ (x, y) e i°'z on a thin wing oscillating harmonically'in subsonic flow is 

'fX (x, y) = ~ 2 (Xo, Yo) K ( x -  Xo, y -  Yo) dxo dyo , 
S 

(1) 

where S is the wing area and K ( x -  x0, y -  Yo) is the subsonic kernel function. 
The upwash e (x, y) is related to the wing displacementf(x, y) by the equation 

(x, y) = l ~ f ( x ,  y) + i v f (x ,  y). 

If we make the change of variable 

(2) 

= ~ [~- xL(y)] (3) 

equation (1) may be written 

1 , f  
- 1  

1 

c(Y°) f ~ - -  dr/o 2, (~o, r/o)/( (Z, #) d'~o 
0 

Y 
S 

(4) 



where 

(4,/1) = ~ (x, y)  e i~/z 

,~ (4, r/) = 2 (x, y) e ~x/z 

/~ (Z, #) = 12 K ( x -  Xo; y- Yo) eiVt:'-x°)l' 

X - - X  0 

Z- 1 

Y--Yo 
I ~ =  1 

and by equations (6) and (7) of Ref. 1 

(5) 

a n d  

i e-iV~dz M(Mz+ R) (-iv(-z+MR) ) ~.(Z, #)= (.r2--~-~a/z F -R--~-~ exp l _ M 2  (6) 

~ )  

R = x /Z2+(1 - -M2)#  2 . (7) 

We assume that the loading distribution ~i (4o, t/o) is the product of a regular function and the weighting 

factor x / ~ o  ~ so that it has the correct singular behaviour at the wing edges. Furthermore we 

assume that the regular function can be approximated, with good accuracy, by a double polynomial in 4o 
and ~/o of degree n -  1 in 4o and degree m -  1 in qo- This approximation to J[(~o, r/o) may be written in 
the form 

7,(4o, rlo)=~h!")(4o)O~m)(qo)~(4,,rlj) 
i=x  j = l  

(8) 

/1-4o 4o . Thus 

j J h! ") (4o) = II'  ( 4o -  ~r) 4! o 1 - 4o (9) 

where the dash'  indicates that the factor i = r is to be omitted in the product. The points 41 ~) are given by 

7/ ~ zr i = 1, 2 . . . . .  n .  (10)  

where hl y) (40) is an interpolation function which is unity at the point 4! 0 and zero at the other ( n - 1 )  
loading points, and which is the product of a polynomial of degree ( n -  1) in 4o and the weighting function 



Similarly g)m) (r/O) is an interpolation function which is unity at the point nj and zero at the other ( m -  1) 
loading points, and which is the product of a polynomial of degree (m-  1) in r/o and the weighting function 

x/1 -~/~. Thus 

?n 

g(.") (r/o) = n '  ( r /o - , , )  , f l  -r /o  ~ 
J r=l (r/j- r/r) x/1-1,/2 (11) 

where the dash indicates that the factor i = r is to be omitted in the product. The points r/j are given by 

r/j = cos j = 1 , 2 , . . . , m .  (12) 

It must be borne in mind that the ~ (4o, r/o) given by equation (8) is only an approximation to the true 
loading 2(~o, r/o) although no attempt is made to distinguish between the two quantities. 

If we substitute the series in equation (8) into equation (4), we get 

~(~, r/) = ~(~, @ 

i = 1  ' j = l  - 1  

g~") (r/o) i!. ) (r/, r/o , 4) dr/o 
(r/-r/o) 2 

(13) 

where 

1 

s 2 f h!") I! m (r/, r/o, 3) = 4 - ~  c(yo) (r/-- r/o) (40) -~(Z, It) d 4 o .  

0 

(14) 

Equation (13) is the basic equation relating the upwash and approximate loading. This equation cannot 
be satisfied exactly all over the wing. However it can be satisfied at a number mn of upwash points and 
a set of mn simultaneous equations obtained for the values of the loading function )~(~i, r/j) at the loading 
points, in temrs of the upwash at the upwash points. The 2(41, r/j) can be determined accurately, only if 
the coefficients of the set of simultaneous equations are evaluated accuratel'y, and this depends on the 
accuracy of evaluation of the chordwise and spanwise integrals involved. 

The loading points are given by 

x!9~j = c(yj)  4 } l )+XL(y j )  i = 1,2, . . . ,  n (15) 
j = l , 2  . . . . .  m 

y j  = s r/j 

and the upwash .points are given 15y 

x~7 ) = c(Yr) 4 f f  ) + XL (Yr) k = 1, 2 . . . .  , n 
r =  1 , 2 , . . . , m  

(16) 

y~ = s r/~ 

where 

4 



The chordwise integral in equation (14) is evaluated numerically. Special care is required when (q - no) 
is small and 4o is close to the upwash point C, since the integrand changes rapidly in this region. It can 
be shown that if Z > 0, i.e. Co is head of the upwash point C, then 

limit (n-no)  2/((Z, #) = 2 (17) 
(n - no) - 0 

and if Z < 0 (Co aft of upwash point C) then 

limit ( n -  no) z/((Z,/t) = 0.  
( n -  no) ~ 0 

(18) 

There is thus a discontinuity in the integrand at (q-no)  = 0 and an extremely rapid variation when 
( n -  no) is small. In performing the numerical integration under these circumstances the chord has been 
divided into two regions one ahead of and the other aft of the upwash point. Each region is divided into 
intervals, the length of which varies directly with its distance from the upwash point, and over each 
interval a low order Gaussian quadrature is taken. The size of the intervals will depend on the value of 
(n -no),  but they can be chosen to give any desired degree of accuracy. 

The spanwise integral in equation (13) can be evaluated approximately by using the interpolation 
formula 

o~ m' (no) I~")(n, no, ¢) = 
p = I  

o~ ") (0p) I} ") (n, F/p, C) 0~v m) (to) (19) 

and integrating each term obtained by putting this series into equation (13). In equation (19) g~m) (no) is an 
interpolation function of degree ( ~ -  1) of the same kind as gy") (no), 

( F / p = c o s \ ~ i -  p =  1,2 . . . . .  

= q(m+ 1)-- 1 
(20) 

and q is an integer. When q = 1, ~ = m and the formula in equation (19) reduces to the basic Multhopp 
formula. For q greater than 1, ~ > m and so there are more terms in the approximation given by equation 
(19), the approximation will therefore be better and the accuracy of the integration obtained, when this 
series is substituted in equation (13), can be expected to improve. The higher the value ofq  the greater is 
the expected accuracy. This is the essence of the improvement as proposed by Garner 3. 

The accuracy of the representation of equation (13) can be improved if the lowest order logarithmic 
term is removed from II ") (n, no, C) and treated separately and the remainder is dealt with using the inter- 
polation formula. 

We write 

1 2 
gJ~' (,o) II " (~. ,o.  ¢) = a~ ~) (,) . / 1  - . ~  v .  ~ - ,  (~, c)(~-~o)  ~ log I~-~ol  + 

+ [ g(7 ) (no)I!" (n, no, ¢)-gY"' (n) x / l -  n2: Fi ] (n, ¢ ) ( n -  no)2 log In -no  [ (21) 



and the expression in [ ] is approximated by an ~-point interpolation formula, so that 

~/1 __~]2 
9~ '") (t/o) I! ") (t/, qo, 4) = 9~ ") (r/) F~ if/, ~) n---~°4 ( t / -  ~/o) 2 log I t / -  t/o ]+ 

p = l  

,,.) .,a---37 ]g(,~(t/o) - g~ ( ~ / ) ~  F, (t/, ~) ( q -  F/p) 2 log It/- q~ I (22) 

where F~ (q, ~) is the coefficient of the lowest-order logarithmic term and is "defined in equation (60) of 
Ref. 1. 

If we insert equation (22) into equation (13) we get 

~(~, t/) = ~ (~,, t/j) P,j (~, ~l) 
i=I j=l 

(23) 

where 

1 

(,.) Fi  (r/, ~) [- f log l t / -  11o I ~ dr/o e,j (¢.) = gj (,7) ~ [_ 
- 1  

p=l -i 

f + g~m) (qp) 1!") (~, qp, 0 dt/o 
(r/-  t/o) 2 

p=l --i 

(24) 

Equation (23) is a set oi" mn simultaneous equations which can be solved for the unknown loading 
(~i, t/i) and hence the loading distribution. To obtain the generalised airforce for a given mode of oscilla- 

tion this loading distribution is integrated as shown in Ref. 1. The generalised aerodynamic force at time 
t in the mode 

Ze (x, y, t) = Ifp (x, y) bpo e i~t (25) 

is given by 

k 

Q, (t) = p v z st 2 ~ Qpq bqo e i'°' 

q=l  

(26) 



where 

Qva = ~l fp (Xo, yo) 2q (Xo, yo) dxo dyo. 
S 

(27) 

In flutter theory it is convenient to write 

Qpq = Q;q + i v Q~q (28) 

where Qpq and Q~q are real numbers. 
In equation (26)fp (x, y) p = 1, 2 . . . .  , k defines the shapes of the k independent modes of displacement 

and p V 2 2q (x, y) e i°'t is the loading distribution on the wing corresponding to the harmonic oscillation 

Zq (x, y, t) = Ifq (x, y) e i'°' . (29) 

The integrand in equation (27) is approximated similarly to 2 (Xo, Yo) in equation (8) and a matrix 
equation is obtained for the k 2 generalised airforce coefficients Qpq. This is derived in Ref. 1 as 

[Q] = [ f ]  [B] I A + + +-A +- ] - I 2 [D3 (30) 

where [Q] is a square matrix, of order k x k, with the element 

Qpq 

in the pth row and qth column. 
In equation (30) the positive sign is used if the spanwise loading (or displacement mode) is symmetrical 

about t / =  0 and the negative sign is used when the loading is anti-symmetrical. Moreover this equation 
only applies if I f ]  and [a] are both symmetrical or both anti-symmetrical, and m the number of spanwise 
collocation points is even. 

The calculation of the matrix of geaeralised airforce coefficients [Q] from equation (30) has been 
programmed in Fortran IV for the ICL 1907 computer. In its present form values of m ~< 32, n ~< 10, 
½ mn <~ 32 and ~ ~< 160 can be used, without exceeding a store capacity of 32K. A typical running time 
on the ICL 1907 computer is 35 minutes wfien m = 16, n = 4 and q = 9. 

3. Discussion. 
To assess the effect of increasing tile number of spanwise integration points, generalised forces have 

been calculated for three wings oscillating in heave and pitching about an axis through the wing apex. 
The wings considered are shown in Fig. 1. They are a circular wing (aspect ratio 4/re), a rectangular wing 
of aspect ratio 2 and a tapered swept back wing of aspect ratio 2 (called wing E). These wings have already 
been the subject of an investigation in Ref. 4. The frequency parameter is based on the quoted reference 
length of each wing. 

For each wing at any specified values of m and n the parameter q was increased until the coefficients 
in the generalised force matrices converged to three significant figures. Better agreement than this can 
be achieved by further increase in q but this requires much greater computing time. The converged results 
obtained for the three wings for a selection of values of m and n, are presented in Tables 1-4, where the 
coefficients for q = 1 are also shown in parentheses. As pointed out in Section 2, when q = 1 the method 
is identical with that of Davies 1. (In tables 1-4 the sub-scripts of the generalised force Qpq are defined as, 
p = 1, 2 means lift, pitching moment;  q = 1, 2 means plunging, pitching motion.) 

In Fig. 2 the effect of increasing q is shown for wing E with n = 4 and m = 16. For convenience of 



presentation the values shown have been normalised by dividing by the value of the coefficient at q = 7. 
For this wing the central kink has been rounded for It/I ~< 0.19509 using the equation proposed by 
Garner  in Ref. 3. It may be seen that adequate convergence has been achieved for q = 7. Similar results, 
were obtained for the rectangular and circular wings, but the rate of convergence was greater. In general 
it may be stated that the rate of convergence with q, increased as m increased, and decreased as n increased. 
For values of m = 4 and n = 6 rapid variations occurred in the coefficients at low values of q and quite 
high values of q were necessary to achieve the required degree of convergence. 

In Figs. 3 and 4 the values of the coefficients, converged with respect to q, are plotted for different 
values of m, the number of spanwise collocation points. These results apply to wing E with n -- 4. It may 
be seen that at m = 20 the coefficients have still not converged with respect to m; however as m increases, 
the differences between the coefficients for q = 1 and the coefficients which have converged with respect 
to q decrease. This is consistent with the results for m = 32, n = 2, see Tables 2 and 3 where the differences 
in the respective coefficients are very small indeed. These trends are also true for the rectangular and 
circular wings, although for the former at m = 8 the coefficients seemed to have achieved adequate 
convergence with respect to m. 

The effect of varying n, the number  of chordwise points, is shown in Fig. 5, where again the results are 
appropriate to wing E. From the figure, it may be seen that for the vibration modes considered little 
difference exists between the coefficients calculated for n = 4 and n = 6. This conclusion is also true for 
the rectangular and circular wings. 

4. Conclusions. 
The differences between the generalised force coefficients for q = 1 and the values, converged with 

respect to q, decrease as m increases. In some instances the value of N = 118 (the number  of spanwise 
integration stations) has been necessary to achieve coefficients agreeing to three significant figures. 

One of the features of the method is that the accuracy is improved without increasing the number  of 
collocation stations, so that large matrices may be avoided; however for wings with kinks it appears 
desirable to use as many spanwise collocation stations as possible to achieve sufficient convergence with 
respect to m. 

For the rigid body modes considered 4 chordwise points seem to be sufficient to achieve convergence 
with respect to n. In general values ofn >~ 4 and m >~ 8 are desirable. 
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2 
4 
6 

TABLE 1 

GeneralisedForceCoefficients, Rectangular Wing, M = 0.8, v =  1.0. 

4 

-0.907674 (-0.909338) 
-0"911858 (-0-846775) 
-0"911655 (-0"793711) 

-0.907485 (-0"909589) 
-0"910964 (-0"904891) 
-0-911696 (-0-871175) 

all 

2 
4 
6 

3.107482 (3.101992) 
3-263704 (3.205223) 
3.263986 (3.159129) 

3.107375 (3.115865) 
3.262977 (3-257133) 
3.263840 (3-227808) 

2 
4 
6 

2 
4 
6 

4 8 

3"030681 (3"037286) 3 -030651  (3.045620) 
3-320289 (3.285888) 3"319703  (3"322331) 
3"321592 (3"236433) 3 -321988  (3.294025) 

Q'2, 

4 8 

-0.827062 (-0"806057) 
-0-968607 (-0.904942) 
-0"968408 (-0"863401) 

-0"826967 (-0-825951) 
-0-967904 (-0-957794) 
-0"967889 (-0"929210) 

2 
4 
6 

3-242613 (3-236881) 
3.328148 (3-181039) 
3"326222 (3"089413) 

Q'/2 

3.242235 (3-250193) 
3.326152 (3.303562) 
3.324775 (9238557) 

4 

2 0 .776051  (0.761983) 0 .776031  (0.777995) 
4 0.849240 (0.830738) 0"849088  (0-839298) 
6 0 .848143  (0.839101) 0 .846711  (0.838832) 

4 8 

2 
4 
6 

4 

0.434314 
0"498781 
0.498487 

(0.430592) 
(0.513825) 
(0.533450) 

0-434348 (0.439316) 
0-498964 (0"497586) 
0"497570 (0"507025) 

2 
4 
6 

1"879400 (1"840344) 
2"196302 (2"073197) 
2"195252 (2"000122) 

1"879243 (1"879765) 
2-194847 (2.172617) 
2"193455 (2"118965) 



TABLE 2 

Generalised Force Coefficient Q'pq, Wing E, M = 0"781, v = 1"0. 

2 
4 
6 

-0"827506 (-0"934366) 
-0"950711 (-0.916643) 
-0-949330 (-0-865850) 

-0-811734 ('0-706996) 
-0"859544 (-0"832675) 
-0-855514 (-0"809402) 

16 

-0"749726 (-0"702871) 
-0"765942 (-0"806057) 

20 

-0"746586 (-0"771905) 

32 

-0"728112 (-0"724363) 

m i 

2 
4 
6 

b,.d, 

4 

1"972108 (1"876491) 
1.926759 (2"091089) 
1"925111 (2"086863) 

1"818014 (1"880741) 
2-008788 (2-114697) 
2"011948 (2"128904) 

16 

1-809549 (1-817447) 
2"092249 (2"116399) 

20 

2"103017 (2"117231) 

32 

1"807117 (1-806195) 

2 
4 
6 

-1-111408 (-1-331276) 
- 1.335816 ( -  1"385361) 
- 1"336038 (-1"318736) 

- 1-032332 (-0-968355) 
- 1"197778 ( -  1.233347) 
- 1"195005 ( -  1"205901) 

16 

-0"979353 (-0"939129) 
- 1 ' 1 2 5 6 9 3  (-1"208346) 

20 

- 1-109624 ( -  1-163757) 

32 

-0"963566 (-0"961716) 

Q22 

2 
4 
6 

1.744480 (1-413432) 
1"450787 (1"555235) 
1-449719 (1.594404) 

1-647012 (1-723001) 
1.662274 (1.717684) 

1-668103 (1-734161) 

16 

1"628670 (1"652272) 
1"784162 (1"732222) 

20 

1"806660 (1"773646) 

32 

1"619948 (1"617650) 



Generalised Force Coefficients Qvq, Wing E, M = 0-781, v = 1.0. 

2 
4 
6 

2-716533 
2.803900 
2-803568 

(2.684381) 
(2-739156) 
(2.700773) 

2.559904 
2.694333 
2-692734 

(2.472499) 
(2.679141) 
(2.669947) 

2.472881 
2.630925 

16 

(2.45442) 
(2-667747) 2-616108 

20 

(2.643563) 
2.444178 

32 

(2.439311) 

Q' 2 

2 
4 
6 

2 
4 
6 

5.226087 
5.619109 
5-619243 

2-920050 
2.971529 
2.974221 

(5.195853) 
(5-247196) 
(5.120835) 

4 

(2.788900) 
(2-847397) 
(2.826999) 

4.886855 
5.233187 
5-228686 

(4.615787) 
(5.087345) 
(5.029553) 

4-667439 
4.971280 

16 

(4.541635) 
(5.037454) 4.915570 

20 

(4-968307) 
4"595619 

2.729385 
2.883881 
2.887071 

(2.697467) 
(2-865443) 
(2.850640) 

2-652202 
2-859773 

16 

(2.626375) 
(2.867085) 2.853869 

20 

(2.866644) 
2.627589 

32 

(4.583603) 

32 

(2.624076) 

QL 

2 
4 
6 

6.298656 
6.822974 
6.827414 

(6.327156) 
(6.608707) 
(6-453029) 

5.856056 
6-479161 
6.484123 

(5.720367) 
(6.475459) 
(6.391376) 

5.662199 
6.313135 

16 

(5-572229) 
(6.423697) 6-273403 

20 

(6.356554) 
5.602625 

32 

(5.594226) 



4~ 

T A B L E  4 
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