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Summary.—A new method for the numerical solution of the boundary-layer equations is described. This rests in
essence on the fact that the equations of steady flow are special cases of the equations of general motion. The velocity
profiles are found at successive sections across the boundary Jayer. Trial values of the velocity are assumed at any
section ; from these, space derivatives of the velocity are deduced by using finite differences, and time derivatives by
using the equations of motion. The trial values are then adjusted to give zero time derivatives of the velocity at the
section. The method in some respects resembles Southwell’s relaxation method.

The method has been applied to two problems already discussed numerically by Hartree, Tt is not suitable for use
with a differential analyser, though the development of new calculating machines may bring it within the range of
machine integration ; but rather less labour was required to achieve manually with it results rather more accurate
than obtained by Hartree with the differential analyser. The results did not, however, differ greatly from Hartree’s.

1. Introduction.—The work described below was inspired by two reports by Prof. D. R.
Hartree!, ® giving an account of his method of numerical solution of the laminar boundary-layer
equations. In terms of suitable non-dimensional variables, these equations may be written

dut du oU 2%

wt ' = U T o e e
e1 0V
ey =0 I ¢4

Here ) :
distance along the wall of the boundary layer, divided by standard length L,

g-component of velocity, divided by a standard velocity U,,
distance from the wall, divided by (»L/U,)*?, where » is the kinematic viscosity,
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v y-component of velocity, divided by (»U,/L)

' U value of # just outside the boundary layer.

Hartree’s method was, in brief, as follows. He expressed # and v in terms of a stream function,
y, where
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Substituting these values in (1), he obtained a differential equation involving only first-order
x-derivatives. These were replaced by finite differences before integrating; the differential
equation was then integrated exactly with respect to v for a series of values of «.

This method was not simple. A non-linear equation of third order in ¥ had to be solved, and
the solution near y = 0 had to be adjusted by trial to secure that a boundary condition was
satisfied at y = oo. Actually, an approximation to the solution for any given x could have been
inferred from the solutions for earlier values of x, but the method was unable to use this information.
.Moreover, it did not seem accurate. Replacement of the x-derivatives by finite differences meant
a very crude approximation ; this was improved by obtaining a second solution in which the
x-interval is halved, and using Richardson’s A*extrapolation formula. Roughly, the original
approximation is accurate only if # is linear in x; Richardson’s formula corrects for terms
quadratic in %, and partially for terms of higher degree. 1In the author’s own work, described
later, sixth-order x-differences of # were occasionally needed. While this was partly because a
slowly converging backward-difference formula was used, it was not clear that Richardson’s
formula was adequate. For these reasons, an alternative method was sought. ‘

The first attempt was by integrating with respect to x instead of y. Equations (1) and (2)
can be written. ,
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Suppose that, for a given x, we know » at y =5, 2b, 35, . . . By constructing successive

y-differences, we can find ou/oy and 2%/3y*; then (1) gives 9(v/u)/dy. Integrating, and using
the condition that v/ = 0 when v = 0, we find v/ and so v; then 3v/dy is given by '

oV o /v v 0u
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Hence we can find 8#/9x from (2"); this enables values of % to be determined for a new value of «.

This method is simple, but in practice it proved disappointing. In (1), 3(v/u)/dy is given as
the ratio of two quantities, both of which vanish at y = 0; as a consequence, it cannot be
determined very accurately near y = 0. This affects the values of v/ for all y, and the effect is
not small, since 2(v/u)dy is fairly large near y = 0. The method was therefore rejected.*

2. Thé New M ezﬁhod.—After other methods had been tried without success, a method was found
which combined accuracy with some measure of practicability. This rested on the fact that
(1) is the steady-motion form of the general equation of motion

ou o1 oU 0%

ou '
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where ¢ denotes a non-dimensional variable proportional to the time. Equation (8) indicates
not only the state of steady motion, but the way in which # varies when this state is being attained.

* After the completion of the work described in the present report, it was found that Prandtl (Zs. f. angew. Math. u.
Mech., Vol. 18, p.81, 1938) had suggested a method of numerical integration with respect to #. He pointed out the
difficulties of the direct method outlined above, and suggested a more refined method whereby these might possibly be
obviated. It seems doubtful, however, whether even this more refined method is satisfactory.
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Suppose that values of # have already being found for x = %, %, + @, %, + 24, ... .. ,
%o + na, with y = b, 25, 35, . . . ... By extrapolation or some other method, let approximate
values of # be found for x = x, 4+ (# + 1)a, with the same values of y. These are regarded as
‘the values of # in an unsteady motion which is tending to the steady motion as a limit. From
x-differences may be found the values of 9u/ox for x = x, + (# -+ 1) @, and from y-differences
those of 9u/dy and 2*4/0y*; also, by (2) -

Y ou
' oady'

Thus we find from (3) the values of 2u/9f for x = %, 4~ (» +- 1) 2 corresponding to the non-
steady motion. The values of 8#/0¢ indicate the corrections to the approxunmte values required
to get the steady-state values of u for ¥ = x, + (# + 1) a. The approximate values are modified
accordingly, and the work is repeated with the new values of »#. After a few trials, a set of values
of # is found which makes 94/0¢ negligible for all y. These are taken as the steady-state values
for ¥ = «, -+ (n + 1) @, and the work is then repeated for x = x, + (» + 2) a, etc.

The method is in some respects similar to Southwell’s relaxation method, du/3¢ corresponding
to the relaxation force. It differs from this method in discussing the successive values of x
.separately. This is possible because in boundary-layer flow the velocity profile-at any x is wholly
determinate if the profiles for all smaller values of x are known. The present method also corrects
all the values of # corresponding to a given value of x simultaneously ; Southwell’s method
corrects them severally.

3. Howarth’s Problem.—The method has been applied to both of the problems considered by
Hartree. The first of these is Howarth’s problem of retarded flow along a flat plate® in which
U—1- 3 L , 4

= —_— 8 x 3 .. X e o« . ' LR ( )

where x is measured from the leading edge. The units U, and L, in terms of which U and »
are measured are, in Howarth’s notation, 4, and 4,/85,; thus our x is identical with Howarth’s
8x, or with Hartree’s .

In practice, the method used was slightly different from that described in section (2), because
in place of v and v, variables  and V' were introduced, where

p=23tyx7?, V=2ux"". .. . T )

The variable 5 is that used by Howarth and Hartree. In terms of these, (2) and (3) become

- U oV ou oU U

4965‘[ %W+V8 —4XU “{"an, (6)
oV
%— 4X —]—277 877 .. .. .. .. (7)

The method was applied to these modified equations, using derivatives with respect to 5 in place
of those with respect to y. For any x, values of 2u were tabulated at  =0-2, 0-4, 0-6, . . .;
difference methods gave du/ox, ou/oy and 2*u/on®; then 21 /on was given by (7) and V found by
integration; finally (6) gave ou/o¢.

_ Values of 2u were tabulated to 5 decimal places. This enabled 40m /99 to be found to 4 decimals,
and 89%/37® to 3; also 28V /ay was found to 3 decimals, 2V to 4, and 32x0u/ot to 8. The error
introduced by approx1mat10ns made during calculation is certamly not greater than 0-001 for
32x0u/ot when % is small, though it may be rather greater when #'is large.
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~Changes in %, made while approximating to the steady motion for a given x, affect 8u/d¢ mainly
through the resultant changes in d#/0x and o*4/97%, to a less extent through changes in du/dy,
and very little as a result of the direct appearance of » in (6). The changes in 9#/dx affect
ou/0¢ through the terms involving ¥ and 2V/éy in (6). The changes in V are relatively
unimportant when only a single value of % is altered, but are important when changes of the
same sign have to be made in a number of successive values of #. To estimate roughly the
corrections to be applied to a trial set of values of 2u, it is often sufficient to take into account
only the effects in (6) of the changes in 9V/d5 due to changes in 8u/dx, and of the changes in
a*u/0n®. When 2u/0t is consistently of one sign in a given range, however, changes in 7 become

important in (6), and greater corrections have to be applied than would be necessary if such
changes were ignored.

When 7 is small, changes in 8%/34* are alone important ; in this neighbourhood, to annihilate
small values of 9u/9¢ which are consistently of one sign, quite large changes in # may be necessary.
Such changes may not even be limited to the region near 4 = 0, for changes in 9%/dx near n = 0
affect the values of V' for all . In consequence, particular care must be taken to ensure that
near n = 0 no non-zero values of 9%/0f are left uncorrected. This was not sufficiently realised
at the start of the integration, when the author was content to reduce 94/t until 32x du/dt was
nowhere greater than 0-003. This is good enough for large values of %, where a change of a

unit in the fifth decimal place in 2% may produce a change 0-006 in 32x 8u/0¢; but much greater
care is needed near y = 0.

Fifth-order #-differences were tabulated for use in calculating 2u/oy ; from these the sixth-
order differences could be determined in the few cases when they affected 9%s/9n% They-derivatives
were calculated from the central-difference formulae,* K R ’

W) = 4 [A7(@) + 4f(6 — B)] — g [4%(a — ) + 4%la — 2)

+ le [4%(a — 2h) + A%fla — 3B)] — .. .. ... ,

R (a) = A°fla — h) — 112 A%(a — 2h) +- g(—) AY(a—3h) — ... ...

where % is the spacing (Ref. 4, p. 64). To apply these at = 0-2 and 0-4, some extrapolation
of third and higher order differences was necessary; from the run of the differences, the error
so introduced was clearly negligible, and errors would not have been negligible had other {ormulae
been used. On the other hand, in calculating 9#/2x the only differences available were those

obtained using earlier values of x, and so 2#/dx had to be found from the slowly converging
backward-difference formula

hf'(a) = Af(a — &) + 4% (a — 2h) - é Afla—38h)+ ...,
(Ref. 4, p. 62, equation (2), using differences sloping up in the differences table instead of those

sloping down). Inaccuracies introduced by the use of this formula greatly reduced the advantage

in accuracy possessed by the present method over that of Hartree. In integrating 2V /oy, a
central-difference formula was again used, 7.¢., : 4

]%J :+” Jw) dx = § [ fla) + fla + B)] — 2i4 [Aéf((z —h) + Azﬂa)]

1
+ T}ﬂlﬁ[m (@ — 2h) - A*f(a — B)] — . . ..

* The apparent lack of symmetry of these formulae relative to the value a of the argument is due to the use of
forward-differences A. It could have been avoided by introducing the central-difference operator 6 ; but the symbol ¢
is required for another purpose in section (4). ‘
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The repeated use of differences makes the method unsuitable for use with a moment integrator;
however, the labour was not excessive with a small calculating machine.

4. Master and Associated Integrations.—The method involves a number of trial integrations
for each x. In practice, the labour of these was reduced as follows. A first integration was
macde in the usual way to get a set of values of 84/0¢, which were used for a rough correction of
the values of #. The corrected values of %, which gave a more regular set of fifth-order
n-differences, were used as starting-point for a second integration of the same kind; in this,
every step liable to be affected by computing error was most carefully checked. Later integra-
tions used the deviations of the independent variables from their values in this master
integration. ILet #, VV denote the values in the master integration, # + du, V' 4 617 those in a
slightly varied integration. Then 64, 67 can be taken to satisfy the equations

>86u o8V oV odu ou  0%wu

4%*—% — U oy (3%—~an + V__877 € 6V_877 — —8172 , . .. .. (8)
4 o0du 061
— 0
877' ,— 4x ox + ~1] 87] . . BEE .o . (9)

These are used to determine values of éu such that a(u + 6u) /8¢ = 0. '

Slide-rule accuracy was enough in determining the products on the left of (8). The equation
used to determine 26%/0x was of the form

hof'(a) = SAf(a — h) + } 84%(a — 2h) +- é 5A(a — 8k + . . . .

In this, f(a), fla — %), fla — 2h), ... denote the values of #, for a given 7, corresponding to
%=a,a—ha—2h ... of theseonly f{a)is affected by the variation 8, and so §47f(a — vh) =
of(a). Hence :

héf'(a) = df(a) (1 -+ é + % 4+ ) .

The series on the right strictly does not converge ; but in practice it was cut off in accordance
with the number of x-differences found significant. Thus its value was usually taken to be
between 2-1 and 2-45 (corresponding to 4 and 6 differences respectively)

- 5. The Separation Point.—The solution was started by calculating 2« from Howarth’s tables
atx =0, 0-1,0-2, and 0-3. Then integration proceeded by steps of 0-1 of x up to x = 0-8,
Here sixth-order x-differences were needed to find 2u/dx. Accordingly »-differences for half the
interval length were found by the usual subtabulation formulae (Ref. 4, p. 54), and these were
used as a basis for integrations at x = 0-85 and 0-9. The integration was not carried beyond
this point, as there is a singularity at separation near x = 0-96, making numerical integration
difficult in its vicinity ; it is, in any case, possible to locate the separation point fairly accurately
by extrapolation.

Goldstein® suggests, in work quoted by Hartree, that near the separation point (x = X),

o

[%]FD =fx) = AX — %)'? + B(X — 2)** - C(X — %) + D(X —2)5* + ., (10)

Hence f{x) can be represented fairly closely by a polynomial in (X — %)'/2, even near separation.
This fact supplies two methods of determining X.

(i) Regard x as a regular function of f{x), and use Newton’s interpolation formula for unequal
intervals to extrapolate the value of # for which f(x) = 0.
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- (ii) Choose a succession of approximate values of X and, regarding f(x) as a regular function

of (X — #x)'/* for each X, use the same formula to determine f(X); the correct X is that for which
fX) =o.

The separation point has been determined by both these methods; the first gave X = 0-958,
the second X = 0-956. These estimates are hoth a little uncertain because the divided differences
of third order were rather irregular, perhaps because of the change in interval-length at x = 0-8.
The probable errors of the two estimates due to the irregularity are of order 0-005 and 0-001.

_ These estimates are very near to those of Howarth (X = 0-968) and Hartree (X = 0-9589).
Too much weight cannot be attached to the agreement, because our extrapolation has been over
a very wide interval of (X — %)%, Nevertheless, the agreement indicates that the separation
point can be determined reasonably well without integrating right up to the awkward singularity.
It also suggests that a reasonable approximation to the velocity profile at separation may be
got by extrapolation from the known values of x<0-9, using divided differences for each # with
2u expressed as a function of (X — x)'/%.  Values so obtained, taking X == 0-958, are shown in
Table 1; they agree very closely with Hartree’s (which are given only for small values of ). Also
given in the table are values for ¥ = 0-8 and 0-9, with values interpolated from Hartree’s tables.
The values obtained by the new method differ from Hartree’s by amounts within the error of
the two methods. The writer believes that, had he worked more accurately near s = 0 for
x = 0-5 and 0-8, the differences would have been slightly greater.

Remembering the form of (10), it might be thought that it would have been better to have

extrapolated, taking f(x) and 2« as regular functions of (X — x)*/* not of (X — x)*/% Thisis - -

not so, because 2u is known only for values of (X — #x)*/* between 0-476 and 0864, and extrapola-

tion to X — x = 0 is therefore very risky. The success of the present extrapolation suggests
that the fourth-root terms are not too important in (10). ‘

6. Schubauer's Pressuye Distribution.—The second problem to which the method was applied
was that of boundary-layer flow for Schubauer’s observed pressure distribution on an elliptic

cylinder®. Hartree’s smoothed figures for the pressure distribution (Ref. 2, Table 2) were used
in most of the work. ‘

The units L, U, in terms of which x and # are measured are, in this case, the length of the
minor axis of the cylinder and the undisturbed stream velocity; also x is measured from the
stagnation point. This makes our x and # identical with those of Schubauer and Hartree;
our y is identical with Hartree’s, but is y4/(LU,/») in Schubauer’s notation. Since the boundary
layer expands not less rapidly than x'/* when X >0-2, it is convenient, as in section 8, to employ

instead of y and » the variables 5, V' defined by (5); thus the equations integrated were again
(6) and (7). ' | ' ’

Values of 22 were tabulated to three decimal places at 4 = 0-1, 0-2,0:3, ... . This meant
that 20%«/0n® could be found to only one decimal place. Since the total magnitude of this quantity
was found never to exceed 3-0, a less order of accuracy in tabulating 2u, as used by Hartree a
the start of his solution (Ref. 2, Table 7), could clearly give no useful results. .

- The work. was much cruder, and therefore much easier, than that on Howarth’s problem,
where two more decimals were used. No differences beyond the third order were needed;
numerical errors were easily identified, and elaborate cross-checks were unnecessary; only two
or three trial integrations were needed for any value of x, and the use of master and associated
integrations (section 4) was superfluous. Moreover, numerical accuracy at least equal to that of
Hartree's solution was obtained, using no mechanical aids other than an ordinary slide-rule.

In consequence, values of 2 for a given x could be found in an easy day’s work; a week was
needed when working on Howarth’s problem.

The solution was begun with Hartree’s initial data for x = -2, calculated by him from a
series expansion. His Table 72 gave 2« to only two decimals; three decimals were obtained by -
integrating his 9u/0y values. Values of 8u/ox at x = 0-2 could in theory also be determined
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from Hartreé’s series; but as the details of Hartree’s numerical work were not immediately
available, in practice the method followed was to estimate du/ox from his values of 21 at x = 0-2,
0-8, and 0-4, the estimated values being then checked by a trial integration of the differential
equations. The values of 8u/dx so obtained were then used in determining 9u/dx for tiial solutions
at & = 0-25, the new values of 8u/dx being connected with assumed values of » at x = 0-25 by
the approximate formula - : ‘

0-05[(29),, + (39, .| = 200 — 2o

For greater values of x, d%/dx was found by the difference methods of section 3.

" The integration proceeded by steps of 0:05 in x from # = 0-2 to x == 0-4, and by steps of
0-1 from x == 0+4 to x = 1-6. ~Thenceforth, since Schubauer’s experiments indicated separation
near ¥ = 2, it was expected (cf. section 5) that » would be a nearly regular function of (2 — x)/%,
and so 2« was found at steps of 0-1 of £, where :

_ E=/[162—x];
in this part of the solution du/3x was found by first determining ou/2é by difference methods.

As in Hartree’s work, separation was not attained by x == 2 for the original pressure distribution,
and a modified pressure distribution was then substituted beyond x — 1-8. Hartree found his
modified pressure distribution by estimating crudely what pressure at ¥ = 2 was required to
give separation at ¥ — 2; a more exact investigation indicated that this pressuce distribution
would give separation closer to x =1-983. It was not possible to use Hartrees muodified
distribution in the present work, as it does not vary sufficiently smoothly near ¥ = 1-8. Instead,
values of (9u/dy),_, were assigned beforehand for the different values of &, tending to zero like a
regular function of & as x—>2; the pressures corresponding to the successive values of ¢ were
adjusted to make the calculated values of (u/dn),—, agree with these assigned values. The
pressure distribution thus found gave U® = 1-537 at x == 2, as against U® == 1-542 and 1-534
with Hartree’s original and modified distributions (see Table 2).

There is no doubt that a modification of Hartree’s original pressure distribution is needed to
get separation at ¥ = 2; the failure to find separation without such a modification cannot be
attributed to inaccuracies in the method of integration. Hartree’s original distribution appears
to slightly over-estimate changes in the pressure gradient between ¥ = 1-4 and 1-8, and to
under-estimate them between x = 1-0 and 1-4, and between 1-8 and 2-0. The extreme
sensitivity of the separation point to slight changes in the pressure gradient near separation has
already been noted by earlier workers. However, the failure to obtain the observed separation
with Hartree’s originally adopted pressure distribution need not be due to actual discrepancies
" between that distribution and the true one; it may be due to failure of the assumptions of
boundary-layer theory near separation due to the thickening of the boundary layer, or to disturb-
ances in the boundary layer near separation.

As in the-discussion of Howarth’s problem, the present work confirmed the essential accuracy
of Hartree’s method. . The results of the two methods do differ somewhat, the maximum
difference between the values of 2 being about 0-015, 7.¢., about 1 per cent. of the total magnitude
of 2u. The order of magnitude of the differences is illustrated by the values of 2u for x = 1,
given in Table 3; by the values of (9#/3y),_,, given in Table 4; and by the values, given in
Table 5, of the displacement and momentum thicknesses, defined by

o= (=), o= t(-Da. . . (11)»

The differences are, however, small compared with the probable errors in the values of the
respective variables when determined directly from the experimental results.
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7. Solution from the Stagnation Poini.—After the work described in the last section had been
completed, a doubt arose, on looking back, as to whether Hartree's starting values for x = 0-2
might not be more inaccurate than first supposed, and the subsequent integration be thereby
affected throughout. Accordingly a further integration was carried out, beginning this time
~at the stagnation point. Since the boundary-layer thickness is finite at ¥ = 0, it was convenient
for small values of x to use the variables v, v in place of 4, V, and integrate equations (2) and (3)
instead of (6) and (7). The pressure distribution used for small values of x is shown in Table 2;
it was obtained by interpolation from Hartree’s figures for U at x = 0-05, 01, 0-15, 0-2, 0-25
and 0-3 (Ref. 2, Table 2). :

To start the solution, the values of » at x = 0-01 were taken to be those in a flow such that
U = 8x (according to Hartree, Ref. 2 equation (14), U =7-92x — 0(x*) when x is small).
Flow such that U = kx has been considered by Falkner.and Skan’; their numerical results
have been recalculated by Hartree®. As a matter of interest, the present method was used to
recalculate the flow for this case correct to three significant figures; it gave results agreeing with
Hartree’s to within 0-2 per cent.

The values of # thus derived at ¥ = 0-01 were used, together with the value # = 0 at ¥ = 0,
in determining ¢u/ox by difference methods for an integration at x = 0:02. The integration
then proceeded by steps of 0-02 in x from x = 0-02 to » = 0-2, and by steps of 0-025 from
% =0-2to x = 0-3. During this part of the integration, 2u was tabulated for values of ¥ such
that y4/2 =0-1,0-2,0-8, ... . After x = 0-3, the variables 5, V were used in place of v, v,
and equations (6) and (7) in place of (2) and (3). Integrations were effected at intervals of
0-05 of x from x == 0-3 to x = 0-5, and at intervals of 0-1 from x = 0-5 to ¥ = 1-0, where the
integration was discontinued. :

The results showed Hartree’s values of 2 at x = 0-2 to be rather high, the maximum error
being-about 0-03 (rather above 2 per cent.; sec Table 3). However, the integration of section 8,
which used these values as starting values, is not seriously in error save near x = 0-2. By
% == 0-3, the maximum difference between the values of 2 in the present integration and that
of section 6 is just greater than 1 per cent.; at x = 1-0, where the present one was stopped, the
difference is less than § per cent., i.e., less than the difference of the values in Hartree’s integration
and in that of section 6. The general effect of the differences, as of those between Hartree’s
solution and that described in section 6, is that the boundary layer should be thicker than
Hartree’s work indicates; the increase is above 4 per cent. at ¥ = 0-2, but not much more than
2 per cent. after x = 0-3. The change improves the agreement with Schubauer’s experimental
velocity-profiles, which are compared with the theoretical in Fig. 1.

8. General Remarks—The present method has definite advantages in accuracy, simplicity and
directness over Hartree’s method. Nevertheless, it is very laborious if the accuracy desired is
of the order of that attained in discussing Howarth’s problem. It was much more manageable in
discussing Schubauer’s problen:, and it is pointless in most practical problems to attempt to
achieve more accuracy by the method than was attained in discussing that problem.

The method does, however, possess certain drawbacks. To determine 9u/dx by difference
methods it is necessary to know # for a number of values of x; hence, in starting the solution,
more than one set of initial values of # must be known, or, at the very least, values of # and
ou/ox for the imitial x. Again, the difference expression for 2u/ox converges slowly near a
singularity, and so the accuracy of the method near separation is poor. This drawback is shared .
by Hartree’s method, and we have indicated in section 5 a method of obtaining reasonably
accurate results near separation without integrating right up to the singularity.

I should like to thank Professor Hartree for his interest in this work, and for discussions during
its progress; also Mr. M. Holt, who read the manuscript and made several useful suggestions.
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TABLE 1

Values of 24 for Howarth’s Problem Obtained by the Present Method, with Values Derived
Jrom Hartree’s Tables for Comparison

x =108 x=09 ‘ Separation
N
11\)[2?1?;15 Hartree 1}5/[1:;316515 Hartree ﬂiﬁfgg Hartree
0 0 0 0 0 0 0

0-2 0-69368 0-09405 0-05918 - 0-05945 0-0170 0-01692
0-4 0-21508 0-21560 0-14943 0-14997 0-0674 0-0672
0-6 0-36139 0-36205 0-26853 0-26937 0-1496 0-1493
0-8 0-52784 0-52865 0-41264 0-41370 0-2611
10 0-70780 0-70875 0-57619 0-57742 0-3981
1-2 0-89308 0-89400 0-75198 0-75337 0-5554
1-4 1-07460 1-07560 0-93148 0-93295 0-7260
16 1-24341 - 1-24440 1-10560 0-9017
1-8 1-39199 1-39295 126573 1-0738
2-0 1-51532 1-51615 1-40496 1:2337
2-2 1-61155 1-61230 151910 1-3742
2-4 1-68198 1-68260 1-60709 1-4909
2-6 173022 173085 1-67074 1-5819
2-8 176114 176135 1713887 1-6492
30 177963 1-77975 1-74120 1-6955
3-2 1-78985 1-79005 1-75738 17250
34 1-79534 1-79540 1-76634 17424
3-6 © 179797 1-79800 1-77100 1-7518
3-8 1-79917 1-79915 1-77328 1-7564
4-0 1-79968 1-79972 1-77430 1-7587
4-2 1-79988 1-79995 1-77473 1-7599
4-4 1-799986 1-8 1-77490 1-7605
4-6 1-79999 1-8 1-77497 1-7608
4-8 1-8 1-8 1-77499 1-7609
5-0 1-8 1-8 1-775 1-7610




TABLE 2
Values of 2U, U* and AU (@U/dx) sn the Schubauer Problem.

(a) when « is small, iriterpolated from Hartree’s Table 2 (Ref. 2).

(b) beyond x = 1-8, for Hartree’s originél pressure distribution and the modified
distribution of section 6.

(a)

2U 202 4U a7 % 2U 2U? 4U U
dx - dx
0 0 0 0
0-02 0-317 0-0502 4-91 0-16 1-750 1-531 9-62
0-04 0-614 0-1884 8-66 0-18 1-849 1-710 8-44
0-06 0-880 0-3872 11-00 0-20 1-932 1-868 7-44
0-08 1-118 0-819 12:08 0-225 2-018 2-036 6-34
0-10 1-814 0-863 12-16 0-25 2-080 2-184 5-45
0-12 1-485 1-102 11-66 0-275 2-150 , 23812 4-71
0-14 1-629 1-327 10-76 ~0-30 2-200 2-420 4-07
(b)
RPN Modified Distributions Hartroe's
Original Distribution - Modified
(section 8) Distributi
istribution
2U 21 il U 20, oY 22 4u 49
ax ax dx
1-8 2-530 3-200 —0-59 2-530 | 3-200 —0-59 3-200 --0-59
1-85 2-518 3-170 —0-60 2:518 3-170 —0-62 -
1-9 2-506 3-141 —0-59 2-505 3-139 —0-64 3-137 —0-67
1-95 2494 3-112 —0-57 2-492 3-107 —0-65
2-0 2-483 3-084 —0-53 2-479 3-074 —0-66 3-068 —0-71
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TABLE 3

Speciatl Velocity Profiles for the Solution of Section 6 (which used Hartree's Initial Values at x = 0-2)
and that of Section 7 (the solution from stagnation) with Hartree’s Results for Comparison

x=0-2 x=1-0
¥ 2u (section 7) 2u (Hartree) ¥y 2u (section 6) 2w (section 7) 2u (Hartree)
0 0 0 -0 0 0 0
0-1 0-35 0-35 0-2 0-262 0-261 0-265
0-2 0-65 0-66 0-4 0-51¢ 0-517 0-525
0-3 0-92 0-94 0-8 0-770 0-766 0-777
0-4 1-15 1-17 0-8 1-011 1-007 1-022
0-5 1-34 1-37 1-0 1-242 1-236 1-253
0-6 1-50 1-53 1-2 1-458 1-451 1-470
0-7 1-62 1-655 1-4 1-656 - 1-648 1-667
0-8 1-72 1-75 16 1-834 1-826 1-845
09 1-79 1-82 1-8 1-990 1-982 2-001
1:0 1-84 1-87 2-0 2-124 2-116 2-134
1-1 1-87 1-90 2-2 2-235 2228 2-245
1-2 1-90 1-92 2-4 2-326 2-319 2-335
1-3 1-915 1-925 2-6 2-398 2391 2-406
1-4 1-925 1-93 2-8 2-453 2447 2460
1-5 1-93 1-93 30 2494 2-488 2500
3-2 2-523 2-518 27528
3-4 2-543 2540 2548
3-6 2557 2-555 2-561
3-8 2-566 2-565 2-570
4-0 2-573 2-572 2:575
4-2 2577 2-577 2-578
4-4 2-579 2-579 2-579
4-6 2580 2580 2580
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TABLE 4

Values of 4 (0u[2y),—o 11 the Schubauer Problem for each of the Solutions of Sections 6 and 7,
with Hartree’s Values for Comparison

x
Main Solution from Hartree’s
Solution Stagnation Solution
(section 6) (section 7) (Ref. 2, Table 8)
0 0
0-06 5:48
0-12 756
0-2 7:37 724 7-38
0-3 6-16 6-10 6-17
0-4 5-20 5-14 5-21
0-6 4-02 3-98 4-05
08 3-24 3-22 3-28
10 2-64 2-63 2-67
1:-2 2-23 ) 225
1-4 1-87 Solution with 1-89
1-6 1-36 modified pressure 1-37
169375 1-09 distribution
1-775 0-84 (section 6)
1-84375 065 0-64
1-9 0:50 0-47 0:53
1-94375 0-32
1-975 0-20
1-99375 0-09
2-0 00
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TABLE 5

Displacement and Momentum T hicknesses &', 9 wn the Schubaueyr Problem, Measuved in the

Same Units as y

Main Solution
{section 6)

Hartree’s Solution
(Ref. 2, Table 9)

Solution from Stagnation
(section 7)

Y 9 £ 9 o @

0 0-928 0-103
0-06 0-253 0-113
0-12 . 0-301 0-133
0-2 0-372 0-157 0-372 0-157 0-387 0-168
0-3 0-4955 0-208 0-497 0-209 0-506 0-214
0-4 0-6085 0-253 0-610 0-253 0-618 0-258
0-6 0-8125 0-3325 0-808 0-331 0-820 0-336
0-8 0-999 0404 0-993 0-402 1-007 0-408
1-0 1-180 0-473 1-177 0-468 1-197 0-4765
1.2 1-367 0-537 1354 0-531 — -
14 1-554 0-599 1-537 0-592 . .
16 1-823 0-677 1-794 0-664 Solution for modified
1-69375 1-981 0-7115 pressure dlstxlbutlon
1-775 9-152 0-7445 (section 6)
1-84375 9-392 0-7755 2-332 0-7765
1-9 2480 0-801 2-479 0-799 2-510 0-805
1-94375 ; 2689 0-8245
1-975 2-850 0-839
1-99375 3-011 0-848
2-0 3-158 0-855
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FiG. 1. Calculated Velocity Profiles for the Schubauer Problem for Different Values of %, from the Solutions

of 7 (upper curves) and 6 (lower curves).

Schubauer’s observed points are marked by crosses,
X uncorrected for heat loss to wall,
- (over)-corrected for heat loss to wall in still air.

Units of v are shown below the curves ; the origins of successive curves are displaced one unit to

the right.
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