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Summary.--A new method for the numerical soiution of the boundary-layer equations is described. This rests in 
essence on'the fact that the equations of steady flow are special cases of the equations of general motion. The velocity 
profiles are found at successive sections across the boundary layer. Trial values of the velocity are assumed at any 
section ; from these, space derivatives of the yelocity are deduced by using finite differences, and time derivatives by 
using the equations of motion. The trial values are then adjusted to give zero time derivatives of the velocity at the 
section. The method in some respects resembles Southwell's relaxation method. 

The method has been applied to two problems already discussed numerically by Hartree. It is not suitable for use 
with a differential analyser, though the development of new calculating machines may bring it within the range of 
machine integration ; but rather less labour was required to achieve manually with it results rather more accurate 
than obtained by Hartree with the differential analyser. The results did not, however, differ greatly from Hartree's. 

1. I~#rod~ctio~.--The w o r k  desc r ibed  be low was insp i red  b y  two  r epo r t s  b y  Prof .  D. R.  
H a r t r e e  ~, ~ giving an  a c c o u n t  of his m e t h o d  of n u m e r i c a l  so lu t ion  of t h e  l a m i n a r  b o u n d a r y - l a y e r  
equa t ions .  I n  t e r m s  of su i tab le  n o n - d i m e n s i o n a l  var iables ,  t he se  equa t ions  m a y  be w r i t t e n  

O~t O~,t 0 U 02¢~ (~) 

3¢~ 8 v 
~--; + ~  = o  . . . . . . . . . . .  (2) 

H e r e  
x d i s t ance  a long t h e  wal l  of t h e  b o u n d a r y  layer ,  d i v i ded  b y  s t a n d a r d  l e n g t h  Z,, 
u .v-component  of ve loc i ty ,  d iv ided  b y  a s t a n d a r d  ve loc i t y  U0, 

y d i s t ance  f r o m  t h e  wall,  d iv ided  b y  (~L/Uo) 1/~, w h e r e  ~ is t h e  k i n e m a t i c  v iscosi ty ,  

v y - c o m p o n e n t  of ve loci ty ,  d iv ided  b y  (~ Uo/L) ~/~, 
U vah l e  of ~t jus t  ou t s ide  t he  b o u n d a r y  layer .  

H a r t r e e ' s  m e t h o d  was,  in brief,  as follows. He  expressed  u a n d  v in t e r m s  of a s t r e a m  func t ion ,  
w, w h e r e  
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Substituting these values in (1), he obtained a differential equation involving only first-order 
x-derivatives. These were replaced by finite differences before integrating; the differential 
equation was then integrated exactly with respect to y for a series of values of x. 

This method was not simple. A non-linear equation of third order in y had to be solved, and 
the solution near y = 0 had to be adjusted by trial to secure that  a boundary condition was 
satisfied at y -- o~. Actually, an approximation to the solution for any giyen x could have been 
inferred from the solutions for earlier values of x; but the method was unable to use this information. 
Moreover, it did not seem accurate. Replacement of the x-derivatives by finite differences meant 
a very crude approximation;  this was improved by obtaining a second solution in which the 
x-interval is halved, and using Richardson's h~-extrapolation formula. Roughly, the original 
approximation is accurate only if u is linear in x; Richardson's formula corrects for terms 
quadratic in x, and partially for terms of higher degree. In the author's own work, described 
later, sixth-order x-differences of u were occasionally needed. While this was partly because a 
slowly converging backward-difference formula was used, it was not clear that Richardson's 
formula was adequate. For these reasons, an alternative method was sought. 

The first a t tempt  was by integrating with respect to x instead of y. Equations (1) and (2) 
can be written. 

= + . . . . . . . . .  ( 1 ' )  

OCt Ov 
= - . . . . . . . . . . .  ( 2 ' )  

Suppose that, for a given x, we know u at y----b, 2b, 3b, . . Bv constructing successive 
y-differences, we can find au/ay and a2u/Oy2; then (1') gives ~(v/u)/Oy. Integrating, and using 
the condition that  v/u -- 0 when y = 0, we find v/u and so v ; then Ov/Oy is given by 

Ov O ( v )  you  
; 

Hence we can find Ou/Ox from (2') ; this enables values of u to be determined for a new value of x. 

This method is simple, but in practice it proved disappointing. In (1'), O(v/u)/Oy is given as 
the ratio of two quantities, both of which vanish at y = 0; as a consequence, it cannot be 
determined very accurately near y = 0. This affects the values of v/u for all y, and the effect is 
not  small, since ~t,v/u)Oy is fairly large near y = 0. The method was therefore rejected.* 

2. The New Method.--After other methods had been tried without success, a method was found 
which combined accuracy with some measure of practicability. This rested on the fact that  
(1) is the steady-motion form of the general equation of motion 

8u act ~¢t ~ U Uu 
(3) 

where t denotes a non-dimensional variable proportional to the time. Equation (3) indicates 
not only the state of steady motion, but the way in which u varies when this state is being attained. 

* After the completion of the work described in the present report, it was found that  Prandtl  (Zs. f .  a~gew. Math. u. 
Mech., Vol. 18, p.81, 1938) had suggested a method of numerical integration with respect to x. He pointed out the 
difficulties of the direct method outlined above, and suggested a more refined method whereby these might possibly be 
obviated. I t  seems doubtful, however, whether even this more refined method is satisfactory. 
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S u p p o s e t h a t  va lues  of u have  already being found for x = x0, x0 + a, x0 + 2a, . . . . . .  
Xo -t- ha, with y = b, 2b, 3b . . . . . . .  B y  extrapolat ion or some other method,  let approximate  
values of u be found for x = Xo -+- (n + 1)a, with the same values of y. These are regarded as 

t h e  values of u in an uns teady  mot ion which is tending to the s teady mot ion as a limit. F rom 
x-differences may be found the  valnes of au/ax for x = x0 + (n + 1) a, and from y-differences 
those of au/dy and 02u/ay2; also, by (2) 

v = -- Jo ~ dy. 

Thus we find from (3) the  values of ~u/~t for x = x0 + (n + 1) a corresponding to the  non- 
s teady motion. The values of ~,u/~t indicate the  corrections to the  approximate  values required 
to get the  s teady-sta te  values of u for x = x0 + (n + 1) a. The approximate  values are modified 
accordingly, and the  work is repeated with the  new values of u. After a few trials, a set of values 
of u is found which makes ~u/Ot negligible for all y. These are taken as the s teady-state  values 
for x --Xo + (n + 1) a, and the  work  is then  repea ted  for x = x0 + (n + 2) a, etc. 

The me thod  is in some respects similar to Southwell 's  relaxation method,  Ou/~t corresponding 
to the  relaxation force. I k differs from this me thod  in discussing the  successive values of x 
separately. This is possible because in bonndary- layer  flow the  velocity profile ak any x is wholly 
de terminate  if the profiles for all smaller values of x are known. ~[he present me thod  also corrects 
all the values of u corresponding to a given value of x s imultaneously ; Southwell 's  me thod  
corrects them severally. 

3. Howarth's Problem.---The method  has been applied to both  of the  problems considered by 
Hartree.  The first of these is Howar th ' s  problem of re tarded flow along a fiat plate 3 in which 

1 
U = 1 --  g x ,  . . . . . . . .  . .  (4) 

where x is measured from the leading edge. The units Uo and L, in terms of which U and x 
are measured are, in Howar th ' s  notat ion,  b0 and b0/Sb~ ; thus our x is identical  with Howar th ' s  
8x, or with Hartree 's  x. 

In  practice, the  me thod  used was slightly different from tha t  described in section (2), because 
in place of y and v, variables ~7 and V were introduced,  where 

= ½ y x  -~ /~ ,  V = 2 v x V ~  . . . . . . . . .  (5) 

The variable ~ is tha t  used by Howar th  and Hartree.  In  terms of these, (2) and (3) become 

~u 0V ~u 0 U  ~2U 
4 x ~ -  u ~ -  + V ~  = 4XU~x + ~ , (6) 

aV Ou Ou 
37 -- 4x 7x + 2~ N . . . . . . . . .  (7) 

The me thod  was applied to these modified equations, using derivatives with respect to ~ in place 
of those with respect to y. For any x, values of 2u were tabula ted  at ~ = 0.2,  0.4, 0.6, . . . ; 
difference methods  gave Ou/~x, ~u/~rj and O~u/O~2; then ~V/O~ was given by (7) and V found by  
in tegra t ion;  finally (6) gave Ou/~t. 

Values of 2u were tabula ted  to 5 decimal places. This enabled 40~/D)7 to be found to 4 decimals, 
and 80~u/~v 2 to 3; also 2~V/Or] was found to 3 decimals, 2V to 4, and  32xOu/Ot to 3. The error 
in t roduced by approximations made  during calculation is certainty not  greater  than  0.001 for 
32xOu/Ot when ~ is small, though it ma y  be rather  greater  when ~7'is large. 
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Changes in u, made while approximating to the steady motion for a given x, affect au/Ot mainly 
through the resultant changes in au/Ox and a2u/O~, to a less extent through changes in Ou/O~, 
and very little as a result of the direct appearance of u in (6). The changes in au/ax affect 
au/at through the terms involving V and OV/a~ in (6).  The changes in V are relatively 
unimportant when only a single value of u is altered, but are important when changes of the 
same sign have to be made in a number of successive values of u. To estimate roughly the 
corrections to be applied to a trial set of values of 2u, it is often sufficient to take into account 
only the effects in (6) of the changes in OV/a~ due to changes in Ou/ax, and of the changes in 
a2u/a~ 2. When au/at is consistently of one sign in a given range, however, changes in V become 
important in (6), and greater corrections have to be applied than would be necessary if such 
changes were ignored. 

When ~7 is small, changes in O=u/a~ ~ are alone important ; in this neighbourhood, to annihilate 
small values of Ou/Ot which are consistently of one sign, quite large changes in u may be necessary. 
Such changes may not even be limited to the region near ~ = 0, for changes in au/ax near ~ -- 0 
affect tile values of V for all ~. In consequence, particular care must be taken to ensure that  
near v = 0 no non-zero values of Ou/at are left uncorrected. This was not sufficiently realised 
at the start of the integration, when the author was content to reduce ~u/at until 32x du/at was 
nowhere greater than 0.003. This is good enough for large values of ,~, where a change of a 
mlit in the fifth decimal place in 2u may produce a change 0.006 in 32x au/at; but much greater 
care is needed near ~ = 0. 

Fifth-order v-differences were tabulated for use in calculating Ou/a~; from these the sixth- 
order differences could be determined in the few cases when they affected Uu/a~ =. The ~-derivatives 
were calculated from the central-difference formulae,* 

1 
hf'(a) -- ~- [Af(a) -~- Af(a -- h)] -- 672 [Aaf(a - h) q- A ~ f ( a  - 2h)] 

+ ~ E-4~/(~ - 2 3 ) +  A ~ / ( ~ -  3 a ) l - .  . . . . . .  , 

h y ' ( ~ )  = a g ( ~  - a) - ~ a g ( ~ -  9_I,,)+ A y ( a  - -  3;~) - - .  . . . . .  , 

where h is the spacing (Ref. 4, p. 64). To apply these at ~ = 0.2 and 0.4, some extrapolation 
of third and higher order differences was necessary; from the run of the differences, the error 
so introduced was clearly ,negligible, and errors would not have been negligible had other formulae 
been used. On the other hand, in calculating au/ax the only differences available were those 
obtained using earlier values of x, and so Ou/ax had to be found from the slowly converging 
backward-difference formula 

1 A 7 ( ~  - a;~) + . . .  
hf'(a) = Af(a --. h) -+--}A~f(a -- 2h) + :~ 

(Ref. 4, p. 62, equation (2), using differences sloping up in the differences table instead of those 
sloping down). Inaccuracies introduced by the use of this formula greatly reduced the advantage 
in accuracy possessed by the present method over that  of Hartree. In integrating aV/a~, a 
central-difference foimula was again used, i,e., 

1 F ~+t~ 1 
; j~ f(x) dx = ½ if(a) +. f (a + h)] -- N lAY(a - -  l~) + Ar(a)] 

11 
+ Y  g g6  [ A y ( a  - -  2;~) -,+- A y ( a  - -  t~)] - - . . . .  

* The apparent lack of symmetry of these formulae relative to the value a of the argument is due to the use of 
forward-differences zX. It  could have been avoided by introducing the central-difference operator a ; but the symbol a 
is required for another purpose in section (4). 
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The repeated use of differences makes the  me thod  unsuitable for use with a momen t  integrator  ; 
however,  the  labour was not  excessive with a small calcuIating machine.  

4. M a s t e r  and  Assoc ia t ed  I n t e g r a t i o n s . - - T h e  method  involves a number  of trial integrations 
for each x. In  practice, the labour of these was reduced as follows. A first integrat ion was 
made  in the usual way to get a set of values of Ou/~t, which were used for a rough correction of 
the  values of u. The corrected values of u, which gave a more regular set of fifth-order 
v-differences, were used as s tar t ing-point  for a second integrat ion of the same k ind ;  in this, 
every step liable to be affected by comput ing error was most  carefully checked. Later  integra- 
tions used the deviations of the  independent  variables from their  values in this mas ter  
integration.  Let  ,~, V denote  the  values in the  master  integration,  u + du, V + ~ g  those in a 
slightly varied integration.  Then &~, d V can be taken  to satisfy the equations 

~c~u &~V 8V 8~u 8u ~2g)u 
4x D---/--- ~ O ' - - T - - ~ u ~ + V ~  + ~ V a ~ =  ~ . . . . . . .  (S) 

OdV Odu Oc~u 
- -  4 x ~ - -  + 2~7 ~r~ " "" a,~-  • . . . .  ( 9 )  

These are used to determine values of ~u such tha t  ~(u @ ~l.~)/8~ --  0. ' 

Slide-rule accuracy was enough in determining the products  on the left of (8). The equat ion 
used to determine O$u/Ox was of the  form 

1 
h, Of'(a) --= OAf(a - -  h) -}- ½ dA2f(a - -  2h) + ~ OA3f(a - -  3h) + . . . .  

In this, f(a), f ( a  - -  h), f ( a  - -  2h) . . . .  denote the values of ~t, for a g iven  ~, corresponding to 
x = a, a --  h, a --  2h, . . . ; of these onlyf(a)  is affected by the variat ion ~, and so OA~f(a - -  rlz) - -  
Of(a). Hence 

1 1 
h~f ' (a)  --- ~f(a) ( 1 - ~  ~ + -~ -t- . . . . .  ) .  

The series on the right strictly does not  converge ; but  in practice it was cut off in accordance 
with the number  of x-differences found significant. Thus its value was usually taken to be 
between 2.1 and 2.45 (corresponding to 4 and 6 differences respectively). 

• 5. The  Separa t ion  P o i u t . - - T h e  solution was s tar ted by calculating 2u from Howar th ' s  tables 
at x = 0, 0.1, 0.2, and 0.3. Then integrat ion proceeded by steps of 0.1 of x up to x = 0.8.  
Here sixth-order x-differences were needed to find Ou/Ox. Accordingly x-differences for half the 
interval  length were found by the usual subtabulat ion formulae (Ref. 4, p. 54), and these were 
used as a basis for integrations at  x = 0.85 and 0.9. The integrat ion was not  carried beyond 
this point,  as t h e r e  is a singulari ty at  separation near  x = 0.96, making  numerical  integrat ion 
difficnlt in its vicini ty ; it is, in any case, possible to locate the  separation point  fairly accurately 
by extrapolation.  

Goldstein 1 suggests, in work quoted  by Hartree, tha t  near  the separation point  (x =; X), 

a[ J =o  ftx) = A(X-  B(X-  + c t x -  D(X-- + .. 

Hence f(x) can be represented fairly closely by  a polynomial  in ( X  - -  x) 1/2, even near  separation. 
This fact supplies two methods  of determining X. 

(i) Regard x as a regular function off(x)., and use Newton 's  interpolat ion formula for unequal  
intervals to extrapolate  the  value of x for which f ( x )  = O. 
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(it) Choose a succession of approximate  values of X and, regarding f (x)  as a regular  funct ion 
Of ( X  - -  x) ~/~ for each X, use the  same formula to de t e rmine f (X)  ; the correct  X is tha t  for which 
f ( X )  = O. 

The separat ion point  has been de te rmined  by  both  these methods ;  the  first gave X = 0-958, 
the  second X = 0. 956. These est imates are both  a li t t le uncer ta in  because the  divided differences 
of th i rd  order  were ra ther  irregular, perhaps because of the  change in interval- length at  x ---- 0" 8 .  
The  probable  errors of the  two est imates due to the  irregulari ty are of order  0 .005 and 0.001. 

These est imates are very  near  to those of Howar th  (X = 0"96) and Har t ree  (X = 0-9589). 
Too much  weight  cannot  be a t t ached  to the agreement ,  because our ext rapola t ion has been over  
a very  wide in terval  o f  (X --  x) x/~. Nevertheless,  the  agreement  indicates t ha t  the separat ion 
point  can be de te rmined  reasonably well wi thou t  in tegrat ing r ight  up to the awkward  singulari ty.  
I t  also suggests t ha t  a reasonable approximat ion  to the  veloci ty  profile at  separat ion m a y  be 
got by  ext rapola t ion  from the  known values of x ~ 0 . 9 ,  using divided differences for each ~ with  
2u expressed as a funct ion of ( X  - -  x) ~/~. Values so obtained,  tak ing  X -- 0.956, are shown in 
Table 1; they  agree very  closely with  Har t ree ' s  (which are given only for small values of v). Also 
given in the  table are values for x = 0 .8  and 0.9,  wi th  values in terpola ted  from Har t ree ' s  tables. 
The  values obta ined by  the  new method  differ from Har t ree ' s  by  amounts  wi th in  the  error of 
the  two methods .  The wri ter  believes that ,  had  he worked  more  accura te ly  near  ~ = 0 for 
x =-- 0 .5  and 0.6 ,  the  differences would have  been sl ightly greater.  

Remember ing  the  form of (10), it  migh t  be though t  t ha t  it would have  been be t te r  to have  
extrapolated,  taking f (x)  and  2u as regular  functions of ( X  - x) ~/4, not  of ( X  - -  x)~/L This is 
not  so, because 2u is known only for values of ~X -- x) ~/~ be tween 0 .476 and 0. 864, and extrapola-  
t ion to X --  x = 0 is therefore very  risky. The success of the  present  extrapolat ion suggests 
that  the fourth-root  terms are not  too impor tan t  in (10). 

6. Schubauer's Pressure Distributio~z.--The second problem to which the me thod  was applied 
was tha t  of boundary- laye r  flow for Schubauer ' s  observed pressure dis t r ibut ion 'on an elliptic 
cyl inder  6. Har t ree ' s  smoothed  figures for the  pressure dis t r ibut ion (Ref. 2, Table 2) were used 
in mos t  of the work.  

The units  L, U0 in terms of which x and  u are measured  are, in this case, the length  of the  
minor  axis of the cyl inder  and  the  und is tu rbed  s t ream veloci ty;  also x is measured  from the  
s tagnat ion  point .  This makes  our x and u ident ical  wi th  those of Schubauer  and Har t r ee ;  
our y is ident ical  wi th  Har t ree ' s ,  bu t  is y~/(LUo/~,) in Schubauer ' s  nota t ion.  Since the bounda ry  
layer  expands no t  less rapidly than  x ~/2 when X >  0.2 ,  it is convenient ,  as in section 3, to employ 
ins tead of y and v the  variables ~, V defined by  (5) ; thus the  equat ions in tegra ted were again 
(6) and  (7). 

Values of 2u were t abu la ted  to three decimal  places at  ~ =: 0 .1 ,  0 .2 ,  0 .3 ,  . . . . This m e a n t  
tha t  2O~u/a~ 2 could be found to only one decimal  place. Since the  total  magn i tude  of this quan t i t y  
was found never  to exceed 3.0 ,  a less order of accuracy  in tabula t ing  2u, as used by  Har t ree  at  
the  s tar t  of his solution (Ref. 2, Table  7), could clearly give no useful results. 

The work. was much  cruder,  and therefore much  easier, t han  tha t  on Howar th ' s  problem, 
where  two more  decimals were used. No differences beyond  the  th i rd  order  were needed ; 
numer ica l  errors were easily identified, and  elaborate cross-checks were unnecessary ;  only two 
or three  trial  integrat ions were needed  for any  value of x, and the use of mas te r  and associated 
integrat ions (sec±ion 4) was superfluous. Moreover, numer ica l  accuracy  at  least equal  to tha t  of 
Har t ree ' s  solution was obtained,  using no mechanica l  aids other  than  an ord inary  slide-rule. 
In  consequence, values of 2u for a given x could be found in an easy day 's  work;  a week was 
needed  when working on Howar th ' s  problem. 

The solution was begun with Har t ree ' s  init ial  da ta  for x = 0 .2 ,  calculated by  h im from a 
Series expansion. His Table  7 = gave 2u to only two decimals;  three  decimals were obta ined  b y  
in tegra t ing  his ~u/~y values. Values of ~u/~x at  x = 0 . 2  could in theory  also be de te rmined  
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from Hartree's series; but a s  the details of Hartree's numerical work were not immediateIy 
available, in practice the method followed was to estimate au/~x from his values of 2u at x = 0.2, 
0 ;3, and 0.4, the estimated values being then checked by a trial integration of the differential 
equations. The values of au/~x so obtained were then used in determining, au/ax for trial solutions 
at x =  0-25, the new Values of Ou/ax being connected with assumed values of u at x = 0-25 by 
the approximate formula 

-I = 
+ • 

For greater values of x, au/ax was found by the difference methods of section 3. 

The integration proceeded by steps of 0 .05  in x from x = 0.2 to x -- 0.4, and by steps of 
0.1 from x == 0.4 to x = 1.6. Thenceforth, since Schubauer's experiments indicated separation 
near x = 2, it was expected (cf. section 5) that u would be a nearly regular function of (2 -- x) 1/2, 
and so 2u was found at steps of 0.1 of ~, where 

= V [ 1 . 6 ( 2  - -  x) ]  ; 

in this part of the solution au/~x was found by first determining 3u/~ by difference methods. 

As in Ha~tree's work, separation was not attained by x - 2  for the original pressure distribution, 
and a modified pressure distribution was then substituted beyond x = 1.8. Hartree found his 
modified pressure distribution by estimating crudely what pressure at x = 2 was required to 
give separation at x - - 2 ;  a more exact investigation indicated that  this pressure distribution 
would give separation closer to x = "1.983. It  was not possible to use Hartree~s modified 
distribution in the present work, as it does not vary sufftciently smoothly near x = 1.8. Instead, 
values of (au/a.~)n=0 were assigned beforehand for the different values of ~, tending to zero like 
regular function of ~ as x---~2; t he  pressures corresponding to the successive values of ~ were 
adjusted to make the calculated values of (~u/a~7)~=0 agree with these assigned values. The 
pressure distribution thus found gave U ~ = 1.537 at x -- 2, as against U ~ -- 1.542 and 1.534 
with Hartree's original and modified distributions (see Table 2). 

There is no doubt that  a modification of Hartree's original pressure distribution is needed to 
get separation at x -- 2; the failure to find separation without such a modification cannot be 
attributed to inaccuracies in the method of integration. Hartree's original distribution appears 
to slightly over-estimate changes in the pressure gradient between x = 1.4 and 1.8, and to 
under-estimate them between x = 1.0 and 1.4, and between 1.8 and 2.0. The extreme 
sensRivity of the separation point to slight changes in the pressure gradient near separation has 
already been noted by earlier workers. However, the failure to obtain the observed separation 
with Hartree's originally adopted pressure distribution need not be due to actual discrepancies 
between that  distribution and the true one; it may be due to failure of the assumptions of 
boundary-layer theory near separation due to the thickening of the boundary layer, or to disturb- 
ances in the boundary layer near separation. 

As in the discussion of Howarth's problem, the present work confirmed the essential accuracy 
of Hartree's method. T h e  results of the ±wo methods do differ somewhat, the maximum 
difference between the values of 2u being about 0" 015, i.e., about 1 per cent. of the total magnitude 
of 2u. The order of magnitude of the differences is illustrated by the values of 2u for x = 1, 
given in Table 3; by the values of (Ou/ay)y=o, given in Table 4; and by the values, given in 
Table 5, of the displacement and momentum thicknesses, defined by 

. =  o - 

(11) 

The differences are, however, small compared with the probable errors in the values of the 
respective variables when determined directly from the experimental results. 
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7. Solution from the Stagnation Point.---After the  work  described in the  last section had  been 
completed,  a doubt  arose, on looking back,  as to whe the r  Har t ree ' s  s tar t ing values for x = 0 . 2  

m i g h t  not  be more  inaccura te  t han  first supposed, and  the  subsequent  in tegrat ion be thereby  
affected throughout .  Accordingly a f u r t h e r  in tegrat ion was carr ied out,  beginning this t ime 
at the  s tagnat ion point.  Since the boundary- laye r  thickness is finite at  x : 0, it  was convenient  

f o r  small  values of x to use the  variables y, v in place of ~, V, and  in tegra te  equat ions (2) and  (3) 
ins tead of (6) and  (7). The pressure dis t r ibut ion used for small values of x is shown in Table 2; 
it was obta ined by  interpolat ion from Har t ree ' s  figures for U at  x = 0.05,  0, 1, 0.15,  0 .2 ,  0 .25  
and  0 .3  (Ref. 2, Table 2). 

To s tar t  the solution, the  values of ~,~ at  x = 0.01 were taken  to be those in a flow such tha t  
U = 8x (according to Har t ree ,  Ref. 2 equat ion (14), U = 7 . 9 2 . 0 ~ -  0(x 3) when  x is small). 
Flow such t h a t  U = kx has been considered by  Fa lkner  .and SkanT; their  numer ica l  results 
have  been recalculated by  Har t ree  8. As a m a t t e r  of interest ,  the  present  me thod  was used to 
recalculate  the  flow for this case correct to three  significant figures ; it gave results agreeing wi th  
Har t ree ' s  to wi thin  0 .2  per cent.  

The  values of ~ thus  der ived at  x = 0.01 were used, together  with the  value ~ : 0 at  x --  0, 
in de termining ~ / ~ x  by difference methods  for an in tegrat ion at  x----0:02.  The in tegra t ion  
then  proceeded by  steps of 0 .02  in x from x : 0 .02  to x --  0 .2,  and by  steps of 0 .025 from 
x : 0 .2  to x = 0 .3 .  Dur ing  this par t  of the  integrat ion,  2u was t abu la ted  for values of y such 
t ha t  y 5 / 2  --  0 .1 ,  0 .2 ,  0 .3 ,  . . . . After  a', = 0 .3 ,  the  variables 7, V were used in place of y, v, 
and  equat ions  (6) and (7) in place of (2) and  (3). In tegra t ions  were effected at intervals  of 
0 .05  of x from x --- 0 .3  to x = 0- 5, and  at  intervals  of 0 .1  from x --  0 .5  to x : 1.0, where the 
in tegra t ion  was discontinued.  

The  results showed Har t ree ' s  values of 2¢z at  x = 0 . 2  to be ra ther  high, the  m a x i n m m  error 
b e i n g a b o u t  0 .03  (rather above 2 per cent. ; see Table 3). However ,  the in tegra t ion  of section 6, 
which used these values as s tar t ing values, is not  seriously in error save near  x - - 0 . 2 .  By  
x = 0 .3 ,  the  m a x i m u m  difference be tween the values of 2~ in the present  in tegrat ion and  tha t  
of section 6 is just  greater  t han  1 per cent.  ; a t  x = 1.0, where the present  one was stopped, the  
difference is less t han  ½ per cent.,  i.e., less than  the difference of the values in Har t ree ' s  in tegra t ion  
and  in t ha t  of section 6. The general  effect of the  differences, as of those between Har t ree ' s  
solution and tha t  described in section 6, is t ha t  the  bounda ry  layer  should be th icker  than  
Har t ree ' s  work indicates ;  the increase is above 4 per cent.  a t  x = 0 .2 ,  bu t  not  much  more than  
2 per cent.  after  :~ = 0 .3 .  The change improves the agreement  wi th  Schubauer ' s  exper imenta l  
velocity-profiles, which are compared  with the theoret ical  in Fig. 1. 

8. General Remarks.--The present  me thod  has definite advantages  in accuracy,  simplicity and  
directness ovel Har t ree ' s  method.  Nevertheless,  it is very  laborious if the  accuracy desired is 
of the order  of t ha t  a t ta ined  in discussing Howar th ' s  problem. I t  was much  more  manageable  in 
discussing Schubauei ' s  problen,,  and it is pointless in most  pract ical  problems to a t t emp t  to 
achieve more accuracy  by  the me thod  than  was a t t a ined  in discussing tha t  problem. 

The me thod  does, however ,  possess cer ta in  drawbacks.  To de te rmine  O~/Ox by difference 
methods  it is necessary to know ~ for a n u m b e r  of values of x; hence, in s tar t ing the  solution, 
more  than  one set of init ial  values of ~ mus t  be known,  or, at  the very  least, values of u and  
~u/Ox for the  init ial  x. Again, the difference expression for Ou/~x converges slowly near  a 
singulari ty,  and  so the accuracy  of the me thod  near  separat ion is poor. This d rawback  is shared 
by  Hartree% method,  and we have  indicated in section 5 a me thod  of obtaining reasonably 
accura te  results near  separat ion wi thou t  in tegrat ing r ight  up  to the  singulari ty.  

I should like to t h a n k  Professor Har t ree  for his interest  in this work,  and  for discussions dur ing 
its pregress;  also Mr. M. Holt ,  who read the manuscr ip t  and  made  several useful suggestions. 
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TABLE 1 

Values of 2u for Howarth's Problem Obtained by the Present Method, with Val~ies De~,ived 
from Hartree's Tables fo~, Comparison 

x = 0 .8  x = 0 '  9 " Separa t ion  

~] Present  Present  Present  
Method t t a r t r ee  Method Har t ree  Method Har t r ee  

0 
0 . 2  
0"4 
0 .6  
0 . 8  
1.0 
1 .2  
1.4 
1 .6  
1 .8  
2 .0  

2 .2  
2 .4  
2 .6  
2 .8  
3 .0  
3 .2  
3 .4  
3 . 6  
3 . 8  
4 . 0  

4 . 2  
4 . 4  
4 -6  
4 -8  
5-0  

0 
0.69368 
0.21508 
0.36139 
0.52784 
0.70780 
0.89308 
1.07460 
1.24341 

0 
0.09405 
0.21560 
0.36205 
0.52865 
0.70875 
0.89400 
1.07560 
1.24440 

0 
0.05918 
0.14943 
0.26853 
0.41264 
0.57619 
0.75198 
0.93148 
1.10560 

0 
O. 05945 
O. 14997 
O. 26937 
0.41370 
0.57742 
0.75337 
0.93295 

0 
0,0170 
0.0674 
0.1496 
0.2611 
0.3981 
0.5554 
0.7260 
0.9017 

1"39199 
1"51532 

1'61155 
1 '68198 
1 '73022 
1'76114 
1 '77963 
1"78995 
1"79534 
1"79797 
1"79917 
1"79968 

1.79988 
1.79998 
1- 79999 
1-8 
1"8 

1 '39295 
1'51615 

1 '61230 
1'68260 
1'73065 
1'76135 
1"77975 
1"79005 
1"79540 
1"79800 
1"79915 
1"79972 

1"79995 
1-8 
1"8 
1"8 
1"8 

1.26573 
1 '40496 

1'51910 
1 '60709 
1"67074 
1"71387 
1"74120 
1"75738 
1"76634 
1"77100 
1"77328 
1.)7430 

1-77473 
1-77490 
1-77497 
1-77499 
1"775 

1.0738 
1.2337 

1.3742 
1.4909 
1.5819 
1.6492 
1.6955 
1.7250 
1.7424 
1.7518 
1.7564 
1.7587 

1-7599 
1.7605 
1-7608 
1.7609 
1-7610 

0 
O' 0169 
O" 0672 
O- 1493 
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TABLE 2 

Values of 2U, U 2 and 4U (dU/dx) in the Schubauer Problem.. 

(a) when x is small, interpolated from Hartree's Table 2 (Ref. 2). 

(b) beyond x = 1.8, for Hartree's original pressure distribution and the  modified 
distribution of section 6. 

(a) 

X 2U 2U 2 
dU 4 U ~  X 2U 2U 2 4U dU 

dx 

0 
0-02 
0.04 
0"06 
0.08 
0-10 
0.12 
0.14 

0 
0.317 
0"614 
0 '880 
1.113 
1'314 
1'485 
1.629 

0 
0.0502 
0-1884 
0-3872 
0.619 
0.863 
1.102 
1"327 

0 
4.91 
8.66 

11 "00 
12.08 
12.16 
11 "66 
10-76 

0"16 
0.18 
0 '20 
0'225 
0"25 
0.275 
0"30 

1.750 
1"849 
1'932 
2.018 
2.090 
2"150 
2.200 

1"531 
1"710 
1-866 
2"036 
2"184 
2.312 
2'420 

9 '62  
8 '44 
7"44 
6"34 
5"45 
4"71 
4"07 

(b) 

Original Distribution 
~odified Distributions 

(section 6) 

Hartree 's  
Modified 

Distribution 

2U 2U~. 
dU 

4U - ~  2U 2u~ dU 
4U--I; 2U 2 

dU 4u d--~ 

1"8 
1 '85 
1 '9 
1 "95 
2.0 

2"530 
2"518 
2"506 
2"494 
2.483 

3"200 
3'170 
3'141 
3"112 
3"084 

- -0 .59  
- -0 .60  
- - 0 . 5 9  
- -0 .57  
- -0 .53  

2 .530  
2.518 
2.505 
2.492 
2-479 

3'200 
3"170 
3-139 
3"107 
3-074 

--0.59 
--0.62 
--0.64 
--0.65 
--0.66 

3-200 

3"137 

3.068 

- -0 .59  

- -0 .67  

--0.71 
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T A B L E  3 

Special Velocity Profiles for lhe Solution of Sectio,n 6 (which used Hartree's Initial Values at x = 0" 2) 
and that of Section 7 (the solulion from stagnation) with Hartree's Results for Comparison 

x = 0 .2  x = 1-0 

y 2u (section 7) 2u (Hartree) y 2u (section 6) 2u (section 7) 2u (I-lartree) 

0 
0.1 
0 .2  
0"~ 
0 .4  
0 .5  
0 .6  
0 .7  
0 .8  
0 .9  

1 '0  
1"1 
1"2 
1 '3  
1"'4 
1"5 

0 
0.35 
0.65 
0 .92 

0 
0"35 
O' 66 
0"94 

0 
0"2 
0~4 
0"6 

0 
0-262 
0-519 
0.770 

0 
0.261 
0.517 
0-766 

1"15 
1 "34 
1" 50 
1 "62 
1" 72 
1 "79 

1 "84 
1-87 
1 "90 
1 "915 
1"925 
1 "93 

1"17 
1 '37 
1 "53 
1 "655 
1 "75 
1 "82 

1 "87 
1 "90 
1 "92 
1"925 
1 "93 
1 "93 

0 .8  
1.0 
1.2 
1.4 
1.6 
1-8 

2-0 
2-2  
2-4 
2 .6  
2"8 
3"0 
3"2 
3"4 
3"6 
3"8 
4"0 
4"2 
4"4 
4 ' 6  

1-011 
1-242 
1"458 
1.656 
1.834 
1"990 

2" 124 
2" 235 
2 '  326 
2 '  398 
2 '  453 
2" 494 
2.523 
2 '  543 
2.557 
2" 566 
2 '  573 
2'  577 
2" 579 
2 '  580 

1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

-007 
•236 
-451 
• 648 
.826 
• 982 

•116 
• 228 
'319 
• 39I 
• 447 
• 488 
.518 
' 540 
•555 
• 565 
• 572 
• 577 
• 579 
'580 

0 
0" 265 
0" 525 
0- 777 
1" 022 
1" 253 
1-470 
1- 667 
1-845 
2"001 

2.134 
2. 245 
2" 335 
2 '  406 
2.460 
2.500 
2:528 
2. 548 
2-561 
2.570 
2.575 
2"578 
2" 579 
2" 580 

11 
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T A B L E  4 

Values of 4 (au/ay)y=o in the Schubauer Problem for each of the Solutions of Sections 6 and 7, 
with Hartree's Values for Comparison 

X 

Main 
Solution 

(section 6) 

Solution from 
Stagnation 
(section 7) 

Hartree 's  
Solution 

(ReL 2, Table 8) 

0 
0.06 
0.12 
0.2 
0-3 
0.4 
0.6 
0 .8  
1.0 
1.2 
1.4 
1.6 
1.69375 
1 : 775 
1- 843'~5 
t -9  
1-94375 
1-975 
1- 99375 
2-0 

7"37 
6"16 
5"20 
4"02 
3"24 
2"64 
2"23 
1 "87 
1" 36 
1 "09 
0"84 
0.65 
0.50 

0 
5.48 
7 '56 
7"24 
6.10 
5"14 
3-98 
3-22 
2-63 

Solution with 
modified pressure 

distribution 
(section 6) 

0"64 
0"47 
0"32 
0.20 
0"09 
0.0 

7"38 
6"17 
5"21 
4"05 
3"28 
2"67 
2"25 
1"89 
1- 37 

0"53 
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TABLE 5 

Displacemen~ and Momentum ThicT~nesses d ', z9 in the Schubauer Problem, Measured in the 
,Same Units as y 

Main Solution 
(section 6) 

Hartree 's  Solution 
(Ref. 2, Table 9) 

X 

0 
0-06 
O-12 
0-2 
0.3 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 

,1.6 
1.69375 
1.775 
1.84375 
1.9 
1- 94375 
1- 975 
1.99375 
2.0 

0.157 
0.208 
0 '253 
0"3325 
0"404 
0 '473 
0 '537 

0-372 
0.497 
0.610 
0.808 
0.993 
1.177 
1.354 

0.157 
0.209 
0.253 
0.331 
0.402 
0.468 
0-531 

Solution from Stagnation 
(section 7) 

0"372 
0"4955 
0.6085 
0.8125 
0"999 
1"190 
1"367 
1"554 
1-823 
1"981 
2"152 
2"322 
2.480 

0"228 
0-253 
0"301 
0-387 
0"506 
0"618 
0-820 
1"007 
1-197 

0"103 
0"113 
0"133 
0"166 
0"214 
0"258 
0"336 
0"408 
0"4765 

0 '599 
0"677 
0"7115 
0"7445 
0-7755 
0-801 

1"537 
1"794 

2"472 

0-592 
0-664 

0.799 

Solution for modified 
pressure distribution 

(section 6) 

2.332 
2.510 
2.682 
2.850 
3.011 
3-158 

0"7765 
0-805 
0-8245 
0-839 
0.848 
0.855 
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Calculated Velocity Profiles for the Schubauer Problem for Different Values of. x, f rom the Solutions 
of 7 (upper curves) and 6 (lower curves ). 

Schubauer's observed points are marked by crosses, 
× uncorrected for heat loss to wall, 
+ (over)-corrected for heat loss to wall in still air. 

Units of y are shown below the curves ; the origirls of successive curves are displaced one unit to 
the right.  
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