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Summary .  

A linear programme is formulated which determines the layout and member sizes of frameworks, 
designed to carry given forces, made from material with a given allowable stress and using a minimum 
volume of material. The dual program is shown to lead to Michell's criteria for optimum design. A practical 
method of calculation, based on the dual, is presented and a computer program written in Algol is given 
in an appendix. Examples include unrestricted cantilevers under tip force and distributed forces, a 
restricted cantilever under tip force and structures of the type required for machine tools. 
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Illustrations--Figs. 1 to 7 

Detachable Abstract Cards 

1. Basic Theory. 

1.1. Structures o f  Least Weight.  

Consider any system of concentrated forces applied at points in space and forming a system in static 
equilibrium*. Any pin-jointed framework which balances out these forces must have nodes at the points 
of application of these forces, but it can have nodes at an indefinite number of other points as well and 
its members can lie along any of the segments joining nodes. To be definite it is necessary to specify 
possible nodes and possible members, but these can be assigned with what from a practical point of view 
can be regarded as complete generality. The region of space, through which structures for the purpose in 
hand can be allowed to extend, might for example be covered by a rectangular grid of points of close 
mesh and all segments joining grid points might be allowed as potential members. On the other hand 
practical restrictions of layout might limit the choice of nodes and segments in some special way. For the 
present purpose it is only necessary to limit possibilities to a finite class of structural layouts. 

Any appropriate structure designed from material which is capable of carrying tension and com- 
pression stresses of __ cr will then require a certain volume of material if it is to balance the given forces 
with safety. The problem to be considered here is the determination of that structure which requires the 
least volume of material to carry out its function. 

Consider then what is for the present purpose the most general structure and let t be the row matrix 
of end loads in its members. The nodal equilibrium equations can then be written 

tK  = f (1.1.1) 

wheref is  a row matrix of components of the given forces, not including reactions at fixed supports and 
K a matrix which depends on the assumed geometry of the structure. The structure is safe, at least from 
the point of view of limit design if 

t <. aa ,  - t  <<. aa (1.1.2) 

where a is a row matrix of cross sectional areas of members. It will be assumed that a t can be found which 
satisfies (1.1.1). Equation (1.1.2) then gives an a which will ensure safety. The problem is then to find a t 
and an a which satisfies 

Min. V = al (1.1.3) 

where 1 is a column matrix of lengths of members and V the total volume of material in the structure. 
This linear programming problem certainly has an optimal solution, since V is clearly bounded from 
below. 

Introducing non-negative variables t' and t" by 

t = t ' - t " ,  where t i ' = 0 ,  if t i>10 and t i = 0 ,  if t i < 0  (1.1.4) 

*Some of the forces may be, perhaps unknown, reactions at fixed supports. 



and ti, t~, t~' are the components of these matrices, enables (1.1.1, 2, 3) to be written 

(t'-t") K = f 1 
0 ~ t' <. aa, O <~ t" <. aa 

Min. V = aI 

or, since I i~ positive as 

(t'-t")K = f t 
t', t" >>. 0 

Min. V = (t '+ t")___~/ 
O" 

(1.1.5) 

(1.1.6) 

which is a linear programming problem in its standard form with non-negative variables. It is also clear 
that an optimal solution of (1.1.6) will have either tl or ti' equal to zero, as is required by (1.1.4). The prob- 
lem of (1.1.6) can be resolved by the 'simplex method'  or by one of its variants. 

1.2. The Criterion of A. G. M. Michell. 
If the first of(1.1.6) be written as a pair of inequalities, the problem of(1.1.6) can be written as 

- K ,  1> [f '  - f ]  

[t', t"] /> 0 (1.2.1) 

The dual problem to (1.2.1) is then 

K, -K  

u" >~ 0 (1.2.2) 

Max. w = If, - f ]  u" 

where ~ is a positive infinitesimal introduced so as to allow the interpretation of the new variables u', 
u" as infinitesimals. These last are of course column matrices. Equations (1.2.2) can be written more 
concisely as 

-d ~u,'K(u'-u")u" >10 <<" d l 

Max. W = f(u'-asu") J 

(1.2.3) 



which on writing 

g = U ~ - -  U '~ (1.2.4) 

is seen to be equivalent to 

-el <. K u  <<, el } 
Max. W fu  

(78 

(1.2.5) 

where u is unrestricted in sign. 
The variables of (1.2.3, 5) may be interpreted as follows. The column u can be taken to be a column of 

nodal virtual displacements corresponding* to the components of forcef  The quantities K u  are then the 
extensions of the lengths of members of the general structural layout. This follows from (1.1.1), which 
gives t K u  = fu,  which is the principle of virtual work. The problem of(1.2.5) can thus be interpreted as the 
determination of that virtual displacement of the nodes of the most general structure, which is restricted 
so that the corresponding strain in all potential members has modulus ~< e and which gives a maximum 
value for the work done by the given external forces. The theory of duality in linear programming gives 

Vm~n = Wm,x (1.2.6) 

and so the problem of determining the minimum structural material for an optimum structure is reduced 
to solving the problem of (1.2.5) 

The solution to (1.2.5) gives in fact complete information about the layout of the optimum structure 
as well as the values of the end loads in the members for a statically determinate optimal solution. This 
can be formulated by introducing 'slack variables' in the first of(1.2.5) and writing it as 

where 

n 

2 K~iu~+u.+j  = el~ q = 1,2 . . . .  m) 

i = 1  

n 

2 K j i u i + u , +  j = eli {j = 1,2 . . . .  m) 

i = 1  

u,+~,u',+j >~ 0 ( j =  1,2 . . . .  m) 

(1.2.7) 

An appropriate numbering of the equations then allow~ , , ,  (i = 1 .2 - t ) .  u',+i(j = t + 1 , - n )  to be the 
non-basic variables in a basic optimal solution of (1.2.5). The determination of this solution will then give 
the relations 

t B 

1 
W = Wmax--~sI2Zj,n+j "~- 2 Zj'rn+jl 

j = t  j = t + l  

(1.2.8) 

*Displacements at fixed supports are not included or alternatively should be taken as zero. 
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and as is shown in the standard proofs of duality theorems (see Ref. 1), an optimal solution to (1.1.6) is 
given by 

t) = zj (j = 1, 2 ---t), t~ = 0 (j = t + 1, ---m) (1.2.9) 

ty = z) (i = t + 1, ---n), t)' = 0 (j = 1, 2 ---t, n + 1, ---m) 
/1 

This solution has tensile end loads in members for which u~+j = 0 or L K j, u, = el~ and compressive 
i=1 

!I 

end loads in members for which u'n+i = 0 or ) 'K j~  u~ = -eli. The layout of the optimum structure is 
l = l  

thus determined by those segments connecting nodes, which have strains __ e in the virtual deformation 
of (1.2.5), the tensile members lying along segments with strain (+e) and the compressive along those 
which strain (-e) .  Equation (1.2.9) gives the end loads in equilibrium with the given external forces for a 
structure with this layout. The corresponding cross sectional areas are given by t~/~ and tyfir and the 
total volume of material so determined is given by (1.2.6). This demonstrates the existence of a structure, 
which satisfies Michell's criterion for an optimum structure: 

'A structure is an optimum if it can carry the given external forces with corresponding stresses _+ a in all 
its membersand if further it allows a virtual displacement of its possible nodes which produces strains of 

(_+ e) ig its tension and compression members respectively and which further produces no strain of 
absolute value greater than 8 in any segment along which a potential structural member could l ie '  

(1.2.10) 
The sufficiency of the condition (1.2.10) follows from the principle of virtual work, which for a 'Michell 

m 

)'(Gaj) (eli) = ,e V. However W = fu/ae by (1.2.5) and so W = V. This means, structure' givesfu 
j = l  

since W ~< Wma x = Vmi . ~< V that V = Vmi n and that the Michell structure is an optimum. 
An optimal solution to (1.2.5) may be 'degenerate'. This will mean that the layout determined by seg- 

ments connecting nodes, which have strains of modulus e, will give a statically indeterminate structure. 
If (1.1.1) can then be solved, in terms of redundant parameters, to give end loads which are consistent with 
the sign of the strains in the sense of (1.2.10), then a class of optimum structures will be obtained, which 
will have the same volume Vmi n and will include the statically determinate structure of (1.2.9) as a special 
case. 

2. Method of Calculation. 
2.1. Equations for Two-Dimensional Frameworks. 

The method of calculation of optimum structures given here is based on (1.2.5). The formulation will, 
for simplicity, be confine_d to plane structures, but the method is readily generalised to three dimensions. 

Let the region to be occupied by the structure be covered by a grid of points P~ (i = 1, 2---k) with 
co-ordinates (xl~ , Xzi) referred to rectangular co-ordinate axes xl, x2. The points of application of the 
given forces and the points of fixed support, if any, must be included among Pi. The remaining points 
should be sufficiently numerous to generate structures of practical generality. Possible members of the 
structure can be taken to lie along all segments P~ P~, but some segments may be excluded if the require- 
ments of the design demand it. 

The virtual displacements at Pi are denoted by (uu, u2i), where the appropriate displacement compo- 
nents at fixed points are taken as zero. The condition on strain, expressed by the first of (1.2.5), can then 
be written for a segment P~ Pj as 

I(x~,- x~) (u , , -  u~j)+ (x~,-  x~j) (u~,- u~) I ~< e { (x , , -  x~j) 2 + (x~,-  x~j) ~ } (2.1.1) 



Such relations must be written for all pairs of points, which give independent restrictions on the displace- 
ments. For computation it is convenient to replace ul~, u2i (i = 1, 2 . . . . .  k) by e vi (i -- 1, 2 ---n), in other 
words to return to the formulation of (1.2.5)with the slight change of notation 

u = e v (2.1.2) 

The complete set of relations (2.1A) can then be written 
n 

2 a j , ~ ) i l ~ b j ( ] ~ l ,  2--m ) (2.1.3) 
/ = 1  

which are equivalent to the first of (1.2.5), but in a more readily computable form. 
The problem of (1.2.5) can now be reformulated in the present notation. It is convenient to.modify the 

formulation of (1.2.7) so that the standard 'upper bound' techniques can be applied and to write 
n 

2 ai~vi+v,+ i = bj (j = 1,2---m) 

i=l 

v.+j+v'~+j = 2bj (j = 1, 2---m) 
(2.1.4) 

v.~.j, v~,+j 1> 0 q = 1, 2 ---m) 
n 

a W = ) f  v~ Max. 
/ . . . . . . . a l  

i=l 
n 

The first three lines of (2.1.4) are equivalent to (2.1.3), since they confine ~ '.aji t:j to the range ( -b j )  to 

i = 1  

(+ b j). The layout of the optimum structure is now determined by v, + j = 0 and v', + ~ = 0, which determine 
tension and compression members respectively. In the computing program the variable v,+j is denoted 
by its index n + j ,  while V'n+ J is denoted by - ( n + j ) .  

2.2. Data for  the Computer  Program. 

A computer program which solves the problem of (2.1.4) is given in the Appendix. The data for this 
program may be given either in the form of the contents of (2.1.3) or more conveniently by the specification 
of the points Pi. These two cases are distinguished by the values 0 and 1 respectively of a parameter p*. 

The data following p = 0 is as follows : 
o ; n ; m ;  

bl ; a~ 1 ; a12 ; . . . .  aln; 

bz ; a21 ; a22 ; . . . .  a2n; 

bm; aml ; amz ; . . . .  amn; 

O; --f t ;  --f2; f , ;  

(2.2.1) 

*A third value p = - 1 is used to terminate the program. 



where the first zero gives the value of p, n is the number of variables v~ and m is the number of inequalities 
(2.1.3) or of slack variables v,+j or v'n+ j. The next m lines give the constants of the first of (2.1.4) and the last 
line is formed using the coefficientsf~ from the function to be maximised. The data following p = 1 is as 
follows : 

1 ; n ; m ; n ; k ;  

Xll;X21;rl;gl;hl;Sl;  

xt2;x22;r2;~2;h2;s2; 

Xla;X2a;ra;ga;ha;sa; 

X l k ;  X2k; rk; gk; hk; Sk; 

C l l ;  C 1 2 ;  - -  _ _ ClSl, 

¢ 2 1 ;  ¢ 2 2 ;  --  --  --  C2s2;  

(2.2.2) 

Ckl ; Ck2;  . . . .  Cks~; 

o; - A ;  - A ;  . . . . . .  

where the first term gives the value of'p, the second and fourth the number of variables v~ and the third 
an upper limit for the number of inequalities (2.1.3). If the actual number of inequalities generated by the 
program does not exceed m the calculation will continue. The fifth term gives the number of points Pi 
and the next 2k lines give the co-ordinates (xl~, x2~) of P~, as well as information about the virtual dis- 
placements at P~ and the segments Pi P j, which are to be excluded from the constraints (2.1.3), because the 
corresponding members are not allowed. The program automatically excludes segments, which can be 
constructed by joining two or more adjacent collinear segments together• These would, if retained, only 
duplicate the constraints imposed by their component parts. 

The variables v~ are allocated to Pi in the strict order of these points with the xf-components preceding 
the x2-components. If P1 is free its virtual displacement will be (vl, v2). If P2 is free to move in the x 1- 
direction only, its displacement will be (v3, o) and if Pa is free to move in the xz-direction only, its displace- 
ment will by (0, v4). If P4 is completely free, then its displacement is (vs, v6) and so on. The index r~ then 
records the lower index of the variable or variables associated with P~. A fixed point will have no variables 
associated with it and in this case r~ records the index which would have been used first at P~, if it had been 
free. If for example Ps is fixed, its displacement will be (0, 0) and since v6 was the last variable for P 4 ,  the 
value of r5 is 7. The quantities g~ and h~ record the freedoms assumed for P~. If g~ = 1 then P~ is free to 
move in the xl-direction, but if g~ = 0 such movement is prevented. Similarly if h~ = 1, P~ can move in 
the'x2-direction, but if hi = 0 movement in this direction is not allowed. 

The quantity s~ gives the number of points p~(j > i) for which members Pg Pj are excluded. The actual 
values of j, if s~ :p 0, are given by ci,1%2 ---c~,,~. If si = 0 no record is to be made in the corresponding 
row i.e. %1 etc. are left out of the data. 

The last line of (2.2.2) is the same as the last of (2.2.1) and records the values of f ,  wheref~ is the external 
force corresponding to v~. 

Several problems may be included in the same data presentation, if they are headed by p = 0 or p = i 
as appropriate. Such data should end with p = - 1, which will terminate the calculations. 
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2.3. Example of Data Presentation. 

As an example consider the problem of Fig. 1. Forces F are applied at P1 and P2 and the points P3 
and P4 are fixed suoports. The co-ordinates of P~ are given in the figure, as are the segments for possible 
members of structures designed to transmit the forces F to the supports. The only excluded segment is 
P3 P4' 

The variables vi (i = 1, 2,--4) are assigned to Pi (i = 1, 2) as shown in the figure and the constraints 
corresponding to (2.1.1) or equivalently by (2.1.3) are 

Iv2-v4l ~ 1 fo rP1P  2 

Ivll ~ 1 fo rP iP3  

Ivl+v2[ ~<2 forP1P4 

Iv3-v41 ~ 2 forP2P3 

Ira1 ~<1 forP2P4 

(2.3.1) 

The data for this present problem can now be written using (2.2.1, 2). The two forms occur in succession 
in the following presentation : 

0 ; 4 ; 5 ;  

1;0:1;0;-1; 

1 ; 1 ; 0 ; 0 ; 0 ;  

2 ; 1 ; 1 ; 0 ; 0 ;  

2 ; 0 ; 0 ; 1 ; - 1 ;  

1 ; 0 ; 0 ; 1 ; 0 ;  

0 ; - 1 ; 0 ; 0 ; - 1 ;  

1 ; 4 ; 5 ; 4 ; 4 ;  

1 ; 1 ; 1 ; 1 ; 1 ; 0 ;  

1 ; 0 ; 3 ; 1 ; 1 ; 0 ;  

0 ; 1 ; 5 ; 0 ; 0 ; 1 ;  

0 ; 0 ; 5 ; 0 ; 0 ; 0 ;  

4; 

0;-1;0;0;  -1;  

-1; - -~  

(/9, n, m) 

(] v2- va I ~< 1) 

(Ivl I ~< 1) 

(Ivl+v21 ~< 2) 

(Iva - v41 ~< 2) 

(I vs I ~< 1) 

(Max. F(vl + v4)) 

(p,n,m,n,k) 

(P1 is free with displacement (vl, v2)) 

(P2 is free with displacement (va, v4)) 

(Pa is fixed; next variable is v5 ; Pa P4 excluded) 

(P4 is fixed; next variable is still vs) 

(Pa P ,  is excluded) 

(Max. F(vl + v4)) 

(Terminates the program.)- 

(2.3.2) 

2.4. Output of the Computer Program. 
The output from the computer program of the Appendix has the following form: 



FAEBDL200KP7 

STR 30 (output on line printer) 

ITER 
(number of iterations) 

LEFT 
(variable becomes 
non-basic) 

ENTER 
(variable becomes 
basic) 

F U N C T I O N  
(value of the objective 
function aW) 

RESULT 
(no. of variable) 

SLACK 
(no. of variable) 

(value of variable) 

(partial cost) 

(2.4.1) 

STRUCTURAL MEMBERS 
(Number of all potential 
structural members i.e. number 
of corresponding slack variable 
and sign of end load) 

CROSS SECTIONS 
(cross sectional area 
of member) 

V O L U M E  
(area times length of members) 

TOTAL V O L U M E  (total volume of the structure) 

In the case when p = 1, i.e. when (2.2.2) is used, the inequalities of (2.1.3) are also recorded on paper 
tape, in a form which can be used in future calculations using (2.2.1). 

The program is based on the 'simplex method'  of solving linear programming problems. The output 
given under ITER, RESULT, SLACK records the details of the interations and is useful for checking 
and for estimating computing times for similar problems. 

The numbers recorded under STRUCTURAL MEMBERS list all potential structural members as 
well as the sign of the end load that they must carry. The requirements of statics i.e. (1.1.1) may well 
give zero values of the end loads in certain cases and will thus eliminate some of the members. In general 
the solution obtained using (1.1.1) will be indeterminate. However the present program selects a statically 
determinate solution, after the manner of (1.2.9), and calculates the corresponding areas 0f cross section 
and member volumes. The total volume obtained by summing over all members should agree with the 
last entry under FUNCTION.  

The program terminates after p = - 1 in the data. If the estimate ofm in (2.2.2) is too small the program 
will print C O U N T I N G  ERROR. In the case of errors in formulation, which give data with no optimal 
solution, the program will terminate and print U N B O U N D E D  SOLUTION.  

2.5. Example of Output. 
The data of (2.3.2) give the following output:  

FAEBDL200KP7 

STR 30 

ITER LEFT ENTER FUNCTI  O N  
1 6 1 1"0000001o + 0 ; 
2 - 5 4 2"0000001o + 0 ; 
3 7 2 3"0000001 o + 0 ; 



RESULT 
4 2"00000010 +0;  
1 1"00000010 +0;  
2 1"0000001o+0; 

- 8  0.000000 ; 
9 1"0000001o +0;  

SLACK 
6 0.000000 ; 
7 1.0000001o +0;  
3 0.000000 ; 

- 5  1"0000001o +0;  

STRUCTURAL MEMBERS CROSS SECTIONS VOLUME 
- 8  

6 
7 1-41421410 + 0; 2"00000010 + 0; 

- 5 1"00000010 + 0; 1"0000001o + 0; 

TOTAL VOLUME 3.0000000010 + 0; 

It is seen that three iterations were required and that the optimum value of the objective function is 
30, which agrees with the 'total volume' and gives a structural volume of 30F/tr for the problem of Fig. 1, 
when the side of the square is of unit length. The program began with the basic variables vs, ---v9 and 
non-basic variables v~, ---v4. It ended with basic variables Vl, v2, v4, v8 and v9 and with non-basic variables 
v3, vs, v6 and vv for the optimal solution. The actual values are recorded under RESULT. The virtual 
displacements corresponding to the optimal solution are thus vl = 1, v2 = 1, v 3 = ~0 and v4 = 2; v 3 is 
non-basic and therefore zero. 

The most general structure satisfying Michell's strain criterion of (1.2.10)has members corresponding 
to v6 and v7 in tension and vs, va in compression. This is shown in Fig. 2a. However the equilibrium 
of the nodes P1 and P2 shows that P2 P3 and P1 P3 will have zero end load. The optimum structure 
is thus that shown in Fig. 2b. This agrees with the specification given under STRUCTURAL MEMBERS. 

3. Examples. 

3.1. Cantilever under Tip Forces. 

Consider the problem of Fig. 3a. An optimum structure is required to transmit the force F to the two 
fixed supports Ptl  and P'~ r The corresponding virtual displacement system is anti-symmetric about the 
line Plo P1 and is defined approximately by the displacements V1 to V18 of the nodes of the grid of 
Fig. 3b. For simplicity the possible structural layout is restricted to segments joining nodes of this grid 
and to their mirror images on the other side of P10 P1. * 

* Calculations which allow members to cross the line of symmetry give in fact the same volume and 
layout. 
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The data ~r th is  problem assembledin the manner of(2.2.2)is 
1 ;18;80;18;12;  

6 ; 0 ; 1 ; 0 ; 1 ; 1 ;  

6 ; 1 ; 2 ; 1 ; 1 ; 0 ;  

6 ; 2 ; 4 ; 1 ; 1 ; 0 ;  

4 ; 0 ; 6 ; 0 ; I ; 1 ;  

4 ; 1 ; 7 ; 1 ; 1 ; 0 ;  

4 ; 2 ; 9 ; 1 ; 1 ; 0 ;  

2 ; 0 ; 1 1 ; 0 ; 1 ; 1  

2 ; 1 ; 1 2 ; 1 ; 1 ; 0 ;  

2 ; 2 ; 1 4 ; 1 ; 1 ; 0 ;  

0 ;0116 ;0 ;1 ;0 ;  

0 ; 1 ; 1 7 ; 0 ; 0 ; 0 ;  

0 ; 2 ; 1 7 ; 1 ; 1 ; 0 ;  

4 ;7 ;10 ;  

O ; - 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ;  

- 1 ; - - * - ~  

(3.1.1) 

The value of m = b0 tl,t~ t3cc11 taken large enough so that COUNTING ERROR will not arise.* The 
segements P1 P4, P4 P7 and P7 Plo have been excluded since they will have zero strains and cannot form 
part of the layout of an optimum structure. 

The final part of the output for this problem is" 
STRUCTURAL MEMBERS CROSS SECTIONS VOLUME 

4.00000010 + 0; 
4.00000010 + 0; 

1.0000001o + 0; 
1.0000001o +0;  (3.1.1) 
1.0000001o + 1 ; 

4.00000010 + 0; 

5.0000001 o + 0; 

43 
- 2 0  
- 5 8  
- 1 9  

33 
- 2 5  
- 51 2"0000001o + 0; 
- 21 1"4142141o + 0; 
- 4 6  

26 
39 
56 1"0000001o + 0; 
53 1"0000001o +0;  

- 5 4  4"4721361o +0 ;  
- 6 2  

49 1.4142141o + 0; 
- 4 5  
- 4 0  
- 61 2.2360681 n + 0; 

TOTAL VOLUME 2.9000000010 + 1 ; 

*The number of constraints cannot be larger than kc  2 o r  66. The actual number for this problem is 46. 
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This gives in the first column all the segments along which potential members of the optimum structure 
may lie, identifying them by their corresponding slack variables and also picking out, with a minus sign, 
those which will carry compressive loads. This layout of potential members is shown in Fig. 3c. Equilibrium 
at the nodes shows that many of these members have zero end load and so can be omitted. The resulting 
structure, which has redundancy of order three, is shown in Fig. 3d. A special case, which is statically 
determinate and is in fact given by the program, is shown in Fig. 3e. The required cross sectional areas 
are also shown on this figure. It is to be remarked that the areas given in (3.1.2) are the totals for each 
member and its mirror image. 

The total volume of material required for thi~ design i~ I,,,,, - 29 Fda*. This applies to Fig. ~kl ,~, 
well as to Fig. 3e thanks to (1.2.6). It is of interest to compare it with the result given in Ref. 4 in Fig. 25, 
which solves the same problem using a finer grid and gives Vm, , = 27'6 Fd/m The result for an infinitely 
small grid as given in Ref. 4, Fig. 16b is Vm~,, = 26 Fd/G. 

3.2. Cantilever with Distributed Forces. 
The problem of Fig. 4a can be resolved approximately, using the grid of Fig. 4b, and replacing the 

distributed forces by the concentrated forces F and F/2. The points P2o, P~0 are taken to be fixed and as 
in Section 3.1 the members are restricted to those which do not cross the line of symmetry P~ P19- For 
this problem n = 33 and m = 134. The virtual displacements corresponding to Wmax are shown in Fig. 4b 
and the corresponding structtiral layout in Fig. 4c. The statically determinate structure given by the pro- 
gram is given in Fig. 4d. All these optimum structures have a volume Vmin = 67"3 Fd/cr. 

3.3. Cantilever under Tip Force with Restricted Layout. 

In Fig. 5a the force F is to be reacted at the fixed segment P25 P27 in such a way that no part of the 
structure shall lie below P1 P25. The grid used for an approximate analysis is shown in Fig. 5a, which also 
indicates the n = 33 displacement components which define the virtual displacement. This problem has 
m = 251. The general solution is shown in Fig. 5b and the statically determinate solution, given by the 
program, in Fig. 5c. The required volume of material is Vmln = 29 Fd/a. 

3.4. Machine Tool Structures. 

The problem of Fig. 6a is basic to many machine tools. The forces F must be balanced by a structure, 
whose members are not allowed to enter the shaded region of width 2b shown in the figure. Fig. 6b shows 
an identical problem in which the width 2b is reduced to zero with the gap, now reduced to a half-line, 
retained. The grid assumed for this special problem is also shown, as are the displacement components 
required for the analysis. Symmetry requires that displacement components on P1 P17 normal to the 
gap should vanish to the left of P 9. They need not vanish to the right of P9, but must be equal and opposite 
on either side of the gap. The point P is taken as fixed, t 

The solution to this problem is given in Fig. 6c, which has Vmi  n ~--- 13.6 aFfir. This suggests that the 
'exact' solution, with an infinitely small grid, will have the form given in Fig. 6d. This structure is in fact a 
Michell optimum structure for the region it covers. It consists of two concentrated members in the form 
of semi-circles joined by a straight tie, together with two 'fans of spokes' or equivalent tapered plates 
joined with a further tie connecting their centres. The volume of this last structure is 

Vmi n = 2(2r~a+ 3b)F/tr, 

which may perhaps be used to assess the efficiency of actual structures. 

(3.4.1) 

*This corrects an error in Ref. 2 in Fi~. 8 and paragraph 3.2. The results given there contradict (1.2.6). 
t Rigid body displacements do not affect W. 
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Some further results for cases where the given forces are inclined at various angles to the line of the cut 
are given in Fig. 6e. For these problems there is no symmetry and values of n = 56 and m = 188 were 
required.* The constraints were generated using the data form of (2.2.2), which permitted the exclusion of 
the members crossing the gap to be automatically accomplished. 

Finally, consider the similar problem of Fig. 7a. Here the excluded region is finite and the problem 
doubly symmetrical. The assumed form of deformation is shown in Fig. 7b for the ideal case b = 0. The 
corresponding optimum structure, which has a Vmi n = 6"6 Fa/cr is given in Fig. 7c. An 'exact' solution 
for a finite width slot is suggested in Fig. 7d. This has a similar form to that of Fig. 6d and may be inter- 
preted in the same way. Its volume is given by 

Vmi,, = 2(rca + b)F/rr (3.4.2) 

*These problems took about 18 minutes of computing time on KDF9. 
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APPENDIX 

Some Remarks  on the Program:  

(i) This program is coded by using the original simplex method (Ref. 1 Chapters 4-5). No claim is 
made that this is the most efficient algorithm. It is chosen because easy modifications can be made to 
accommodate some special features mentioned below. 

To begin with, no phase 1 is necessary because an initial basic feasible solution is given (see (2.1.4) with 
v,+i being basic variables). However, two additional features have to be taken into account. Firstly, the 
slack variables v,+j are non-negative and are bounded by 2bj. The upper bound technique as given in 
Ref. (1) § 11-7 can be used to take care of this situation without the second line of (2.1.4) appearing ex- 
plicitly in the simplex formulation. Secondly, the variables vi (i = 1 . . . .  , n) can be either positive or 
negative. This can be done in actual computation without introducing additional variables (e.g. by writing 
vi = vl + - v l - )  by following the procedure of Ref. 5. 

No anti-degeneracy procedure is incorporated in this program. 
(ii) The data generating part of the program (i.e. for p = 1) works only for plane-frameworks. However, 

space frames can be calculated if the data is in the form of p = 0. 
(iii) No special structure of these L.P. problems has yet been observed apart from those mentioned 

in (i). Although the number of zero coefficients in the constraint matrix are large, it is felt that not much 
computer time could be gained by taking this into account, nor that computer storage Jlm~tation would 
arise for moderate design problems. However, it is noted that storage problems may cause difficulty in 
space framework design. 
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begin library AO~A6,A12; 
integer p~n~m; 
open (20); open (30); 

• p.=read(20); 
START. n:=read(20); m~=read(20), 

write text(30~[[10c]]); 
begin array b[Oom~Oon---/~ub~n+ml ; 

integer i~J; 
integer ~ x[ I ~n+m] ; 
for i~=I step ~ untll n+m do x[i]~=i; 
if p=o then goto READ else o~to GEN; 

READ: TSr I untll m--q  
g ~  ~ i~=O step I untll n do b[J,i]:=read(20) end9 

GEN: begin ~ nggkg; 
ngo=rea~%20), kg~ =read (20); 
open(to), ga (10 2 O);. 

begin array xg~ yg, cg~ sg [ ~ o kg], integer array .pg, qE, ug, vg [ I • k~], 
zg~]-F~gx(kg~ I )/2]; Ip=te~ ig, Jg, rg,a~bg, 

real w; 
procedure generate ( or, oJ ) ; integer or, eJ; 

bg~=O; 

if pg[oJ]>1 trren for ao=1 step I until pg[oJ~-1 do 
begin b[I~7~7 bg~=bg+-~end; 

if ug~oJ!=1 then be~ b[ig.~pg]-~] ]'=eg[o.r];bg:=bg+1 end, 
if vg[oJJ=~ then begin bSig~bg+1]:=sg[or] , bg:-b&~1 end~ 

!f--6g+1< pg[orT--t6eh-T6~ ao=bg+1 step I until pg[or]-1-~o 
begln b[ig~aj ~=0;-~o~=bg+1 end; . . . 

if~r!=1 then ~ b!ig~pg--~r!].=-cg[or],bg:=bg+1 ~, 
i_~f vg[or]=1 ~ bae~ b[ig~bg+1].=-sg[or], bg:=b~+1 end, 
if bg<ng then for a~=bg+! ~ I until ng do 

begin b-~ig~--~=O~ bg~=bg+1 end 
end; 

procedure output; 
begin ~ mg;. 

mg~=O; gap(~O~ I0); write text(10, [ [e] ])~ 
for a~=O step I until ng do 

mg :--mg+ I ; 
if rag=-5 then begin write text(10,[[c]]);mg:=1 end; 
i-f b[ig~a--~ %-hen~write (10,format~In~ .])'b[Ig#a-~-else 
--write(10.,fo~aaEE~_~dodddddddddd,+nd;.~Y~.Lig, a]) _ 
end; write text~10~[[c]]); gap(10,10)~ Ig:=i~+1 

• end; 
for ao='~tep I until kg do begin xg[a] :=read(20);yg[a]:=read(eO); 

pg~ :=read _~; ug~[7~re ad~O~a ] : =read (20); ~ [ a] :=read (~0) end; 
for ao.=1 step I until kg do begin if q~[a]@6 then 
for Ig°=1 step ]-~I qg.~] do be~n 
• ~'=(~xkg~a--7~a~13-/~- zg[Ig+~] ~=read(20) end end,  
ig~=1 ; 
for Jg~=1 step I until k~ do 
begin for rg~=Jg+--q, step I ~-til kg do begin 

cg[r--g--[~=xg[Jg]~xg--[~] ;sg--'~=yg'~g~rg] end; 
if qg[Jg]#O then for a~.=1 step I until qsLJg] do 

begin bg'=(2xkgTJg--~[Jg--~Y~ )/2,if~a+bg]=Jg+1 then ~'6to NEXT end; 
generate (Jg+1 ~Jg) ; ou~-put; 
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NEXT: for rgz=Jg+2 stej~ ~ tuutii kg do 
begin I f~g[jg~]#O thVe~ for a~= st~ I until qg[Jg] do 

if cg[rg]=O then for a~=Jg+1 ste~ I un%-i-i rg-1-do ........ 
begin w:=cg[a]; if w=O then o~ SHOT end; 

if~g]=O then fb-~ a:=Jg+-UTT~ste~ I untll rg-1 do 
b-egln w ~ =sg [a~ =If-~=Q then ~to SHO~ -e-n-d; 

i~-cgVrg]#O and sg~rg]~O ~-h~n b-egin -- 
for a~=Jg+1 step I until rg~1 do begin 
--if cg[alxs-~a~i~n oegi-n-w~=cg---[a]/cg[rg]~. 

i~f w=sg[a]/sg[rg]-~n ~t0 SHOT end end end, 
generate (rg~ jg) ~ out, pu~ . . . . . . . .  

SHOTt bg:=O e_nd end~ 
ig: =ig- I ~ 
gap(10,120); write[~0~format.([~nddd~c] ),ng); 
write (I0~ format ([~nddd; c] ) ~ig)~ " 
close(IO); ~ " ~  

if n~ng and m>ig then be~.n n~=ng;m:=ig;Eoto LP end 
........ else begin ~ite ~t~o~[2c~countlng*error[cc~T[;Eoto_ EXIT 
end end end; 

LP : for i:=O step ~ until n do b[O~i]~=read(20); 
J:=1 Ste~ ~ ~ m do ub[J+n]~=b[J~O]+b[J~O]; 

w--r-fte ~ext-q~ [ Ite-~Ss~L~t [ 8s ]Enter[ 8s ] 9ktnction [3c ] ] ) ; 
begin inte_~ r~s~q~k; 

real ds~dr~v; 
y[O~n~z[O~m] ; 

k:=1~ 
LPE: ds~=O~ 

for i~-=I ~ ~ until n do 
be~n if b[O~i]>O ~bs(x~])<n then ~ x[i]==-x[i]~ 

if ds>bLO~iJ then b_eeF~ ~:=b[~iJ;s~=i end 
end; if ds=O then /lqko FINE~ 

LPL: dr~=999999; r:=O; 
for J~=1 s.te~ I until m do 

belg~ If--6[J~s]<O-and abs-~.J+n~>n ~hen _begin x[J+n] :=-x[J+n]; 
' - -  b [ J~O]  : =uTFabs  ( x [ J + n . ] ) ] ~ b [ J ~ O - ~  - 

_fo_rr i:=I ste~ I ~til n duo b[J~i]:=©b[J,i] 

b[J,s]>O then begin if dr>b[J~O]/b[J~s] then 
dr:~O~Tb[J~s];r:=J end end 

end; 
If--~s(x[s])~n and ub[abs(x[s])]<dr then begin x[s]:=-x[8]~ 
-- .for J:=O s~__qg~ oe_q_eF~n ~ s t ~ e  -~ "~ unbll m do be in----~ ~-b[J~s] ° 

--6TJ~o] ~:b~-O]+ub--~s(x~]-y]xb[J~s] end_;goto LPE end, . 
if r=O then-begin write text (30~ [ [ oo]Unbounded~utlonI~] ] ) 

g~to EXIT e.~nd; 
LPC: for iT=n ~ ~I until O do 

_ ~  y[i]~b[r~i ;~Tr, i~=O end; 
for J:--m step ~I until o do 
begin z [ j ~  [ .~ ~ s~-~J ~ s~=O end; 
v:=y[s]; z[r]:=-1; y[s]~=1~--- 

for i:--n s t _ ~ .  ~ unti ! 0 do 
begin for J-=m step -I until 0 do 

begin--b [ J ~i] ~ = b ~ ' ~ i  ]~~y[ i~-/v~ 
if abs(b[J~i])<m~O then b[J~i]~=O 

end end; 
~8 



q:=x[s] ; x[s] :=x[n+r] ; x[n+r] ~=q; 
write ('30~format ( [nddd] )~k); 
write (30, format (~7s ~n~dd ] ) ,x [ s ] ), 
write (30, format (T8s-nddd~) ,x [n+r] )" 
write ( 30, format (I8s~do dd~dddm+nd; c i) , b [ O ~ 0 ] ) ; 
k:=k+1 ; o~ LPE 

end; 
FINE: write text (30,[[6c]Result[4c]]); 
for J:=1 step I until m do ~ wrlte(30,format([8s-nddd])~x[n+j]); 

write 3T~ fo~12s~-ddo ddddddm+nd; c ] )~b[J~O] )--end; -- 
write text (30, [ [4c-~Slack[ec ] ] ) ; -- 
for i:=I step I until n do begin write(30,format([8s~nddd])~x[i]); 

wri--~(30~format([1 s~dodddd-ddm+nd;c])~b[Osl]) end, -- 
~ite text (30,.[ [ 8c~Structural*membersT8s ] cross*sections [ 12s ] volume [4c ] ] ) ; 

begin real a , f ; ~  v; 
f ~  for $-=I step I until m do begin 

v: =aDs (x~J ] ) ~ --- ~ 
if v>n and b[J,O]=O then wrlte(3Osformat([Ss~ndddc])sx[n+J]); 

if v>n--~d b[J,O]~] then -- --~ 
-- writ e---~O, format(_[Ss-nd~_]),-x[n+J] ) end; 
for i:=I st~.1 until n do 
---Tf abs(x[il)>n then beg-fn 

w-rite ( 30 ~ format TI~-nd--~) ~x [ i ] ) ~ 
if b[O,i)#O then be~in v:=a~s(x[i]),a~=b[O~i]xsqrt(ub[v]/2); 
-- write ( 30, f-'6-~a~s-d o ddddddm+nd; ] ) s a) 
a: =axs qrt !ub [ v]/2 ) ;-- f: =f+a; 
write (30,format ( [ 12s-doddddddm+nd;c] )~a) end else 

write text (30~[ [c]] ) end end; . . . .  
write text (3~[Tffc]t-6-ta~-*volume]) 
write ( 30, format-~[ 1~s-d° ddddddddmTnd; c_] ) ~ f ) 

end; 
:XIT: write--text (30, [ [p] ] ).; 

p:=read(20); -- -- 
if p>O then goto @TART; 
e--los e (20--IT- close(30) 

--nd 
,_d ~ 

Note:  To avoid rounding-off errors the programme sets numbers b[j, i] < 10 - l °  equal to zero. This 
restriction has been generally satisfactory for problems solved on the Oxford University KDF9 computer, 
but one rather ill conditioned problem required a coarser limit of 10-7. Users may find it necessary to 
introduce such a coarser limit on other machines for some or all of their problems. 
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