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Summary. 
For free-stream Mach numbers between 10 and 4, a study is made of the profiles assumed and isentropic 

waves produced in non-viscous flows by two-dimensional sails, under pure tension and of finite weight. 
At the higher free-stream Mach numbers, large parts of the compression flow are virtually centred, and 
even for long sails (e.g. 100 ft chord) at a high Mach number (e.g. 10) and low stress (e.g. 5 tons/in2), the 
weight of such a membrane need not exceed 1 lb/ft 2. The analysis is modified to include the effects of skin 
friction and is then extended to singly-curved 'caret' sails, which allow leading edges to be swept but can 
still produce two-dimensional waves; while their curvature imparts to such sails a stiffness-due-to-shape, 
it is shown that equilibrium can alternatively be maintained by appropriately applied tensile forces. 
Rectangular and/or caret sails may find applications as wings, intakes, cowls and nozzles for hypersonic 
vehicles. 
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1. Introduction. 

The use of flexible membranes for producing lift and/or drag forces from incompressible flows ~'2 has 
long been regarded as standard technique (e.g. for sailing ships and parachutes). More recently, supersonic 
parachutes for the deceleration of re-entry bodies have been studied in various forms 3'4'5, and since 1960, 
much American work has been reported on the theoretical and experimental performance of the 
supersonic parawing 6" ~4 ; this is a type of lifting device comprising a flexible membrane tethered between 
two stiff leading edge members so as to form (for example as in Fig. la) a conically-curved delta wing. 
Such devices offer the possibility of partial or full retraction or deployment during the flight or re-entry 
of a parent body. 

The flow around such wings is of course rather complex; no attempt appears to have yet been made to 
simplify their aerodynamics by using a cylindrically curved 'waverider' parawing to 'contain' a two- 
dimensional flow 15'16 behind a plane shock wave or waves, as in Fig. lb and lc. However in 1958, Daskin 
and Feldman 17 examined the aerodynamic properties and geometric form of a constant chord sail, which 
they assumed to produce a two-dimensional influence on a hypersonic flow, as in Fig. ld. In their analysis, 
which was based on a modified Newtonian approximation 1 s, they assumed that the sail was of negligible 
weight and stiffness, that tension was constant across the chord (i.e. that skin friction was also negligible) 
and that pressure increments due to sail porosity and boundary-layer growth (or separation) were 
negligible. Daskin and Feldman also stated that they had studied the weight of sails of low and high aspect 
ratio and of delta planform, that of these the weight was largely due to the 'spars' to which the membrane 
was attached, but that when compared with conventional wings of identical materials, stress levels and 
planform, reductions in total weight of 80 to 90 per cent were observed. In 1959, Fink ~9 produced a 
linearised analysis of the impermeable sail in supersonic flow, and in 1960, Boyd 2° extended the analysis 
of Daskin and Feldman by the inclusion of Busemann's centrifugal correction to Newtonian flow; in a 
second paper 21, Boyd re-analysed the supersonic sail by means of simple wave theory according to 
Busemann's Second Order approximation and in 1962 and 1963, investigated 22,23 the effects of porosity. 
All analyses have indicated that sail profiles would have a progressive increase in camber towards the 
trailing edge, but as far as is known, no tests on the aerodynamics of two-dimensional sails have been 
reported, though tests on rigid, concave, wedges in supersonic flow have been reported by Johannesen 24, 
Connors, Woollett and Blue 25, Chapman 26,2~, Larson z6,2~ and Kuehn 26"2a, Sterrett and Emery 29, and 
unpublished work briefly mentioned by Ferri a° : however, all these tests were primarily aimed at investi- 
gation of compressible boundary layers in adverse pressure gradients, or of the achievement of centred 
compression. 

i 

In this Report, analyses are presented for two-dimensional sails producing isentropic effects on super- 
and hypersonic flows of zero or finite viscosity; the assumptions made are that membrane weight and 
upper surface pressure are both finite, but that, as in other analyses 17,19-21, stiffness and pressure incre- 
ments due to porosity and boundary-layer growth (or separation) are negligible. Over a wide range of 
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inflow Mach numbers and for extents of isentropic compression which would be useful for wings or 
intakes, it is found that two-dimensional sails in non-viscous flow can produce very nearly centred 
compression (i.e. reversed Prandtl-Meyer waves); furthermore, even for long sails (e.g. 100 ft chord) at high 
Mach number (e.g. 10) and low stress (5 tons/in2), the weight per unit wetted area of a steel membrane 
need not exceed 1 lb/ft 2. In addition, a form of sail is proposed by which two-dimensional isentropic 
compression would, in principle, be produced and contained at design conditions, but to which single 
(but not necessarily conical) curvature imparts a stiffness-due-to-shape: it is then shown that exploitation 
of this stiffness can be reduced (to zero if required) by application to the sail of appropriate tensile forces. 
Suggestions are made for the application of sail techniques in the design of wings, intakes, cowls and 
nozzles for hypersonic vehicles. 

The analysis does not include any consideration of membrane stability (either static or dynamic), and 
does not cover low-speed or transonic flight speeds. Flutter, divergence, creep and material degradation 
at high temperatures are recognised as possible problems, but are not considered in the present analysis. 

2. Properties of Rectanoular Sails in Newtonian Flow. 
Daskin and Feldman 1~, Fink 19 and Boyd 2°'21 have shown that a rectangular membrane tethered 

along its leading and trailing edges and held at incidence to a uniform free-stream can 'fill', and so form a 
two-dimensional sail which, with no intermediate constraints and at constant tension, is maintained in a 
particular profile by the pressure field so generated. The four analyses are based respectively on New- 
tonian 17, linearised 19, Busemarm-Newtonian 2° and Busemann Second Order 21 theories, and as a 
consequence, predict differing profiles: 

(i) Daskin and Feldman t 7 (upper surface pressure assumed p. = p ~. cos z 0): 

[ ° T = cosec O -  cosec 0, Pref._.___YY 1Oge tan cot 
T 2" 

(ii) Boyd 2° (upper surface pressure assumed to be zero): 

Pref .  X T ½ (cosec ® -  cosec 2 0 si ~" Pr± Y = cos ® -  cot 0 sin ® = . n ~ ) ,  T " 

(iii) Fink 19 : 

4q~o x 

x / - - ~ _  1 T I 1 4qo~ y = c o s 0 - c o s ® + a o g e  tan ~ . cot 20--- ,x/__M~_ 1 T = sin 0 - sin ® 

(iv) Boyd 21 : 

0 0 

4qoo x = f cosO.dO 4qo~ y f sinO.dO 
T 0 ' V / - - ~ - I  T = 0 

0 ® 

In these expressions, 

Prof. = stagnation pressure behind a normal shock, 

x, y = orthogonal co-ordinates as in Fig. 2a, 

T = tension per foot span of sail, 



® = sail angle at leading edge, 

0 = sail angle at any other point, 

and 

I =  1 M 2 1 
q~=½P~o V z  ?Pref/(7+l) ~ l  ( (~+_)---oo '~7=-r -] 

\2(2~ M ~ - ( ? -  1)) J J"  

Note that although Boyd's Newtonian analysis 2° was for the model of Fig. 2a, his results apply with 
equal validity to that of Fig. 2b in which the inclusion of a wedge is thought to be realistic, both from 
considerations of leading-edge heating and sail tethering. Fig. 2c shows typical sail shapes and it is seen 
that 

(1) they are somewhat similar to streamlines in a Prandtl-Meyer corner flow, i.e. a centred expansion 
or compression wave, but that 

(2) ® = 0 is impossible except for infinite tension, so that some flow deflection and loss of stagnation 
pressure through a leading-edge shock wave must occur for any structurally realistic sail. 

The first feature encourages investigation of sails which produce isentropic compression, since such 
sails might offer simultaneously, a useful type of flow and a low membrane weight; the second feature 
suggests that, at least for sails producing purely isentropic compression, a new analysis is needed rather 
than an attempt to extend Boyd's work. An analysis of the isentropic flow beneath a (supersonic or 
hypersonic) two-dimensional sail, and its relation to that through a centred wave, is described in the next 
Section. 

3. Properties of Rectangular Sails in Isentropic Flow. 
3.1. Sails Producin9 Centred Waves. 

Consider first a weightless, infinitely flexible, non-porous membrane in conditions of zero flow and 
supporting at constant tension a pressure difference, distributed along its length in such a way that the 
profile it assumes is identical with a streamline in a centred (i.e. a Prandtl-Meyer) wave; that is let the 
membrane profile be 

" 4  

r 1 
ro - cos I/k: k 49 (see Appendix A and Fig. 3). (1) 

It can then be shown (again see Appendix A) that the required distribution of pressure difference (P.D.) 
is 

in which 

(P.D.) r o _ (Pl-  Pu) ro 
T T 

1 1 tan 2 k49.cos 1/k:k49 

k2 1(16 ) - = = i f ~  = 1.4 
y + l  (2) 

Suppose now that this same membrane is tethered in a supersonic stream and that the lower surface 
pressure p, is generated by a Prandtl-Meyer wave so that, at any point, 

P ! _  1+ M 2 - ~ =  1 -  1+ tan 2k49 2k* 
PT = F(k49) ; 



then the distribution of pressure on the upper surface required to ensure that the membrane retains its 
shape (and so that equations (1) and (2) retain their validity), is 

p ,o p ro(X  tan2k°cos,, 2k+ p,,0(x ) 
~ - ~  -~ -112 - - - -  1 . . . . .  ~fi-2- T ~ - 1  f(k~)) 

"t l+ tan k+) 

i.e. 

- -  = \ k i # Pr ro/T 

t 1 -~--Z-f_ 1 L 1+~--~ tan k~b 2k 2 

1 ~ f(k dp) 
= r(k dp)- -~ -  l ] ~roTT. (3) 

In Fig. 3 the variation with k¢ of the airflow function F(k¢) is shown and, for various values Ofpr ro/T, 
1 , '~ f ( k  dp) 

that of the membrane function ~-7-1 ) PT ro~-T " It is seen that, for kq~ < 25 ° (approximately) i.e. for 

M < 1-5 (approximately), the slope of the latter precludes any close alignment with F(k ~b); however for 
PT ro/T = 1/1"40 and 1/1.51, the curve for the membrane function crosses that of the airflow function at 
Mach numbers of about  3 and 7 respectively, the former being nearly coincident with F(k~b) at 
30 ° ~< kq~ ~< 70 ° (that is, at lower surface Mach numbers between about 1-75 and 7). But the vertical 
distance by which, at a given k~b and PT ro/T, the airflow function lies above the membrane function is 
equal to Pu/PT in equation (3) and its variation with k~b thus represents the distribution of upper surface 
pressure which is required for a sail at the chosen value ofpT ro/T to produce a centred compression ; thus 
in the range of values of k~b for which airflow and membrane curves are nearly coincident, a sail having 
zero upper-surface pressure might be expected to give 'nearly centred' compression. IfpT ro/T is increased 
slightly, a nearly centred compression might be expected from a sail having a low, constant value for 
upper-surface pressure. For the weightless sail giving precisely centred compression, the necessary 

distribution of upper-surface pressure is shown in Fig. e as the variation of F(kc~)- - 1 ~ j  

with kq5 (i.e. with local Mach number). As is predictable from Fig. 3, rather rapid changes in the function 
are required at M < 1.5. For higher values of Mach number, acceptable (i.e. positive) values of 

LI \ (1  J'~f(k(a)Pr-~o/T _]~lie between the k~b-axis and the asymptote (pTro/T)=oo, for which F(kc~)- k~- 1 

condition 

1 ~ f(k4) _x_ 
F(k~o)- -~ -  1 ] PT ro/T = F(k~)) = 1 + M 2 ," 

as shown from the values tabulated in Fig. 4, the variation of F(kdp) at high values of k~b (or M) is not 
rapid. 

It is emphasised that both Figs. 3 and 4 merely show values which are required to satisfy equation (3), 
but that such values may be unrealistic in the engineering sense; however they encourage the view that 
sails with constant pressure on the upper surface may produce at least some regions of nearly centred 
compression. This view is supported by an alternative analysis due to Pike 31, who has compared the 
radius of curvature of a Prandtl-Meyer streamline with that of a sail having constant tension, zero weight 
and zero upper-surface pressure ; Pike has found that for 7 = 1-4 and M > 7, these radii differ by less than 
3 per cent, and that as M ~ m, their difference tends to zero. 



However neither Pike's analysis nor that above have made due allowance for the effects of independent- 
ly chosen values of upper-surface pressure and/or sail weight. Further, although it is possible to predict 
the pressure distribution required to give centred compression, it may be impracticable or inconvenient 
to provide means for precisely controlling this distribution and in fact, a full-scale requirement might be 
for the sail to be simply tethered at its leading and trailing edges. Furthermore, the combinations of 
PT ro/T and M indicated in, for example Fig. 4, need provide no more than mathematical validity to the 
claim that a sail produces a centred wave; it has yet to be shown that such combinations allow structurally 
feasible sails. Three further steps in the analysis are thus required : 

(1) equations for the profile of two-dimensional sails (with finite weight and upper-surface pressure) 
must be quoted in general form, 

(2) the waves produced for various combinations of Moo and parameters describing sail tension, chord, 
pressures and weight must be compared with corresponding Prandtl-Meyer waves, and 

(3) values of M~ and the other parameters which, in combination, appear to offer engineering feasibility 
(both aerodynamic and structural) must be identified. 

These three steps are now described. 

3.2. Sails Producing Non-Centred Waves. 
In the first part of Appendix B the sail of Fig. 5 is investigated subject to assumptions that tensions 

due to skin friction, increments in pressure due to sail porosity and/or boundary-layer growth or separ- 
ation, and effects on shape due to sail stiffness are negligible, and that the change in air temperature through 
the wave produces negligible change in the value of y*. 

For a sail in frictionless flow, whose weight is negligible only in comparison with the tension, it is 
shown in the first part of Appendix B that 

dO 
T ds = P t -  (P, + w cos (0 + 0c)), (4) 

and hence that the sail profile is given by 

p r l X f -B " ~ y f AB " - cos0 .df l ,P .1 .  - sin0.  dfl (5) 
~1 . #1 

in which 

1 1 ) f12 = M 2 _  
A ~ l+f12 l + k 2 f 1 2  , 1, 

. : ,  

Note that Pr~ x /T  (and PT~ y/T) must be positive numbers since in each, all three constituents are 
positive. Also in the integrals (5), M~ > M so that [11 >/3 ;  thus, for positive values of 0 to give positive 
values for Prl x /T  and PT1 y/T, it is required that A/B should be negative. But ify > 1, then 0 < k 2 < 1, 
and since//2 is positive, A is always negative; thus B must always be positive, that is, 

*These assumptions apply to all sails considered in the main text of this Report, although in the analyses 
presented in the second part of Appendix B and in Appendix C, the effects of skin friction on the equilibrium 
of rectangular and 'caret' sails are noted. 



1 )i:'_J-r pu+WCos(Oc+®) 

I + ~ _  M z PT1 
>'Oinwhich(l+~-2-~M2) ~£*=pr-pr~p P 

i.e. 

Pu W 
t - - -  cos (Oc + ®) ~< p 

poo poo Poo 

At the leading edge of a sail producing fully isentropic compression, 

Pl MN= 1, 
P~o 

_ 2 y M  2 - ( y - 1 )  7 = l a n d ® = O  
~+1 _] ~t,,= 1 

i.e. 

( P" + W c o s  0c)  ~< 1 
P~o Poo Mn= 1 

but unless some disturbances occur in the flow over the top of the leading edge, then at this leading edge, 
p,/poo = 1 and the above condition is satisfied only for negative values of w/p~o (i.e. for sails of negative 
weight) or for w/p~o = O. Ifw/poo = 0 and P,/P~o = 1 then the sail is of zero curvature and so produces no 
influence, isentropic or otherwise, upon the stream. It follows that, if Pu/P, -- 1, it is impossible to start 
an isentropic compression by a sail in pure tension. Of course, if the forepart is stiffened and of isentropic 
profile, the remainder can be tensioned as a sail. Alternatively, a sail may be attached to a plane wedge, 
as in Fig. 5, so that p,/p~ may be less than unity; if w/p® = 0 = PdPoo then conditions correspond, 
as nearly as is possible for an isentropic sail, to those assumed by Boyd z°. In Fig. 6a, for p,/poo = O, 
Mn = 1 and w/poo = 0, 0.2 and 0.4, sail profiles are drawn for free-stream and discharge Mach numbers 
(M® and Meomp) of 10 and 3"5 respectively: sail profiles are shown in the top two sketches, firstly as 
computed (see Acknowledgment) in terms of Prl x/T and Prl y/T, and secondly, for direct comparison 
at equal chord. Sketch A shows, as did Daskin and Feldmanl v, Finkl9 and B oyd 20,2 ~ for the weightless 
sail, that curvature increases rapidly towards the trailing edge and also that, as sail weight rises, then for a 
given extent of compression Prx x/T also rises, so that, for given values of Prl and sail chord, tension is 
consequently reduced; Sketch B shows that, the heavier the sail, the more rapid is the rate of increase of 
curvature towards the trailing edge, with the result that, since regions of small dy/dx extend over larger 
proportions of the chord, the heavier but more moderately tensioned sails lie above the lighter sails. From 
this fact it also follows that for the heavier sails, the first characteristic of the sail flow (i.e. that at which 
streamline curvature is initiated) lies further from the trailing edge; but in the three drawings showing 
wave positions (for P,/P~o = 0 and w/poo = 0, 0.2 and 0.4, and for sail chords of approximately 100 inches), 
it is further seen that compression waves corresponding to local Mach numbers between 7 and 3"5 are 
nearly centred*. In Fig. 6b, the effect of changing the upper surface pressure to P~/Poo = 0.5 is seen to be a 
significant change in the positions of initial waves, but little change in the centring of later waves. Finally 
Fig. 6c shows, for two values of P,/P~o, the lifting effectiveness (CL) and efficiency (L/D) of sails in non- 
viscous flow at Moo = 10, and also at Moo = 7 and 4. The wedge-spar is assumed to be extremely thin, so 
that the forces and flow losses it produces may be neglected; the lift coefficient may then be written as 

CL = T sin(voo--V~omp)/qoo x = sin(voo-Voomp) / (  q--~-~ PT_._~ PT~ x )  
I \ PT~o " PT1 " T ' 

*In practice, convergent characteristics would coalesce into a shock wave, together with a reflected 
wave which would be either an expansion or a compression, according to the value of M~ and the extent 
of compression due to the sail ; for clarity in Figs. 6-9, such interactions are not shown. 



and L/D and turning angle as 

L 1 L 1 - - T.sin(voo-V¢omp) = - -  V e o m p  

. . . . .  i . . . . .  = D . . . .  t. T T(1 - cos (v,~ - V¢omp)) cot V~ 2 

Due to the assumptions that 7 is constant and that the flow is isentropic (i.e. PT1 = PT~), local values of 
static pressure ratio are given as 

P P PT~ 

P o~ P T1 P o~ 

_ _  = ( 2 + ( ? - 1 ) M 2 )  ~--~ . 
' 

thus lines of constant static pressure ratio may be added to Fig. 6c to show the pressure rise the boundary 
layer is required to sustain• For  sails yielding a high value of L/D at Moo = 10, these may not be too severe 
(in view of the figure quoted by Ferri 3°, namely a static pressure ratio of 175 without separation of a 
laminar boundary layer); however, the lifting performance of isentropic sails is rather poor  in comparison 
with that of the simple wedge (e.g. the plane shock Nonweiler wing) for which values of CL and LID are 
as shown below 

Flow 

deflection 

(degrees) 

6-340 

8-130 

11-310 

18-435 

L CL for P./Po~ = 0 and 

,V/~ = 10 

9 

7 

5 

3 

0.055 

0.075 

0.119 

0.258 

7 

0"079 

0.100 

0.146 

0.287 

4 

0.162 

0•189 

0.244 

0.398 

C L for p,/p~ = 0"5 and 

M~ = 10 

0"048 

0.068 

0.112 

0.251 

7 • 4 

O.O64 0"118 

0.085 0.145 

0.132 0.200 

0.274 0.356 

C L for PJPo~ = 1 and 

M~ o = 10 

0-041 

0-061 

0.105 

0-245 

7 4 

0.050 0.074 

0.071 0.101 

0-118 0.157 

0.260 0.314 

It follows that, in purely lifting applications, isentropic sails may be less desirable than conventional 
bodies unless they allow great improvements in structure weight, or other features such as greater lengths 
of laminar flow. Alternatively a sail may be used as part  of a body beneath which a shock wave forms ; 
for these, values of C~ and L/D would have to be recalculated. If  at M ,  = 10, a sail is mounted behind 
a wedge-spar producing a shock-wave (MN = 1.4 in Figs. 7a and 7b), the effects of variations in w/p~ on 
sail profile and its position relative to the first characteristic of the sail flow (see Sketch B) are much 
reduced, and nearly centred compression is obtained over a similar range of local Mach number ;  in 
Figs. 7c and d, only weightless sails are shown since with MN = 2.6, the effects of w/p~o on profile are 
extremely small. 

As seen from Figs. 6-7, Prl  x/T always increases with w/p~ if the values of other parameters are held 
constant. In Fig. 8 and 9 (Mo~ = 7 and 4 respectively) plots of Prl  x/T are not shown since (as can be 
seen from Table 1) this trend with w/p~ is unchanged• 

In Figs. 8a and 8b, the effects of w/p~o on sails at Mo~ = 7 and M N = 1.2 are seen to be significant, 
but even for w/p~ = 0, early compression waves lie well below the near-focus of waves in the range 
5 ~> M / >  2.5. If MN is increased to 2 (see Figs. 8c and d) the effects of variations in w/p~o are slight and 



for both values of p,,/p,, much of the compression flow is nearly centred. For sails operating at Mr  = 4 
and M~r = 1"2 (see Figs. 9a and b) the influence of w/poo is considerable but even at w/p~ = 0 and for the 
rather short sails drawn, early waves lie well below the points at which later waves intersect, and no part 
of the compression flow can be described as centred ; if MN = 1.6 as in Figs. 9c and d, the influence of 
w/p~ is reduced but again, even for weightless sails, early waves lie below the intersections of later waves, 

and even the latter are not closely centred. 
It is tentatively concluded from Figs. 6 to 9 that: 
(1) in non-viscous hypersonic flows it is possible to produce significant extents of nearly centred 

compression beneath sails in pure tension, 
(2) as free-stream Mach number falls to supersonic values, centring of the waves becomes less marked, 
(3) at a given fi'ee-stream Mach number, increases in upper-surface pressure and/or sail weight usually 

increase the gaps between initial compression waves and the near-focus of later waves, 
(4) at a given free-stream Mach number, an increase in the wedge-spar angle reduces the influence of 

upper-surface pressure and of sail weight. 
It has been shown in Figs. 6 to 9 and Table 1 that a choice of Moo, MN, w/poo and Pu/Poo leads as a 

mathematical requirement to a particular value of Pr~ x/T ; the final paragraphs of this section relate 
to the engineering acceptability of these combinations of Moo, MN, P rx x/T and w/poo. 

For a sail tethered to the trailing edge of a wedge-spar as in Fig. 5, 

pTlX____..__PT~ Pr= poox__=_~ 2+(y - -1 )M~ l~-~poox. (6) 
T PT~ Poo T ~ 2+(1--t/KE) (~-- 1) M 2 T 

in which, for a given value of Mac, (1) t/KE prescribes the strength of the shock on the wedge-spar and 
hence MN and M1, (2) poo implies an equivalent air speed (E.A.S.) at which the sail is operating and (3) 
x is the sail chord. If these parameters are allotted numerical values, then for a chosen value of Prl x/T, 
a particular value will result for T, the sail tension per foot span. For example, in Fig. 10 the variation 
with T ofpr l  x/T is shown for sails having x = 1, 10 and 100 ft, and operating at different values of Moo 
(10, 7 and 4) and at such altitudes as give identical values of E.A.S. (350 knots); in each case the effects 
of varying shock strength are indicated by t/KE values of 1-0 and 0.99, which represent shock strengths 
from zero to those which would be adequate for initiating intake processes. Extra scales have been 
added to indicate (1) the thickness of sails which would operate at specified tensile stresses (5 tons/in 2 
and 10 tons/inZ), and (2) the sail weight per unit wetted area which would result for a sail material such 
as high quality stainless steel (which has a density of 0.28 lb/in3). Note that, even for the lower stress level 
(5 tons/in2), sail thickness and weight need not exceed values of 0.05 inch (approximately 18 S.W.G.) and 
2 lb/ft 2 respectively; the corresponding value of sail tension (i.e. of spar loading) is about 7000 lb/ft span. 

It is seen that the values of Prt x/T for aerodynamically and structurally realistic operating conditions 
lie between 10 and 10 000; thus the values of Pr~ x/T required in Figs. 6 to 9 (lying in the 'boxes' on 
Fig. 10 and listed in Table 1) can be compatible with engineering realism, and for 350 knots E.A.S., 
w/po~ -- 0.4 would frequently be an excessively high estimate of sail weight, even for stress levels as low 

as 5 tons/in 2. 
Fig. 10 is in fact restricted to use for an E.A.S. of 350 knots ; however, in that figure, tabulated values 

of E.A.S. and poo show how, at various values of Moo variations in the flight environment would occur, 
and use of these values of poo in equation (6) would allow Fig. 10 to be re-drawn for other values of E.A.S. 

It is concluded from Fig. 10 that values of Prl x/T selected in Figs. 6 to 9 and Table 1 to give 
mathematical consistency with the chosen values of p,/poo and w/po~, need not prevent two-dimensional 
sails from being realistic in the engineering sense. It is therefore worth examining the possible use of sail 
techniques in three-dimensional (caret) sails having sv~ept leading edges; the geometry, aerodynamics 
and statics of such sails are now described. 

4. Properties of Caret Sails in Isentropic Flow. 
It is known a2 that, at design conditions of Mach number and incidence, two-dimensional, centred, 



isentropic waves can in principle be formed by and contained between so-called 'caret' surfaces, such as 
those of Fig. 1 la;  if the leading edges of such surfaces are straight then each surface is of conical curvature 
through the tip T, and each is developable onto a plane (see inset to Fig. 1 la). More generally, surfaces of 
single but non-conical curvature (see Fig. 1 lb) may also produce and contain two-dimensional but non- 
centred isentropic waves; these may also be individually wrapped from initially flat flexible foils of 
correct developed planform. 

Consider the case in which the foils are of thin metal and have in consequence a small but non-zero 
stiffness; then, if wrapped to form caret surfaces of conical or merely single curvature, such foils will 
acquire by curvature an additional stiffness-due-to-shape. For example, consider a triangular plane Foil A 
mounted on a rigid wall as in Fig. 1 lc. Application of a load P at the tip will produce deflection until 
(at the position shown dotted) the foil has stored, under elastic strain, an energy equal to the work done 
by P. Consider now a similar foil, similarly mounted but conically curved through the tip as is Foil 'B' ; 
unless failure of the mounting, or wrinkling and/or buckling of the foil occurs, the application at the tip of 
the same force P will now produce a smaller tip deflection, demonstrating that a stiffness-due-to-shape 
has been acquired even though the foil thickness and material remain unchanged. Further, the foil will 
be in some measure resistant to a load (or loads) acting in any direction at the tip or elsewhere although 
the level, nature and effects of the stresses in the foil will depend upon the loading distribution and upon 
the foil curvature, anhedral, sweep, aspect ratio, material properties and thickness; however for a material 
such as thin steel sheet the acquired stiffness would frequently be enough to save a caret foil, unlike a 
two-dimensional foil, from distorting under its own weight. Finally the arguments above will apply not 
only to a curved foil mounted on a rigid wall, but may be extended to paired foils (C and D in Fig. 1 lc) 
in which geometrically compatible foils are connected (e.g. by a seam weld) along the ridge line; for cases 
in which foil curvature leads to a curved ridge line, the foils become thereby mutually stiffening, although 
in the absence of a rigid wall, they may suffer some chordwise bending. 

For such paired foils, two conclusions should be valid : 
(1) for a given operating condition, the structure weight should be favourably influenced by the 

acquired stiffness, and 
(2) since each surface can be wrapped from sheet material, fabrication may be simple. 
Clearly, skin wrinkling and flutter characteristics must be investigated for the various types of loading 

distributions expected. These are likely to be complex 8,12,33 ; however, at least the statics of such foils are 
simple, since as shown below, and as already investigated for the simpler case of the rectangular sail, each 
element of the membrane can be held in equilibrium under a pressure difference and an appropriate 
distribution of purely tensile force. 

4.1. The Geometry and Aerodynamics of Caret Sails. 

In Fig. 12a, Flow Model III shows various streamlines along any one of which a flexible surface, of 
correct chord and suitably tensioned between suitable points, would align itself. Large and small sail 
elements could, in principle, be assembled to form a 'stepped sail' comprising 

(1) individual ribbons, each at a tension appropriate (and in fact for a given value of PTI x/T pro- 
portional) to its chord, and 

(2) appropriately shaped sidewalls, which must resist the sideforces produced by internal pressures. 
If a sail of single curvature is formed as in Fig. 12b, this also (having non-zero anhedral) will be subject 

to sideforces. For a non-centred flow such as Model III, the sail of Fig. 12b is non-conical; however, any 
two Mach waves between which Mach number changes by an infinitesimal amount, may be regarded as 
having a focal line (Oy' in Fig. 12b) and will be associated with a conically curved strip A B C D of the 
singly (but not conically) curved sail A' B' C' D'. 

Consider the geometry of an element E of this sail. The axis Oy' is the focal line of the compression 
waves from A D and B C (i.e. the 'instantaneous focal line' for a part of a non-centred flow); Ox' and Oz' 
form an orthogonal system of axes with Oy', in which system Ox' is aligned with the inflow direction 
(given by M1 or k~bl), so that Oz' is then at a defined angle to the sonic plane (M = 1, k~b = 0)of  the 
given two-dimensional flow. Suppose that the caret sail profile, with which the element E is aligned, 
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corresponds to streamline S in Fig. 12c: further, for isentropic compression from M1 to M by a centred 
(i.e. reversed Prandtl-Meyer) wave, suppose the streamline through element E is S', with whose centre of 
compression that of S is instantaneously coincident: finally, let streamline S" be that with which a two- 
dimensional sail, producing isentropic compression from M1 to M, would align itself. Since all three 
waves correspond to isentropic compression from the same initial value of Mach number, their sonic 
lines are parallel, but not in general coUinear. From Figs. 12b and 12c it is clear that an element of length 
ds and projected width dy', situated at the point at which S, S' and S" are tangential, will for all these 
streamlines, form projections onto the plane x' Oy'. which are of different geometry (rectangular for S' 
and S", and trapezoidal for S) but of equal area: similarly the rectangular and trapezoidal projections 
onto the plane z' Oy' will all be of equal area. Since the pressure on the element is identical for all these 
streamlines, the components of pressure force parallel to Ox" and Oz' are identical ; it follows that if any 
differences arise between the profiles and/or statics of two-dimensional sails and caret sails, these must be 
due to the third component of pressure force (or to differences in their wetted areas). The third component 
of pressure force, being parallel to Oy', occurs as a direct result of the caret foil's non-zero anhedral, and 
so did not enter the two-dimensional analysis of Section 3; its influence on the statics of the caret sail is 
described below. 

4.2. The Statics of Caret Sails*. 

Of the pressure force on element E, the component P~ (parallel to Oz') and P~, (parallel to Ox'), being 
equal to those on a corresponding element of a two-dimensional sail, will in consequence produce a 
resultant (P~,~ in Fig. 13a) which is identical in magnitude (= (P.D.)ds. dy) and direction (parallel to 
x' Oz' and normal to streamline S). The third component P'~ is, by defmition, parallel to Oy' and so lies 
in the same plane as Oy' and the surface generator which passes, as a straight line, through the point O 
and the centroid of element E. Py may thus be replaced by two statically equivalent forces Pr and P~, of 
which Pg lies along the generator and is of such a magnitude that Pr lies parallel to x' Oz' ; since P, passes 
through the axis Oy' which is the focal line for the flow over element E it follows that the angle between 

P~ and the streamline S must equal the Mach angle, It ( = sin- 1 1 ) .  Thus in the plane which contains 

the streamline S, both Pr and P~ can be shown (see Fig. 13b); P, is seen to contribute two components, 
firstly P', which is directly additive to Px~ and is given by 

P', = P, sin it = PrIM 

and secondly 

P'; = P~ cos # = P~ ~/(M 2 - 1)/M 

which acts tangentially along the sail chord. Note that 

P'/P', = ~ 1" " P, , P'; P'r x.e.P'~ > ' f o r M > ~ / 2  -"-M f o r M > >  1. 

It can be further shown (as in Appendix C and Figs. 13c to e) that, for a caret sail in a two-dimensional flow 
behind a plane shock wave, 

P'  1+ (M 2 -1 )  
P~  

*The author would like to thank Mr. E. G. Broadbent and Dr. C. C. L. Sells for valuable comments 
on the statics of membranes subject to pressure and tension forces. 
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in which K = f(7, MN, M~, A) i.e. a function of flee-stream Mach number, shock wave strength and the 
true angle of sweep of the wedge-spar leading edge ; thus 

P~z Pxz 

of which both are functions of 7, MN, Mo~, A and the local Mach number, M. Also from Appendix C it is 
known that for a unit (arc) length of root chord, the net force parallel to a generator required to balance 
the sum of the P,j-components along the generator of a sail of given span is 

To ..... = ~  (P .D. )secz . (y2- ) l ) , inwhich(y ' z -y '~)=spanof thesa i l ,  andM,  P.D. andz 

are constant for the given generator. 

Thus, of the three components of pressure force (P'~z + P',), P'r' and 1)o which act on element E in Fig. 13, 
(1) (P~,z + P',) can be balanced by tensions acting in a plane parallel to x' Oz', 
(2) P" can be balanced by a chordwise tension and so contributes to the value ofdT/ds, and 
(3) Pg can be balanced by a tensile force acting along the local generator (and the'sum of the P0-com- 

ponents along a given generator can be balanced at the root by a single tension, T o .... ). 
These tbrces are shown in Fig. 13f, from which it is seen that chordwise tension must increase from the 

leading to the trailing edge: also since the elemental chord of a strip along a surface generator increases 
linearly from tip to root (the strip being of trapezoidal planform), it follows that the value of dO/ds falls 
linearly and hence that chordwise tension increases linearly from tip to root. Thus the chordwise tension 
required to act at the inboard end of the trailing edge is a maximum for the whole sail. 

It is possible that if the intrinsic stiffness-due-to-shape of the caret sail is to be exploited (other than 
merely to prevent distortion due to weight, or inertial forces due to acceleration), then some or all of the 
above forces may be omitted ; also if a centred wave is required, necessary modifications to change the 
profile (from S to S') may be made structurally acceptable by an appropriate choice of some or all of the 
upper surface pressure distribution, weight distribution, the tensile loading, or the anhedral, thickness 
or thickness distribution of the foil. To understand the interplay of aerodynamic and structural consider- 
ations would require a full stress analysis of aerodynamically acceptable caret sails, and hence the pre- 
diction of main flows, base flows and boundary layers on both top and bottom surfaces. Realistic assess- 
ment would require better methods of analysis than are available, and also a knowledge of the 
configuration and conditions in which a sail would be required to operate. This Section therefore closes 
with a brief study of the effects on sail profile which simultaneous application of the above forces would 
produce. 
If it is assumed that the sum of the P0-components along a given generator of a caret sail is balanced 
at the root, then the two remaining forces on each element, P'r' and (P;,~ + P',), lie in a single plane and 
calculation of the tensions required to balance them is a problem in two-dimensions only. Appendix B 
contains two-dimensional analyses for rectangular sails in non-viscous flow (dT/ds = 0) and in viscous 
flow (dT/ds negative); the second of these analyses is extended in Appendix C to include the effects of 
anhedral on a singly curved caret sail which produces a two-dimensional wave in an isentropic flow. 
Although this analysis would allow calculation of the tension distribution, sail profile and the form of 
wave produced, the integral expressions for sail profile have not in fact been programmed in their general 
form (see equations (C.8)) ; however, the differences to be expected between the profiles assumed in two- 
dimensional flow by caret and by rectangular sails are indicated below. 

For a caret sail the pressure difference which induces chordwise curvature is (P,z + P;) i.e. P;z 1 + ~ , 

the product of the 'two-dimensional pressure difference' P~z, and the 'anhedral correction factor' 

1 P_.~ ~. The of the latter be found its variation with local Mach number 
\ 

+ importance can by studying PL / 
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(M) for typical combinations of ~, Mm Moo and A; this variation is shown in Fig. 13g for M~o = 10, 7 
and 4, values of MN which correspond to i/Kn = 1-0 and 0.99, and A = 50 °, 60 ° or 70 ° according to Moo. 
It is seen that the importance of anhedral is greatest at the upstream end of a given sail, that in the worst 

case(Mo~=4,r/KE=0"99, A = 6 0  ° ) the value of 1+ " > 1-3, but that in most cases 1+ r 

falls rapidly to values < 1.05. Now for rectangular sails, waves from the upstream end have been seen to 
lie ahead of the near-focus of later waves ; since for a caret sail of zero weight, equation (C.5) simplifies to 

dOds - (Pz-P"~) ( 1 + P ~ ) T  , (7) 

( the existence of relatively high values of 1+~-£ at the upstream end of a sail will tend to increase 

the local profile curvature and so at least to reduce the gaps which, beneath rectangular sails, separate 
early waves from the near-focus of the remainder. However, this statement is valid only if the value of 
T in equation (7) differs insignificantly from that for the rectangular sail with which comparison is made ; 
but for the latter, T is a constant if weight and skin friction are zero (dT/ds = 0), while for caret sails, 
even of zero weight and in non-viscous flow, 

ds  - (P~ - P") - ~  
(See equation (C.4)) 

Furthermore, tension per unit span of a rectangular sail is constant along the span, whereas for a caret 
sail its value increases linearly from tip to root, i.e. the chordwise tension on a caret sail reaches a maximum 
at the inboard end of the trailing edge. However, except for cross-flows in the boundary layers, the flow 
produced by a caret sail is two-dimensional, so that to study the profile which the sail assumes and the 
wave it produces, it is sufficient to study only a chordwise strip of very small span (dy' in Fig. 12b say). 

Consider such a strip at the root of a singly curved caret sail. The chordwise tension at one point can 
be chosen to equal that of a given rectangular sail; at this or any other point on the strip, the tension 
and profile curvature may be related to that of a rectangular sail, by comparing equations (B.3) and (C.5), 
thus 

T 

T 2 . D  - -  

[ ( " )  J "1 (p~-p,) 1+~-£ -wcos(O+Oc) 1+~-~= 

ds ) [p~-(p.+wcos(O+Oc))l 
2.D 

or if w = 0, 

dO/ds  _ 1 + - - -  (8) 
(dO/ds)2.D 

Sul~pose that in a comparison between a rectangular sail and a chordwise strip of caret sail, the chord- 
wise tension at one point on the latter is required to equal that of the former i.e. if T1 - the leading 
edge tension and T 2 - the trailing edge tension (T2 > T1 for caret sails), it is required that 

T1 ~< Ta.D ~< T2. 
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Consider an extreme case, Tt  = T2.o ,  for which, except at the leading edge, T/T2. D > 1 and reaches 
/ p, \ 

a maximum at the trailing edge. At the trailing edge | 1 +-~-,"/is at a minimum (see Fig. 13g) but still 
k, Px~J 

dO/ds [ { P'~ ~1 T 7 
exceeds uni ty: thus the value o f ,  ,~,-7z77-:--, / = 11 + ~  / / ~ - -  l may be less than, greater than or 

[no~as)2.0 [ \ rxz J l  I2.D d 
equal to unity. At the leading edge 1 + is at a maximum ( > 1) and T/T2. D -- 1, so that 

dO/ds _ (  p ' )  
(dO/ds)2.o 1 + ~  > 1. 

In this case, conclusions regarding the profiles of caret and rectangular sails can only be drawn after 
fuller analysis, and would probably require evaluation of the integrals of equations (C.8); but consider 
the other extreme case, T2 = T2.o, for which except at the trailing edge T/T2.o < 1 and reaches a mini- 

1 '  P'r'~ mum at the leading edge. At the trailing edge ~-ff~x~ J is at a minimum (but > 1) 

therefore (dO/ds)2.o 1 + > 1 ; 

at the leading edge 1 + is at a maximum ( > 1) and T/T2.~ at a minimum ( < 1), so that 
X z  

dO/ds 
(dO/ds)2.D > 1  (in fact a maximum), 

but much more important 

dO/ds 1 dO/ds 1 
(dO/ds)2.D > (dO/ds)2.~o 

I . e .  t . e .  

i.e. at the leading edge dO/ds exceeds the two-dimensional value by a larger proportion than it does at the 
trailing edge (this proportion increasing monotonically along the chord). So in this case at least 
(T2 = T2.o), the upstream end of a caret sail will be of more pronounced curvature than the rectangular 
sail and the waves produced may be centred over larger extents of compression than was found in Figs. 6 
to 9. It is not known whether this may be generalised to the statement that 'caret sails whose maximum 
chordwise tension does not exceed that of a rectangular sail producing the same net extent of compression, 
are likely to produce waves which are nearly centred over larger regions of that compression'; however 
the fact that some caret sails may produce closer approximations of Prandtl-Meyer flow could be useful 
in the design of, for example, intakes or nozzles for hypersonic or supersonic aircraft. This paper closes 
with comments on these and other applications in which two-dimensional or caret sails might be used. 

5. Applications. 
The rectangular sail whose profile is made adjustable, for example by control of the upper-surface 

pressure distribution, could be applied in the design of intakes producing some regions of isentropic 
compression. In Fig. 14a, the region between lines A and B could be constructed as a sail and any joints 
along these lines might appropriately be left unsealed so as to allow boundary layer bleed. For the caret 
intake of Fig. 14b, the anhedral form renders the problem of varying the geometry of the isentropic region 
far more difficult ; however, for either type of intake the availability of two design Mach numbers for two- 
dimensional flows initiated by oblique shock waves 3 2 could be exploited with equal ease. It is also possible 
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that (as shown by shading in Figs. 14a and b), the cowl lip of either type of intake could be formed as a 
rectangular sail, pressurised by the internal flow and held in tension by a rigid lip extremity ; the lip would 
probably incorporate leading-edge cooling but the cowl could be so thin that it might allow heat trans- 
ferred from the internal flow to be radiated from the external surface of the cowl and so assist in cooling. 
For the caret intake, the pressure gradients on the isentropic surfaces are such as to suggest a2'34 that 
boundary-layer bleeds should be localised at the tip regions R, so that once more, sealing between the sail 
and the main body need not be provided. 

Sail techniques might also be used in nozzles producing external expansion and of conventional or 
caret form; however, boundary-layer control would not normally be required in such applications. 

A further application of the sail technique is shown in Fig. 14c. In the propulsive flow model chosen, the 
cowl is shown as a continuous foil running from intake to nozzle lip and stabilised,in pure tension by the 
pressure difference which exists between the internal flow through the combustion chamber and nozzle, 
and the external flow over the cowl. If the internal flow comprises isentropic expansion downstream of 
constant pressure supersonic combustion, then the internal pressure distribution is as shown (see double- 
headed arrows); the external pressure on the cowl would gradually fall from that behind the shock S to 
that required to balance the pressure of the jet. The shaded area thus shows the pressure dlllerence at any 
point and so, for a cowl at constant tension and of negligible weight, shows the manner in which dO/ds 
would vary along the cowl; it is seen that the distribution ofdO/ds is consistent with the cowl shape shown, 
curvature being a maximum near the end of the combustion zone and zero at the nozzle lip. The possibility 
of building the cowl and lower side of the combustion chamber as a single, heat resistant foil, would allow 
the upper side(s) of the combustion chamber(s) to be built as hollow(s) in the main body B, rather than 
as actual duct(s); as shown in the sketch inset in Fig. 14c, such hollows could also be constructed as curved 
foils under tension, and their positioning relative to the cowl would allow for combustion chambers 
having (perhaps variable) divergence. 

For use with purely lifting bodies giving high values of L/D, curved surfaces which weaken or eliminate 
leading-edge shock waves tend to produce an excessive skin friction and low lift on their upstream ends 
(see work by Fetterman as cited by Becker35); at a given CL such bodies may therefore offer little improve- 
ment, or even some loss, in L/D. Even in non-viscous flow the lifting performance of isentropic sails (see 
Fig. 6c) is liable to be worse than that of a simple, two-dimensional wedge. However, a conventionally 
shaped body may necessitate the use of conventional structural techniques and so involve structure weights 
in excess of(say) 5 to 10 lb/ft 2. If, by the use of sails (in either two-dimensional or caret form), local structure 
weights can be reduced to the order of even the worst in Fig. 10, this great improvement in local structure 
weight might well outweigh any falls in aerodynamic efficiency as reflected in LID. For the simple case of 

cruising flight, the problem would be to increase the value of log e so that, for a given fuel 

V L W x \  
allowance and specific fuel consumption, the range = S.F.C. -D loge~-£)  would be increased; that is, 

the problem would only be solved if the weight saved locally by replacing conventional structures with 
sails, more than compensated for the combined effects of reduced aerodynamic efficiency and the weight 
of spars and booms etc. added specifically for tethering and controlling the membrane. Of course, savings 
in overall weight may depend not only on minimising local weights, but also on maximising the area of 
those regions of a vehicle to which weight-saving techniques may be applied; thus consideration of 
configuration design is intrinsically required. Tentative suggestions for purely lifting systems are now 
described. 

In Section 3.2 it was shown that the lifting characteristics of isentropic sails could be substantially 
worse than those of simple wedges. However it is at least possible that a sail in combination with a wedge 
spar might combine a reasonable aerodynamic performance with a robust structure of low total weight. 
If so it is possible that the fl0w of Fig. 15a could be produced beneath the wing of an aircraft such as that 
of Fig. 15b, the trailing edge of the sail being attached to a rigid spar. Alternatively the trailing edge might 
be attached to a tensioned cable as in Fig. 15c. In either case, variable wing area could possibly be achieved 
during the acceleration phase by moving the trailing edge to the position shown dotted and stowing some 

15 



of the sail inside the wedge-spar, the full area being available for cruise or landing and/or take-off; a 
further possibility is that at low speeds the sail could be used as a large flap over which propulsive jets, 
exhausted from power units inside the wedge-spar or the main body, might produce significant lift forces. 
The sail-flap's centre of lift could be much closer to the aircraft centre of gravity than in the case of flap- 
blown delta wings of conventional type, and so pitching problems might be avoided. 

It is also possible that the lifting flow of Fig. 15a could be produced by the composite lifting system of 
Fig. 16; in Fig. 16a a shock wave is produced not by a wedge-spar but by a cylindrical parawing P (see 
Fig. 1 b), whose tip is tethered to the end of the wedge-spars of the sail S, these spars being joined at T and 
thus being mutually braced at least against forces which act in a dragwise sense. That this type of composite 
sail system would be particularly suited to 'waverider' vehicles of integrated form 32, is shown in Fig. 16b. 

Finally Daskin and Feldman 17, and Boyd 2°'11, have suggested that for adequate strength under some 
conditions, sail membranes should be of woven wire ;with such membranes363s, porosity would effective- 
ly result unless a sealant were applied to the membrane 36, so that 

(1) boundary layers might be removable over at least some parts of a compression surface, and 
(2) since, as shown by Boyd z2, porosity effectively produces local reductions in incidence, it could be 

treated as a form of variable geometry. 

6. Conclusions. 

For free-stream Mach numbers between 10 and 14, rectangular sails in pure tension and of finite weight 
are shown to produce two-dimensional isentropic compression waves; for the higher free-stream Mach 
numbers, the down-stream parts of these waves are nearly centred (for example, for Moo = 10 and 
Mcomp = 3"5, that part of the wave in which the flow is compressed from about M = 7 t o  Meomp = 3"5 is 
nearly centred). At a given free-stream Mach number, an increase in upper-surface pressure or sail weight 
usually increases the gaps between initial compression waves and the near-focus of later waves; if a 
wedge-spar is attached to the leading edge of a sail, an increase in wedge angle appears to reduce the 
influence of upper surface pressure and sail weight on sail profile and wave form. Investigation of the 
structural aspects of two-dimensional sails suggests that, even for long sails (e.g. 100 ft chord) at high 
Mach number (e.g. 10) and low stress (e.g. 5 tons/in2), the weight of the membrane need not exceed 1 lb/ft 2. 

Since rectangular sails appear to yield simultaneously a useful type of supersonic flow and promising 
values of membrane weight, the study is extended to 'caret' sails, which allow leading edges to be swept, 
which can in principle produce and contain two-dimensional waves, and to which single (though not 
necessarily conical) curvature imparts a stiffness-due-to-shape. It is found that for the equilibrium of an 
element of such a sail only tensile forces are required, firstly, tensions directed along the chord of the sail 
and, secondly, tensions acting from tip to root along local generators of the singly curved surface. Appli- 
cation of appropriate tensions can therefore reduce (to zero if necessary) the extent to which the intrinsic 
stiffness of a caret sail is exploited. Alternatively, to simplify the loading system, a sail may be operated 
in such a way that it retains its shape at least partly by reason of its intrinsic stiffness. Such a device might 
find application in the design of supersonic or hypersonic vehicles. Various applications are explored, lot 
both rectangular and caret sails, including wings, intakes, cowls and nozzles. 
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LIST OF SYMBOLS 

Defined for equations (5) and (B.6) 

Skin-friction coefficient 

Lift coefficient 

Drag force 

~-1 1 ) 
= ~ - - ~ (  = ~-~ifv = 1.4 

Constant defined in Appendix C 

Lift force 

Mach number 

Static pressure 

Stagnation pressure 

Elemental forces in Figs. 11 and 13 

Pressure difference 

Kinetic pressure of free-stream 

Radius vector in polar co-ordinate system 

Value of r at sonic conditions f See Fig. 3 

Arc length 

Sail thickness 

Static temperature 

Sail tension per unit span 

, - Flow velocity 

Sail weight per unit weited area 

Orthogonal co-ordinates defined in text 

= x / M  2 - -  1 

Ratio of specific heats (cJcv), ( = 1.4 for air) 

Kinetic-energy efficiency of shock wave 

Defined in Figs. 3 and 5 

Angle of climb 

Deflection of flow at sail leading edge or wedge spar 

Cross-flow in boundary layer 
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Subscripts 
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LIST OF SYMBOLS--cont inued 

= s i n -  1 1 - Mach angle 

1 1 
= ~ t an -  k f l -  t an -  1 fl _ Prandtl-Meyer angle = ~b + # -  90 ° 

Flow density 

See Fig. 13c 

= 1_ t an -  1 k ~ 1 See Fig. 3 and Appendix A 
k 

= t an -  1 (r d(o/dr). See Fig. 3 and Appendix A 

Refers to conditions immediately downstream of the shock wave from the wedge-spar (see 
Fig. 5a) 

Refers to sonic conditions 

Refers to upper surface of sail 

Refers to lower surface of sail 

Refers to component  (i.e. of Mach number) normal to shock wave 

Refers to free-stream conditions 

Refers to conditions at sail trailing edge 
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A P P E N D I X  A 

The Equilibrium of Membranes in Constant Tension. 

Consider the flexible membrane sketched in Fig. 3 to be of unit width and of zero weight and to be 
statically inflated at constant tension T, to a profile given by ~b = ~b(r). The required distribution of 
pressure difference (P.D.) across the membrane is found as follows : 

dO 
P.D.= T - -  

ds 

d s  2 = d r  2 + r  2 " de)  2 

d¢ 
tan 0 = r - -  

dr 

~b + 0 - 0 = constant 

therefore 

o r  

T -  ds - ~ r - ~ t a n - 1  r l + r 2  -~- r (A.1) 

- l + ~ t a n -  dr T r rZ+ -~  (A.2) 

These are general equations for the pressure difference required to maintain a flexible, weightless 
membrane in any shape given by 4 = ~b(r). 

Consider the case when the membrane  is required to take up a shape identical with that of a streamline 
in a centred, isentropic wave i.e. a Prandtl-Meyer corner flow. For  this flow, 0 =/z ,  

therefore 

de 
r ~ = tan ~ = tan/~  = 1/M,~x/-M -g-2-1 (A.3) 

Also for continuity of mass flow between for example a station at which the flow area - A = A o and 
M = 1, and a station at which A > Ao. and M > 1, it is required that Po Ao Vo = p A V. 

But if in the polar co-ordinate system of Fig. 3, O is the centre of isentropic expansion (or compression), 
then A o and A correspond respectively to ro and r sin # 

therefore 
P Ao V-o- ro i ~/TRTo = r o  ~ o  
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therefore 

ro P 

P__2o / T  ( 2 + ( y _ l )  M 2 )  +__ze_t_x = 2(~- 1) 

p~To \ 
for isentropic flow. (A.4) 

(1 dr)  ( y + l ) M  
It follows that ~ = 2+  (7-1)  M 2' so that from equation (A.3) 

f f(! dr )  dM f ( 7 + 1 )  d4) = ~ M~M-gZ~ = 2 + (7 -  1) M 2 d x/'--M 2 - 1 

therefore 

/?+I x ~?-1 
~b + c = ~] ~L-- i- t a n -  7 - ~  ( M  z - 1) ; 

but for ¢ = O, M = 1therefore c = O, and if k -- /--./77-2~ 1 
1' 

¢ = ~ tan-  k ~/(M 2 -  1) i.e. M 2 = 1 + tan 2 k~b. (A.5) 

Thus in equation (A.4) 

r 1/cos l/k2 k¢ .  (A.6) 
ro 

This is an equation for a streamline in Prandtl-Meyer corner flow; thus for a membrane held in pure 
tension to such a profile, 

¢ = 4(r) = ~ c o s -  

and the required distribution of pressure difference is found from equations (A.7) and (A. 1) (or (A.2)), 

-~- - ~ -  1 / - - -  ] - -  ~ ~-2 = - 1 f ( k ¢ )  (A.8) 
{ 1 +~--g tan2 kq ~ ) 
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APPENDIX B 

The Statics o f  Rectangular Sails in Isentropic Flow. 

N o n - V  iscous f low. 

In Fig. 5a, the sail is assumed to be 
(1) subject to negligible tensions due to skin friction, 
(2) subject to negligible increments in pressure due to sail porosity or boundary-layer thickness or 

separation, 
(3) of negligible stiffness; further 
(4t ? is assumed constant. 

For equilibrium of an element of such a sail, the forces in Fig. 5b must satisfy the two requirements: 

dO dO 
T . dy cos --~ = ( T + d T)  dy c o s ~ - +  w . ds . dy . sin (0 + 0c) (B.1) 

and 

dO 
(2 T + dT)  dy sin T + w . ds . dy . cos (0 + 0~) = ( P t -  Pu) ds . dy (B.2) 

from which it follows that 

d T  
ds - w .  sin (0 + 0c) 

and 

ds = Pt - (P, + w .  cos (0 + 0c)). 

For sails with which tension is large in comparison with the weight of the sail, dT/ds  can be ignored, i.e. 
tension can be taken as constant. On such a sail, at a point such as P in Fig. 5a: 

dO 
T-~s = p t - ( P ,  + W cos (0+0c)) (B.3) 

Pl = Prx 1 -k M 2 r -  l, ds = dx/cos  0 = dy/sin 0 (B .4) 

therefore 

P"+ W" Cos(O+Oc) 

P"+ W" C°s(O+Oc) 1 . 

PT1 
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Also 

therefore 

in which 

dO= 

0 = O + ( v l - v )  

- d r  = l + f12 1-4-k 2 f12 dfl , 

f l =  Mx/~f-Zl ,k= , v = ~ t a n - l k f l - t a n - l f l .  

The profile of the sail is thus: 

x i1 

; f A Prl dx = B" cos 0. dfl 
T 

0 I1~ 

y P i;d,_-IA 
T ~ .  sin O. dfl 

0 ,at 

(B.5) 

(B.6) 

in which 

1 1 ) = M 2  - 
A =  1+fl2 l + k  2fl2 , f 1 2  1 , f l E = M  2_1 ,  

B = 1 + M 2 .r- 1 
P r l  

1 1 1 ^ 1 0 = ® + ~ t a n -  k f l~ - t an -  p l - ~ t a n - ~ k f l + t a n - ~ f l ,  

pu + w cos (0 + 03 = (p./p~) + (wlp~o) cos (0 + 03 

p r l  (prl/pr~o) (Pr~lpoo) 
1 

PTi  P r ~ - I  ( ?+I )Mg ],r--~ ?+1 - - 2 ~ ~ J  [ 2, M,~-(,- 1)] ''-l' 
PT®= 1+ M~ ,r-i. 
P~ 

Viscous flow 
Suppose now that a skin-friction force acts on the sail of Fig. 5a, and that the friction drag on one side 

of an element such as that of Fig. 5b is equal to (qoo • c$. ds. dy). Then equation (B.1) becomes 

dO dO 
T .  dy. cos 2 = (T+ dT) dy. cos -~+w,  ds. dy. sin (0+ 0c)+ q~. c I . ds. dy 

and if w. sin (0 + 0c) is neglected (as above), the equations of equilibrium are then 
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dT 
d--s = - qoo. cy 

ds = p ~ - ( p . + w ,  c o s  (0+0c)). 

So 

dO d ( ds ~ ds d 
--q~ .cy = [pt--(p,,+w.cos(O+O~))] -~s -dO )+ d-O ds [pI-(p"+w'c°s(O+Oc))] 

therefore 

d 
q~cy+-doEPt-(P"+WC°S(O+O~))] dO d 

[p~-(p.+wcos(O+03)] ds dO 

therefore 

d 
_ f qo~ Cy+-~[pt-(p,+wcos(O+Oc))] 

[p , - (p .+ w cos(O+Oo)) ] 
1 / ,, ds\ d O - I =  o g ~ k  ~-~) 

therefore 

ds 1 dx dy 
d-O = ~7 exp(I) - cos O. dO - sin--O ~ dO (k" = const.). 

So the sail profile is given by" 

z ' f a x = f  exp(I).cosO.dO 

k " f  dy f exp(I).sinO.dO t 

dO= (1 1 ) 
1+//2 l+k2f12 d f l = A . d f l  

in which k" can be evaluated as follows. 
From (B.8) and (B.9) 

dO 
k " =  exp(I).~s- s = exp(I). 

Ept-(p .  + w cos (O + Oc) ) ] 
T 

c t  i.e. at a point on the sail where s = s", 0 = 0", T = T", Pz = Pt, 

k,, pi ' - (p .+wcos(O" +Oc)) 
T,, 

exp 

D d 
qoo c f +  d--~ ~o l - ( p . + w  cos (O+Oc))] 

[p.~- (p. + w cos (O + Oc) ) ] 

(B.7) 

(B.8) 

(B.9) 

(B.IO) 
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or at the leading edge of the sail, M = M1, v = vl, 0 = ®, 

p ' z ' = p r l ( l + ~ - £ 1 M ~ - ~ , T =  T ~ , e x p ( I ) =  lie ° =  1, 

therefore 

Thus 

and 

in which 

)-~Z1 P"+WC°S(®+O~) 1 
z '  = m 

T1 L k p~l 

# 

PTI X _ [ 

J T1 
/h 

exp(I). A.  cos 0. dfl 

( ~ - @ 1 )  --z- p" W w c°s (® + + M 2 3,- 1 PT1 

P 
PTt Y __ ~ exp(I). A.  sin 0. dfl 

T1 ( ~ )---z- ~l 1 + M 2 y:- 1 
PT1 

1 x i 1 1 
0 = O + ~ t a n -  k i l l - t a n -  fll--k tankfl+tan- ft. 

That (B.12) and (B.13) reduce to the integrals of (B.5) and (B.6) can be shown as follows. If 

cy = 0, exp(I) = exp ( - l oge  k' [p,-(p,+wcos(O+O~))]): 

thus in equation (B.9) 

/ ,, ds\ 
loge t  k ~-~) = -log~k'r_p,-(p.+wcos(O+03)], 

and from equation (B.8), 

1 dO 
k' [pt--(p~+wcos(O+Oc))] -- k" ds - 

It follows that in equation (B.9), 

[pc-  (p. + w cos (0 + 0D) ] 
k" Z 

1Oge (k' I ds/dO) = - loge k' Lot- (P,+ w cos (0 + 0c))], 

and from equation (B.8), that 

1 dO_ [pt-(pu+wcos(O+Oc))] 
k'[Pl--(Pu+WC°s(O+O~))] = k" ds k" T 

(B.11) 

(B.12) 

(B.13) 

(B.14) 
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Thus equation (B.14) becomes, 

exp(I) = k" T/[p l - -  (p,, + w .  cos (0 + 0c) ) ] ,  

and from (B.11) 

exp(I) = 

( I + ~ _ I M t 2 ) y ~ - T  p.+wcos(O+Oc) 

( 1 + ~ - ~ M 2 )  -~--~ Pu+WC°s(O-kOc) 

Substitution of equation (B.15) into the integrals of (B.12) and (B.13) leads to those of (B.5) and (B.6). 

(B.15) 
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A P P E N D I X  C 

The Statics o f  Caret Sails in Isentropic Flow. 

The  pressure forces act ing on a singly curved caret  sail are shown in Fig. 13a. Those  componen t s  which 
lie in a plane parallel  to x'  Oz' are d rawn in Fig. 13b f rom which it is seen that  

and  

But 

F r o m  Fig. 13c, 

therefore 

P ' r = P ~ s i n # = P ~ / M  L . P'~' 

1.e. -N7 = x / / - ~  - - 1  . 

P',' = P~ cos # = P,  ~ / (M 2 - 1)/M J P, 

! 

Pr = Pr" cot-c 

! I Py = (Pt -  P,) dAy = (Pl -  P,) cot z .  sin # .  ds . dy' . 

P'~z = (Pl -  P,) ds . dy' , (c.1) 

! I t Py -- P:~z cot z .  sin # ,  Pr = Pxz cot2 z .  sin p .  (C.2) 

F r o m  Fig. 13d it is seen that  for centred or non-cent red  compress ion  (i.e. for singly but  not  necessarily 
conically curved sails) 

r tan "c = rl  tan"el 

P ~  

therefore 

c o t  2 Z t • s i n  # .  

But f rom Fig. 13e, cot "c 1 = cot"coo sin ( ( - 6 ) / s i n  #1; 

also 

c°s(tan'k ( ) 
\ t, 

" 1 2 + ( y - 1 )  M 2 1 s i n A  
sin 2 ( ( - 8 )  = M2 2 y M 2 - ( ~  - 1) '  sin2 ~1 = cos~ ~212 ~ COS "/:co - -  
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Thus, 

p, = ( 2 + ( 7 _ 1 ) M  2 "~ sin2A { l + k 2 ( M 2  1)~,/k~ 1 
Px~ \ 2 ~ - x - ( ~ - l ) J c o s 2 ( - s i n 2 A \ l + k 2 ( M 2 - ~ g / I  -M 

= K  
(1 + k  2 (M 2 - 1)) 1/k~ 

M 

in which K = f(y, MN, A, M~o) and for zero sweep (rectangular sails), K = 0 = 
PP 
P~,z 

So: 

P'~ _ 1 P~ _ K ( I + k 2 ( M 2  1))1/k2= 

P~  M P ~  M E 

"r,  _ -  

P'xz P'~ 

(C.3) 

Equations (C. 1) and (C.2) relate those components of pressure force (on element E of a caret sail) which lie 
in a plane parallel to x '  Oz'. The other component is Po which, as shown from geometrical arguments in 
Section 4.2, is directed along the surface generator through the centroid of element E; thus 

Po = Pr' cosec z = P, sec z = K (i --kk 2 ( M  2 - 1)) 1/k2 M • Pxz • sec z, 

so from (C.1) 

Po = --~ ( P z -  P,) ds .  dy ' .  see z. 

Ifa tension is applied to resist this force Po, such that T o - tension per unit (arc) length of chord, then 

T O . ds = Po ; 

thus, the net tension per unit (arc) length of root chord, to be applied parallel to the local generator of the 
singly curved surface (so as to balance the sum of those components of pressure force which act along that 
generator), is given by 

T o = TO~oo ~, 

gen  

i.e. 

y~ 

K r 2 

yl 
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But along a generator M, r/ro, p~ and z are constant, Pu is in this analysis assumed constant and 
K = f ( v ,  MN, A, Moo); thus 

Tg .... = ~ (p~-p,) sec ~. (Yl-Yl)  

in which (y~ -Y't) = span of sail (i.e. the length from tip to root projected onto Oy' as in Fig. 13f). 
The components of pressure force acting on element E, that is, (P~z + P'r), P ' / and  Po can be calculated 

as above; of these three forces 
(1) (P;~ + P'~) can be balanced by tensions acting in a plane parallel to x' Oz', 

(2) P',' contributes to the tangential forces and so to the value of d T  and 
ds 

(3) Pg can be achieved by a tensile force acting along the local generator, and the sum of the Pg- 
components along a given generator can be balanced (at the root) by a single tensile force of magnitude 

Zgroot- 
If it is assumed that such a force (Tgroo) is applied to a caret sail, then since the two remaining forces 

P'[ and (P; + P;z) lie in a single plane, the calculation of the tensions required to balance them is a problem 
in two dimensions only; the equilibrium equations are therefore modified forms of (B.1) and (B.2), modi- 
fications arising from the existence of boundary-layer cross-flow 32'34, the inclusion of P', and P'/, and the 
fact that weight and skin friction are based on the wetted area of element E, which from Fig. 13c is seen 

to be ( ds . dy' . x /  l + cot2 ~ . sin2 # ) . So : 

dO ,, dO 
T . dy'. cos ~ + P, = (T + dT) dy' cos -~-+ (w. sin (0 + Oc) + qoo . cy cos x) ds dy' x/1 + cot 2 r .  sin 2/z 

(2T + dT)dy ' ,  sm-~-+ w. cos (0 + 0c). ds. dy'. x/1 + cot 2 z. sin 2 # = P ~  1 + P'~ 

which from equations (C.1), (C.2), (C.3) become 

ds - (!9,- p. -~5 ~ ~ 1 - (w sin (0 + 0~) + q~.  c s . cos x) 1 + ~o (C.4) 

as = 70 - w . c o s ( O + O c )  (c.5) 

in which ~ = local cross-flow in the boundary layer. 
If T is eliminated between equations (C.4) and (C.5), then 

~o MV/--M ~Z-  1 - (w sin (0 + Oc) + qo~ cy cos x) 1 + ~-~ ~o 

dT 
d 

ds 

d ds K r K r 2 
- w c o s ( 0 +  +~--~ = dssl d - 0 ~ ( P / - P u ) ( l + M - 2 ( ~ 0 )  2 ) Oc)~/1 ( ~ o ) ) ]  
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= 7-0-+ E N , 

E= (p,-p,,) 1 + ~  ~o - w . c o s ( 0 +  ~ ) ~  + ~ - 7 ~ o  ) . (C.6) 

In the previous analysis (Appendix B) the term w sin (0 + 0c) was neglected and for singly curved com- 
pression surfaces, the distribution of x, the cross-flow in the boundary layer at the surface, cannot be 
calculated analytically until current work 39 to extend the method of Cooke and Jones aa is completed; 
thus the present analysis is restricted to the caret sail in non-viscous flow and w. sin (0 + 0c) is neglected. 
Equation (C.6) can then be simplified to 

K M 2  --= 

) /t, YO ) (C.7) 

and integrated to yield 

log e C d-O = ~ M z dO- 1Oge E = I' 

i.e. 

ds exp I' dx dy 
dO C cos 0. dO sin 0. dO" 

The sail profile is therefore given by 

f d x  f e c I '  f f e x p I '  . = - - c o s 0 . d 0 ,  dy= ~ s i n 0 . d 0 ,  

in which C can be found as follows : 

dO E 
C = (exp I') ~ I' = -~ exp = constant. 

a s  

t t  t l  t t  vt At some point on the sail w h e r e s = s , 0 = 0 , T =  T , M = M ,  

1 { (1 K (r"~ 2) /IA-~(r"; 2} = -- -wcos(O"+Oc) exp ([I']~') • C -~, (p~'-p,) +-M - ~  ro/ "~ M 2\ro , 

but at the leading edge of the sail, 0 = ®, M = M~, [I ']~ = 0, 

therefore 

C = PT1 C ' =  PT1 rl.e. Ti.¢. 

- - -  c o s  ( O  + 7-go 
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in which C' is constant. 
The sail profile is therefore given by 

x 

0 0 

prlXT,.~. = f 1 exp ([1']°o)cosO. ~,1~, PTIY__TI.~._ = f 1 
® 

exp ([i,]o) sin O. dO. (c.8) 
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TABLE 1 

Values of Parameters in Figs. 6 to 9. 

M~, Mcomp 

M~ = 10 

M¢omp = 3'5 

/vl,,~ = 7 

)/comp = 2'5 

M~, ~/rE, (9 
and Mt  

M N =  i 

qKE = 1 

(9 = 0 o 

M 1 = 10 

MN = 1"4 

r/r e = 0"9994 

(9 = 3.264 ° 

M 1 = 8'8705 

MN = 2"6 

r/Kz = 0"9876 

(9 = 10'606 ° 

M1 = 6"4738 

F 
MN = 1"2 

qrE = 0"9998 

® =  2.481 ° 

M1 = 6"5477 

M N = 2"0 

qre = 0"9900 

® = 10.222 ° 

Mx = 5"1962 

P./Po~ 

0.5 

0.5 

1'0 

0"5 

1.0 

0.5 

1"0 

0.5 

1.0 

w/p 

0 
0.2 
0.4 

0 
0.2 
0.4 

0 
0,2 
0.4 

0 
0.2 
0-4 

0 
0-2 
0.4 

0 
0.2 
0.4 

0 
0.2 
0.4 

0 
0.2 
0.4 

0 
0.2 
0.4 

0 
0.2 
0.4 

p.+wcos(®+O~) 

Prt  

0 
0,0000047(1) 
0.0000094(2) 

0.000011(8) 
0.000016(5) 
0.000021(2) 

0-000012(3) 
0.000017(2) 
0.000022(1) 

0.000024(6) 
0.000029(5) 
0.000034(4) 

0.000025(6) 
0-000035(7) 
0.000045(7) 

0.000051(2) 
0.000061(3) 
0.000071(3) 

0.00012(2) 
0.00017(0) 
0.00021(9) 

0.00024(3) 
0.00029(2) 
0.00034(0) 

0.00016(7) 
0.00023(3) 
0-00029(9) 

0.00033(5) 
0.00040(1) 
0.00046(7) 

PT1 x /T  

3500 
3875 
4393 

4743 
5799 
8410 

1991 
2110 
2252 

2336 
2533 
2789 

304.2 
308.2 
312.4 

314.8 
319.3 
323.9 

391.5 
431.2 
485.2 

521-8 
627'8 
871'6 

91.07 
93 "47 
96,04 

97.61 
100'5 
103,6 

Figure 
number  

6(a) 

6(b) 

7(a) 

7(b) 

"7(c) 

7(d) 

8(a) 

8(b) 

8(c) 

8(d) 

34 



m ~ 4  

M¢omp = 1"5 

MN = 1"2 

r/Kg = 0"9993 

® = 4.265 ° 

M 1 = 3"6901 

M u  = 1.6 

q~a = 0.9900 

® =  11.455 ° 

M1 = 3.1828 

0 .5  

1-0 

0.5 

1-0 

0 
0.2 
0.4 

0 
0.2 
0.4 

0 
0-2 
0.4 

0 
0.2 
0.4 

0.0033(2) 
0.00464 
0.00596 

0.00663 
0.0079(6) 
0.00928 

0.0036(8) 
0.0051(2) 
0.0065(6) 

0.0073(6) 
0.008(80) 
0.0102(4) 

24.31 
26.79 
30"16 

32-56 
39-22 
54.49 

11-16 
11.65 
12.20 

12-58 
13.26 
14.05 

9(a) 

9(b) 

9(c) 

9(d) 

35 



~J 
C~ 

LEADING EDGE5 

PLANE_ ~ ~  
SHOCK W A V ~  

CURVED LEADING ~ 
L 

(CI) N.A.S.A. PARAWING (b)PLANE SHOCK PARAWING 
(SINGLE SHOCKIn ---I) 

SAIL 

5HOCK 

(C) PLANE SHOCK PARAWING 
(TWIN SHOCKS, n = 2 )  

(d) TWO-DIMENSIONAL SAIL 
IN NEWTONIAN FLOW 

FIG. 1 a to d. Flexible surfaces in supersonic 
flows. 

, ow o . o . / \ T  
WAV E 

(Q) BOYD'S MODEL (SEE REF  2 0 )  

~__ te 

FLO SHOCK ~ T  
WAVE 

(b} ALTERNATIVE MODEL 

PREF. x 

T 6 8 t0 12 t4- -- ,,,,-- 
t . . . . . . . .  ~ H,~( I I I I -,,.. . 

VERY SLIGHT CURVATURE "" 
1 PREF t'J (isEFFECTIVELY A WEDGE) 

T 
SAtL A ( ® = ~ * )  

P REFo x 

~ t ~  T ~ 4 5 6 "7 

T SA,L B ( ® =  4*) 

h NOTE:- r'REF IS TALKER AS 
THE STAGNATION 
PRESSURE ~OWNSTREAM 
OF A FREE- 5TREAM 
NORMAL SHOCK WAVE 

T 

SAIL C ((~) =t0 o) 

(C) TYPICAL SAIL PROFILES 

FIG. 2 a to c. Two-dimensional  sails in supersonic flow 
(calculated as by Boyd z° using Newton-Busemann 

pressure law). 



5 K E T C H  FOR LISF- T 
WITH ~:'PE.ND',X A 

I'=-- Y-' ~ ' N , T  ~-, (q, ,~ '  
o 

" 6 0  

"50  

I~ " 4 0  
E 
3 

. i  
n, 

"I 
0 

< 
Z 
L9 
< 

¢) 

U " t0  

u_ 
0 

o .os 

,~ AIR FLOW FUNCTION. F ( k  ~) \~'/FOR CF_NTRI=D I~ENTROPlC 
COMPRE.SSION OR EXPANSION 
(..~F_ F-QN. ~ ~ MEMB.R.~,NE FUNCTIOI~. 

\ (~ ~-I)~0(K¢) (SEE EQN ~ /J/ Pr%/T 

J \ ,  

\ 
\ 

\ 

\ 
\ 

"~' j \ \  
Pr~'o ~ . o a  

,O t  

...., ~ - o~ 5o0 ~0o 
Prr°" I r I 

k~=Y-I (--~lry.~,) 
M,~,5 y + I  

\ 
\ 

~....~. - M = 4 

t 0  o ~.0 * 30 ° 4 0  ° ,50° bO* 7 0  ° 

K~ (,.~ AT M--~,, k~- 90* ANd (~- so*)-- %o,,= ~o-4~*) 

FIG. 3. Variation with local Mach number of aerodynamic and geometric properties for a sail producing 
centred compression. 

37 



O0 

0"5  

0"4- 

0 " 3  

0 " ~  

0 '~ 

0 

- 0 " t  

I I 

M=I.p.5 

M=I-5 

k~ - - - - -="  

= 0"~5 

M 4 

xtO-,~ 

I 
.v , , , -uE5 oF Pr~o/r 

M,,8-O 

5 6 '7 8 9 I0 

65"4.3 ° 67'5t = 70"5S'= 7P..'8~ 74"68' 76.1"/< 

• t890 .6~34-I-P__416 -lOP..4 -4739 '~'356 
x|O-2 x|O-3 X|O-3 xtO "3 x|O -4 x|0"4 

M=P.-5 

M=3"( M=3.5 

I 

3 0 °  ~ 50°  

f(kc~) ] with PT to~ T and kqS. FIG. 4. Variationof[F(k~))-(~-g-1)~rr~-T_ ] 



® 
W F_D6F-- 5 P A R  

THE VERTICAL 

X 

k4 N 

POINT P 

FIRST CHARACTERISTIC 

OF SAIL  FLOW 

~, F I H A L  

OF 5AlL FLOW 

(Q) SAIL MODEL ANALYSED 

i / ~  pu~ ds 

(b) SAIL ELEMENT OF UNIT 
WIDTH, AND LENGTH, ds. 

FIG. 5 a & b. Features of model analysed : the sail with finite weight and upper-surface pressure. 

39 



500 

PT~ZlT I000 ~000 

SKETCH A 

~000 4 0 0 0  

~/poo--O ~rlp,:o.2 ~%,Zo.4 

~,I~=o 

SKETCH I~ 
OF SAIL. FLOW 

SAIL PROFILES 
98" 99" =oo" 

~ s  99" ~oo* 

I 
~8. ~ • 4" ',' ' 

t,3/, =0"4" 
-.- I0"  

FIG. 6a. 

co) M== Io, pu/p== o 
Two-dimensional, isentropic sail (i.e. M s = 1), as influenced by weight and upper surface 

pressure. 

40 



IO00 

iooo 
p-r, ~'/T 

2 o o ~  q ,~-q(~o , 6 ~ o o  , 5 q o o  

tp..~ ~ ~/p~,,,O.~' ~/p~,O.4 

~ - - - - ' ~ "  . ~ ' 5  I 
. . . .  ~ " 

7 • --~" 
~ .4-54 

b " 1" " i 6 *, 

- . 4  
~/p== • 0 -- 7~ 5"  

6' 6 7 "  (o 5" 
I I 

"-"- • -~  ~ I 0  ------.-_ 

4," U ' / P ~ ' ° ' Z  - 7 "  

~/p.,c = O ~1-  ,O'P. - 

F'I R~'T CI-IAR ACTERISTIC ~ 
OF $A IL  FLOW 

Mm" I0,'/, A N D 4  

MN:| , "~ , 1 ' 4  

°°I 800 
CI,- 

0"15 

LOCAL  VAL.U E:5 

M,~,4 

O.tO I" \ 

~.'/p ,0 = 0 . 4  

FIG. 6 b & c. 

- 6 '  

- G' 

( b )  M¢~, IO,  pu/p=, ,O.5 
0 ' 0 5  

I0 

4(~ Q 3Q" ;~4 ° 2 0  ~ 16" 14" 12 a 
I , . i . , . I i 

L/t>- NON " V ISCOUS 

- - 7 "  ( C )  L IFTING CHARACTERISTICS, M===IO, 7 AND 4 

Two-dimensional  isentropic sail (i.e. M N = 1), as influenced by weight and upper-surface pressure. 

~ P,.,L = 0 ' 5  p,.. 

I 
, 0 . 5  



~000 |500 2000 
•.. "~//. 

250 500 

ZSO 1 

SKETCH A 
500- 

~ 4  
2 o 0 0  ~o9o 

OF SA&,, F~OW ---"-----  

SKETCH E 

a?" I ~-. 

t ! ! 

la) M.~,, b4,  l~ull~,,,-O-S 

FIG, 7 a &  b. 

(b} M . , , I ' 4 ,  ~ull~,,~,l'O 

Two-dimensional,  wedge-spar-plus-sail at Moo = 10. 



5 

~/p...o 

90 ~I" 9P-." 
i i 4-- ZS" 

- 2 9 "  

--30" 

-31 ~ 

\ \ .  "¢" 

(C) M N = 2 ' 6 ,  Dul~)a., = 0 " 5  
(d) MN= 2.6, pulp,,.=i "O 

FIG. 7 c & d. Two-dimensional ,  wedge-spar-plus-sail at Moo = 10. 



-IE." 

"~5 \ --13" 

\ 

*z/l=~,,,o 

tO) MN * t.2,~u/l:,,,,.=0.S (b) MN---1"2, I~t*ll~=t'O 

FIG. 8 a & b. Two-dimensional,  wedge-spar-plus-sail at  Moo = 7. 



4~ 

IG" 17" 18 
" ' ~ .  "61 ) I 

I 5" 

, c  ,,7. ' r"  , . '  ' ' ' ' ' ' ' 

• ,z.5 -- ~" ~ -3" 

\ ~ 15 I | 5.iS6Z -- ~ 

.3 

5 • 
- - 6  

,-~/p~,,-- o , 4 ~  -7" 

It) M,-2.0, I~u/l~,~-O'5 ( d ) MN, 2.0, pul-i~.,,'I :0 

FIG. 8 c & d. Two-dimens iona l ,  wedge-spar-plus-sail  at M .  = 7. 



.'/, / I / / / . / {  

4~ 

" •  ~ "  ~,~" 
• . .  I I I I I 

• 1 .5  ,, 

~ . s  / _ 

(Q) M ~ , l . 2 , ~ u / l ~ , , , O . 5  (b) MN.v- 1'2~, ~u/p,,,~--I.O 

FIG. 9 a & b. Two-dimensional, wedge-spar-plus-sail at Moo = 4. 



-.,-..1 

XI.5 
,¢o / 

I 

I~/p dxt wo 

(C) M,  =l,6,~u/p~=O.S 

4-~ 18" 

--19" 

-2d  

-~.1" 

-27-" 

-23" 

(c) M. =l'6,pu/p=== 1.0 

FIG. 9 c & d. Two-dimensional,  wedge-spar-plus-sail  at Moo = 4. 



4~ 
oo 

\\ "\ k \\ % \ 

T 
l~-~y 

T 

100 

\k \\ 
\ \ 
\ \ 

\\ \\ 

\\ 
\\ 

Y = l ' 4  

[ v A L u E S  OF p 
CORRESPOND TO 
{ . ,A,S = ~50 KNOTS] 

\ \ \ 
, \ 
\~. \\ 

\ \  

• \%. 
\% % 

\\ \'x \ 

\ \  I \ .  \.%'.-~. \ ,  

\ \  < 
k 

X.:  I0 FF 

% 

L, 
ab 4b ~b ~b 60 

TENSION,  T 
i ,  

S C A L E  FOR STRESS I ~  
L.EVEL = ,,~ ton/im ~" 

L E V E L  - IO r~n/in z 

I o;, ,,o 4.p 
2~0  ~.bO ~ ~ I '~ " iooo P-doo 4(~oo ~0oo0 

(~b. pz~ F~..SPAN) = 
..¢~AIL. THICKNESS.r .  (';NCHES') 

0 9 0 ,  o.,ooz- o.qos o.p,o o,9~0 o.~o 
.O~lO. 0 ' 2 5  O'-SO ~:o ~.0 ~ 4 / 0  

5All.. WEIGHT, ~ (Ib/FL &) FOR S A I L  D E N S I T Y  = 0 . 2 S  Ib/i~ 
~A IL  THICKNE.-~S, I. ~NCHES') ~ =  

..... 0 9 0  c pea o,;..~- o.p,o o.9~_o 
0 .'0 .,~ O.'IO 0. '2~ OTtO I "0 a.'C 

..%ALL" WEIGHT, ~ ~b/Fl:. £) F'OR .SAIL- O E N S I T Y ; O ,  EStb / in  ~ 

EAS 
(ElM OTS) 2 5 0  300 3,50 4 0 0  4S0 

T 

RPPROX. 
ALTITUDE 150,000141,0OO 13~,00C IPG,00(3120,000 

M ~  =10, ~" = 1'4 

EAS 

0"1F~ ) 
APPROX. 

ALTITUDE 

2 5 0  3 0 0  3 5 0  4.OO ~SO 

r~2,000 IR3,OOG 115,OO0 lOg, DO0 IO4,00{ 

M ~  =' / , '~r  = 1.4 

EAS (KNOTS) ~ S O  3 0 0  3 5 0  ,4.00 4 5 0  

6~/F~'~ is.~o 27.~, 3-r.o4 48 .ssG=.z~ 

APPROX 
~,LTrruo= Ios,ooc s~ooo eo,ooos4,ooo 7~.ooo 

(~) 

M,,,:,4, 'y" =1.4 

FIG. 10. Variation with operating conditions of sail tension, stress, thickness and weight. 



FLOW 
MODEL 
~CENTRE, D 
I.SENTG 

INSET _ 0 ~ .  

N ~ GENF..RATOR,~ REM/MN 

CONICALLY CURVED ~,URRa~CE5 

(0) CONICALLY Cl ~VED CARET SURFACES 

MODEL 11 
(NON-CENTRED 
ISENTROPIC 
WAVE) 

(b) NON-CONICAL~ SINGLY CURVED CARET SURFACES 

~EL = \ ~ ; ~ " " ~ _ ~ _ "  . . . .  

. . . . . . \ \ \ ' ~ . . . ~  '~ • \ ' /  ~ N = O N  ,H ~,,cx 

SMALL SAIL ELEMENT (LOW TENSION) 

(a)  TOP REAR VIEW OF TWO-DIMENSIONAL SAILS 

)) GEOMETRY OF CARET SAIL 

(C) STIFFNESS ACQUIRED BY A FOIL 

PAIRED FOILS 

DUE TO CURVATURE 

ELEMENT E 

- 2: " y o /  
~ONIC LINES / 

(¢) POSSIBLE STREAMLINES 
THROUGH ELEMENT E 

FIG. 11 a to c. Surfaces to con ta in  two- 
d imens iona l  i sen t rop ic  waves .  

Fig. 12 a to c. A e r o d y n a m i c  and  geomet r i c  
features of  a care t  sail. 



I 

PJ 

~ /STREAMLINE, 

O 

(CI} COMPONENTS OF THE PRESSURE FORCE ON E L E M E N T . E .  

_ _  =,, 
M I 

P~ 

O 

! I 
(b) COMPONENTS PARALLEL TO THE PLANE X o ~. 

1 
u I 

o O 

(C) LATERAL COMPONENTS OF AREA AND PRESSURE FORCE 

5AlL TO PRODUCE. 
CENTRED WAVE 

(d )  GEOMETRY OF SINGLY CURVED SAILS 

(¢)  GEOMETRY OF WEDGE - S P A R - P L U S - S A I L  

FIG. 13 a & b. Forces acting on a caret sail. FIG. 13 c to e. Forces  acting on a caret sail. 



T 9 ROOT 

BALANCE, J 

( f l  TENSIONS TO BALANCE PRESSURE FORCE ON ELEMENT E 

(0) WEDGE INTAKE 

L,h | - 4 . ~  i 

i-3 

' I 

o , ~ 3 4 s 6 • 8 • ,o ,, 
LOCAL M A c . . U . B ~ R  M / 

(<:j) VARIATION OFwITHANHEDRALLocAL CORRECTIONMAcH NUMBERFACTOR~ I + "xP~r / 

(b) CARET INTAKE 

COMBUSTION'., 
PRE..~Su RE. 

N BODY B ~ ' S ~  

5HOCK S/~'~,-5.H EAR LAYER 

LOCAL VALUE OF 
RES,SURE DIFFERENCE 

LOCAL VALUE 

NOZZLE. NOZZLE"=" LIP. 

(C) FLEXIBLE COWL 

UPPER SlDF- OF 
coMsusT,O,  c . ~ . ~ e e ~  
(MULT,Pt .~  m I L ~ )  % 
LOWER SIDE OF 
COMBUSTION CHAMBER 
5INGLE. FOIL) 

INSET TO 
FIG. 14.(C) 

FIG. 13 f to g. Forces  act ing on a caret  sail. FIG. 14 a to c. In takes  and  cowls. 



bJ  

o= 

= 

E/3 

O 

O 

o" 

> 

(a) FLOW MODEL ' v ' R ~ " ~ " " ' ~  

(b) VEHICLE CONFIGURATION 

(c) VEHICLE CONFIGURATION 

(Q) LIFTING SYSTEM 

TWIN SHOCI, K 

FROM BENEATH VEHICLE 

(b) VEHICLE CONFIGURATION 

FIG. 15 a to c. Simple lifting system. FIG. 16 a & b. Composite lifting system. 



R. & M; No. 3624 

Crown copyright 1970 

Published by 
HER MAJESTY'S STATIONERY OFFICE 

To be purchased from 
49 High Holborn, London WCI 

13a Castle Street, Edinburgh EH2 3AR 
109 St Mary Street, Cardiff CFI IJW 

Brazennose Street, Manchester M60 8AS 
50 Fairfax Street, Bristol BS1 3DE 
258 Broad Street, Birmingham 1 

7 Linenhall Street, Belfast BT2 8AY 
or through any bookseller 

R. & M. No. 3624 

SBN 11 470324 8 


