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Summary.

For free-stream Mach numbers between 10 and 4, a study is made of the profiles assumed and isentropic
waves produced in non-viscous flows by two-dimensional sails, under pure tension and of finite weight.
At the higher free-stream Mach numbers, large parts of the compression flow are virtually centred, and
even for long sails (e.g. 100 ft chord) at a high Mach number (e.g. 10) and low stress (e.g. 5 tons/in?), the
weight of such a membrane need not exceed 1 Ib/ft?. The analysis is modified to include the effects of skin
friction and is then extended to singly-curved ‘caret’ sails, which allow leading edges to be swept but can
still produce two-dimensional waves ; while their curvature imparts to such sails a stiffness-due-to-shape,
it is shown that equilibrium can alternatively be maintained by appropriately applied tensile forces.
Rectangular and/or caret sails may find applications as wings, intakes, cowls and nozzles for hypersonic
vehicles. .
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1. Introduction.

The use of flexible membranes for producing lift and/or drag forces from incompressible flows!:? has
long been regarded as standard technique (e.g. for sailing ships and parachutes). More recently, supersonic
parachutes for the deceleration of re-entry bodies have been studied in various forms*+5, and since 1960,
much American work has been reported on the theorctical and experimental performance of the
supersonic parawing®'*; this is a type of lifting device comprising a flexible membrane tethered between
two stiff leading edge members so as to form (for example as in Fig. 1a) a conically-curved delta wing.
Such devices offer the possibility of partial or full retraction or deployment during the flight or re-entry
of a parent body.

The flow around such wings is of course rather complex ; no attempt appears to have yet been made to
simplify their aerodynamics by using a cylindrically curved ‘waverider’ parawing to ‘contain’ a two-
dimensional flow!?:'6 behind a plane shock wave or waves, as in Fig. 1b and 1c. However in 1958, Daskin
and Feldman'’ examined the aerodynamic properties and geometric form of a constant chord sail, which
they assumed to produce a two-dimensional influence on a hypersonic flow, as in Fig. 1d. In their analysis,
which was based on a modified Newtonian approximation’$, they assumed that the sail was of negligible
weight and stiffness. that tension was constant across the chord (i.e. that skin friction was also negligible)
and that pressure increments due to sail porosity and boundary-layer growth (or separation) were
negligible. Daskin and Feldman also stated that they had studied the weight of sails of low and high aspect
ratio and of delta planform, that of these the weight was largely due to the ‘spars’ to which the membrane
was attached, but that when compared with conventional wings of identical materials, stress levels and
planform, reductions in total weight of 80 to 90 per cent were observed. In 1959, Fink!® produced a
linearised analysis of the impermeable sail in supersonic flow, and in 1960, Boyd?° extended the analysis
of Daskin and Feldman by the inclusion of Busemann’s centrifugal correction to Newtonian flow: in a
second paper®!, Boyd re-analysed the supersonic sail by means of simple wave theory according to
Busemann’s Second Order approximation and in 1962 and 1963, investigated22-23 the effects of porosity.
All analyses have indicated that sail profiles would have a progressive increase in camber towards the
trailing edge, but as far as is known, no tests on the aerodynamics of two-dimensional sails have been
reported, though tests on rigid, concave, wedges in supersonic flow have been reported by Johannesen?,
Connors, Woollett and Blue?’, Chapman?®®-?7, Larson?®?” and Kuehn2%-28, Sterrett and Emery2®, and
unpublished work briefly mentioned by Ferri®®: however. all these tests were primarily aimed at investi-
gation of compressible boundary layers in adverse pressure gradients, or of the achievement of centred
compression. \

In this Report, analyses are presented for two-dimensional sails producing isentropic effects on super-
and hypersonic flows of zero or finite viscosity; the assumptions made are that membrane weight and
upper surface pressure are both finite, but that, as in other analyses'”"*-2!, stiffness and pressure incre-
ments due to porosity and boundary-layer growth (or separation) are negligible. Over a wide range of



inflow Mach numbers and for extents of isentropic compression which would be useful for wings or
intakes, it is found that two-dimensional sails in non-viscous flow can produce very nearly centred
compression (i.e. reversed Prandtl-Meyer waves); furthermore, even for long sails (e.g. 100 ft chord) at high
Mach number (e.g. 10) and low stress (5 tons/in?), the weight per unit wetted area of a steel membrane
need not exceed 1 Ib/ft2. In addition, a form of sail is proposed by which two-dimensional isentropic
compression would, in principle, be produced and contained at design conditions, but to which single
{but not necessarily conical) curvature imparts a stiffness-due-to-shape: it is then shown that exploitation
of this stiffness can be reduced (to zero if required) by application to the sail of appropriate tensile forces.
Suggestions are made for the application of sail techniques in the design of wings, intakes, cowls and
nozzles for hypersonic vehicles.

The analysis does not include any consideration of membrane stability (either static or dynamic), and
does not cover low-speed or transonic flight speeds. Flutter, divergence, creep and material degradation
at high temperatures are recognised as possible problems, but are not considered in the present analysis.

2. Properties of Rectangular Sails in Newtonian Flow.

Daskin and Feldman!’, Fink!® and Boyd?°:2! have shown that a rectangular membrane tethered
along its leading and trailing edges and held at incidence to a uniform free-stream can ‘fill’, and so form a
two-dimensional sail which, with no intermediate constraints and at constant tension, is maintained in a
particular profile by the pressure field so generated. The four analyses are based respectively on New-
tonian'”, linearised'®, Busemann-Newtonian?® and Busemann Second Order?! theories, and as a
consequence, predict differing profiles:

(i) Daskin and Feldman'” (upper surface pressure assumed p, = p, . cos? 0):

———p’e;;x = cosec@—cosece,&f’lf,;y = loge[tang.COt%]

(if) Boyd?® (upper surface pressure assumed to be zero):
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In these expressions,

Dres. = Stagnation pressure behind a normal shock,
X, y = orthogonal co-ordinates as in Fig. 2a,

T == tension per foot span of sail,



© = sail angle at leading edge,

6 = sail angle at any other point,

and
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Note that although Boyd’s Newtonian analysis?® was for the model of Fig. 2a, his results apply with
equal validity to that of Fig. 2b in which the inclusion of a wedge is thought to be realistic, both from
considerations of leading-edge heating and sail tethering. Fig. 2c shows typical sail shapes and it is seen
that

(1) they are somewhat similar to streamlines in a Prandtl-Meyer corner flow, i.e. a centred expansion
or compression wave, but that

(2) ® = 0is impossible except for infinite tension, so that some flow deflection and loss of stagnation
pressure through a leading-edge shock wave must occur for any structurally realistic sail.

The first feature encourages investigation of sails which produce isentropic compression, since such
sails might offer simultaneously, a useful type of flow and a low membrane weight ; the second feature
suggests that, at least for sails producing purely isentropic compression, a new analysis is needed rather
than an attempt to extend Boyd’s work. An analysis of the isentropic flow beneath a (supersonic or

hypersonic) two-dimensional sail, and its relation to that through a centred wave, is described in the next
Section.

3. Properties of Rectangular Sails in Isentropic Flow.
3.1. Sails Producing Centred W aves.
Consider first a weightless, infinitely flexible, non-porous membrane in conditions of zero flow and
supporting at constant tension a pressure difference, distributed along its length in such a way that the

profile it assumes is identical with a streamline in a centred (ie. a Prandtl-Meyer) wave; that is let the
membrane profile be

r

= s P L g (see Appendix A and Fig. 3). (1

It can then be shown (again see Appendix A) that the required distribution of pressure difference (P.D)
is

(P.D)ry  (pi—pJ 7o (1 )tanzkgb.cos”"qub
= ={ =1 (

T T 1 32
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in which
-1 1.

Suppose now that this same membrane is tethered in a supersonic stream and that the lower surface
pressure p, is generated by a Prandtl-Meyer wave so that, at any point,

k2+1

(=N R 1, N :
pT_(1+ 5 M> _1/<1 a7| 1ttan’ke = F(k¢) ;



then the distribution of pressure on the upper surface required to ensure that the membrane retains its
shape (and so that equations (1) and (2) retain their validity), is

N r 1 tan’k ¢ . cos'® k ¢ r 1
B p—’-°—( —~> i 3/2=p}°—(;c~2—1)f<k¢)
<1+—k—2tan2k¢>
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In Fig. 3 the variation with k¢ of the airflow function F(k¢) is shown and, for various values of py7o/T,
1\ Sk

k? prto/T
M < 15 (approximately), the slope of the latter precludes any close alignment with F (k ¢); however for
prro/T = 1/1-40 and 1/1-51, the curve for the membrane function crosses that of the airflow function at
Mach numbers of about 3 and 7 respectively, the former being nearly coincident with F(k¢) at
30° < k¢p < 70° (that is, at lower surface Mach numbers between about 1-75 and 7). But the vertical
distance by which, at a given k¢ and py ro/T, the airflow function lies above the membrane function is
equal to p,/pr in equation (3) and its variation with k¢ thus represents the distribution of upper surface
pressure which is required for a sail at the chosen value of pr ro/T to produce a centred compression ; thus
in the range of values of k¢ for which airflow and membrane curves are nearly coincident, a sail having
zero upper-surface pressure might be expected to give ‘nearly centred’ compression. If p ro/T is increased
slightly, a nearly centred compression might be expected from a sail having a low, constant value for
upper-surface pressure. For the weightless sail giving precisely centred compression, the necessary

that of the membrane function( . It is seen that, for k¢ < 25° (approximately) i.e. for

1 k
distribution of upper-surface pressure is shown in Fig. 4 as the variation of [ Flk¢)— ( e 1 )g(_rqs/)—T]
T'O _

with k¢ (i.e. with local Mach number). As is predictable from Fig. 3, rather rapid changes in the function
are required at M < 1-5. For higher values of Mach number, acceptable (i.e. positive) values of

[F(kq&)— (%—1)1{(5(6)7,]1& between the k¢ —axis and the asymptote (prro/T) = oo, for which
Tto

condition
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as shown from the values tabulated in Fig. 4, the variation of F(k¢) at high values of k¢ (or M) is not
rapid.

It is emphasised that both Figs. 3 and 4 merely show values which are required to satisfy equation (3),
but that such values may be unrealistic in the engineering sense ; however they encourage the view that
sails with constant pressure on the upper surface may produce at least some regions of nearly centred
compression. This view is supported by an alternative analysis due to Pike3!, who has compared the
radius of curvature of a Prandtl-Meyer streamline with that of a sail having constant tension, zero weight
and zero upper-surface pressure ; Pike has found that for y = 1-4and M > 7, these radii differ by less than
3 per cent, and that as M — oo, their difference tends to zero.



However neither Pike’s analysis nor that above have made due allowance for the effects of independent-
ly chosen values of upper-surface pressure and/or sail weight. Further, although it is possible to predict
the pressure distribution required to give centred compression, it may be impracticable or inconvenient
to provide means for precisely controlling this distribution and in fact, a full-scale requirement might be
for the sail to be simply tethered at its leading and trailing edges. Furthermore, the combinations of
prto/T and M indicated in, for example Fig. 4, need provide no more than mathematical validity to the
claim that a sail produces a centred wave ; it has yet to be shown that such combinations allow structurally
feasible sails. Three further steps in the analysis are thus required:

(1) equations for the profile of two-dimensional sails (with finite weight and upper-surface pressure)
must be quoted in general form,

(2) the waves produced for various combinations of M, and parameters describing sail tension, chord,
pressures and weight must be compared with corresponding Prandtl-Meyer waves, and

(3) values of M, and the other parameters which, in combination, appear to offer engineering feasibility
(both aerodynamic and structural) must be identified.

These three steps are now described.

3.2. Sails Producing Non-Centred W aves.

In the first part of Appendix B the sail of Fig. 5 is investigated subject to assumptions that tensions
due to skin friction, increments in pressure due to sail porosity and/or boundary-layer growth or separ-
ation, and effects on shape due to sail stiffness are negligible, and that the change in air temperature through
the wave produces negligible change in the value of y*.

For a sail in frictionless flow, whose weight is negligible only in comparison with the tension, it is
shown in the first part of Appendix B that

1% = b=t weos 0+6)), @
and hence that the sail profile is given by
B B
prix _ |4 Priy _ |4
= B,cos().dﬁ, T —fB.s1n6.dﬁ %)
B1 B1

in which

1 1 5 2
<m‘m>’ﬁ =M1,

B= 1+y—1 M2 ~321_ Pyt wcos (0+6.)
B 2 Pry I

Note that p,, x/T (and p;, v/T) must be positive numbers since in each, all three constituents are
positive. Also in the integrals (5), M; > M so that 8, > §; thus, for positive values of 8 to give positive
values for pry x/T and pr, y/T, it is required that 4/B should be negative. Butify > 1,then0 < k? < 1,
and since 82 is positive, A is always negative ; thus B must always be positive, that is,

*These assumptions apply to all sails considered in the main text of this Report, although in the analyses
presented in the second part of Appendix B and in Appendix C, the effects of skin friction on the equilibrium
of rectangular and ‘caret’ sails are noted.
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At the leading edge of a sail producing fully isentropic compression,
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but unless some disturbances occur in the flow over the top of the leading edge, then at this leading edge,
P./P. = 1 and the above condition is satisfied only for negative values of w/p,, (i.e. for sails of negative
weight) or for w/p,, = 0.If w/p,, = 0 and p,/p,, = 1 then the sail is of zero curvature and so produces no
influence, isentropic or otherwise, upon the stream. It follows that, if p,/p, = 1, it is impossible to start
an isentropic compression by a sail in pure tension. Of course, if the forepart is stiffened and of isentropic
profile, the remainder can be tensioned as a sail. Alternatively, a sail may be attached to a plane wedge,
as in Fig. 5, so that p,/p,, may be less than unity; if w/p, = 0 = p./p., then conditions correspond,
as nearly as is possible for an isentropic sail, to those assumed by Boyd?°. In Fig. 6a, for p,/p,, = 0,
My = 1 and w/p,, = 0,02 and 0+4, sail profiles are drawn for free-stream and discharge Mach numbers
(M, and M) of 10 and 3-5 respectively; sail profiles are shown in the top two sketches, firstly as
computed (see Acknowledgment) in terms of pr, x/T and py, y/T. and secondly, for direct comparison
at equal chord. Sketch A shows, as did Daskin and Feldman!’, Fink'® and Boyd 22! for the weightless
sail, that curvature increases rapidly towards the trailing edge and also that, as sail weight rises, then for a
given extent of compression pr, X/T also rises, so that, for given values of pr, and sail chord, tension is
consequently reduced ; Sketch B shows that, the heavier the sail, the more rapid is the rate of increase of
curvature towards the trailing edge, with the result that, since regions of small dy/dx extend over larger
proportions of the chord, the heavier but more moderately tensioned sails lie above the lighter sails. From
this fact it also follows that for the heavier sails, the first characteristic of the sail flow (i.e. that at which
streamline curvature is initiated) lies further from the trailing edge; but in the three drawings showing
wave positions (for p,/p,, = 0and w/p,, = 0,02 and 04, and for sail chords of approximately 100 inches),
it is further seen that compression waves corresponding to local Mach numbers between 7 and 3-5 are
nearly centred*. In Fig. 6b, the effect of changing the upper surface pressure to p,/p,, = 0-5isseento bea
significant change in the positions of initial waves, but little change in the centring of later waves. Finally
Fig. 6c shows, for two values of p,/p., the lifting effectiveness (C,) and efficiency (L/D) of sails in non-
viscous flow at M, = 10, and also at M, = 7 and 4. The wedge-spar is assumed to be extremely thin, so
that the forces and flow losses it produces may be neglected ; the lift coefficient may then be written as

. X
CL = TSin(voo—vcomp)/qoo X = sm (voo_vcomp)/<'@i"-p—7‘ﬂ.&—l——>,
Pr, b1 T

*In practice. convergent characteristics would coalesce into a shock wave, together with a reflected
wave which would be either an expansion or a compression, according to the value of M, and the extent
of compression due to the sail; for clarity in Figs. 6-9, such interactions are not shown.



and L/D and turning angle as

L L _ T.sin(Ve—=Veomp) cot Vo Veomp
D non-viscous B D const, T B T(l —COo8 (voo - vcomp)) B 2 '

Due to the assumptions that y is constant and that the flow is isentropic (i.e. py, = py_), local values of
static pressure ratio are given as

P _P pr._ (_____“(V—UM?O)FLI .

Po  DPri P\ 2+(—1)M? '

thus lines of constant static pressure ratio may be added to Fig. 6¢ to show the pressure rise the boundary
layer is required to sustain. For sails yielding a high value of L/D at M, = 10, these may not be too severe
(in view of the figure quoted by Ferri®®, namely a static pressure ratio of 175 without separation of a
laminar boundary layer); however, the lifting performance of isentropic sails is rather poor in comparison

with that of the simple wedge (e.g. the plane shock Nonweiler wing) for which values of C, and L/D are
as shown below

deg:,::)::on % | C,forp,/p, = 0 anfi C forp,/p, =05and | C,forp,/p, = 1and

(degrees) ropvise I M =10 7 4 M, =101 7 | 4 |M_,=10] 7 4
6-340 9 0055 | 00790162 0048 | 0064 {0-118| 0041 | 0050|0074
8-130 7 0075 | 0-100)0-1891 0068 | 0-085|0:145| 0061 |0071]0-101
11-310 5 0119 | 0146|0244 | 0112 | 0132|0200 0105 |0-118]0-157
18-435 3 0-258 | 028710398 | 0251 |[0274|0356| 0245 |0-260| 0314

It follows that, in purely lifting applications, isentropic sails may be less desirable than conventional
bodies unless they allow great improvements in structure weight, or other features such as greater lengths
of laminar flow. Alternatively a sail may be used as part of a body beneath which a shock wave forms;
for these, values of C; and L/D would have to be recalculated. If at M, = 10, a sail is mounted behind
a wedge-spar producing a shock-wave (My = 1-4 in Figs. 7a and 7b). the effects of variations in w/p,, on
sail profile and its position relative to the first characteristic of the sail flow (see Sketch B) are much
reduced, and nearly centred compression is obtained over a similar range of local Mach number; in
Figs. 7c and d, only weightless sails are shown since with My = 26, the effects of w/p_, on profile are
extremely small.

As seen from Figs. 6-7, py, x/T always increases with w/p,, if the values of other parameters are held
constant. In Fig. 8 and 9 (M, = 7 and 4 respectively) plots of p;, x/T are not shown since (as can be
seen from Table 1) this trend with w/p, is unchanged.

In Figs. 8a and 8b, the effects of w/p,, on sails at M, = 7 and My = 1-2 are seen to be significant,
but even for w/p,, = 0, early compression waves lic well below the near-focus of waves in the range
52 M > 25 If My is increased to 2 (see Figs. 8¢ and d) the effects of variations in w/p,, are slight and



for both values of p,/p, . much of the compression flow is nearly centred. For sails operating at M, = 4
and My = 12 (see Figs. 9a and b) the influence of w/p,, is considerable but even at w/p,, =0 and for the
rather short sails drawn, early waves lie well below the points at which later waves intersect, and no part
of the compression flow can be described as centred ; if My = 1-6 as in Figs. 9c and d, the influence of
w/p., is reduced but again, even for weightless sails, early waves lie below the intersections of later waves,
and even the latter are not closely centred.

It is tentatively concluded from Figs. 6 to 9 that:

(1) in non-viscous hypersonic flows it is possible to produce significant extents of nearly centred
compression beneath sails in pure tension,

(2) as free-stream Mach number falls to supersonic values, centring of the waves becomes less marked,

(3) at a given free-stream Mach number, increases in upper-surface pressure and/or sail weight usually
increase the gaps between initial compression waves and the near-focus of later waves,

(4) at a given free-stream Mach number, an increase in the wedge-spar angle reduces the influence of
upper-surface pressure and of sail weight.

It has been shown in Figs. 6 to 9 and Table 1 that a choice of M, My, w/p,, and p,/p, leads as a
mathematical requirement to a particular value of pr, x/T ; the final paragraphs of this section relate
to the engineering acceptability of these combinations of M, My, pry X/T and w/p,.

For a sail tethered to the trailing edge of a wedge-spar as in Fig. 5,

(6)
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in which, for a given value of M, (1) ngg prescribes the strength of the shock on the wedge-spar and
hence My and M, (2) p,, implies an equivalent air speed (E.A.S.) at which the sail is operating and (3)
x is the sail chord. If these parameters are allotted numerical values, then for a chosen value of pyy x/T,
a particular value will result for T, the sail tension per foot span. For example, in Fig. 10 the variation
with T of py, x/T is shown for sails having x = 1, 10 and 100 ft, and operating at different values of M,
(10, 7 and 4) and at such altitudes as give identical values of E.A.S. (350 knots); in each case the effects
of varying shock strength are indicated by 7k values of 1-0 and 099, which represent shock strengths
from zero to those which would be adequate for initiating intake processes. Extra scales have been
added to indicate (1) the thickness of sails which would operate at specified tensile stresses (5 tons/in2
and 10 tons/in?), and (2) the sail weight per unit wetted area which would result for a sail material such
as high quality stainless steel (which has a density of 0-28 Ib/in). Note that, even for the lower stress level
(5 tons/in?), sail thickness and weight need not exceed values of 005 inch (approximately 18 S.W.G.) and
2 1b/ft2 respectively ; the corresponding value of sail tension (i.e. of spar loading) is about 7000 1b/ft span.

It is seen that the values of py; x/T for aerodynamically and structurally realistic operating conditions
lie between 10 and 10 000; thus the values of py, x/T required in Figs. 6 to 9 (lying in the ‘boxes’ on
Fig. 10 and listed in Table 1) can be compatible with engineering realism, and for 350 knots E.A.S.,
w/p,, = 044 would frequently be an excessively high estimate of sail weight, even for stress levels as low
as 5 tons/in2.

Fig. 10 is in fact restricted to use for an E.A.S. of 350 knots; however, in that figure, tabulated values
of EA.S. and p,, show how, at various values of M, variations in the flight environment would occur,
and use of these values of p,, in equation (6) would allow Fig. 10 to be re-drawn for other values of E.A.S.

It is concluded from Fig. 10 that values of pry x/T selected in Figs. 6 to 9 and Table 1 to give
mathematical consistency with the chosen values of p,/p, and w/p, need not prevent two-dimensional
sails from being realistic in the engineering sense. It is therefore worth examining the possible use of sail
techniques in three-dimensional (caret) sails having swept leading edges; the geometry, aerodynamics
and statics of such sails are now described.

4. Properties of Caret Sails in Isentropic Flow.
It is known3? that, at design conditions of Mach number and incidence, two-dimensional, centred,



isentropic waves can in principle be formed by and contained between so-called ‘caret’ surfaces, such as
those of Fig. 11a; if the leading edges of such surfaces are straight then each surface is of conical curvature
through the tip T, and each is developable onto a plane (see inset to Fig. 11a). More generally, surfaces of
single but non-conical curvature (see Fig. 11b) may also produce and contain two-dimensional but non-
centred isentropic waves; these may also be individually wrapped from initially flat flexible foils of
correct developed planform.

Consider the case in which the foils are of thin metal and have in consequence a small but non-zero
stiffness; then, if wrapped to form caret surfaces of conical or merely single curvature, such foils will
acquire by curvature an additional stiffness-due-to-shape. For example, consider a triangular plane Foil A
mounted on a rigid wall as in Fig. 11c. Application of a load P at the tip will produce deflection until
(at the position shown dotted) the foil has stored, under elastic strain, an energy equal to the work done
by P. Consider now a similar foil, similarly mounted but conically curved through the tip as is Foil ‘B’;
unless failure of the mounting, or wrinkling and/or buckling of the foil occurs, the application at the tip of
the same force P will now produce a smaller tip deflection, demonstrating that a stiffness-due-to-shape
has been acquired even though the foil thickness and material remain unchanged. Further, the foil will
be in some measure resistant to a load (or loads) acting in any direction at the tip or elsewhere although
the level, nature and effects of the stresses in the foil will depend upon the loading distribution and upon
the foil curvature, anhedral, sweep, aspect ratio, material properties and thickness ; however for a material
such as thin steel sheet the acquired stiffness would frequently be enough to save a caret foil, unlike a
two-dimensional foil, from distorting under its own weight. Finally the arguments above will apply not
only to a curved foil mounted on a rigid wall, but may be extended to paired foils (C and D in Fig. 11¢)
in which geometrically compatible foils are connected (e.g. by a seam weld) along the ridge line; for cases
in which foil curvature leads to a curved ridge line, the foils become thereby mutually stiffening, although
in the absence of a rigid wall, they may suffer some chordwise bending.

For such paired foils, two conclusions should be valid :

(1) for a given operating condition, the structure weight should be favourably influenced by the
acquired stiffness, and ’

(2) since each surface can be wrapped from sheet material, fabrication may be simple.

Clearly, skin wrinkling and flutter characteristics must be investigated for the various types of loading
distributions expected. These are likely to be complex®12-33 ; however, at least the statics of such foils are
simple, since as shown below, and as already investigated for the simpler case of the rectangular sail, each
element of the membrane can be held in equilibrium under a pressure difference and an appropriate
distribution of purely tensile force.

4.1. The Geometry and Aerodynamics of Caret Sails.

In Fig. 12a, Flow Model III shows various streamlines along any one of which a flexible surface, of
correct chord and suitably tensioned between suitable points, would align itself. Large and small sail
elements could, in principle, be assembled to form a ‘stepped sail’ comprising

(1) individual ribbons, each at a tension appropriate (and in fact for a given value of py, x/T pro-
portional) to its chord, and

(2) appropriately shaped sidewalls, which must resist the sideforces produced by internal pressures.

If a sail of single curvature is formed as in Fig. 12b, this also (having non-zero anhedral) will be subject
to sideforces. For a non-centred flow such as Model I11, the sail of Fig. 12b is non-conical ; however, any
two Mach waves between which Mach number changes by an infinitesimal amount, may be regarded as
having a focal line (O’ in Fig. 12b) and will be associated with a conically curved strip 4 B C D of the
singly (but not conically) curved sail 4’ B’ C’' D’

Consider the geometry of an element E of this sail. The axis Oy’ is the focal line of the compression
waves from A D and B C (i.e. the ‘instantaneous focal line’ for a part of a non-centred flow); Ox’ and 0z’
form an orthogonal system of axes with Oy’, in which system Ox' is aligned with the inflow direction
(given by M, or k¢,), so that Oz’ is then at a defined angle to the sonic plane (M = 1, k¢ = 0) of the
given two-dimensional flow. Suppose that the caret sail profile, with which the element E is aligned,
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corresponds to streamline S in Fig, 12¢: further, for isentropic compression from M, to M by a centred
(i.e. reversed Prandtl-Meyer) wave, suppose the streamline through element E is ', with whose centre of
compression that of S is instantaneously coincident : finally, let streamline S” be that with which a two-
dimensional sail, producing isentropic compression from M, to M, would align itself. Since all three
waves correspond to isentropic compression from the same initial value of Mach number, their sonic
lines are parallel, but not in general collinear. From Figs. 12b and 12c it is clear that an element of length
ds and projected width dy’, situated at the point at which S, S and S” are tangential, will for all these
streamlines, form projections onto the plane x’' Oy'. which are of different geometry (rectangular for §'
and S”, and trapezoidal for S) but of equal area: similarly the rectangular and trapezoidal projections
onto the plane z' Oy’ will all be of equal area. Since the pressure on the element is identical for all these
streamlines, the components of pressure force parallel to Ox’ and Oz’ are identical ; it follows that if any
differences arise between the profiles and/or statics of two-dimensional sails and caret sails, these must be
due to the third component of pressure force (or to differences in their wetted areas). The third component
of pressure force, being parallel to Oy', occurs as a direct result of the caret foil’s non-zero anhedral, and
so did not enter the two-dimensional analysis of Section 3; its influence on the statics of the caret sail is
described below.

4.2, The Statics of Caret Sails*.

Of the pressure force on element E, the component P, (parallel to 0z') and P, (parallel to Ox’), being
equal to those on a corresponding element of a two-dimensional sail, will in consequence produce a
resultant (P., in Fig. 13a) which is identical in magnitude (= (P.D.)ds.dy) and direction (parallel to
x" 0z’ and normal to streamline S). The third component P, is, by definition, parallel to Oy’ and so lies
in the same plane as Oy’ and the surface generator which passes, as a straight line, through the point O
and the centroid of element E. P}, may thus be replaced by two statically equivalent forces P, and P,, of
which P, lies along the generator and is of such a magnitude that P, lies parallel to x” 0z’ ; since P, passes
through the axis Oy” which is the focal line for the flow over element E it follows that the angle between

. . 1 . . .
P, and the streamline S must equal the Mach angle, u ( = sin~} K/I-) . Thus in the plane which contains

the streamline S, both P, and P, can be shown (see Fig. 13b); P, is seen to contribute two components,
firstly P, which is directly additive to P, and is given by

P, =P,siny=P/M
and secondly
P’ = P,cosp = P,./(M*—1)/M
which acts tangentially along the sail chord. Note that

P//P, = /M?~1ie. P} > PiforM > J2,P/ =M PiforM >> 1.

It can be further shown (as in Appendix C and Figs. 13c to e) that, for a caret sail in a two-dimensional flow
behind a plane shock wave,
P, K 1 v Kfr\?
F o= 14— (M2—1 =—(—
P.. M( A )> M(m)

*The author would like to thank Mr. E. G. Broadbent and Dr. C. C. L. Sells for valuable comments
on the statics of membranes subject to pressure and tension forces.
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in which K = f(y, My, M, A) ie. a function of free-stream Mach numbér, shock wave strength and the
true angle of sweep of the wedge-spar leading edge ; thus

P, K(r\>P K r\?
r= ) = e /M
g MZ(I’o) P, M? (T0>

of which both are functions of y, My, M, A and the local Mach number, M. Also from Appendix C it is
known that for a unit (arc) length of root chord, the net force parallel to a generator required to balance
the sum of the P,-components along the gencrator of a sail of given span is

,

Tgmu. o
M\ ry

are constant for the given generator.

K 2
= ~(-r£> {P.D.) sec 7. (¥, —»"), in which (y, —y}) = span of the sail, and M,( ), P.D. and 1

o

Thus, of the three components of pressure force (P, + P,), P, and P, which act on element E in Fig. 13,

(1) (P,+P,) can be balanced by tensions acting in a plane parallel to x’ 0z,

{2) P; can be balanced by a chordwise tension and so contributes to the value of dT/ds, and

(3) P, can be balanced by a tensile force acting along the local generator (and the'sum of the Pj-com-
ponents along a given generator can be balanced at the root by a single tension, T, __ ).

These forces are shown in Fig. 13f, from which it is seen that chordwise tension must increase from the
leading to the trailing edge ; also since the elemental chord of a strip along a surface generator increases
linearly from tip to root (the strip being of trapezoidal planform), it follows that the value of d6/ds falls
linearly and hence that chordwise tension increases linearly from tip to root. Thus the chordwise tension
required to act at the inboard end of the trailing edge is a maximum for the whole sail.

1t is possible that if the intrinsic stiffness-due-to-shape of the caret sail is to be exploited (other than
merely to prevent distortion due to weight, or inertial forces due to acceleration), then some or all of the
above forces may be omitted ; also if a centred wave is required, necessary modifications to change the
profile (from S to §') may be made structurally acceptable by an appropriate choice of some or all of the
upper surface pressure distribution, weight distribution, the tensile loading, or the anhedral, thickness
or thickness distribution of the foil. To understand the interplay of aerodynamic and structural consider-
ations would require a full stress analysis of acrodynamically acceptable caret sails, and hence the pre-
diction of main flows, base flows and boundary layers on both top and bottom surfaces. Realistic assess-
ment would require better methods of analysis than are available, and also a knowledge of the
configuration and conditions in which a sail would be required to operate. This Section therefore closes
with a brief study of the effects on sail profile which simultaneous application of the above forces would
produce.

If it is assumed that the sum of the P,-components along a given generator of a caret sail is balanced

at the root, then the two remaining forces on each element, P, and (P.,+ P}), lic in a single plane and
calculation of the tensions required to balance them is a problem in two-dimensions only. Appendix B
contains two-dimensional analyses for rectangular sails in non-viscous flow (dT/ds = 0) and in viscous
flow (dT/ds negative); the second of these analyses is extended in Appendix C to include the effects of
anhedral on a singly curved caret sail which produces a two-dimensional wave in an isentropic flow.
Although this analysis would allow calculation of the tension distribution, sail profile and the form of
wave produced, the integral expressions for sail profile have not in fact been programmed in their general
form (see equations (C.8)); however, the differences to be expected between the profiles assumed in two-
dimensional flow by caret and by rectangular sails are indicated below.

. . D . . . P,
For a caret sail the pressure difference which induces chordwise curvatureis (P, -+ P))i.e. P, [ 1 +F'— ) ,
Xz

the product of the ‘two-dimensional pressure difference’ P,,, and the ‘anhedral correction factor’

xzr

( 1 +F’L> . The importance of the latter can be found by studying its variation with local Mach number
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(M) for typical combinations of y, My, M, and A; this variation is shown in Fig. 13g for M, = 10, 7
and 4, values of My which correspond to #gz = 1-0 and 099, and A = 50°, 60° or 70° according to M .
Tt is seen that the importance of anhedral is greatest at the upstream end of a given sail, that in the worst

i

P P,
case (M, = 4,1z = 099, A = 60°) the value of( 1+ ') > 1-3, but that in most cases ( 1+ )

P, P
falls rapidly to values < 1-05. Now for rectangular sails, waves from the upstream end have been seen to
lie ahead of the near-focus of later waves ; since for a caret sail of zero weight, equation (C.5) simplifies to

ﬁ_(pz—Pu)(l_l_P;)’ )

ds T P,

- > at the upstream end of a sail will tend to increase
Xz

the local profile curvature and so at least to reduce the gaps which, beneath rectangular sails, separate
early waves from the near-focus of the remainder. However, this statement is valid only if the value of
T in equation (7) differs insignificantly from that for the rectangulaf sail with which comparison is made;
but for the latter, T is a constant if weight and skin friction are zero (dT/ds = 0), while for caret sails,
even of zero weight and in non-viscous flow,

the existence of relatively high values of ( 1+

aT K /r\?
= (—p) | — M?*—1 -
7 = Py Mz(r0> (See equation (C.4))

Furthermore, tension per unit span of a rectangular sail is constant along the span, whereas for a caret
sail its value increases linearly from tip to root. i.e. the chordwise tension on a caret sail reaches a maximum
at the inboard end of the trailing edge. However, except for cross-flows in the boundary layers, the flow
produced by a caret sail is two-dimensional, so that to study the profile which the sail assumes and the
wave it produces, it is sufficient to study only a chordwise strip of very small span (dy" in Fig. 12b say).
Consider such a strip at the root of a singly curved caret sail. The chordwise tension at one point can
be chosen to equal that of a given rectangular sail; at this or any other point on the strip, the tension
and profile curvature may be related to that of a rectangular sail, by comparing equations (B.3) and (C.5),

thus
ds P, Py
ol o147 weoso+a) 147 |
T =
Typ ds [p,—(p,+wcos(0+6,))]
db ) 2p
orifw =0,

s (. P\ T
@5y (“P;z)/ To ®

Suppose that in a comparison between a rectangular sail and a chordwise strip of caret sail, the chord-
wise tension at one point on the latter is required to equal that of the former ie. if T\ = the leading
edge tension and T, = the trailing edge tension (T, > T, for caret sails), it is required that

T, <Top< T,
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Consider an extreme case, T, = T, p, for which, except at the leading edge, T/T, p > 1 and reaches

3

. P\, .. . .
a maximum at the trailing edge. At the trailing edge 1+P—, is at a minimum (see Fig. 13g) but still

do/ds [ ( P, > / T ]
—— | = 1+= may be less than, greater than or
(@0/d5)2 5 P )l Top | ®

I

exceeds unity: thus the value of

equal to unity. At the leading edge ( 1+ P,' isat amaximum ( > 1)and T/T, p = 1, so that
dé/ds ) P. )
@, \ P

In this case, conclusions regarding the profiles of caret and rectangular sails can only be drawn after
fuller analysis, and would probably require evaluation of the integrals of equations (C.8); but consider
the other extreme case, T, = T, , for which except at the trailing edge T/T, ,, < 1 and reaches a mini-

’

P
mum at the leading edge. At the trailing edge ( 1+ ) is at a minimum (but > 1)

Xz

d6/ds P,
f @jds),, \ " P.)
therefore (d6/ds), p (1+P;z> > b

’

P . .
at the leading edge ( 1+P—,' ) is at a maximum ( > 1) and T/T, ; at a minimum ( < 1), so that

Xz

db/ds . .
_ > ] in fact a maximum),
@0/ds), » ( :

but much more important

df/ds ] o do/ds ]
(db/ds)s.p |, ~ (d0/ds),p |...

Le. at the leading edge d6/ds exceeds the two-dimensional value by a larger proportion than it does at the
trailing edge (this proportion increasing monotonically along the chord). So in this case at least
(T, = T, p), the upstream end of a caret sail will be of more pronounced curvature than the rectangular
sail and the waves produced may be centred over larger extents of compression than was found in Figs. 6
to 9. It is not known whether this may be generalised to the statement that ‘caret sails whose maximum
chordwise tension does not exceed that of a rectangular sail producing the same net extent of compression,
are likely to produce waves which are nearly centred over larger regions of that compression’; however
the fact that some caret sails may produce closer approximations of Prandtl-Meyer flow could be useful
in the design of, for example, intakes or nozzles for hypersonic or supersonic aircraft. This paper closes
with comments on these and other applications in which two-dimensional or caret sails might be used.

5. Applications.

The rectangular sail whose profile is made adjustable, for example by control of the upper-surface
pressure distribution, could be applied in the design of intakes producing some regions of isentropic
compression. In Fig. 14a, the region between lines A and B could be constructed as a sail and any joints
along these lines might appropriately be left unsealed so as to allow boundary layer bleed. For the caret
intake of Fig. 14b, the anhedral form renders the problem of varying the geometry of the isentropic region
far more difficult ; however, for either type of intake the availability of two design Mach numbers for two-
dimensional flows initiated by oblique shock waves*2 could be exploited with equal ease. It is also possible
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that (as shown by shading in Figs. 14a and b), the cowl lip of either type of intake could be formed as a
rectangular sail, pressurised by the internal flow and held in tension by a rigid lip extremity ; the lip would
probably incorporate leading-edge cooling but the cowl could be so thin that it might allow heat trans-
ferred from the internal flow to be radiated from the external surface of the cowl and so assist in cooling.
For the caret intake, the pressure gradients on the isentropic surfaces are such as to suggest®*> that
boundary-layer bleeds should be localised at the tip regions R, so that once more, sealing between the sail
and the main body need not be provided.

Sail techniques might also be used in nozzles producing external expansion and of conventional or
caret form ; however, boundary-layer control would not normally be required in such applications.

A further application of the sail technique is shown in Fig. 14c. In the propulsive flow model chosen, the
cowl is shown as a continuous foil running from intake to nozzle lip and stabilised-in pure tension by the
pressure difference which exists between the internal flow through the combustion chamber and nozzle,
and the external flow over the cowl. If the internal flow comprises isentropic expansion downstream of
constant pressure supersonic combustion, then the internal pressure distribution is as shown (see double-
headed arrows); the external pressure on the cowl would gradually fall from that behind the shock S to
that required to balance the pressure of the jet. The shaded area thus shows the pressure difference at any
point and so, for a cowl at constant tension and of negligible weight, shows the manner in which df/ds
would vary along the cowl ; it is seen that the distribution of d/ds is consistent with the cowl shape shown,
curvature being a maximum near the end of the combustion zone and zero at the nozzle lip. The possibility
of building the cowl and lower side of the combustion chamber as a single, heat resistant foil, would allow
the upper side(s) of the combustion chamber(s) to be built as hollow(s) in the main body B, rather than
as actual duct(s); as shown in the sketch inset in Fig. 14c, such hollows could also be constructed as curved
foils under tension, and their positioning relative to the cowl would allow for combustion chambers
having (perhaps variable) divergence.

For use with purely lifting bodies giving high values of L/D, curved surfaces which weaken or eliminate
leading-edge shock waves tend to produce an excessive skin friction and low lift on their upstream ends
(see work by Fetterman as cited by Becker®?); at a given C, such bodies may therefore offer little improve-
ment, or even some loss, in L/D. Even in non-viscous flow the lifting performance of isentropic sails (see
Fig. 6¢) is liable to be worse than that of a simple, two-dimensional wedge. However, a conventionally
shaped body may necessitate the use of conventional structural techniques and so involve structure weights
in excess of (say) 5 to 10 Ib/ft2. If, by the use of sails (in either two-dimensional or caret form), local structure
weights can be reduced to the order of even the worst in Fig. 10, this great improvement in local structure
weight might well outweigh any falls in aerodynamic efficiency as reflected in L/D. For the simple case of

. L w ,
cruising flight, the problem would be to increase the value of <T) log, —VVI) so that, for a given fuel
’ 2

L ) W,
SFC. D 5w,
the problem would only be solved if the weight saved locally by replacing conventional structures with
sails, more than compensated for the combined effects of reduced aerodynamic efficiency and the weight
of spars and booms etc. added specifically for tethering and controlling the membrane. Of course, savings
in overall weight may depend not only on minimising local weights, but also on maximising the area of
those regions of a vehicle to which weight-saving techniques may be applied; thus consideration of
configuration design is intrinsically required. Tentative suggestions for purely lifting systems are now
described.

In Section 3.2 it was shown that the lifting characteristics of isentropic sails could be substantially
worse than those of simple wedges. However it is at least possible that a sail in combination with a wedge
spar might combine a reasonable aerodynamic performance with a robust structure of low total weight.
If so it is possible that the flow of Fig. 15a could be produced beneath the wing of an aircraft such as that
of Fig. 15b, the trailing edge of the sail being attached to a rigid spar. Alternatively the trailing edge might
be attached to a tensioned cable as in Fig. 15¢. In either case, variable wing area could possibly be achieved
during the acceleration phase by moving the trailing edge to the position shown dotted and stowing some

allowance and specific fuel consumption, the range ( = ) would be increased ; that is,
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of the sail inside the wedge-spar, the full area being available for cruise or landing and/or take-off; a
further possibility is that at low speeds the sail could be used as a large flap over which propulsive jets,
exhausted from power units inside the wedge-spar or the main body, might produce significant lift forces.
The sail-flap’s centre of lift could be much closer to the aircraft centre of gravity than in the case of flap-
blown delta wings of conventional type, and so pitching problems might be avoided.

It is also possible that the lifting flow of Fig. 15a could be produced by the composite lifting system of
Fig. 16; in Fig. 16a a shock wave is produced not by a wedge-spar but by a cylindrical parawing P (see
Fig. 1b), whose tip is tethered to the end of the wedge-spars of the sail S, these spars being joined at T and
thus being mutually braced at least against forces which act in a dragwise sense. That this type of composite
sail system would be particularly suited to ‘waverider’ vehicles of integrated form?32, is shown in Fig. 16b.

Finally Daskin and Feldman'’, and Boyd?®?!, have suggested that for adequate strength under some
conditions, sail membranes should be of woven wire ; with such membranes®5-38, porosity would effective-
ly result unless a sealant were applied to the membrane®®, so that .

(1) boundary layers might be removable over at least some parts of a compression surface, and

(2) since, as shown by Boyd??, porosity effectively produces local reductions in incidence, it could be
treated as a form of variable geometry.

6. Conclusions.

For free-stream Mach numbers between 10 and 14, rectangular sails in pure tension and of finite weight
are shown to produce two-dimensional isentropic compression waves; for the higher free-stream Mach
numbers, the down-stream parts of these waves are nearly centred (for example, for M o = 10 and
M omp = 3-5, that part of the wave in which the flow is compressed from about M = 7 to M iomp = 351s
nearly centred). At a given free-stream Mach number, an increase in upper-surface pressure or sail weight
usually increases the gaps between initial compression waves and the near-focus of later waves: if a
wedge-spar is attached to the leading edge of a sail, an increase in wedge angle appears to reduce the
influence of upper surface pressure and sail weight on sail profile and wave form. Investigation of the
structural aspects of two-dimensional sails suggests that, even for long sails (e.g. 100 ft chord) at high
Mach number (e.g. 10) and low stress (e.g. 5 tons/in?), the weight of the membrane need not exceed 1 1b/ft2.

Since rectangular sails appear to yield simultaneously a useful type of supersonic flow and promising
values of membrane weight, the study is extended to caret’ sails, which allow leading edges to be swept,
which can in principle produce and contain two-dimensional waves, and to which single (though not
necessarily conical) curvature imparts a stiffness-due-to-shape. It is found that for the equilibrium of an
element of such a sail only tensile forces are required, firstly, tensions directed along the chord of the sail
and, secondly, tensions acting from tip to root along local generators of the singly curved surface. Appli-
cation of appropriate tensions can therefore reduce (to zero if necessary) the extent to which the intrinsic
stiffness of a caret sail is exploited. Alternatively, to simplify the loading system, a sail may be operated
in such a way that it retains its shape at least partly by reason of its intrinsic stiffness. Such a device might
find application in the design of supersonic or hypersonic vehicles. Various applications are explored, for
both rectangular and caret sails, including wings, intakes, cowls and nozzles.
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LIST OF SYMBOLS

Defined for equations (5) and (B.6)

Skin-friction coefficient
Lift coefficient

Drag force

Constant defined in Appendix C

Lift force

Mach number

Static pressure

Stagnation pressure

Elemental forces in Figs. 11 and 13
Pressure difference

Kinetic pressure of free-stream

Radius vector in polar co-ordinate system
Value of r at sonic conditions } See Fig. 3
Arc length

Sail thickness

Static temperature

Sail tension per unit span

- . Flow velocity

Sail weight per unit wetted area

Orthogonal co-ordinates defined in text

= /M>—1

Ratio of specific heats (c,/c,), ( = 1-4 for air)
Kinetic-energy efficiency of shock wave

Defined in Figs. 3 and 5

Angle of climb

Deflection of flow at sail leading edge or wedge spar

Cross-flow in boundary layer
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Subscripts
1

comp

LIST OF SYMBOLS—continued

1
= sin"! M= Mach angle

= %tan‘ 'kBp—tan™! B = Prandtl-Meyer angle = ¢+ u—90°

Flow density
See Fig. 13c

= %tan‘1 k/M?—1. SeeFig 3and Appendix A

= tan™ ' (r dp/dr). See Fig. 3 and Appendix A

Refers to conditions immediately downstream of the shock wave from the wedge-spar (see
Fig. 5a)

Refers to sonic conditions

Refers to upper surface of sail

Refers to lower surface of sail

Refers to component (i.e. of Mach number) normal to shock wave
Refers to free-stream conditions

Refers to conditions at sail trailing edge
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APPENDIX A
The Equilibrium of Membranes in Constant Tension.
Consider the flexible membrane sketched in Fig. 3 to be of unit width and of zero weight and to be
statically inflated at constant tension T, to a profile given by ¢ = ¢(r). The required distribution of

pressure difference (P.D.) across the membrane is found as follows :

do
PD. = T:ig

ds* = dr2+12 . dj?

dé

tany = r—

¢+ —0 = constant

therefore

P.D._dqb—i—dlp_ dp d _yf do / L do\?
- =& __I:E;ﬁ-atan (r%)}/\/l+r (W) (A.1)

or

P.D. d ) / dr \?
——=| 1+—tan" 1| r == 2 — | . A2
r [ ()] N (5) #a
These are general equations for the pressure difference required to maintain a flexible, weightless
membrane in any shape given by ¢ = ¢(r).
Consider the case when the membrane is required to take up a shape identical with that of a streamline

ina centred, isentropic wave i.e. a Prandtl-Meyer corner flow. For this flow, ¥ = u,

therefore

r%=tanlﬁ=tanu= 1/./M?*—1 (A3)

Also for continuity of mass flow between for example a station at which the flow area = A = Ag and
M = 1, and a station at which 4 >4, and M > 1, it is required that p, 4, Vo=pAV.

But if in the polar co-ordinate system of Fig. 3, O is the centre of isentropic expansion (or compression),
then 4, and A4 correspond respectively to r, and # sin u

oo AV [rsinuM VRT] r T
f —=— = T " ro VT
therefore ro 1 \yRT, ro VTo
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therefore

T — 2\ o+l
T _Po [Zo_ Po I_ 2+0-DM7) 26=p for isentropic flow . (A4)
to P T pNTo P+1 .
It follows that (% dir_> = 2_?(:_1)1) ek so that from equation (A.3)

_((rey_am _[_ G+ _
jdd)_j(;W)M"sz—and M*—1

A R i) VeI
¢+c-\/y_1tan \/y—%-l(M 1;

but for ¢ = 0, M = 1 therefore ¢ = 0, and ifk = \/g-l_-—i’

therefore

¢ =%tan‘1k,/(M2—1)i.e.M2 = 1-l~%’tan2 ko . (A.5)
Thus in equation (A.4)
r_ 1/cos* " ke . (A.6)
o

This is an equation for a streamline in Prandtl-Meyer corner flow; thus for a membrane held in pure

tension to such a profile,
1 r\ ¥
¢ = ¢(r) = —cos 1f{— , (A.7)
k o

and the fequired distribution of pressure difference is found from equations (A.7) and (A.1) (or (A.2)),

(p_I;;) ro (_1__1> tan? ];qS.COsl/k k;;?z _ (%-—1>f(k¢) (A.8)
<1+Ftan2 kd))

k2
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APPENDIX B
The Statics of Rectangular Sails in Isentropic Flow.

Non-Viscous flow.
In Fig. 5a, the sail is assumed to be
(1) subject to negligible tensions due to skin friction,

(2) subject to negligible increments in pressure due to sail porosity or boundary-layer thickness or
separation,

(3) of negligible stiffness; further
(4) y is assumed constant.

For equilibrium of an element of such a sail, the forces in Fig. 5b must satisfy the two requirements:

T.dy cos? = (T+dT)dy cos%g+w.ds .dy.sin (0+86,) (B.1)
and
. do
(2T +dT)dy sm7+w.ds.dy.cos(9+9c) = (p;—p,)ds.dy (B.2)

from which it follows that

17:: —w.sin(68+6,)
ds
and
de6
T— = p,—(p,+w.cos(6+0)).

==

For sails with which tension is large in comparison with the weight of the sail, dT/ds can be ignored, i.e.
tension can be taken as constant. On such a sail, at a point such as P in Fig, 5a:

df

T$= pi—(p,+wcos(0+6,)) (B.3)

r=1 e\ T .
P = P11 1+——2—M ¥, ds = dx/cos @ = dy/sin 6 (B4)

therefore

cosf.df = 1L dx 1_,_3’_1Mz ~52T_Putw.cos(0+6,)
' T Pry

sinf.dp =P (1 01 ‘.ﬁ—l_pu+W-c08(9+9c)]
' T Pr1 '
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Also f=0+v,—v)

1 1
therefore o = —dv = (m—m) g,

in which
B=/M*~1k= =1 v=ltan”1kﬁ—tan’1ﬂ.
’ p+1° k

The profile of the sail is thus:

in which
A= 1 N pomro1,p=m-1
1+8% 1+k2p%)° ot v
-— J— -
B=|:<1+y le) \y_l_pu+wc0s(0+96)]’
2 D1
1 -1 -1 1 -1 -1
6=®+Etan k B, —tan ﬂl‘"};taﬂ kf+tan™' B,
p.+weos(0+6)  (0/Pw)+(W/py) cos (0+6,)
Dr1 (Pr1/P1..) (P../P) ’
pﬂ{ (y+1) M} ]—Li‘[ y+1 ],,11
Pr, [ 2+0-1)M; 2yMi—(-1 ]
P_zﬁ=(1+v_—_1_Mi>‘v—%r'
Pe 2
Viscous flow ‘

(B.5)

(B.6)

Suppose now that a skin-friction force acts on the sail of Fig. 5a, and that the friction drag on one side

of an element such as that of Fig. 5bis equal to (g, - ¢ . ds . dy). Then equation (B.1) becomes
dae do .
T.dy. c0s - = (T+dT)dy. c0s7+w ds.dy.sin(0+0)+q,.c,.ds.dy

and if w . sin (0+ 6,) is neglected (as above), the equations of equilibrium are then
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dT

ds =G B.7)
Zg —(p,+w.cos(0+86)). (B.8)
So
de d {ds ds d
T e - Cf— [pl (p“+w COS(6+0“))] d de(d0> de d [Pl (pu+w COS(0+90))]
therefore
i 0+6.))]
chj+d0[pl—(pu+WCOS( +6,) a0 d(ds
[p:—(,+wcos (6+6,))] T ds do\ do
therefore
d
/S 61+E[p,—(pu+wcos(0+00))] is
- J = (o T woos @1 0))] db=1= loge<k d@) (B.9)
therefore

s ) = dx  dy
a0 k” P = Cos0.40  sind. a0

(k" = const.). (B.10)
So the sail profile is given by:
k”f dx = J exp(I).cosf.do
de = 1 __ 1 ap = A4.dp
NI+ 1k )T
k”f dy = f exp(l).sin8.d6

in which k” can be evaluated as follows.
From (B.8) and (B.9)

[pl"—(pu'f-WCOS (6+90))]
T

do
o k" = exp(I).$ = exp(l).

Le. at a point on the sail where s = 5",0 = 0", T = T”, p, = py,

d
o _
(Pt wcos (07 +6)) 9o €7+ 75 [P~ (put+wcos (0+0,)) ]

P £ +
k" T 9
7 xp [2i—(p,+wcos(0+86,))] ’
[C]
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or at the leading edge of the sail,k M = M;,v = v,;,0 = O,

. =1, R o
D1 = Pry 1+_2—‘M1 - ,T= Tl,eXp(I)= 1/3 = 1,

therefore
—_ - 6)
»_ Prif. y—1 2) 2y putwcos(®+6, }
e\ M B : B.11)
T [( 2 ' DPr1 (
Thus
B
Pri¥ _ J exp(l). A .cos 0. dp -
T 1+ 2L ~3%1_ pytwcos(@+6,)
B P 1 oo
and
p .
Priy _ j exp(I).A.sin6.dp B3
T 1+y__lM2 _.TET_Pu+WCOS(®+Bc)
B 2 1 pTl
in which

1
6 = (*')+Etan’1 kB, —tan™?! ﬁl—%tan kB+tan™' B.

That (B.12) and (B.13) reduce to the integrals of (B.5) and (B.6) can be shown as follows. If

¢; = 0, exp(I) = exp (—log, k' [p,— (p,+w cos é+0n: (B.14)

thus in equation (B.9)

loge(k”%se—) = —log, k' [p;—(p,+wcos(6+6,))],

and from equation (B.8),
, 1 dé —(p,+wcos(8+6,
K [p,—(p,+wcos(0+6,))] = P o=t T ( ))].

It follows that in equation (B.9),
log, (k" ds/df) = —log, k' [p,—(p,+wcos (0+6.)],

and from equation (B.8), that
K p,—(p,t+w 1 1 dd [p—(p,+wcos(0+0,
[pl u COS (0 00)) m— ._; —— — ! — ( ))]
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Thus equation (B.14) becomes,

exp(l) = k" T/[p,— (p,+w.cos(0+6))],
and from (B.11)

— ¥
(1+Z-2—1Mf> ¥=T1_PutWwcos (®+6,)

Pt
N B.
exp(l) y—1 \-321 p.+wcos(0+6) B
Tp—-M* | 7 =
2 Pr1

Substitution of equation (B.15) into the integrals of (B.12) and (B.13) leads to those of (B.5) and (B.6).
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APPENDIX C
The Statics of Caret Sails in Isentropic Flow.

The pressure forces acting on a singly curved caret sail are shown in Fig. 13a. Those components which
lie in a plane parallel to x’ Oz’ are drawn in Fig. 13b from which it is seen that

P, =P,sinuy=P/M

44

ie.— = /M*-1.
P/ = P,cosp = P, /(M*—1)/M P,

From Fig. 13c,

P, =P, .cott
and
P, = (p—p)dA, = (p—pJ)cott.sinu.ds.dy'.
But
P = (p—pJ)ds.dy’, (C.1)
therefore
P, = P, cott.sinp,P, = P, cot®t.sin u. (C2)

From Fig. 13d it is seen that for centred or non-centred compression (i.e. for singly but not necessarily
conically curved sails)

rtant =r,tant,

therefore

P, il 2c t2 1, . si
=|— ot?>1,.siny.
P;cz rl ! 'u

But from Fig. 13e, cot 7, = cot t, sin ({ —5)/sin py ;

also

2/k2

cos(tan'lkﬂ/Mffl>
<T>2 (r rO)Z ) <1+k2(M2—1)>1/k2
o) \nn) T =\Ty@or-n)
"1 To 11 cos(tan“lk,/Mz—l) 1+k*(Mi—=1)

1 24(p—1) M2

i (=9 = 37 33 M7= =1

,sin? y; =

sin A
— 5 ,C0S T, = .
M3’ ®  cos{
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Thus,

P, __( 24+(y—1) My, ) sin? A <1+k2(M2——1)>”"2 1

P, \2yMi—(y—1) Jcos?{—sin® A\ 1+k? (M?—1) M
(14k2 (M? = 1))/
= K————
M

. . ) P,
in which K = f(y, My, A, M ;) and for zero sweep (rectangular sails), K = 0 = P
So:

P, 1 P K(1+k2(M2—1))1”‘2__ K [r\?

P, MP, M? T M2\ 1,

(C3)
) 4

P, K r\?
P—;ZWMZ”TDTWVMZ‘I(;:)

Equations (C.1) and (C.2) relate those components of pressure force (on element E of a caret sail) which lie
in a plane parallel to x" Oz'. The other component is P, which, as shown from geometrical arguments in
Section 4.2, is directed along the surface generator through the centroid of element E; thus

2 A2 1)\ 1/K2
K(1+k (M*-1))

P, = P,cosect = P,secT = M .P...sect,
so from (C.1)
K 2
P, = M(i) (pi—pJds.dy .sect.

If a tension is applied to resist this force P,, such that T', = tension per unit (arc) length of chord, then

thus, the net tension per unit (arc) length of root chord, to be applied parallel to the local generator of the
singly curved surface (so as to balance the sum of those components of pressure force which act along that

generator), is given by

ie.

K{r\? )
Tyoor = Jﬁ<a) (pi—p,)sect.dy’ .
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But along a generator M, r/ro, p; and t are constant, p, is in this analysis assumed constant and
K = f(y, My, A, M ,); thus

K

2
r ’ i3
Tgroot=‘M<r—o_> (pl“pu)sec'c-(yz"yl)

in which (v, —y}) = span of sail (i.e. the length from tip to root projected onto Oy’ as in Fig. 13f).

The components of pressure force acting on element E, that is, (Py, + P;), P’ and P, can be calculated
as above; of these three forces

(1) (P.,+ P})can be balanced by tensions acting in a plane parallel to x" 0z,

. . aT
(2) P! contributes to the tangential forces and so to the value of 5 and

(3) P, can be achieved by a tensile force acting along the local generator, and the sum of the P,-
components along a given generator can be balanced (at the root) by a single tensile force of magnitude
T

Iroot”

If it is assumed that such a force (T, is applied to a caret sail, then since the two remaining forces
P! and (P, + P_,) lie in a single plane, the calculation of the tensions required to balance them is a problem
in two dimensions only ; the equilibrium equations are therefore modified forms of (B.1) and (B.2), modi-
fications arising from the existence of boundary-layer cross-flow®?3%, the inclusion of P, and P, and the

fact that weight and skin friction are based on the wetted area of element E, which from Fig. 13c is seen

to be(ds.dy’.\/1+cot2'c.sin2,u).So:
, a9 ., . de ) _
T.dy .cos—2—+P, = (T+dT)dy cos7+(w.s1n(0+96)+qw.cfcos K)dsdy' /1+cot?1.sin? u
’ : de ’ 2 LI A ’ Pl"
QT +dT)dy .sm7+w.cos(9+60).ds.dy ./ 1+cot*t.sin* u = Py, 1+P—,

which from equations (C.1), (C.2), (C.3) become

aT K /r\? 5 ) K /r\?2
E;—@,—pu)ﬂ—i(r—o) M -—1—(wsm(9+9€)+qw.cf.cosrc)\/l—i-W(r—O) (C4)

o K 2 K z
T—(E=(p,—pu)<l+m(%) )—w.cos(6+9c)\/1+—m<r—2) (C.5)

in which ® = local cross-flow in the boundary layer.
If T is eliminated between equations (C.4) and (C.5), then

K (r\? 5 i T K /r\2
(Pz—Pu)Mg<;;> M —-1—(wsm(9+9c)+qwcfcosrc)J1+W<;;)
_ar
~ ds

d| ds K 2 K 2
=%|:E%{(pl—p“)(l+—l\/ﬁ<r—z> )—wcos(0+90)\/1+w<{;> }]
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..d_E+Efd.Qi é
T ds d6\ d6 )’

2 T 1 7 .\ 2
E-— {(,;,-;:,,)(H%(%) )—w.cos(9+ec)\/1+%(;’;) } (C.6)

In the previous analysis (Appendix B) the term w sin (§+6,) was neglected and for singly curved com-
pression surfaces, the distribution of «, the cross-flow in the boundary layer at the surface, cannot be
calculated analytically until current work>® to extend the method of Cooke and Jones®? is completed ;

thus the present analysis is restricted to the caret sail in non-viscous flow and w . sin (0+0,) is neglected.
Equation (C.6) can then be simplified to

K 3 r ds ds
(p,—pu)m,/M —1(;;) d0—dE = Ed(d@)/(&@) (C.7)

and integrated to yield

2
log ( ) (.~ ”") K —1<ri> d9—log,E = I
1]

ds _expl'’  dx dy

A0~ C cos.46 sin0.do

ie.

The sail profile is therefore given by

_|exp!t _fjexpl |
de—f C cosH.dH,fdy—j C sinf.de,

in which C can be found as follows:

~d0 E ,
= (exp [ )% = }—exp I' = constant .

At some point on the sail wheres =s",0 =0" T =T" M = M",

1 . K /v¥\? . K /r"\?2 o
C—T,,{(pz —Pu)<1+m<g> )“WCOS((’ +9c)\/1+1\7,72<;;> }CXP([I]Q),

but at the leading edge of the sail, § = @, M = M, [I']§ = 0,

therefore
Pr1 ., _ Pr1 y—1 2)"_71_1 Dy ( K (T1>2)
C=—""C=—~ 1+—M - I+—| =
Ty T, ] < 2 ' Pt M% Ty

w K /ri\?
———cos (@+86,) 1+W(_1>

P11
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in which C’ is constant.
The sail profile is therefore given by

0 0

prix _ [ 1 T s Priy_ |1 ABY aiv B

T = jc,exp ([17%)cos 8 .da, T = Jc,exp ([I'1e)sin8.d8. (C8®)
b b
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TABLE 1

Values of Parameters in Figs. 6 to 9.

34

My, ks, © p.t+wcos(@+80.) Figure
Mcw Mcomp and ]‘41 pu/poo W/poo pT1 pTl X/T number
My =1 0 0 3500
0 02 0-0000047(1) 3875 6(a)
nge = 1 04 0-0000094(2) 4393
e =0 0 0-000011(8) 4743
v 0-5 02 0-000016(5) 5799 6(b)
M, =10 04 0:000021(2) 8410
My =14 0 0-000012(3) 1991
05 02 0-000017(2) 2110 7(a)
v, =10 fge = 09994 04 0-000022(1) 2252
M omp = 35 O = 3-264° 0 0-000024(6) 2336
10 02 0-000029(5) 2533 7(b)
M, = 88705 04 0-000034(4) 2789
My =26 0 0-000025(6) 3042
05 02 0-000035(7) 3082 “Hc)
nge = 09876 04 0-000045(7) 312:4 l
@ = 10:606° 0 0-000051(2) 3148
1-0 02 0-000061(3) 3193 7(d)
M, = 64738 04 0-000071(3) 3239
My =12 0 0-00012(2) 3915
05 02 0-00017(0) 4312 8(a)
nxe = 09998 04 0-00021(9) 4852
M, =1 1
0 = ® = 2:481° 0 0-00024(3) 521-8
10 02 0-00029(2) 627-8 8(b)
M, = 6:5477 04 0-00034(0) 871:6
Meomp = 25| My =20 0 0-00016(7) 91-07
05 02 0-00023(3) 93-47 3(c)
nge = 09900 04 0-00029(9) 9604
® = 10-222° 0 0-00033(5) 97-61
10 02 0-00040(1) 100-5 8(d)
M, = 51962 04 0-00046(7) 1036




My =12 0 0-0033(2) 2431
05 02 0-00464 2679 | 9a)

fxg = 09993 04 000596 30-16

© = 4265° 0 000663 32:56
10 02 0-0079(6) 3922 | 9(b)

M, = 36901 04 000928 54-49

My =16 0 0-0036(8) 11-16
05 02 0:0051(2) 1165 | 9(c)

fxe = 09900 04 0-0065(6) 1220

® = 11455° 0 0-0073(6) 12-58
10 02 0-008(80) 1326 | 9(d)

M, = 31828 04 0-0102(4) 1405
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RATIO OF STATIC PRESSURE TO STAGNATION PRESSURE

SKETCH FOR USE T
WITH APPENDIX A
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FIG.3. Variation with local Mach number of aerodynamic and geometric properties for a sail producing

centred compression.
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