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Summary 

Independent numerical methods for obtaining the subsonic load distribution on a thin wing of arbitrary 
twist and camber have been developed at NPL, NLR (Netherlands) and BAC (Warton). The three methods 
have been studied jointly and their novel features have been reviewed critically. The best solutions by each 
method show excellent agreement for wings, at uniform incidence, having smooth leading and trailing 
edges. Spanwise loading, local aerodynamic centres, lift, pitching moment, vortex drag and chordwise 
loadings are tabulated for circular and rectangular planforms, for a wing of constant chord with hyperbolic 
leading and trailing edges, and for a tapered sweptback wing. The convergence of the solutions is examined 
in detail with respect to separate parameters representing the numbers of spanwise integration points 
and spanwise and chordwise collocation points. The tapered sweptback planform is considered with 
different amounts and types of artificial central rounding, but the crucial problem of a central kink under 
lifting conditions remains a subject for research. 
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1. Introduction 

Since the discovery of the possibility under certain circumstances of serious numerical errors in the 
standard form of Multhopp's subsonic lifting-surface theory (Refs. 1, 2), methods have been developed 
at NPL,  NLR and BAC (Warton) with a view to remedying this situation. In order to get an insight into 
the qualities of each of the methods, comparative calculations have been made for four different wings 

(Fig. 1): 
(a) the circular planform of aspect ratio A = 4/re, 
(b) the rectangular planform of aspect ratio A = 2, 
(c) a swept planform of constant chord, having A = 4 and hyperbolic leading and trailing edges 

defined by 

x t = ~ ( 1  +2y2)½-~¼} O ~ l Y i ~ S - - - 2 ,  
x, ¼(1 + 2y2) ~ + 

(1) 

(d) the Warren 12 planform of aspect ratio 2x/~ defined by 

XI (1 ¼v/5) lyl 
) + 
} 0 ~< lyi ~ s -- . , /5. 

x, (1 - ¼,/5)lyl  + ) 
(2) 

Each of these wings has been considered at uniform incidence and M = 0. The effect of compressibility 
has not been included in the calculations, as it is covered by the usual factor ,8 = (1 - M2) ~ applied to 
the spanwise dimensions. 

This Report presents the basic theoretical equations and describes the special features of the methods, 
each of which is formulated to treat smooth planforms. However, BAC plan to modify their basic method 
in such a way that solutions obtained for kinked planforms would lead to vortex lines that are curved 
across each kinked section. The rounding of kinks may be achieved in several ways, and it so happens 
that all three methods would normally use different roundings. However, the NPL and NLR methods 
are compared for the Warren 12 planform with identical roundings, and the influence of the rounding is 
cxamined. The resulls are discussed relative to the special features of each method and the rate of conver- 
gence that is obtained. 



2. Basic Theory 

The fundamental integral equation of subsonic lifting-surface theory may be written in the form 

1; . :  L x x 1 e(x,y) = - ~  -~(Y _ y,)2dx, ACv(x ,y  ) 1 + {(x - x') 2 + / ~ 2 ( y  _ y,)2}~- dx', (3) 

where ~ is a given local incidence and ACp is the unknown load distribution ; the double integral is taken 
over the planform and the bar through the integral sign denotes the principal value according to Mangler 
in Appendix I of Ref. 1. The unknown loading function is usually approximated by means of an expression 

4s, N-1 
ACj,(~', r/') = c - ~  r=o ~ ar(~l')h~(X'), (4) 

where 

and the dimensionless quantities 

2 c o s  ½(2r + 1)~p' 
h~(X') = - (5) 

n s in  ½q*' 

4' = x'/s,  q' = y'/s ] 

X' (x' - x,)/c ½(1 - cos $,) ;  (6) 

are used. The unknown coefficients in their turn may be represented by a trigonometrical polynomial 

a~(~f) 2 ~= ~ /mn 
- - -  a,, sin #0' sin m 7 1 (7) m + 1 =1 u=l 

where 0' = cos- 10f), or by some equivalent power series. Thus the unknown ACv({', ~l') in equation (3) 
is replaced by the mN unknown coefficients at,. The problem is then to calculate a~, by satisfying the 
boundary condition (3) at suitable pivotal points (x, y) distributed over the planform. The main numerical 
difficulty lies in determining the double integral due to each term in the representative loading. 

In the NPL 3 and NLR 4 methods initial integrations are carried out in the chordwise direction with 
respect to {', and the expression for local incidence becomes 

1 N - l f f  ' . , a~(r/)Hr(~,,q, ~/) 
(8) 

It can be shown that this integrand contains the logarithmic singularity 

fl s 2 -- ( - ~ )  ar(tl) l°gdtl , [ dhr ~ (9) 

which is always removed before the numerical integration in the spanwise direction is attempted. Introduc- 
tion of the function 

I R~ ~ I dh ,..121_..r ] (r/-r/ ')Slog~lr/-r/ '] 
F~({,r/;q') = Hr(~,~/;q') + ~c(,1)1 ~dX'l , ,=, ,  

leads to the integrand 

a~(tl')F~(~, q; q') 
(,7 - ~ , ) 2  , 

(10) 

(11) 

which in the NPL method is treated on the basis of Ref. 2. As is shown in Ref. 4, this integrand is still 
irregular, because the derivative of Fr with respect to ~/' does not vanish for q = ~/'. Therefore within the 



NLR method there is introduced the function 

R~(~, q; tf) = F~(~, tl; tf) - Fr(~, tl; q) - (tl - tf)(OF~/Otf),=,, (12) 
(,7 - 

whereby the remaining singularities of the integrand (11) are removed. Since this function is bounded, 
Fourier analysis is very well suited to perform the integration in spite of the irregularities of the derivatives. 

By contrast, in the BAC s method initial integrations are carried out along constant percentage chord 
lines (X' = constant) with respect to q'. Equations (4) to (7) are rewritten in terms of Tchebychev poly- 
nomials with coefficients kpv, say. The two terms in the square bracket of equation (3) are treated separately, 
so that lfff, c(rl')ACp(~',q')d, , 

= _ ,  s " d X '  

1 1 ~ I i - X ' ~  ~ dX '  
+ ~ o = 0  v=~ Tp(X')Lv(~,tl;X') I1 X '  I1 X ' -  X '  (13) 

where Tp(X') is a Tchebychev polynomial. The function L~(¢, r/; X') results from the initial integration 
involving the second term in the square bracket, and it can be shown that 

t 

L~(~,t/;X') = £,,(~,r/;X') + ~ K ~ , ( X ' -  X)~logdX ' -  XI, (14) 
i = 1  

where E~(~, r/; X') is numerically regular in the range 0 ~< X' ~< 1 ; there may, however, be some restric- 
tions on the range of regularity if t/approaches too close to unity. The essential achievement is that from 
equations (13) and (14) a(~, r/) may be evaluated on the leading and trailing edges. 

3. Description of  the Methods 

The NPL, NLR and BAC methods have all been developed to overcome the difficulties which arise 
when Multhopp's I method is applied to the integral equation (3). The special new features of the respective 
methods will be described briefly. 

3.1. The N P L  Method 

In Ref. 3 special attention is given to the chordwise integrals, in order to ensure accurate integration 
when the number of terms in the pressure series of equation (4) is increased. The accuracy of the spanwise 
integrals has been made independent of the number of collocation sections in the following manner. 

The spanwise integration is performed formally by applying Multhopp's integration scheme with 
spanwise stations to the integral of equation (8) after removal of the logarithmic singularity (9) in accord 
with Ref. 2. The expression thus obtained contains ~ unknown values of at01') which could be determined 
from a linear system of equations by satisfying the boundary conditions at r~ spanwise stations. Instead 
of doing this, Multhopp's interpolation polynomial (7) is applied to each a~(r/') to decrease the number of 
unknowns to the m quantities at, for each r. Thus the number of spanwise integration points ~ is allowed 
to exceed the number m of sections where the boundary conditions are to be satisfied, and these are related 
by the quantity 

q = (~ + 1)/(m + 1) (15) 

which may be unity or any even integer. 
The NPL method is programmed in Algol, and a typical running time on the KDF9 computer is 

28 minutes when m = 15, N = 4 and q = 8. 

3.2. The N L R  Method 

In this method (Ref. 4), special attention has again been paid to the chordwise integration. Sufficient 
accuracy is guaranteed by adapting the integration scheme to the requirements made by the higher order 
terms of equations (4) and (5). Detailed analysis of the computing process has achieved remarkable 
economy in computing time. 



Special care has been taken to ensure an accurate spanwise integration. First of all the spanwise integrand 
has been treated by introducing the function Hr of equation (12). Further, the spanwise integration has 
again been made independent of the number of collocation sections, but differently from the N P L  method. 
In the NLR method first the functions a,(r/') are represented by equation (7) with m coefficients at, for 
each value of r and then the integration is performed with ~ spanwise stations, whereas in the NPL 
method the whole numerator of the integrand (11) is represented by means of equation (7). The numbers 

and m are again related by equation (15), but q can be any positive integer. 
The NLR method is programmed in Algol, and a typical running time on the CDC 3300 computer is 

22 minutes when m = 15, N = 4and  q = 8. 

3.3. The B A C  Method 

As shown in Ref. 5, the basic chordwise integral H~ exhibits an irregular behaviour at q' = q, especially 
as X tends to zero. A common feature of Refs. 2 to 4 is that the main logarithmic-singularity term (9) is 
removed for the whole range - 1 ~< q' ~< 1. This results in the coefficient of the (r/ - ~ , ) 2  loglr / _ r/'[ term 
in equation (10) tending to infinity like X -~ and (1 - X) -~ respectively for collocation points near the 
leading and trailing edges. Elliptic integral analysis has indicated that the irregularity in H~ is not solely 
associated with the (~/ - q,)2 loglq - r/'l content, which has been proved in Ref. 4, and moreover, that 
the valid range of r/' for its removal tends to zero as X tends to zero or unity. 

Therefore BAC s have chosen to evaluate the double integral in equation (3) quite differently by carrying 
out the initial integrations with respect to q' at constant X'. The co-ordinates X' and r/' then form a 
natural and convenient system. Analytical extraction of the (q' - r/)-2 content of the integrand is effected, 
and in evaluating the resulting integral it is found to be advantageous to introduce a particular 'sinh trans- 
formation' that stretches the r/' scale in the neighbourhood of q' = q. The planform is divided into three 
basic regions, one containing the section q' = q where the transformation is applied, and two outer 
regions covering the residual planform area. Gaussian quadrature techniques are applied to the integrals 
and give a numerical definition of the function L~. The coefficients Kvi(~, r/), defining the logarithmic 
singularity in equation (14), are derived analytically and the valid range of X' is only limited if r/approaches 
unity too closely. The modified function E v is regular in value and in its first (t - 1) derivatives with 
respect to X', where arbitrarily t = 3. Pseudo-Gaussian quadrature techniques are used to evaluate the 
principal values of the integrals with respect to X' in equation (13) and hence to provide linear equations 
relating the unknown coefficients kp~ to the incidence c~(~, q). The above procedures disconnect the 
loading function from the integration procedure, so that collocation points can be chosen at will. 

The BAC method is programmed in Fortran IV, and a typical running time on the IBM 360/50 computer 
is 12½ minutes when m = 15 and N = 4. 

4. Some Critical Remarks on the Different Methods 

The NPL method may be regarded as a step to improve the numerical evaluation of the lifting-surface 
integral equation. This method shows improved convergence, but it is not completely satisfying in this 
respect, especially for wings of high aspect ratio or high sweepback. Two causes are suggested, namely, the 
irregularity of the function Fr and a slight inconsistency in representing both at(r/') and ar(~l')Fr(~, ~I ; ~') 
by means of the trigonometrical polynomial (7) ; the latter implies two different representations of a~(r/) 
at a time. These particular inconsistencies are avoided in the NLR method and, moreover, the infinite 
singularity of the spanwise integrand has been removed by introducing the function H r. 

The reasons given in Section 3.3 for BAC's lack of conformity in attacking the lifting-surface problem 
suggest that the NPL and NLR methods may encounter difficulties when N is large, i.e., when the chord- 
wise collocation points extend close to the leading and trailing edges. This may be generally true of the 
NPL method, but will not arise since the restriction N ~< 4 is imposed by the capacity of the KDF9 
computer. In practice the NLR method has not suffered from these inferred difficulties. Both N P L  and 
NLR have found that the value of q required to attain convergence of the spanwise integration increases 
as N increases. In the NPL  method this is attributed primarily to the difficulties at the collocation points 
closest to the leading edge, but from experience at NLR it is suggested that the less smooth behaviour 



of the higher order terms hr in the chordwise loading may be a contributory factor. Neither method 
experiences convergence problems in spanwise integration as m is increased. BAC use a parameter n' 
to specify the quadrature order when evaluating the integrals involving Ev(X') and find that an increase in 
N has very little effect on the value of n' needed to attain quadrature convergence. For  the collocation 
sections nearest to the tip when m > 17, say, significant increases in n' are required in order to maintain 
quadrature convergence, but this effect has been investigated and can be met by appropriate changes 
to the BAC programme. While the numerical results from the N P L  and NLR methods show the effect 
of the controlling parameter q, there are no results to demonstrate convergence with respect to n' in the 
BAC method, and thus the comparisons in Section 5 are especially desirable. 

All the methods are at present restricted to planforms with smooth leading and trailing edges. Three 
separate procedures are suggested for rounding the central kink of a swept wing. Within the N P L  method, 
for wings with straight edges the following formulae for the rounding are usually applied to the leading 
edge and chord respectively over the range lY[ ~< Yi: 

xt(y) = xt(yi)[2 + ~(1 - 2)61 "( (16) 
c(y) = cR + [2 + ~(1 2) 6] {c(yi) - Cg}J ' 

where 2 = ]Y[/Yl and Yi = s sin[~z/(m + 1)]. The corresponding formulae within the NLR method are 

x,(y) = xt(y,)[~ + ~2 _ ~;?] ],, 
(17) 

c(y) c .  + [~ + .~2 - k~ 3] {c(y,) - ~.} 

where the value of y~ is arbitrary. Within the BAC method the corresponding rounding is 

xt(y) = xt(yi)[-~-6 + ~6 ~,2 - -  ~6~ 4 -{- -I~6/]-6] ]~. 
(18) 

J ¢(y) ~. + [ ~  + ~ - ~ a ~  + ~ ]  {¢(y,) - c .} 

The roundings give different degrees of regularity in the modified planforms at y = y~ and y = O. The 
following Table lists the order up to which the y-derivatives of x~ exist at these points. 

Rounding Y = Yt y = 0 

NPL 5th 2nd 
NLR 2nd 2nd 
BAC 3rd All 

From the definitions in equations (16), (17) and (18) it follows that 

XI(0)NPL = ~Xl(Yi) and C(0)NPL = ~C R + ~c(yi) ] 
/ 

Xt(0)NLR = ½xt(yl) and C(0)NLR ~CR + ½c(yl) ~. (19) 
/ 

XI(0)BAC = ~6xt(yi) and C(0)BAC ~6CR + aS--6c(y3) 

Thus, to give the same displaced root chord as the N P L  rounding, the NLR and BAC methods require 
smaller values of Yi, respectively 

(Yl)NLR = ~(Yi)NPL and (Yi)BAC = ~(Yi)NPL- (20) 

However, it will be found unsatisfactory to check solutions by the three methods with respective roundings 
to give identical displacements x~(0). The local radius of curvature of the rounded leading edge, R, also 
influences the chordwise loading, and respectively 

RNp L = l'200xt(0) cot 2 At ] 

R N L  R = 1"500x/(0) co t  2 At I '  (21) 

RBA c = l'706Xt(0) cot 2 Al 

where A~ is the true angle of leading-edge sweepback. 

6 



5. Discussion of the Results 

As mentioned in the Introduction, the four planforms, (a) circular, (b) rectangular, (c) 'hyperbolic '  and 
(d) 'Warren 12', have been treated as examples (Fig. 1). In the case of the circular wing the overall values 
of the aerodynamic quantities CL, Cm and X,c have been compared with the exact values determined by 
Van Spiegel 6. No such exact theory is available in the other examples. 

Since the Warren 12 planform is kinked at the centre section, some rounding is required. The standard 
N P L  solutions use equation (16) with m = 15, but the N P L  method can accept arbitrary planform data. 
The N L R  method normally uses equation (17) with y~ = 0.19509s giving x~(0) = 0.08802s, and in order to 
obtain fair comparisons between the two methods, both have been applied to this latter rounding and 
also to that of equation (17) with Yi = 0-09739s and xz(0) = 0.04394s. For  each of these roundings the 
NLR results for m = 31, N -- 4 and q = 8 have been added, because according to Ref. 4 these solutions 
can be considered to be correct to 3 or 4 figures. 

The BAC method cannot yet be applied to the circular tip, but otherwise all three methods have been 
used. In the following sections the four wings will be discussed one at a time by analysing the solutions 
obtained and the speed of convergence of the calculations with respect to the various parameters. 

5.1. The Circular Planform 

From Table 1, which presents the N P L  solution for m = 11, N = 4 and q = 8 and the NLR solution 
for m = 11, N = 4 and q = 10, it appears  that nearly all the quantities agree to 3 or 4 significant figures 
with the one exception of the local aerodynamic cent're x,c at 11 = 0.9659. The correctness of the overall 
aerodynamic quantities can be inferred from the excellent comparisons with the exact values from 
Ref. 6. 

The convergence of the N P L  and N L R  results can be judged with the help of Table 2 where the varia- 
tion of x,c with respect to q, m and N is shown. It appears that both methods ensure an equally good 
convergence with respect to m and N, but that the convergence with respect to q of the N P L  results is 
somewhat slower in the tip region. This explains the aforementioned discrepancy in x,c, which is attribut- 
able to the large local sweepback of the leading edge and the improvement  in the N L R  method associated 
with equation (12). 

5.2. The Rectangular Planform 

There have been extensive calculations by the BAC method for the rectangular wing of aspect ratio 2. 
The first part of Table 3 includes results for m = 7, 9 and 13, showing rapid convergence with respect to 
the number  of collocation sections. Throughout  Table 3 there is perfect agreement between the NLR 
and BAC solutions with N = 4 chordwise terms, and the trivial discrepancies in ACp/ct from the NPL 
and N L R  methods with m = 15 and q = 8 show that convergence with respect to q is virtually complete. 
In Table 4, which gives BAC solutions for m = 13 and N = 4, 5 and 6, results near the tip are slow t~ 
converge with respect to N. While the values of ACp/e at q = 0, 0.3827 and 0.7071 appear  to be correct 
to about 0-1 per cent when N = 6, this is tar from true at r/ = 0.9239. Indeed calculations at this section 
by the BAC method with smaller m and more chordwise terms suggest that at least N = 10 is necessary 
to achieve such high accuracy. 

Evaluation of the leading-edge suction, associated with the singularity in ACp, poses a severe numerical 
requirement of lifting-surface theory (Ref. 7). The spanwise distribution of vortex drag cCoL/?C 2 from 
equation (6) of Ref. 7 is slow to converge in Table 4. A searching check on any solution is to compute 
the vortex drag factor 

K = nACDv/C 2 (22) 

from surface pressures (Ks) by  equation (8) of Ref. 7 and from the wake integral (Kw) by equation (9) of 
Ref. 7 relating the vortexdrag to the cross-flow energy in the wake. The accuracy ofKw( = 1.001) is beyond 
question, and the behaviour of Ks with increasing N, tabulated in Fig. 2, shows convergence within about 
0-1 per cent when N ~> 8. The plotted spanwise distributions of vortex drag do not become indistinguish- 
able near the tip until eight or more chordwise terms are taken. 



5.3. The Hyperbolic Planform 
From Table 5, which presents the comparison of results obtained by NPL, NLR and BAC for m = 15, 

N = 4 and q = 8 where relevant, it appears that all three methods agree very well. The largest discrepancies 
occur in the values of ACp/7 for small values of X at r/ = 0.3827, and here the NLR and BAC results differ 
by less than 0.1 per cent, both sets differing from the NPL results by about 0-2 per cent. 

The deviations between the NPL and NLR results may be explained through the different rates of 
convergence of AC~, with respect to q in Table 6. This convergence can be examined by means of Table 7 
which shows the differences 

= -- q=41. 
(23) 

It appears that the NPL results converge somewhat more slowly than the NLR results. In each case the 
largest 64 occurs near the leading edge at r/ = 0.3827, where at X = 0.005 the NPL value is -0-3  per cent 
of ACt,/~ while the corresponding difference in the NLR results is only a quarter of this. 

In Table 8 the convergence of ACp/~ at r/ = 0'3827 with respect to N is found to be equally good for 
all three methods, the increments 

\ O~ IN=4 ~ C( /N=3J 

being similar in each case. Table 9 shows the chordwise loading at r/ = 0"3827 from NLR calculations 
with m = 15, 31 and N = 3, 4 and from BAC calculations with m = 9, 13, 15 and N = 4. Comparison 
of these results yields the conclusion that at m = 15 an accuracy of 3 to 4 figures is obtained. Moreover, 
it appears that for m = 15 and greater the convergence characteristics associated with m are disconnected 
from those associated with N. 

From the foregoing it will be clear that the minor discrepancies in ACp between the NPL results on the 
one hand, and those from NLR and BAC on the other, are mainly due to the slower convergence of the 
NPL results with respect to q. For all practical purposes the agreement to about three significant figures 
is more than adequate. 

In Fig. 3 the spanwise distribution of vortex drag has been calculated from equation (6) of Ref. 7. The 
curves for N = 2 and 3 are from the best available solutions by the NPL method, while that for N = 4 
is from the NLR solution with m = 31 and q = 8. As in Fig. 2, the results are slowest to converge near 
the tip, but there is now the complication of negative local drag due to sweepback. The integrated drag 
factor Ks is again compared with the value Kw = 1.038 from the wake integral and appears to converge 
slightly better than for the rectangular wing. The BAC values of K, for M = 15 and N = 2, 3 and 4 are 
identical to those given in Fig. 3. 

5.4. The Warren 12 Planform 
Unlike the other three planforms, there is no true solution for the Warren 12 planform based on the 

loading functions in equations (4) to (7). Although it is planned to develop Ref. 5 to satisfy boundary 
conditions along the central kink, the present study is limited to planforms with smooth leading and 
trailing edges. All the calculations correspond roughly to either a small rounding xt(O) = 0-044s or a 
larger rounding x~(0) = 0-088s. For the small rounding and four chordwise terms the spanwise loading, 
local aerodynamic centres and overall forces from five solutions are given in Table 10. Although they are 
in broad agreement, the first (NPL) and last (BAC) solutions correspond to respective roundings from 
equations (16) and (18) and are not strictly comparable with the other three solutions. A precise comparison 
of the NPL and NLR methods can be made (Section 5), and the two solutions with m = 15 for the NLR 
rounding are found to be the most consistent pair. Their chordwise loadings in the latter part of Table 
10 are in very good agreement at r / =  0 and 0.3827 ; only at i/ = 0-9239 do the discrepancies occasionally 



exceed 1 per cent. By contrast, the more accurate NLR results for m = 31 exhibit differences of this 
magnitude at the non-zero values of r/, but much larger discrepancies at the centre section. It seems that 
m -- 15 gives insufficient collocation sections near the small rounding. 

The convergence of the chordwise loadings with respect to q is shown in Table 11. The N P L  and NLR 
methods for N = 3, each with its own rounding x~(0) -- 0.044s, are not expected to converge to the same 
result as q is increased, but the differences 

 l=fAc  I _f c l 
o~ Iq=2 ~ o~ Iq=l 

q=4 ~ O~ ]q=2 

(25) 

and 63 from equation (23) illustrate the rate of convergence. The superior convergence of the NLR method 
can be seen in Figs. 4 and 5 for 11 = 0"3827 and 0.9239 respectively. At the same time the magnitudes 
of 6~ in the upper diagrams of Figs. 4 and 5 reveal the serious numerical errors in the earlier standard 
form of Multhopp's theory equivalent to the N P L  method with q = 1. 

Table 12 presents the results obtained by NPL  and NLR for m = 15, N = 4, q = 8 and the larger 
NLR rounding xt(0) = 0-088s. The agreement is quite as good as for the small rounding in Table 10. 
The new feature is that the more accurate loading from the NLR solution for m = 31, N = 4 and q = 8, 
which is correct to 3 or 4 figures (Ref. 4), is everywhere practically within 1 per cent of both results for 
m = 15. This suggests that convergence with respect to m is better for the larger rounding. 

Convergence with respect to N has been studied for the small rounding by the N P L  and NLR methods 
and for the larger rounding by the BAC method. The former results are presented graphically for q = 0.3827 
in Fig. 6, where A~ and A2 from equations (24) show completely similar behaviour from the two methods 
and roughly A2 < ½A~. The solutions for m = 15 and N = 2, 3 and 4 obtained by BAC are given in 
Table 13. The convergence is much better at r / =  0.3827 and 0-7071 than at q = 0 and much worse at 
r / =  0.9239. Nevertheless, over the inner part of the span the larger rounding appears to improve the 
convergence and make less demands on N. Table 13 also includes the spanwise distribution of vortex 
drag cCoL/~C z and the vortex drag factors Ks and Kw (Section 5.2). Whilst the two factors for N = 4 are 
within 1 per cent and agree as well as those for the rectangular and hyperbolic planforms in Figs. 2 and 3, 
the corresponding values of K, and Kw in Table 10 for the small rounding differ by 5 per cent ; however, 
both factors in Table 10 from the NLR solution with m = 31 show remarkable agreement with those in 
Table 13 with m = 15. This provides further evidence that for expediency of convergence the larger 
roundings of equations (17) and (18) are preferable to the N P L  rounding in equation (16). 

In all, with m = 15 and N = 4, five distinct roundings have been considered, and the central chordwise 
loadings are collected in Table 14. To eliminate the leading-edge singularity, (ACp/~x)X ~ is plotted against 
X in Fig. 7. The large effect of the change in the leading-edge displacement x~(0) is expected, but there is 
also an appreciable secondary effect of the local radius of curvature from equation (21). These ioadings 
at r / =  0 have no aerodynamic significance for the actual Warren 12 planform, and the results in Tables 
10 and 12 indicate that the effects of the rounding are felt over an appreciable part of the span. The guiding 
principle in choosing the artificial rounding is that it should be the smallest that will not jeopardize the 
convergence of the solution. 

6. Concluding Remarks 

From the results presented it may be concluded that, for smooth planforms of moderate aspect ratio 
and for N ~< 4, all three methods produce consistent numerical results provided that quadrature accuracies 
are maintained. Fully correct 'aerodynamic' results for AC v would require larger values of N, as is 
demonstrated for the rectangular planform; for cambered wings the need for a considerable increase in N 
can be expected, and in this respect the points raised in Sections 3.3 and 4 may discourage the extension 
of the NP L  method to N > 4. The NLR method should remain satisfactory for larger values of N i.f an 
appropriate value of q is applied. The functioning of the BAC method is shown to be unimpaired as N 
increases. 



It is observed that the NPL results show a slower convergence with respect to the number of spanwise 
integration points than those of NLR. Obviously, the appearance of a near kink in the planform could 
aggravate this phenomenon. But it is encouraging that discrepancies between the NPL and NLR results 
for the smoothed Warren 12 planform remain small when the rounding is reduced from xt(O) = 0.088s to 
x~(0) = 0.044s. The load distributions at q -- 0 are very sensitive to the amount of rounding, and limita- 
tions of this artifice are exposed. 

In all cases considered, the convergence with respect to N is equally good for the three methods. But, 
as is shown in Ref. 4, this convergence is strongly dependent on the accuracy of the spanwise integration, 
especially as the aspect ratio increases above 4, say. Therefore it may be doubted whether the NPL 
method will exhibit equally good convergence for wings of high aspect ratio owing to capacity restric- 
tions on q. 

The convergence with respect to m is excellent for the circular, rectangular and hyperbolic planforms. 
For the Warren 12 planform, especially with the smaller artificial rounding, it is necessary to take more 
than 15 collocation sections; even so, the NLR results with m = 31 differ primarily at ~/ = 0 where 
solutions have little relevance to the actual wing. For the practical objective of obtaining load distributions 
at adjacent sections it is necessary to compromise between an accurate solution for too large a rounding 
and one for too small a rounding that has not converged with respect to m. 

Finally it is worth mentioning a number of subjects that require further research, e.g., the influence of 
increasing aspect ratio or decreasing rounding on the rates of convergence with respect to the numbers 
of spanwise and chordwise collocation points, the accuracy obtainable for the chordwise loading of 
cambered wings, and the effects of collocation point positioning on the accuracy and stability of solutions. 
The determination of reliable solutions for kinked planforms remains a crucial problem. However, it 
may be assumed that the comparisons established in this report have achieved a sufficient appraisal of 
the three basic methods with respect to each other. 

a r 

a~n 

A 

c 

£R 

COL 

Cov 

CL 

CLL 

Cm 

Cp 

Fr 

hr 

Hr 

Mr 
kay 

LIST OF SYMBOLS 

Coefficient of hr, varying in spanwise direction 

Unknown coefficients in equation (7) 

Aspect ratio; 2s/? 

Local chord 

Geometric mean chord; S/2s 

Root chord, without artificial central rounding 

Local drag coefficient; local drag/½p U2c 

Vortex drag coefficient; vortex drag/½pU2S 

Lift coefficient; lift/½pU2S 

Local lift coefficient; local lift/½pU2c 

Nose-up pitching moment about root leading edge/½pU2S? 

Pressure coefficient; ACp = pressure difference/½pU 2 

Function defined in equation (10) 

Chordwise function in equation (5) 

Initial chordwise integral 

Regularized function defined in equation (12) 

Unknown coefficients in equation (13) 
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K8 

Kw 

Kvi 

Lv 

m 

M 

t,l r 

N 

q 

r 

R 

S 

S 

U 

x , Y )  

Xac 

XI 

Xt  

X , X '  

S a c  

Yi 

O~ 

fii 

A i 

rl, rf 

O' 

Al 

V 

~,~' 

P 

Vortex drag factor ztACDv/C~ from surface pressures 

Vortex drag factor nACDv/C~ from wake integral 

Coefficients in equation (14) with i = 1, 2 . . . .  t 

Initial spanwise integral 

Regularized function defined in equation (14) 

Number of collocation sections 

Number of spanwise integration points ; q(m + 1) - 1 

Mach number of undisturbed stream 

Parameter specifying numerical integration with respect to X' in equation (13) 

Number of chordwise functions 

Factor; (~ + 1)/(m + 1) 

Index numerating chordwise function 

Radius of curvature of rounded leading edge at r /=  0 

Semi-span of wing 

Area of planform 

Velocity of undisturbed stream 

Rectangular co-ordinates referred to root leading-edge 

Local centre of pressure in terms of X 

Ordinate of leading edge 

Ordinate of trailing edge 

Local chordwise position ; (x - xz)/c, (x' - xz)/c 

Centre of pressure referred to ?; -Cm/CL 

Outer limit of artificial central rounding of swept wing 

Local incidence of wing (radians) 

Compressibility factor; (1 - M2) ~ 

Increments in ACp/a in equations (23) and (25) due to increasing q 

Increments in ACp/. in equations (24) due to increasing N 

Spanwise ordinate; y/s, y'/s 

Spanwise parameter; cos- 1 r/' 

Angle of sweepback of leading edge 

Index numerating spanwise loading function 

Streamwise ordinate; x/s, x'/s 

Density of undisturbed stream 

Chordwise parameter; cos-1(1 - 2X') 
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TABLE 1 

Results Jbr the Circular PlanJorm (M = 0, m = 11, N = 4). 

Values of CCLL/CC L Values of X.c 
I'/ 

0 
0"2588 
0"5000 
0"7071 
0"8660 
0"9659 

NPL NLR 
q = 8 q = 10 

1-2844 1'2844 
1'2387 1"2386 
1"1049 1-1049 
0"8937 0"8937 
0"6219 0'6220 
0"3138 0"3139 

NPL NLR 
q = 8 q = l0 

0'1980 0-1980 
0-1970 0"1970 
0"1938 0"1938 
0'1876 0"1877 
0'1764 0"1768 
0-1551 0"1578 

CL 

- -  C m 

X.~ 

Overall values 

NPL NLR Exact 
q = 8 q = 10 Re£ 6 

1.7903 1-7903 1.7902 

0.5459 0-5461 0.5460 

0.3049 0'3050 0.3050 

ACp/o~ at r /=  0-5 ACp/o~ at  t / =  0-866 
X 

N P L ( q  = 8) NLR(q  = 10) N P L ( q =  8) NLR(q-- -  10) 

0.0050 
0.0125 
0.0250 
0-05 
0-10 
0.15 
0.20 
0.30 
0.40 
0.50 
0-60 
0"70 
0.80 
0-90 
0"95 

ACp/~ at q = 0 

NPL (q = 8) INLR (q = 10) 

19.481 19-480 
12.220 12-220 

19.591 
12.292 

19-591 
12.292 

20.040 
12.586 

8.522 8"522 
5-856 5.856 
3-898 3.898 
2.982 2-982 
2.408 2-408 
1.684 1.684 
1.223 1.223 
0-896 0.896 
0.651 0.651 
0.464 0.464 
0.315 0.316 
0.190 0.190 
0-125 0.125 

8.575 
5.894 
3.921 
2.993 
2.409 
1.667 
1.192 
0-858 
0.614 
0.432 
0-295 
0.182 
0.123 

8.575 
5.894 
3.920 
2.993 
2.408 
1.667 
1.193 
0.859 
0.614 
0.432 
0.295 
0.182 
0.123 

8-790 
6.050 
4.017 
3.043 
2.417 
1.602 
1.075 
0.713 
0.467 
0-308 
0-213 
0.153 
0"116 

20.026 
12.577 
8-784 
6-046 
4-014 
3.041 
2.416 
1.603 
1.077 
0-715 
0-469 
0.310 
0.215 
0-154 
0-117 
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T A B L E  2 

Convergence ofx.cfor 
{a) 

the Circular Planform (M = O) 

Effect of  d 

N P L  method  (m = 11, N = 4) N L R  method  (m = 11, N = 4) 
// 

q = 8  q = 1 0  q = 4 q = 6 

0.1981 0-1980 
0.1971 0-1970 
0.1939 0.1938 
0.1879 0.1876 
0-1783 0.1769 
0.1702 0-1597 

0 
0"2588 
0-5000 
0.7071 
0'8660 
0.9659 

0"1980 
0-1970 
0"1938 
0-1876 
0"1764 
0-1551 

q = 6 q = 8 

0.1980 0-1980 
0.1970 0-1970 
0"1938 0.1938 
0"1877 0"1877 
0"1768 0"1768 
0'1573 0'1581 

0"1980 
0-1970 
0'1938 
0"1877 
0"1768 
0-1578 

(b) Effect of N 

0 
0-2588 
0.5000 
0.7071 
0.8660 
0.9659 

N P L  method  (m = 11) 

N = 2  
q = 4  

0.1958 

0'1945 
0.1904 

0"1828 
0.1702 
0.1515 

N = 3  
q = 6  

0.1981 
0.1971 
0.1939 
0.1880 
0.1780 
0.1603 

N = 4  
q = 8  

0"1980 
0.1970 

0"1938 
0'1876 
0.1764 
0.155l 

N = 2  
q = 8  

0'1960 

0-1905 

0'1724 

N L R  method  (m = 5) 

N = 3  
q = 8  

0.1982 

0.1940 

0.1786 

N = 4  
q = 8  

0.1980 

0.1938 

0-1768 

(c) Effect of m 

N P L  method  (N = 4) N L R  method  (N = 4) 

q 

0 
0.2588 
0.5000 
0.7071 
0.8660 
0.9659 

m = 5 m = 11 

0-1982 0.1980 
0.1970 

0.1938 0.1938 
0-1876 

0.1784 0.1764 
0.1551 

m = 5 m = 11 

0.1980 0-1980 
0.1970 

0.1938 0'1938 
0'1877 

0.1768 0.1768 
0'1578 
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TABLE 3 

Results~rtheRectangularPlanform(M = O,N = 4, q = 8) 

i/ 

0 
0.1951 
0"3827 
0-5556 
0.7071 
0"8315 
0'9239 

N P L  NLR 
m = 15 m = 15 

1.2543 
1.2331 
1-1692 
1-0625 
0.9137 
0.7257 
0.5044 

1"2543 
1.2331 
1.1692 
1.0625 
0"9137 
0"7258 
0.5044 

BAC BAC 
m = 7  m = 9  

Values of CCLL/6CL 

1"2543 
1"2331 
1"1692 
1"0625 
0"9137 
0"7257 
0"5044 

1-2543 
1-2331 
1"1692 
1"0625 
0'9137 
0"7257 
0"5044 

BAC 
m = 1 3  

1"2543 
1-2331 
1"1692 
1"0625 
0"9137 
0"7257 
0"5044 

0.9808 

0 
0.1951 
0.3827 
0"5556 
0.7071 
0.8315 
0.9239 
0.9808 

0 
0"1951 
0.3827 
0.5556 
0"7071 
0-8315 
0"9239 
0.9808 

0.2587 

0.2199 
0-2187 
0"2149 
0"2085 
0.1996 
0.1886 
0.1773 
0.1685 

0.1847 
0.1831 
0.1781 
0"1686 
0-1540 
0.1353 
0.1130 
0.0770 

0.2587 

0.2199 
0-2187 
0.2149 
0.2085 
0.1996 
0-1886 
0-1773 
0.1685 

0.1848 
0.1832 
0.1781 
0.1686 
0.1541 
0.1353 
0"1131 
0.0770 

0.2586 

Values of xac 

0.2199 
0.2187 
0.2149 
0-2085 
0.1995 
0'1885 
0.1773 
0"1688 

Values of cCDL/OCZz 

0"1847 
0-1831 
0"1782 
0"1691 
0"1540 
0"1347 
0"1131 
0"0773 

0.2586 

0-2199 
0.2186 
0.2149 
0.2085 
0.1996 
0.1886 
0"1773 
0.1685 

0"1848 
0"1832 
0"1781 
0"1686 
0"1541 
0"1353 
0-1130 
0"0770 

0.2586 

0.2199 
0-2187 
0-2149 
0.2085 
0.1996 
0-1886 
0-1773 
0.1685 

0"1848 
0"1832 
0-1781 
0.1686 
0.1541 
0.1353 
0.1131 
0.0770 

Overal lvalues  

CL 2.4745 2.4744 2.4744 2.4744 2.4744 

0.5182 0.5182 0.5182 0.5182 0.5182 

0.2094 0.2094 0.2094 0-2094 0.2094 

1.0104 1.0108 1.0107 1.0108 1.0108 

1-0007 1.0007 1.0006 1.0006 1.0006 

- Cm 

Sac 

K s  

Kw 
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T A B L E  3 (cont inued)  

Results for the Rectangular Planform (M = 0, N = 4, q = 8) 

ACp/e at q = 0 ACp/e at q = 0.3827 

X 
N P L  N L R  BAC N P L  N L R  BAC 

m =  15 m = 15 m = 13 m = 15 m = 15 m = 13 

31"530 31"524 31'525 30.117 30'113 0-0050 
0"0125 
0.0250 
0'05 
0'10 

0"15 

0-20 

0'30 
0-40 
0'50 
0"60 
0-70 
0"80 
0"90 
0.95 

19-782 
13-801 
9.498 
6.355 

4'903 

4"006 

2"895 
2-200 
1"707 
1'329 
1"020 
0-751 
0.485 
0.330 

19-779 
13'800 
9'497 
6'355 

4'903 

4-006 

2'895 
2"200 
1"707 
1"329 
1-020 
0"750 
0-485 
0.330 

19.779 
13.800 
9.497 
6"355 

4"903 

4"006 

2'895 
2'200 
1"707 
1"329 
1"020 
0.750 
0.485 
0.330 

18'873 18.871 
13.142 13.140 
9"010 9-009 
5"985 5"985 
4"586 4'586 

3'722 3"722 

2"660 2"660 
2'002 2"002 
1-542 1'542 
1'194 1"194 
0'914 0.914 
0'671 0"671 
O.434 0.434 
0"295 0-295 

30"113 
18-871 
13"141 
9.010 
5'985 
4.586 

3"722 

2-660 
2-002 
1'542 
1.194 
0.914 
0"671 
0-434 
0"295 

ACp/e at r / =  0.7071 ACp/e at r/ = 0-9239 

X 
N P L  N L R  BAC N P L  N L R  BAC 

m =  15 m = 15 m =  13 m = 15 m = 15 m =  13 

0.0050 
0.0125 
0-0250 
0-05 
0.10 
0.15 
0'20 
0"30 
0-40 
0"50 
0'60 
0'70 
0"80 
0"90 
0"95 

25.660 
15.999 

25.659 
15.998 

25-658 
15-998 

16.543 
10'198 

16-540 
10'197 

11'047 
7.451 
4.798 
3'574 
2"828 
1.940 
1"421 
1 "080 
0"834 
0"640 
0.472 
0.305 
0-206 

11"046 
7.450 
4'798 
3'574 
2'828 
1 '940 
1-421 
1"080 
0'834 
0'640 
0.472 
0.305 
0"206 

11"046 
7'450 
4'798 
3"574 
2"828 
1-940 
1.421 
1"080 
0'834 
0.640 
0"472 
0-305 
0'206 

6.911 6'910 
4'491 4.491 
2-691 2"690 
1-874 1'874 
1"398 1'398 
0.884 0"883 
0"632 0-632 
0'495 0"494 
0-404 0-404 

0-327 0"327 
0.244 0.244 
0.149 0'149 
0"093 0"093 

16.540 
10"197 

6-910 
4-490 
2'690 
1'874 
1'398 
0'884 
0"632 
0-494 
0"404 
0'327 
0.244 
0.149 
0"093 
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TABLE 4 

Convergence of Solutions with Respect to N for the Rectangular Planform (M = 0, m = 13) 

Values ofcCLL/~C~. Values of xac 

r/ BAC method BAC method 

N = 4  N = 5  N = 6  N = 4  N = 5  N = 6  

0 
0"1951 
0"3827 
0-5556 
0"7071 
0"8315 
0"9239 
0"9808 

1"2543 
1"2331 
1"1692 
1.0625 
0"9137 
0"7257 
0.5044 
0"2586 

1-2543 
1"2330 
1"1692 
1"0625 
0"9137 
0"7257 
0"5045 
0"2587 

1'2543 
1"2330 
1-1692 
1"0625 
0"9137 
0"7257 
0-5044 
0-2587 

0-2199 
0-2187 
0"2149 
0"2085 
0-1996 
0"1886 
0"1773 
0'1685 

0"2199 
0-2187 
0-2149 
0'2085 
0"1996 
0"1886 
0"1771 
0"1679 

0.2199 
0.2187 
0-2149 
0.2085 
0.1996 
0.1886 
0-1770 
0-1674 

Values of cCmJ?C 2 

r/ BAC method 

N = 4  N = 5  N = 6  

0 
0.1951 
0"3827 
0-5556 
0.7071 
0"8315 
0.9239 
0.9808 

0.1848 
0.1832 
0.1781 
0-1686 
0.1541 
0"1353 
0.1131 
0.0770 

0-1850 
0-1834 
0"1785 
0.1690 
0.1536 
0.1320 
0.1068 
0.0732 

0.1850 
0.1835 
0-1786 
0-1693 
0.1539 
0-1315 
0.1033 
0-0701 

Overall values 

BAC method 

N = 4  N = 5  N = 6  

CL 2.4744 2.4744 2.4744 

-Cm 0-5182 0.5181 0-5181 

Xac 0'2094 0.2094 0.2094 

Ks 1-0108 1"0054 1"0033 

Kw 1.0006 1-0007 1.0007 
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TABLE 4 (continued) 

Convergence of Solutions with Respect to N for the Rectangular Planform (M = 0, m = 13) 

Values of ACp/O~ at q = 0 Values of ACp/c~ at q = 0.3827 

X BAC method BAC method 

N = 4  N = 5  N = 6  N = 4  N = 5  N = 6  

0.0050 
0.0125 
0.0250 
0.05 
0.10 
0.15 
0.20 
0.30 
0-40 
0.50 
0.60 
0.70 
0-80 
0.90 
0.95 

31.5251 
19.7792 
13.7998 
9-4973 
6.3550 
4.9030 
4-0058 
2.8953 
2-2004 
1-7070 
1.3288 
1.0202 
0-7504 
0-4850 
0.3296 

31.5175 
19.7760 
13.7991 
9.4986 
6.3571 
4.9047 
4-0067 
2.8949 
2.1994 
1.7063 
1.3288 
!-0208 
0-7510 
0.4849 
0.3291 

31.5171 
19-7759 
13.7992 
9.4988 
6.3573 
4.9047 
4-0067 
2.8948 
2.1994 
1.7064 
1.3289 
1.0208 
0.7509 
0.4849 
0-3292 

30.1132 
18.8712 
13.1408 
9.0095 
5.9847 
4.5856 
3.7225 
2-6598 
2.0022 
1.5417 
1.1937 
0.9136 
0.6710 
0-4339 
0-2951 

30-0982 
18.8646 
13.1390 
9.0113 
5-9883 
4.5886 
3.7243 
2-6593 
2.0007 
1.5406 
1.1936 
0.9144 
0.6719 
0.4338 
0-2944 

30-0956 
18-8639 
13.1394 
9.0124 
5-9891 
4.5889 
3-7240 
2.6587 
2-0005 
1.5408 
1.1939 
0-9144 
0.6716 
0.4336 
0.2945 

Values of ACp/c~ at ,7 = 0.7071 Values of ACp/c~ at ,7 = 0.9239 

X BAC method BAC method 

0.0050 
0.0125 
0.0250 
0-05 
0-10 
0.15 
0.20 
0.30 
0-40 
0-50 
0.60 
0.70 
0.80 
0.90 
0.95 

N = 4  

25.6585 
15.9976 
11.0465 
7.4503 
4-7980 
3-5737 
2.8284 
1.9400 
1.4214 
1-0796 
0-8335 
0.6402 
0.4723 
0.3049 
0.2063 

N = 5  

25.6809 
16.0064 
11.0472 
7.4452 
4.7909 
3.5686 
2.8262 
1.9426 
1.4255 
1.0822 
0.8332 
0.6377 
0.4699 
0.3052 
0.2082 

N = 6  

25.6668 
16.0010 
11.0469 
7.4482 
4.7944 
3.5706 
2-8266 
1-9413 
1.4246 
1.0823 
0.8338 
0.6379 
0.4694 
0.3049 
0.2084 

N = 4  

16-5395 
10.1966 
6.9101 
4.4904 
2.6904 
1.8739 
1.3983 
0.8835 
0.6323 
0.4945 
0-4041 
0-3267 
0.2444 
0.1487 
0.0933 

N = 5  

17.0241 
10-4213 
6.9840 
4.4497 
2-5929 
1.7871 
1.3421 
0.8892 
0-6677 
0.5243 
0.4084 
0.3074 
0.2230 
0.1530 
0-1131 

N = 6  

17.2606 
10.5097 
6.9872 
4-3966 
2.5349 
1.7574 
1.3404 
0-9128 
0-6808 
0.5177 
0.3942 
0.3028 
0.2320 
0.1580 
0.1074 
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TABLE 5 

Results for the Hyperbolic Planform (M = 0, m = 15, N = 4) 

Values of CCLL/CC L Values of xac 

NPL NLR NPL NLR 
BAC BAC 

q = 8  q=8  q=8  q=8  

0 
0"1951 
0"3827 
0"5556 
0-7071 
0"8315 
0"9239 
0"9808 

1"1293 
1"1284 
1"1192 
1"0872 
1-0076 
0-8512 
0-6152 
0"3216 

1"1290 
1-1283 
1"1192 
1'0873 
1"0078 
0"8514 
0"6153 
0"3217 

1"1291 
1'1283 
1-1191 
1-0872 
1"0077 
0"8513 
0"6153 
0'3216 

0"2739 
0"2665 
0"2545 
0'2422 
0"2217 
0-1843 
0"1354 
0"0920 

0"2737 
0-2663 
0-2542 
0"2420 
0'2216 
0'1843 
0'1355 
0'0920 

0'2738 
0"2663 
0-2542 
0-2420 
0"2216 
0'1843 
0"1354 
0"0920 

Overall values 

NPL NLR 
BAC 

q = 8  q = 8  

CL 3'2335 3"2327 3"2326 

-- C,. 2"4798 2"4789 2"4788 

Xac 0"7669 0"7668 0"7668 
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TABLE 5 (continued) 

Results for the Hyperbolic Planform (M = 0, m = 15, N = 4) 

ACv/o~ at t/ = 0 ACp/~ at t/ = 0.3827 

X 
NPL NLR NPL NLR 

BAC BAC 
q = 8  q = 8  q = 8  q = 8  

0-0050 
0-0125 
0'0250 
0"05 
0.10 
0.15 
0'20 
0'30 
0-40 
0"50 
0-60 
0-70 
0.80 
0"90 
0-95 

29"791 
18-830 
13"299 
9.378 
6-584 
5.325 
4-557 
3"606 
2'993 
2'530 
2"141 
1.781 
1.415 
0.983 
0'692 

29-770 
18.818 
13.292 
9"375 
6"583 
5"325 
4"558 
3.608 
2"995 
2.531 
2-140 
1-778 
1"410 
0"978 
0"688 

29'772 
18'819 
13'293 
9'375 
6"583 
5-325 
4.558 
3"608 
2.994 
2"530 
2"140 
1"779 
1.411 
0.979 
0-688 

31'643 
19"965 
14.060 
9.857 
6.840 
5'467 
4.624 
3"570 
2-885 
2'367 
1'936 
1.551 
1.180 
0-781 
0"535 

31"714 
20-006 
14"083 
9.867 
6.839 
5.463 
4-618 
3"564 
2"880 
2"364 
1"934 
1"549 
1.178 
0"778 
0-533 

31-709 
20-002 
14.081 
9-866 
6'839 
5"463 
4"618 
3"564 
2.880 
2.364 
1"934 
1-549 
1"177 
0"778 
0"532 

X 
NPL 
q = 8  

0.0050 31.786 
0.0125 20.013 
0.0250 14.043 
0.05 9-771 
0.10 6.667 
0.15 5.230 
0-20 4.331 
0.30 3.188 
0-40 2-437 
0.50 1-878 
0.60 1.431 
0.70 1.060 
0-80 0.740 
0-90 0.445 
0-95 0-290 

ACv/a at q = 0.7071 ACp/~ at t/ = 0.9239 

NLR 
q = 8  

31"812 
20"028 
14-051 
9.774 
6.666 
5'228 
4.329 
3-186 
2-435 
1"877 
1.431 
1 "060 
0.740 
0-445 
0-290 

BAC 

31-807 
20-025 
14"050 
9'773 
6.666 
5.227 
4-329 
3.186 
2.436 
1'877 
1"431 
1-060 
0-739 
0.445 
0'290 

NPL 
q = 8  

28"802 
17'799 
12'107 
7.915 
4-766 
3"298 
2'409 
1.383 
0.833 
0-520 
0-336 
0"227 
0.157 
0.101 
0"069 

NLR 
q = 8  

28"803 
17'800 
12.109 
7-915 
4"765 
3"297 
2"409 
1.383 
0-833 
0-520 
0"336 
0.227 
0.157 
0-101 
0-069 

BAC 

28.800 
17.798 
12-106 
7.914 
4.765 
3.297 
2.408 
1-382 
0-833 
0.519 
0.336 
0.227 
0.157 
0-101 
0.069 
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TABLE 6 

ChordwiseLoading ~theHyperbolicPlanform(M = 0, m = 15, N = 4) 

ACp/~ at r / =  0 

X N P L  method NLR method 

q = 6  q = 8  q = 4  q = 6  q = 8  

0"0050 
0-0125 
0-0250 
0.05 
0-10 
0.15 
0"20 
0"30 
0-40 
0"50 
0.60 
0.70 
0.80 
0.90 
0-95 

q = 4 

29-992 29.822 
18.946 18.847 
13"368 13.309 
9.411 9.382 
6.588 6-583 
5.318 5.322 
4.545 4.553 
3-593 3.603 
2-984 2.991 
2.525 2-530 
2.139 2-141 
1.782 1-782 
1.415 1.416 
0.982 0.985 
0.690 0.693 

29.791 
18.830 
13.299 

29-750 
18-806 
13-285 

29.772 
18.819 
13-293 

9"378 9.371 
6.584 6.583 
5-325 5.326 
4.557 4.560 
3.606 3.610 
2.993 2-996 
2.530 2-531 
2.141 2-138 
1.781 1.775 
1-415 t.406 
0.983 0.974 
0-692 0.684 

9-376 
6-584 
5-327 
4.560 
3.610 
2.996 
2.532 
2.140 
1.778 
1-410 
0-978 
0-687 

29.770 
18.818 
13.292 
9.375 
6.583 
5.325 
4-558 
3.608 
2.995 
2.531 
2.140 
1.778 
1.410 
0.978 
0.688 

ACp/~ at q = 0.3827 

X N P L  method NLR method 

q = 6  q = 8  q = 4  q = 6  q = 8  

0.0050 
0.0125 
0"0250 
0'05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0-70 
0.80 
0.90 
0.95 

q = 4 

31.749 31.531 
20.026 19.901 
14.096 14.022 
9.874 9.840 
6.842 6'838 
5-463 5.472 
4.616 4.632 
3.561 3-578 
2.879 2.891 
2.365 2.371 
1.940 1.940 
1-558 1.554 
1-191 1-184 
0.793 0.786 
0.544 0.540 

31.643 
19.965 

31.785 
20.046 

31.740 
20-020 

14.060 
9.857 
6"840 
5.467 
4.624 
3'570 
2-885 
2.367 
1.936 
1.551 
1.180 
0.781 
0.535 

14.107 14-091 
9"877 9.870 
6.839 6.839 
5-459 5.462 
4.612 4.617 
3"558 3-565 
2.875 2-883 
2.361 2.369 
1.932 1-940 
1-547 1.555 
1.175 1-182 
0.776 0-781 
0.530 0.533 

31.714 
20.006 
14.083 
9-867 
6-839 
5.463 
4.618 
3.564 
2.880 
2.364 
1.934 
1.549 
1.178 
0.778 
0-533 
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TABLE 6 (continued) 

Chordwise Loading of the Hyperbolic Planform (M = 0, m = 15, N = 4) 

ACp/c~ at r/ = 0.7071 

X N P L  method NLR method 

q = 4  q = 6  q = 8  q = 4  q = 6  q = 8  

0"0050 
0-0125 
0"0250 
0-05 
0"10 
0'15 
0'20 
0'30 
0.40 
0-50 
0-60 
0-70 
0"80 
0'90 
0.95 

31'527 
19-867 
13'959 

31"682 
19"955 
14"010 

31.786 
20-013 
14-043 

31-838 
20"043 
14.060 

31.823 
20"038 
14-060 

9"735 
6"669 
5"247 
4-355 
3'212 
2"456 
1'890 
1-439 
1"065 
0-746 
0-453 
0'298 

9-757 
6-668 
5'237 
4"341 
3'198 
2"444 
1"882 
1"433 
1-061 
0-741 
0'448 
0'292 

9"771 
6"667 
5"230 
4"331 
3"188 
2"437 
1-878 
1"431 
1'060 
0"740 
0'445 
0'290 

9"777 9'784 
6'666 6"676 
5"225 5"237 
4"326 4"338 
3-183 3"192 
2"433 2'440 
1'875 1.878 
1'430 1'430 
1'060 1"058 
0.740 0.737 
0.446 0-443 
0-290 0"288 

31.812 
20'028 
14.051 
9"774 
6-666 
5"228 
4"329 
3"186 
2-435 
1.877 
1"431 
1-060 
0-740 
0.445 
0.290 

ACp/e at q = 0"9239 

X NPL method NLR method 

q = 4  q = 6  q = 8  q = 4  q = 6  q = 8  

0"0050 
0.0125 
0.0250 
0"05 
0-10 
0-15 
0-20 
0"30 
0'40 
0"50 
0"60 
0"70 
0"80 
0"90 
0-95 

28-768 
17.781 
12.098 

28"798 
17.798 
12.106 

28.802 
17.799 
12"107 

28'804 
17"801 
12.110 

28.812 
17.806 
12.114 

7"912 
4'769 
3"303 
2"415 
1"388 
0-837 
0.522 
0"337 
0'227 
0.157 
0"102 
0-07O 

7.915 
4"766 
3-298 
2"410 
1'384 
0"834 
0'520 
0'337 
0-227 
0"157 
0.101 
0.069 

7"915 
4.766 
3'298 
2-409 
1'383 
0'833 
0"520 
0"336 
0-227 
0.157 
0.101 
0-069 

7'915 7.918 
4"765 4.769 
3'297 3"300 
2'408 2.411 
1"382 1"384 
0"833 0"834 
0-520 0"520 
0"337 0'336 
0'228 0"227 
0.158 0"157 
0'101 0.101 
0.070 0-069 

28-803 
17'800 
12.109 
7.915 
4.765 
3-297 
2-409 
1.383 
0"833 
0'520 
0"336 
0.227 
0-157 
0.101 
0"069 
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T A B L E  7 

Convergence of ACp with Respect to q for the Hyperbolic Planform ( M  = 0, m = 15, N = 4) 

N P L  q = 0 r / =  0.3827 q = 0.7071 r / =  0.9239 

X 63 64 63 64 

0.005 

0-05 

0-10 

0.20 

0-40 

0-60 

0.80 

0.90 

- 0 . 1 7 0  

- 0-029 

- 0-005 

+ 0"008 

0.007 

0-002 

0.001 

0.003 

- 0-031 

- 0.004 

+ 0.001 

0-004 

0.002 

0.000 

- 0 . 0 0 1  

- 0.002 

c~3 64 

- 0 . 2 1 8  0.112 

- 0 . 0 3 4  0.017 

- 0.004 0.002 

+ 0 . 0 1 6  - 0 " 0 0 8  

0.012 - 0.006 

0.000 - O.0O4 

- 0"007 - 0.004 

- 0"007 - 0-005 

c53 64 

0.115 0"104 

0"022 0-014 

- 0 " 0 0 1  - 0 " 0 0 1  

- 0 " 0 1 4  - 0 " 0 1 0  

- 0 . 0 1 2  - 0 - 0 0 7  

- 0"006 - 0"002 

- 0-005 - 0"001 

- 0"005 - 0"003 

0-030 

0"003 

- 0 ' 0 0 3  

- 0"005 

- 0"003 

0 '000 

0"000 

- 0 " 0 0 1  

0"004 

0"000 

0"000 

- 0 ' 0 0 1  

- 0 " 0 0 1  

- 0 " 0 0 1  

0"000 

0"000 

N L R  q = 0 q = 0"3827 q = 0"7071 ~/ = 0"9239 

X 63 64 

0.005 

0.05 

0.10 

0 '20 

0.40 

0-60 

0"80 

0-90 

0.022 

0"005 

0.001 

0.000 

0.000 

0.002 

0-004 

0.004 

- 0"002 

- 0 " 0 0 1  

- 0 . 0 0 1  

- 0 . 0 0 1  

- 0 . 0 0 1  

- 0 . 0 0 1  

0"000 

0.001 

63 64 

- 0 ' 0 4 5  - 0 . 0 2 6  

- 0.007 - 0"003 

0"000 0-000 

0"005 0.001 

0-008 - 0.003 

0-008 - 0 . 0 0 6  

0"OO6 - 0.0O4 

0.005 - 0.002 

63 64 

--0"014 --0'011 
+0 .0 0 5  - 0 ' 0 1 0  

0.010 - 0 . 0 1 0  

0.011 - 0 '009 

0 '006 - 0.004 

0 '000 + 0.001 

- 0'0O3 O.O03 

- 0.003 0.003 

63 64 

0.008 - 0"009 

0.003 - 0.003 

0.004 - O.OO4 

0.003 - 0-003 

0.001 - 0 . 0 0 1  

0.001 0.000 

0.001 0-000 

0-000 0.000 

o~ 1,t=6 ~ o~ 1,1=4 ~ lq=8 q=6 
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TABLE 8 

Convergence of A C  t, with Respect to N for the Hyperbolic Planform (M = 0, m = 15, q = 0.3827) 

bO 
4~ 

Values of ACv/~ 

NPL method NLR method BAC method 

X 
N = 2  N = 3  N = 4  N = 2  N = 3  N = 4  N = 2  N = 3  N = 4  

0.005 31-966 31-668 31.643 31.971 31"691 31-714 31.971 31"687 

0-05 
0"10 
0-20 
0.40 
0"60 
0-80 
0-90 

9"906 
6.840 
4-589 
2.846 
1-922 
1"192 
0"799 

9"862 
6.841 
4.623 
2"882 
1-934 
1-179 
0"780 

9-857 
6"840 
4-624 
2"885 
1"936 
1-180 
0-781 

9"908 
6-841 
4.590 
2-847 
1-922 
1"192 
0-799 

9-866 
6-843 
4"622 
2-880 
1"932 
1.177 
0.780 

9-867 
6"839 
4-618 
2'880 
1.934 
1"178 
0-778 

9-908 
6.841 
4.590 
2.847 
1"922 
1-192 
0-799 

9-866 
6"843 
4-622 
2"880 
1"932 
1-177 
0"779 

31-709 
9-866 
6"839 
4.618 
2"880 
1.934 
1"177 
0.778 

NPL method NLR method BAC method 

X 
A1 A2 AI A2 A1 A2 

0-005 
0"05 
0-10 
0"20 
0"40 
0"60 
0.80 
0'90 

-0-298 
- 0"044 

- 0.025 
-0"005 

-0-280 
- 0"042 

0-023 
0"001 

+0-001 -0-001 
0-O34 + 0"001 
0-036 0-003 
0.012 0.002 

-0-013 0-001 
-0 .019  0-001 

+ 0-002 - 0-004 
0.032 - 0.004 
0"033 0"000 
0-010 0-002 

-0-015 0.001 
-0-019 -0-002 

A1 \ ~ IN=3 N=2' 
/ 

- 0-284 
- 0.042 
+ 0"002 

0-032 
0"033 
0-010 

-0 .015  
- 0-020 

O~ IN=3 

0-022 
0-000 

- 0-004 
- 0-004 

0-000 
0-002 
0.000 

- 0 - 0 0 1  



TABLE 9 

Convergence of ACp with Respect to m for the Hyperbolic Planform 
(M = O, ~/ = 0.3827) 

ACp/~ by BAC method (N = 4) 
X 

m = 13 m = 15 

0'0050 
0.0125 
0.0250 
0.05 
0.10 
0.15 
0-20 
0"30 
0-40 
0-5O 
0.60 
0.70 
0-80 
0.90 
0.95 

m = 9  

31.839 31.726 
20.075 20.012 
14.122 14.087 
9.882 9-868 
6"838 6.840 
5.456 5-463 
4-610 4.618 
3-559 3.565 
2-880 2.881 
2-367 2.365 
1-938 1.934 
1.551 1.548 
1-174 1.174 
0.771 0.774 
0.524 0.529 

31"709 
20"002 
14"081 
9"866 
6'839 
5.463 
4.618 
3"564 
2'880 
2"364 
1"934 
1.549 
1.177 
0"778 
0.532 

Values of ACp/o~ by NLR method 

X N = 3 ,  q = 6  N = 4 ; q = 8  

m =  15 m =  31 m =  15 m =  31 

0-005 
0"05 
0"10 
0"15 
0"20 
0"30 
0"40 
0"50 
0"60 
0"70 
0"80 
0"90 
0"95 

31"691 
9-866 
6"843 
5-467 
4-622 
3"566 
2'880 
2"362 
1"932 
1'547 
1'177 
0"780 
0"534 

31"685 
9.866 
6"843 
5'467 
4"622 
3"566 
2"880 
2"362 
1"932 
1"547 
1"177 
0-779 
0-534 

31.714 
9-867 
6"839 
5"463 
4"618 
3"564 
2"880 
2"364 
1"934 
1"549 
1"178 
0'778 
0'533 

31-709 
9-866 
6"839 
5"463 
4"618 
3"564 
2"880 
2'364 
1'934 
1'549 
1"177 
0"778 
0-532 
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TABLE 10 

Results for the Warren 12 Planform with Rounding xt(0) = 0-044s 
( M = O , N = 4 ,  q=8)  

Values of CCLL/~CL 
q 

NPL NPL* NLR NLR BAC 
m = 15 m = 15 m = 15 m = 31 m = 15 

0 
0-1951 
0-3827 
0.5556 
0.7071 
0-8315 
0.9239 
0.9808 

1.1789 
1.1934 
1.1572 
1.0746 
0.9484 
0.7768 
0.5529 
0-2878 

1.1826 
1-1942 
1-1570 
1.0739 
0-9475 
0.7760 
0-5522 
0.2874 

1.1813 
1-1931 
1.1563 
1-0735 
0.9473 
0.7757 
0-5520 
0"2872 

1-1927 
1.1964 
1.1562 
1.0710 
0.9448 
0.7727 
0.5500 
0.2859 

1.1834 
1.1944 
1.1570 
1.0737 
0.9473 
0.7757 
0'5520 
0.2872 

0"* 
0.1951 
0"3827 
0.5556 
0.7071 
0.8315 
0.9239 
0.9808 

Values of xac 

NPL 
m = 1 5  

0.4049 

NPL* 
m = 1 5  

0'3999 

NLR 
m = 1 5  

0"4002 

NLR 
m = 3 1  

0.3856 
0"2995 
0.2650 
0.2524 
0.2353 
0.2071 
0.1549 
0-0972 

0.2980 
0.2647 
0.2523 
0-2353 
0.2070 
0-1550 
0.0972 

0.2981 
0.2647 
0.2521 
0-2350 
0.2065 
0.1545 
0.0970 

0.2913 
0.2646 
0.2510 
0.2355 
0.2058 
0.1552 
0.0968 

BAC 
m =  15 

0"3982 
0.2976 
0.2647 
0.2522 
0'2353 
0.2070 
0-1550 
0-0972 

CL 

_ C m * *  

X .c* * 

NPL 
m = 1 5  

2.7270 

3"1038 

1-1382 

K~ 1-090 

Kw 1'010 

NPL* 
m = 1 5  

2.7324 

3"1051 

1.1364 

1.075 

l'OlO 

Overall values 

NLR 
m =  15 

2"7373 

3"1074 

1'1352 

1.067 

1.010 

NLR 
m = 3 1  

2"7576 

3"1155 

1"1298 

1.000 

1.008 

BAC 
m = 1 5  

2.7340 

3.1094 

1-1373 

1-061 

1"010 

*Instead of the standard m = 15 NPL rounding with x~(0) = 0.04401s, this NPL 
solution and both NLR solutions use identical NLR roundings with x~(0) = 0.04394s. 
The BAC solution uses the BAC rounding with x~(0) = 0.04394s. 

**The local aerodynamic centre x,c(0) is referred to the actual root chord without 
rounding, and the pitching axis is through the actual leading apex. 
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TABLE 10 (continued) 

Results for the Warren 12 PIanform with Rounding xt(0) = 0"044s 
(m=O,N=4, q=8) 

ACp/~ at q = 0 
X 

NPL* 
m = 15 

0'0050 9.864 
0"0125 6"467 
0"0250 4"834 
0"05 3-767 
0'10 3"102 
0'15 2-834 
0"20 2.671 
0"30 2-441 
0'40 2.246 
0"50 2.057 
0"60 1-860 
0"70 1"645 
0"80 1-386 
0"90 1"023 
0"95 0-742 

NLR 
m = 1 5  

9'859 
6'465 
4'831 
3'767 
3'103 
2"835 
2-673 
2"443 
2.249 
2"059 
1"862 
1"646 
1"386 
1"023 
0"742 

ACp/a at t / =  0-3827 

NLR 
m = 3 1  

10.579 
6'945 
5"197 

NPL* 
m = 1 5  

23"710 
14"976 
10"567 

NLR 
m = 1 5  

23"701 
14'971 
10.564 

4.057 
3'333 
3"028 
2'831 
2"534 
2"277 
2"033 
1.795 
1.553 
1.287 
0'939 
0"679 

7-437 7-435 
5-204 5"203 
4-197 4.197 
3"582 3'582 
2"818 2"819 
2-320 2'320 
1-937 1"936 
1-608 1.608 
1.303 1-302 
0"999 0"998 
0-663 0"662 
0-454 0.453 

NLR 
m = 3 1  

23"746 
15'009 
10"601 
7.475 
5.246 
4'240 
3'624 
2'854 
2'347 
1.955 
1.618 
1.307 
0'998 
0.661 
0"451 

ACv/a at 17 = 0.7071 ACp/a at q = 0.9239 
X 

NPL* NLR NLR NPL* NLR NLR 
m =  15 m =  15 m = 3 1  m = 15 m =  15 m =  31 

0.0050 
0.0125 
0"0250 
0.05 
0-10 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

30.391 
19.153 
13.461 

30-356 
19-131 
13.445 

30.325 
19.119 
13.446 

33.359 
20.820 
14.395 

33.292 
20.775 
14.355 

9"398 
6.462 
5.114 
4.278 
3.221 
2.527 
2.003 
1.574 
1 '203 
0.866 
0.538 
0.355 

9-386 
6-454 
5.107 
4.271 
3.215 
2-521 
1.997 
1-568 
1.197 
0-861 
0.534 
0.352 

9.398 
6.477 
5.135 
4.301 
3.245 
2.547 
2.018 
1.582 
1.205 
0.863 
0.531 
0.349 

9.715 
6.217 
4.552 
3.501 
2.185 
1.384 
0.866 
0.535 
0"338 
0.232 
0.173 
0.135 

9.683 
6.188 
4-525 
3-476 
2-165 
1-369 
0-856 
0-529 
0.334 
0-230 
0.172 
0-134 

33.260 
20.759 
14.350 
9.686 
6.200 
4.541 
3.495 
2.186 
1.389 
0.873 
0.541 
0.341 
0.231 
0.168 
0-130 

*Instead of the standard m = 15 NPL rounding with x~(0) = 0.04401s, this NPL solution and both 
NLR solutions use identical NLR roundings with x~(0) = 0.04394s. The BAC solution uses the BAC 
rounding with x~(0) = 0.04394s. 
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TABLE 11 

Convergence of ACp with Respect to q for the Warren 12 Planform 
with Rounding xt(O) = 0-044s (M = 0, m = 15, N = 3) 

Values of ACp/~z at ~/= 0 

X NPL method NLR method 

q = l  q = 6  q = l  q = 6  

0-005 
0-05 
0"10 
0"15 
0.20 
0.30 
0.40 
0.50 
0.60 
0-70 
0.80 
0.90 
0.95 

I 1-263 
4-159 
3"356 
3"033 
2-841 
2.576 
2.347 
2.110 
1.852 
1.564 
1.238 
0.842 
0.582 

q = 2  q = 4  

9'920 9"927 
3'694 3'681 
3"012 2"993 
2'753 2'732 
2.610 2"588 
2-428 2.410 
2-275 2'263 
2-110 2.104 
1-915 1.917 
1-679 1.687 
1-384 1-397 
0-985 1.000 
0'698 0-710 

9'846 
3"659 
2"981 
2"725 
2"584 
2-409 
2"265 
2"108 
1"921 
1"692 
1 '402 
1 '0O3 
0"713 

10'159 
3"736 
3'019 
2'744 
2'592 
2-404 
2"253 
2'093 
1 "907 
1"679 
1"391 
0"996 
0"708 

q = 2  q = 4  

10"085 10"190 
3'727 3"754 
3"023 3'037 
2"753 2'761 
2"604 2"608 
2"417 2"416 
2"264 2"260 
2' 100 2'096 
1 "909 1 "904 
1 "677 1 "672 
1-386 1'381 
0"989 0"985 
0'702 0'699 

10"207 
3'759 
3"040 
2"763 
2-609 
2-417 
2'260 
2'095 
1 "903 
1'670 
1'380 
0'984 
0"698 

Values of ACv/~ at r/ = 0-3827 

X NPL method NLR method 

q = l  q = 6  q = l  q = 6  

0-005 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
0-60 
0-70 
0.80 
0-90 
0"95 

27.275 
8.240 
5.546 
4.317 
3.570 
2.668 
2.125 
1.750 
1-462 
1-215 
0.975 
0-689 
0.490 

q = 2  q = 4  

22"995 23"518 
7-299 7"408 
5"162 5'200 
4"198 4'203 
3-606 3'591 
2"861 2-825 
2"363 2-321 
1 "973 1-934 
1"636 1 "603 
1.323 1.300 
1.013 1.000 
0.673 0.669 
0.461 0.460 

23-547 
7'414 
5"203 
4'203 
3'590 
2"823 
2'319 
1'931 
1"600 
1 "297 
0-998 
0"667 
0"459 

24'341 
7"588 
5'273 
4-223 
3"580 
2"782 
2'267 
1 "879 
1"556 
1 '265 
0'978 
0'659 
0'456 

q = 2  q = 4  

23'652 23"616 
7 "441 7-433 
5'217 5-214 
4'211 4'211 
3"595 3"596 
2'823 2'826 
2-317 2'320 
1"927 1'931 
1"597 1 '600 
1"294 1"297 
0-995 0"997 
0-665 0'666 
0"458 0-459 

23.613 
7'433 
5'214 
4.211 
3"596 
2"826 
2-320 
1-931 
1 "600 
1.297 
0-997 
0"666 
0.459 
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TABLE 11 (continued) 

Convergence of ACp with Respect to q .for the Warren 12 Planform 
with Rounding xl(0) = 0"044s (M = 0, m = 15, N = 3) 

Values of ACp/a at ~/ = 0-7071 

X N P L  method NLR method 

q = l  q = 6  q = l  q = 6  

0"005 
0-05 
0-10 
0-15 
0"20 
0"30 
0-40 
0"50 
0-60 
0"70 
0"80 
0"90 
0"95 

35"452 
10"472 
6"865 
5"198 
4"177 
2"942 
2"207 
1"715 
1-360 
1"083 
0"840 
0-582 
0-411 

q = 2  q = 4  

29"902 30.241 
9-289 9-363 
6-418 6"447 
5-101 5"108 
4-283 4.277 
3"246 3"226 
2-559 2"534 
2"036 2"010 
1"602 1"580 
1"224 1'206 
0"880 0"868 
0"543 0"537 
0-358 0.354 

30.350 
9'385 
6'454 
5'108 
4'273 
3'218 
2"525 
2'001 
1'573 
1 '202 
0'865 
0'537 
0"354 

31'121 
9'548 
6'513 
5"117 
4"253 
3'167 
2'465 
1'943 
1"523 
1'165 
0"843 
0"528 
0"351 

q = 2  q = 4  

30.472 30-355 
9-409 9-385 
6"460 6-453 
5"106 5"106 
4.266 4-270 
3"205 3-214 
2"511 2-521 
1-988 1-997 
1-561 1-568 
1"193 1"197 
0-859 0"861 
0-534 0"533 
0-353 0-352 

30.348 
9.384 
6.452 
5.106 
4.271 
3.215 
2.521 
1.997 
1.568 
1.197 
0.861 
0.533 
0.352 

Values of ACp/~ at ~/ = 0.9239 

X N P L  method NLR method 

q = l  q = 6  q = l  q = 6  

0-005 
0-05 
0.10 
0-15 
0-20 
0-30 
0-40 
0"50 
0-60 
0.70 
0.80 
0.90 
0.95 

36-609 
10-293 
6-353 
4-500 
3-359 
1.998 
1-228 
0.764 
0.484 
0.318 
0"223 
0.158 
0.118 

q = 2  q = 4  

33"470 33'835 
9"626 9"697 
6"101 6"122 
4'446 4"442 
3"419 3'402 
2"168 2'138 
1"423 1"392 
0"938 0"911 
0"611 0"591 
0-387 0"376 
0"234 0"232 
0"126 0"130 
0.079 0"085 

33-847 
9-699 
6"122 
4-442 
3"401 
2"137 
1"390 
0"910 
0"590 
0'376 
0'232 
0"130 
0'085 

34"245 
9"766 
6"129 
4-420 
3-364 
2-086 
1"340 
0-867 
0"559 
0'358 
0"227 
0"136 
0"092 

q = 2  q = 4  

33-802 33'781 
9-678 9'674 
6-102 6"101 
4-422 4'423 
3"382 3'383 
2"119 2'121 
1-376 1'378 
0"898 0'900 
0"582 0'583 
0"371 0"371 
0"229 0"230 
0"130 0-130 
0"085 0"085 

33"778 
9"673 
6.101 
4-423 
3.384 
2.122 
1"378 
0"900 
0-583 
0.371 
0'230 
0"130 
0'085 
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T A B L E  12 

Results .[or the Warren 12 Planform with Rounding xt(0) = 0-088s 
( m = O , N = 4 ,  q = 8 )  

Values of cCL,JPCL Values of  x,,. 
q 

N P L *  N L R  NLR** N P L *  N L R  NLR** 

m =  15 m = 15 m =  31 m =  15 m = 15 m =  31 

0+ 
0.1951 
0-3827 
0-5556 
0-7071 
0-8315 
0-9239 
0-9808 

1.2007 
1-1977 
1.1553 
1.0697 
0-9430 
0.7714 
0-5490 
0.2855 

1.2002 
1.1974 
1.1552 
1.0700 
0.9433 
0-7716 
0-5490 
0-2855 

1.2009 
1.1969 
1.1554 
1.0698 
0.9435 
0.7715 
0.5491 
0.2855 

0.4009 
0.2930 
0.2647 
0-2516 
0.2356 
0.2067 
0.1554 
0.0968 

0.4009 
0.2929 
0.2646 
0.2515 
0-2352 
0.2062 
0-1549 
0-0966 

0.3998 
0.2930 
0.2651 
0.2512 
0.2355 
0-2059 
0.1553 
0-0969 

CL 

- C . , +  

X , / t  

N P L *  

m = 1 5  

2'7601 

3'1269 

1-1329 

Overal l  values 

N L R  

m = 1 5  

2"7634 

3.1272 

1.1316 

NLR** 

m = 3 1  

2'7632 

3-1266 

1"1315 

*All three solu t ions  co r respond  to the N L R  round ing  of  equa t ion  (17) with Yl = 0.19509s and  
x~(0) = 0.08802s. 

**All the values from the N L R  method  with m = 31, N = 4, q = 8 are  cons idered  to be accura te  to 
3 or 4 significant figures. 

t T h e  local a e r o d y n a m i c  centre x,c(0) is referred to the ac tual  roo t  chord  wi thout  rounding,  and  the 
p i tching axis is th rough  the ac tual  leading apex. 
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TABLE 12 (continued) 

Results for the Warren 12 Planform with Rounding xt(0) = 0-088s 
(M = 0, N = 4, q = 8) 

ACp/~ at q = 0 ACp/a at q = 0.3827 
X 

NPL* NLR NLR** NPL* NLR NLR** 
m =  15 m =  15 m =  31 m =  15 m =  15 m = 3 1  

13.385 13-391 13.444 23.831 23.826 0"0050 
0"0125 
0"0250 
0"05 
0"10 
0-15 
0-20 
0"30 
0-40 
0"50 
0"60 
0-70 
0-80 
0-90 
0-95 

8"616 
6"265 
4"660 
3"581 
3"119 
2"838 
2.472 
2"203 
1"967 
1"741 
1"506 
1"240 
0"892 
0"638 

8"620 
6"268 
4"663 
3"583 
3"121 
2-840 
2-474 
2-205 
1-969 
1.742 
1"506 
1"240 
0"892 
0"638 

8'655 
6.294 
4"683 
3"600 
3"134 
2'851 
2"480 
2"206 
1"967 
1"736 
1'497 
1"229 
0"882 
0'630 

15-060 
10"633 
7"493 
5"254 
4.243 
3"625 
2"853 
2-347 
1-956 
1-621 
1.311 
1"003 
0-665 
0-455 

15"057 
10.631 
7.492 
5'254 
4.243 
3"625 
2'853 
2.346 
1'955 
1'620 
1.310 
1'002 
0"665 
0"455 

23.710 
14.989 
10-590 
7-472 
5-250 
4.246 
3"632 
2-863 
2"356 
1"963 
1"625 
1-312 
1"003 
0.664 
0.454 

ACv/a at ~/ = 0.7071 
X 

NPL* NLR NLR** 
m =  15 m =  15 m = 3 1  

0-0050 
0-0125 
0-0250 
0-05 
0.10 
0.15 
0"20 
0.30 
0.40 
0"50 
0.60 
0.70 
0.80 
0.90 
0.95 

30.452 
19-196 
13-497 

30.418 
19.175 
13.482 

30.328 
19.122 
13.450 

9.430 
6-494 
5-145 
4-308 
3"248 
2.549 
2.020 
1.586 
1.210 
0.870 
0.538 
0.354 

9.420 9.403 
6.486 6.483 
5.138 5.141 
4.301 4.308 
3.242 3.250 
2.543 2-552 
2.014 2.021 
1.580 1.584 
1.205 1.206 
0.864 0-864 
0-534 0.532 
0.352 0.350 

ACv/a at ~/= 0.9239 

NPL* 
m = 1 5  

33"402 
20"851 
14.420 
9"738 
6'238 
4"573 
3-521 
2'203 
1'399 
0"877 
0.542 
0.341 
0"233 
0-171 
0"133 

NLR 
m = 1 5  

33.336 
20.805 
14.383 
9.705 
6-209 
4.545 
3.496 
2.183 
1.384 
0.867 
0-536 
0.338 
0-231 
0-170 
0-132 

*NLR rounding. 
**ACv/c~ is considered to be accurate to 3 or 4 significant figures. 

NLR** 
m = 3 1  

33"268 
20.764 
14.356 
9-690 
6-204 
4.545 
3-498 
2"189 
1.391 
0.874 
0.542 
0.341 
0.231 
0.168 
0.130 
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TABLE 13 

Convergence of Solutions with Respect to N .for the Warren 12 Planform 
with Rounding xl(0) = 0"088s (M = 0, m = 15) 

Values of cCLL/gCL Values of x,c 

q BAC method BAC method 

N =  2 N = 3  N = 4  N = 2  N = 3  N = 4  

0t  
0.1951 
0-3827 
0.5556 
0-7071 
0-8315 
0-9239 
0"9808 

1.1989 
1.1984 
1.1558 
1.0695 
0.9428 
0-7721 
0-5489 
0.2832 

1.2011 
1-1981 
1.1553 
1.0695 
0.9427 
0.7712 
0.5483 
0"2857 

1-2015 
1-1980 
1.1552 
1.0695 
0.9427 
0.7711 
0.5487 
0.2853 

0.3953 
0.2921 
0.2653 
0.2514 
0.2356 
0.2076 
0.1597 
0.1095 

0.3985 
0.2923 
0-2646 
0.2515 
0'2356 
0.2068 
0.1551 
0"1028 

0.3988 
0.2923 
0.2646 
0.2516 
0.2356 
0.2067 
0'1554 
0.0967 

Values of cCoL/gC~ 

q BAC method 

N = 2  N = 3  N = 4  

0 
0-1951 
0-3827 
0"5556 
0-7071 
0"8315 
0"9239 
0"9808 

0"3578 
0"2303 
0"1366 
0"0668 
0'0058 

-0"0469 
-0"0607 

0'0017 

0"3660 
0"2452 
0"1440 
0-0790 
0-0213 

-0"0320 
-0-0950 
-0-0487 

0"3679 
0'2449 
0"1427 
0"0781 
0"0213 

-0 '0214  
-0 '0848 
-0 '0911 

Overall values 

BAC method 

N = 2  N = 3  N = 4  

CL 2"7601 2" 7618 2"7621 

-- Cm't 3" 1242 3' 1264 3" 1267 

X J  1-1319 1"1320 1"1320 

Ks 0"942 0"998 1 '000 

Kw 1-008 1"008 1"008 

tSee footnote to Table 12. 
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TABLE 13 (continued) 

Convergence of Solutions with Respect to N for the Warren 12 Planform 
with Rounding xl(0) = 0.088s (M = 0, m = 15) 

Values of ACp/c~ at t / =  0 Values of ACJe at q = 0.3827 

X BAC method BAC method 

N = 2  N = 3  N = 4  N = 2  N = 3  N = 4  

14.479 13.783 13.629 24.099 23-801 0.0050 
0.0125 
0.0250 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

9.243 
6.635 
4.827 
3.593 
3.066 
2.756 
2.380 
2.129 
1.919 
1.714 
1.492 
1.230 
0.880 
0.626 

8.837 
6.388 
4.705 
3.572 
3.092 
2.809 
2.454 
2.202 
1.978 
1.752 
1.508 
1.225 
0.861 
0-607 

8.762 
6-358 
4.712 
3.603 
3-126 
2"838 
2.465 
2.194 
1.958 
1.732 
1.497 
1.230 
0"883 
0.631 

15.214 
10.724 
7.534 
5.252 
4.221 
3.591 
2.811 
2.308 
1.929 
1.612 
1.321 
1.032 
0.703 
0-489 

15-047 
10-630 
7-500 
5.266 
4-256 
3.637 
2.860 
2-348 
1.953 
1.616 
1.307 
1.003 
0.668 
0.459 

23.852 
15.073 
10.643 
7.501 
5.259 
4.248 
3.628 
2.855 
2.348 
1-956 
1.621 
1.311 
1.003 
0.665 
0.455 

Values of ACp/~ at t / =  0.7071 Values of ACp/c~ at t / =  0.9239 

X BAC method BAC method 

N = 2  N = 3  N = 4  N = 2  N = 3  N = 4  

31.135 30.460 30.458 31 "980 33"929 0.0050 
0-0125 
0-0250 
0-05 
0-10 
0-15 
0-20 
0-30 
0.40 
0-50 
0.60 
0"70 
0-80 
0-90 
0.95 

19.585 19.201 
13.723 13.500 
9.526 9.432 
6.484 6-494 
5-088 5.146 
4-227 4.309 
3.155 3.249 
2-470 2.551 
1.969 2.022 
1.568 1-588 
1.226 1.212 
0.912 0"870 
0-592 0.537 
0.402 0-354 

19.200 
13.500 
9.433 
6.497 
5.148 
4.310 
3.250 
2.551 
2.021 
1.587 
1-211 
0.870 
0.538 
0.354 

19-988 
13.855 
9-407 
6-111 
4-561 
3.590 
2.372 
1-606 
1.069 
0-675 
0"383 
0-172 
0.034 

-0-005 

21.118 
14.536 
9.732 
6.150 
4.467 
3.425 
2.156 
1.406 
0.922 
0.598 
0.380 
0.233 
0.129 
0.083 

33-416 
20.859 
14.425 
9.741 
6.240 
4.573 
3.521 
2.203 
1-399 
0-877 
0.543 
0.342 
0.233 
0-171 
0-133 
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TABLE 14 

Central Chordwise Loading for the Warren 12 Planform 
with various roundings (M = 0, m = 15, N = 4) 

Rounding NPL NLR BAC NLR BAC 

qi 0"19509 0.09739 0.10388 0.19509 0.20809 

x~(O)/s 0-04401 0'04394 0'04394 0-08802 0'08802 

X Values of AC~/c~ at q = 0 

0.0050 
0.0125 
0.0250 
0.05 
0.10 
0-15 
0-20 
0.30 
0-40 
0.50 
0-60 
0.70 
0.80 
0.90 
0.95 

9.393 
6.182 
4.647 
3.653 
3-044 
2-802 
2-655 
2.442 
2.256 
2.072 
1.880 
1.668 
1.411 
1-047 
0.762 

9.859 
6.465 
4.831 
3.767 
3.103 
2.835 
2.673 
2.443 
2-249 
2.059 
1-862 
1.646 
1.386 
1.023 
0.742 

10-033 
6-568 
4.899 
3.804 
3.117 
2.840 
2.673 
2.438 
2.242 
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(a) Circular planform 
A = 4/~r 

(b) Rectangular planform 
A=Z ' 

(c)  Hyperbolic planform 

A = 

(d) Warren IZ planform A 
A = 

x L ( o )  = o - o 8 8 o z  s 
Particular roundJngs 

. . . . . . .  x t (0 )  - 0 .04394  s 

FIG. 1. Four planforms used as examples. 
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Convergence of vortex-drag distribution on the rectangular wing with an increasing number 
of chordwise terms in the solution. 
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FIG. 3. Convergence of vortex-drag distribution on the hyperbolic wing with an increasing number of 
chordwise terms in the solution. 
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FIG. 4. Convergence of chordwise loading on Warren 12 planform with an increasing number of 
spanwise integration points (r/= 0-3827). 
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FIG. 5. Convergence of chordwise loading on Warren 12 planform with an increasing number of 
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Convergence of the chordwise loading on Warren 12 planform at q = 0-3827 with an increasing 
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of the Warren 12 planform. 
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