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Summary

Independent numerical methods for obtaining the subsonic load distribution on a thin wing of arbitrary
twist and camber have been developed at NPL, NLR (Netherlands) and BAC (Warton). The three methods
have been studied jointly and their novel features have been reviewed critically. The best solutions by each
method show excellent agreement for wings, at uniform incidence, having smooth leading and trailing
edges. Spanwise loading, local aerodynamic centres, lift, pitching moment, vortex drag and chordwise
loadings are tabulated for circular and rectangular planforms, for a wing of constant chord with hyperbolic
leading and trailing edges, and for a tapered sweptback wing. The convergence of the solutions is examined
in detail with respect to separate parameters representing the numbers of spanwise integration points
and spanwise and chordwise collocation points. The tapered sweptback planform is considered with
different amounts and types of artificial central rounding, but the crucial problem of a central kink under
lifting conditions remains a subject for research.
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1. Introduction

Since the discovery of the possibility under certain circumstances of serious numerical errors in the
standard form of Multhopp’s subsonic lifting-surface theory (Refs. 1, 2), methods have been developed
at NPL, NLR and BAC (Warton) with a view to remedying this situation. In order to get an insight into
the qualities of each of the methods, comparative calculations have been made for four different wings
(Fig. 1):

(a) the circular planform of aspect ratio 4 = 4/x,

(b) the rectangular planform of aspect ratio 4 = 2,

(c) a swept planform of constant chord, having A = 4 and hyperbolic leading and trailing edges
defined by

x; = H1 + 2yY)F — 3
DD <=2, &)
= 4

X (1 +2y*)F +%

(d) the Warren 12 planform of aspect ratio 2ﬁ defined by

x = (1 + /2l }
0< <s=./2 2
x = -4/ +3 b <s =12 @

Each of these wings has been considered at uniform incidence and M = 0. The effect of compressibility
has not been included in the calculations, as it is covered by the usual factor § = (1 — M?)* applied to
the spanwise dimensions.

This Report presents the basic theoretical equations and describes the special features of the methods,
each of which is formulated to treat smooth planforms. However, BAC plan to modify their basic method
in such a way that solutions obtained for kinked planforms would lead to vortex lines that are curved
across each kinked section. The rounding of kinks may be achieved in several ways, and it so happens
that all three methods would normally use different roundings. However, the NPL and NLR methods
are compared for the Warren 12 planform with identical roundings, and the influence of the rounding is
examined. The results are discussed relative to the special features of each method and the rate of conver-
gence that is obtained.



2. Basic Theory

The fundamental integral equation of subsonic lifting-surface theory may be written in the form

1 dy e ~ X
olx, y) = Y AC 1+ o | dx, (3)
C8r) (v — ) {x = x)* + B2y — )%}

where « is a given local 1nc1dence and AC, is the unknown load distribution ; the double integral is taken
over the planform and the bar through the integral sign denotes the principal value according to Mangler
in Appendix I of Ref. 1. The unknown loading function is usually approximated by means of an expression

4s N1 '
ACE, 1) = — a,n)h(X'), (4)
C(?’] ) =0
where
.~ 2cos3(2r + 1y
h(X) = S = (5)
and the dimensionless quantities
&=xfs, n =y } ©
X = (x'— x)/c =%~ cosy)

are used. The unknown coefficients in their turn may be represented by a trigonometrical polynomial

no__ 2 - e . ;. Uunmw
aln) = - ln;a,, ; sin p0’ sin 7N

a=1 m + 1
where 6 = cos™ (%), or by some equivalent power series. Thus the unknown AC A&, 7') in equation (3)
is replaced by the mN unknown coefficients a,,. The problem is then to calculate a,, by satisfying the
boundary condition (3) at suitable pivotal points (x, y) distributed over the planform. The main numerical
difficulty lies in determining the double integral due to each term in the representative loading.

In the NPL? and NLR* methods initial integrations are carried out in the chordwise direction with
respect to ¢, and the expression for local incidence becomes
1 N ! H(

J( aln’) énn)d (8)

wl,n) = Ton & -

It can be shown that this integrand contains the logarithmic singularity

Bs\? dh,
—(@) a,(n) log.ln — l( X

) ; ©

which is always removed before the numerical integration in the spanwise direction is attempted. Introduc-
tion of the function

) (n — ') logdn — 1 (10)
‘=n

Y= H Bs
F&n.n')=HJ{En; n)+( ) (dX, -

clm)
leads to the integrand
an)FAEn:n)
— (11)
n—n

which in the NPL method is treated on the basis of Ref. 2. As is shown in Ref. 4, this integrand is still
irregular, because the derivative of F, with respect to " does not vanish for 4 = ’. Therefore within the



NLR method there is introduced the function

F(& n;n) — F&nsn) — (0 — n)(0F,/0n)y=y
n—n)?

whereby the remaining singularities of the integrand (11) are removed. Since this function is bounded,

Fourier analysis is very well suited to perform the integration in spite of the irregularities of the derivatives.

By contrast, in the BAC® method initial integrations are carried out along constant percentage chord

lines (X' = constant) with respect to #'. Equations (4) to (7) are rewritten in terms of Tchebychev poly-

nomials with coefficients k,, , say. The two terms in the square bracket of equation (3) are treated separately,

so that
_ AC &1,
&n) = Snff )2d dX

lNlm

—x\¢ dx’
5 L T ke JfT(X)L(én X)( - )X,_X, 13

where T,(X') is a Tchebychev polynomial. The function L,(&,#; X') results from the initial integration
involving the second term in the square bracket, and it can be shown that

H(n;n) =

: (12)

t
L& n; X) = Ly&n; X) + ) KX — X) logJX' — X|, (14)
i=1
where L,(&, n; X') is numerically regular in the range 0 < X' < 1; there may, however, be some restric-
tions on the range of regularity if # approaches too close to unity. The essential achievement is that from
equations (13) and (14) &(&, #) may be evaluated on the leading and trailing edges.

3. Description of the Methods

The NPL, NLR and BAC methods have all been developed to overcome the difficulties which arise
when Multhopp’s' method is applied to the integral equation (3). The special new features of the respective
methods will be described briefly.

3.1. The NPL Method

In Ref. 3 special attention is given to the chordwise integrals, in order to ensure accurate integration
when the number of terms in the pressure series of equation (4) is increased. The accuracy of the spanwise
integrals has been made independent of the number of collocation sections in the following manner.

The spanwise integration is performed formally by applying Multhopp’s integration scheme with m
spanwise stations to the integral of equation (8) after removal of the logarithmic singularity (9) in accord
with Ref. 2. The expression thus obtained contains # unknown values of a,(4") which could be determined
from a linear system of equations by satisfying the boundary conditions at 7% spanwise stations. Instead
of doing this, Multhopp’s interpolation polynomial (7) is applied to each a,(r) to decrease the number of
unknowns to the m quantities a,, for each r. Thus the number of spanwise integration points 7 is allowed
to exceed the number m of sections where the boundary conditions are to be satisfied, and these are related
by the quantity

g=m+ ))m+1) (15)

which may be unity or any even integer.

The NPL method is programmed in Algol, and a typical running time on the KDF9 computer is
28 minutes whenm = 15, N = 4 and g = 8.

3.2. The NLR Method

In this method (Ref. 4), special attention has again been paid to the chordwise integration. Sufficient
accuracy is guaranteed by adapting the integration scheme to the requirements made by the higher order
terms of equations (4) and (5). Detailed analysis of the computing process has achieved remarkable
economy in computing time.



Special care has been taken to ensure an accurate spanwise integration. First of all the spanwise integrand
has been treated by introducing the function H, of equation (12). Further, the spanwise integration has
again been made independent of the number of collocation sections, but differently from the NPL method.
In the NLR method first the functions a,() are represented by equation (7) with m coefficients g,, for
each value of r and then the integration is performed with m spanwise stations, whereas in the NPL
method the whole numerator of the integrand (11) is represented by means of equation (7). The numbers
m and m are again related by equation (15), but g can be any positive integer.

The NLR method is programmed in Algol, and a typical running time on the CDC 3300 computer is
22 minutes when m = 15, N = 4and g = 8.

3.3. The BAC Method

As shown in Ref. 5, the basic chordwise integral H, exhibits an irregular behaviour at ' = 7, especially
as X tends to zero. A common feature of Refs. 2 to 4 is that the main logarithmic-singularity term (9) is
removed for the whole range —1 < #’ < 1. This results in the coefficient of the (n — #')? logly — #'| term
in equation (10) tending to infinity like X ~# and (1 — X)~* respectively for collocation points near the
leading and trailing edges. Elliptic integral analysis has indicated that the irregularity in H, is not solely
associated with the (4 — #')* logly — #'| content, which has been proved in Ref. 4, and moreover, that
the valid range of #' for its removal tends to zero as X tends to zero or unity.

Therefore BAC® have chosen to evaluate the double integral in equation (3) quite differently by carrying
out the initial integrations with respect to #' at constant X'. The co-ordinates X' and #' then form a
natural and convenient system. Analytical extraction of the (' — )~ ? content of the integrand is effected,
and in evaluating the resulting integral it is found to be advantageous to introduce a particular ‘sinh trans-
formation’ that stretches the #’ scale in the neighbourhood of #' = 5. The planform is divided into three
basic regions, one containing the section #' = # where the transformation is applied, and two outer
regions covering the residual planform area. Gaussian quadrature techniques are applied to the integrals
and give a numerical definition of the function L,. The coefficients K, (¢, 5), defining the logarithmic
singularity in equation (14), are derived analytically and the valid range of X’ is only limited if y approaches
unity too closely. The modified function L, is regular in value and in its first (¢ — 1) derivatives with
respect to X', where arbitrarily ¢ = 3. Pseudo-Gaussian quadrature techniques are used to evaluate the
principal values of the integrals with respect to X’ in equation (13) and hence to provide linear equations
relating the unknown coefficients k,, to the incidence «(&,#%). The above procedures disconnect the
loading function from the integration procedure, so that collocation points can be chosen at will.

The BAC method is programmed in Fortran IV, and a typical running time on the IBM 360/50 computer
is 123 minutes whenm = 15and N = 4,

4. Some Critical Remarks on the Different Methods

The NPL method may be regarded as a step to improve the numerical evaluation of the lifting-surface
integral equation. This method shows improved convergence, but it is not completely satisfying in this
respect, especially for wings of high aspect ratio or high sweepback. Two causes are suggested, namely, the
irregularity of the function F, and a slight inconsistency in representing both a,(') and a{y)FA&, ;%)
by means of the trigonometrical polynomial (7); the latter implies two different representations of a,(x)
at a time. These particular inconsistencies are avoided in the NLR method and, moreover, the infinite
singularity of the spanwise integrand has been removed by introducing the function H,.

The reasons given in Section 3.3 for BAC’s lack of conformity in attacking the lifting-surface problem
suggest that the NPL and NLR methods may encounter difficulties when N is large, i.e., when the chord-
wise collocation points extend close to the leading and trailing edges. This may be generally true of the
NPL method, but will not arise since the restriction N < 4 is imposed by the capacity of the KDF9
computer. In practice the NLR method has not suffered from these inferred difficulties. Both NPL and
NLR have found that the value of g required to attain convergence of the spanwise integration increases
as N increases. In the NPL method this is attributed primarily to the difficulties at the collocation points
closest to the leading edge, but from experience at NLR it is suggested that the less smooth behaviour



of the higher order terms h, in the chordwise loading may be a contributory factor. Neither method
experiences convergence problems in spanwise integration as m is increased. BAC use a parameter n’
to specify the quadrature order when evaluating the integrals involving L,(X’) and find that an increase in
N has very little effect on the value of »’ needed to attain quadrature convergence. For the collocation
sections nearest to the tip when m > 17, say, significant increases in »’ are required in order to maintain
quadrature convergence, but this effect has been investigated and can be met by appropriate changes
to the BAC programme. While the numerical results from the NPL and NLR methods show the effect
of the controlling parameter ¢, there are no results to demonstrate convergence with respect to n' in the
BAC method, and thus the comparisons in Section 5 are especially desirable.

All the methods are at present restricted to planforms with smooth leading and trailing edges. Three
separate procedures are suggested for rounding the central kink of a swept wing. Within the NPL method,
for wings with straight edges the following formulae for the rounding are usually applied to the leading
edge and chord respectively over the range [y} < y;:

x(y) = x4 + 31 — 2)°] }
e(y) = cr + [4 + 81 = D°1{c) — ca}f’

where 4 = |y|/y; and y; = ssin[r/(m + 1)]. The corresponding formulae within the NLR method are

(16)

x(y) = x(y) 3 + A2 — 34°] }’ (17)
oy) = cr + 3 + 42 — 34°1{cy)) — cx}
where the value of y; is arbitrary. Within the BAC method the corresponding rounding is
x{(y) = xy) {5 + 184% — T6A* + 164°] } (18)
cy) = cr + [f5 + 1847 — F6A* + 164°J{c(¥) — cr}

The roundings give different degrees of regularity in the modified planforms at y = y; and y = 0. The
following Table lists the order up to which the y-derivatives of x; exist at these points.

Rounding Y=y y=0
NPL Sth 2nd
NLR 2nd 2nd
BAC 3rd All

From the definitions in equations (16), (17) and (18) it follows that
x(Op = sx(y;)  and  cOhpr = 3cr + sc()
xOnir = 3xdy)  and (O = g + 3¢(v) - (19)
x(O)pac = Tsxi(y)) and c(O)gac = tecr + Toc(v)

Thus, to give the same displaced root chord as the NPL rounding, the NLR and BAC methods require
smaller values of y;, respectively

(Ydnir = %(yi)NPL and  (yipac = Tss()’i)NPL- (20)

However, it will be found unsatisfactory to check solutions by the three methods with respective roundings
to give identical displacements x,(0). The local radius of curvature of the rounded leading edge, R, also
influences the chordwise loading, and respectively

RNPL = 1'20036,(0) COt2 A[
Ruapg = 1-500x,0) cot® A, b, @1)
RBAC = 1'706x,(0) COtz Al

where A, is the true angle of leading-edge sweepback.



5. Discussion of the Results

As mentioned in the Introduction, the four planforms, (a) circular, (b) rectangular, (c) ‘hyperbolic’ and
(d) ‘Warren 12°, have been treated as examples (Fig. 1). In the case of the circular wing the overall values
of the aerodynamic quantities C;, C,, and X, have been compared with the exact values determined by
Van Spiegel®. No such exact theory is available in the other examples.

Since the Warren 12 planform is kinked at the centre section, some rounding is required. The standard
NPL solutions use equation (16) with m = 15, but the NPL method can accept arbitrary planform data.
The NLR method normally uses equation (17) with y; = 0-19509s giving x,(0) = 0-08802s, and in order to
obtain fair comparisons between the two methods, both have been applied to this latter rounding and
also to that of equation (17) with y; = 0-09739s and x,(0) = 0-04394s. For each of these roundings the
NLR results for m = 31, N = 4 and q = 8 have been added, because according to Ref. 4 these solutions
can be considered to be correct to 3 or 4 figures.

The BAC method cannot yet be applied to the circular tip, but otherwise all three methods have been
used. In the following sections the four wings will be discussed one at a time by analysing the solutions
obtained and the speed of convergence of the calculations with respect to the various parameters.

5.1. The Circular Planform

From Table 1, which presents the NPL solution for m = 11, N = 4 and ¢ = 8 and the NLR solution
for m = 11, N = 4 and q = 10, it appears that nearly all the quantities agree to 3 or 4 significant figures
with the one exception of the local aerodynamic centre x,. at § = 0:9659. The correctness of the overall
aerodynamic quantities can be inferred from the excellent comparisons with the exact values from
Ref. 6.

The convergence of the NPL and NLR results can be judged with the help of Table 2 where the varia-
tion of x,. with respect to g, m and N is shown. It appears that both methods ensure an equally good
convergence with respect to m and N, but that the convergence with respect to g of the NPL results is
somewhat slower in the tip region. This explains the aforementioned discrepancy in x,., which is attribut-
able to the large local sweepback of the leading edge and the improvement in the NLR method associated
with equation (12).

5.2. The Rectangular Planform

There have been extensive calculations by the BAC method for the rectangular wing of aspect ratio 2.
The first part of Table 3 includes results for m = 7,9 and 13, showing rapid convergence with respect to
the number of collocation sections. Throughout Table 3 there is perfect agreement between the NLR
and BAC solutions with N = 4 chordwise terms, and the trivial discrepancies in AC,/o from the NPL
and NLR methods with m = 15 and g = 8 show that convergence with respect to g is virtually complete.
In Table 4, which gives BAC solutions for m = 13 and N = 4, 5 and 6, results near the tip are slow to
converge with respect to N. While the values of AC,/a at # = 0, 0-3827 and 0-7071 appear to be correct
to about 0-1 per cent when N = 6, this is far from true at # = 0-9239. Indeed calculations at this section
by the BAC method with smaller m and more chordwise terms suggest that at least N = 10 is necessary
to achieve such high accuracy.

Evaluation of the leading-edge suction, associated with the singularity in AC,, poses a severe numerical
requirement of lifting-surface theory (Ref. 7). The spanwise distribution of vortex drag ¢Cp,/¢C? from
equation (6) of Ref. 7 is slow to converge in Table 4. A searching check on any solution is to compute
the vortex drag factor

K = nACpy/C? 22)

from surface pressures (K,) by equation (8) of Ref. 7 and from the wake integral (K,,) by equation (9) of
Ref. 7 relating the vortex drag to the cross-flow energy in the wake. The accuracy of K,,(= 1-001) is beyond
question, and the behaviour of K with increasing N, tabulated in Fig. 2, shows convergence within about
0-1 per cent when N > 8. The plotted spanwise distributions of vortex drag do not become indistinguish-
able near the tip until eight or more chordwise terms are taken.



5.3. The Hyperbolic Planform

From Table 5, which presents the comparison of results obtained by NPL, NLR and BAC for m = 15,
N = 4and g = 8 where relevant, it appears that all three methods agree very well. The largest discrepancies
occur in the values of AC ,/a for small values of X atn = 0-3827, and here the NLR and BAC results differ
by less than 0-1 per cent, both sets differing from the NPL results by about 0-2 per cent.

The deviations between the NPL and NLR results may be explained through the different rates of
convergence of AC, with respect to g in Table 6. This convergence can be examined by means of Table 7

which shows the differences
(ACP) (AC,,)
03 = —(—£
2 o | g=a

AC,,) (AC,,) '
o q=8 [+ 4=6

It appears that the NPL results converge somewhat more slowly than the NLR results. In each case the
largest 9, occurs ncar the leading edge at # = 0-3827, where at X = 0-005 the NPL value is —0-3 per cent
of AC /o while the corresponding difference in the NLR results is only a quarter of this.

In Table 8 the convergence of AC,/a at # = 0:3827 with respect to N is found to be equally good for
all three methods, the increments

(AC,,) ACp)
Al = -
% /N N

=3 o

(23)
S0 =

=2

A = (AC,,) 3 (AC,,)
z & [nN=4 a [n=3

being similar in each case. Table 9 shows the chordwise loading at # = 0-3827 from NLR calculations
with m = 15, 31 and N = 3, 4 and from BAC calculations with m = 9, 13, 15 and N = 4. Comparison
of these results yields the conclusion that at m = 15 an accuracy of 3 to 4 figures is obtained. Moreover,
it appears that for m = 15 and greater the convergence characteristics associated with m are disconnected
from those associated with N.

From the foregoing it will be clear that the minor discrepancies in AC, between the NPL results on the
one hand, and those from NLR and BAC on the other, are mainly due to the slower convergence of the
NPL results with respect to g. For all practical purposes the agreement to about three significant figures
is more than adequate.

In Fig. 3 the spanwise distribution of vortex drag has been calculated from equation (6) of Ref. 7. The
curves for N = 2 and 3 are from the best available solutions by the NPL method, while that for N = 4
is from the NLR solution with m = 31 and q = 8. As in Fig. 2, the results are slowest to converge near
the tip, but there is now the complication of negative local drag due to sweepback. The integrated drag
factor K is again compared with the value K,, = 1-038 from the wake integral and appears to converge
slightly better than for the rectangular wing. The BAC values of K for M = 15and N = 2,3 and 4 are
identical to those given in Fig. 3.

5.4. The Warren 12 Planform

Unlike the other three planforms, there is no true solution for the Warren 12 planform based on the
loading functions in equations (4) to (7). Although it is planned to develop Ref. 5 to satisfy boundary
conditions along the central kink, the present study is limited to planforms with smooth leading and
trailing edges. All the calculations correspond roughly to either a small rounding x,(0) = 0-044s or a
larger rounding x,(0) = 0-088s. For the small rounding and four chordwise terms the spanwise loading,
local aerodynamic centres and overall forces from five solutions are given in Table 10. Although they are
in broad agreement, the first (NPL) and last (BAC) solutions correspond to respective roundings from
equations(16)and (18)and are not strictly comparable with the other three solutions. A precise comparison
of the NPL and NLR methods can be made (Section 5), and the two solutions with m = 15 for the NLR
rounding are found to be the most consistent pair. Their chordwise loadings in the latter part of Table
10 are in very good agreement at # = 0 and 0-3827; only at # = 09239 do the discrepancies occasionally

(24)




exceed 1 per cent. By contrast, the more accurate NLR results for m = 31 exhibit differences of this
magnitude at the non-zero values of #, but much larger discrepancies at the centre section. It seems that
m = 15 gives insufficient collocation sections near the small rounding.

The convergence of the chordwise loadings with respect to g is shown in Table 11. The NPL and NLR
methods for N = 3, each with its own rounding x,(0) = 0-044s, are not expected to converge to the same
result as g is increased, but the differences

(Ac,,) (Ac,,

P ey I .

& [g=2 x Jg=1
AC

i Wl
% fq=4 & fq=2

and &, from equation (23)illustrate the rate of convergence. The superior convergence of the NLR method
can be seen in Figs. 4 and 5 for 5 = 0-3827 and 09239 respectively. At the same time the magnitudes
of 8, in the upper diagrams of Figs. 4 and 5 reveal the serious numerical errors in the earlier standard
form of Multhopp’s theory equivalent to the NPL method with g = 1.

Table 12 presents the results obtained by NPL and NLR for m = 15, N = 4, g = 8 and the larger
NLR rounding x,0) = 0-088s. The agreement is quite as good as for the small rounding in Table 10.
The new feature is that the more accurate loading from the NLR solution for m = 31, N = 4andgq = 8,
which is correct to 3 or 4 figures (Ref. 4), is everywhere practically within 1 per cent of both results for
m = 15. This suggests that convergence with respect to m is better for the larger rounding.

Convergence with respect to N has been studied for the small rounding by the NPL and NLR methods
and for the larger rounding by the BAC method. The former results are presented graphically for = 0-3827
in Fig. 6, where A, and A, from equations (24) show completely similar behaviour from the two methods
and roughly A, < 3A,. The solutions for m = 15 and N = 2, 3 and 4 obtained by BAC are given in
Table 13. The convergence is much better at # = 0-3827 and 0-7071 than at # = 0 and much worse at
n = 09239. Nevertheless, over the inner part of the span the larger rounding appears to improve the
convergence and make less demands on N. Table 13 also includes the spanwise distribution of vortex
drag c¢Cp/¢C? and the vortex drag factors K and K, (Section 5.2). Whilst the two factors for N = 4 are
within 1 per cent and agree as well as those for the rectangular and hyperbolic planforms in Figs. 2 and 3,
the corresponding values of K, and K,, in Table 10 for the small rounding differ by 5 per cent; however,
both factors in Table 10 from the NLR solution with m = 31 show remarkable agreement with those in
Table 13 with m = 15. This provides further evidence that for expediency of convergence the larger
roundings of equations (17) and (18) are preferable to the NPL rounding in equation (16).

In all, with m = 15and N = 4, five distinct roundings have been considered, and the central chordwise
loadings are collected in Table 14. To eliminate the leading-edge singularity, (AC,/0)X * is plotted against
X in Fig. 7. The large effect of the change in the leading-edge displacement x,(0) is expected, but there is
also an appreciable secondary effect of the local radius of curvature from equation (21). These loadings
at # = 0 have no aerodynamic significance for the actual Warren 12 planform, and the results in Tables
10 and 12 indicate that the effects of the rounding are felt over an appreciable part of the span. The guiding
principle in choosing the artificial rounding is that it should be the smallest that will not jeopardize the
convergence of the solution.

(25)

6. Concluding Remarks

From the results presented it may be concluded that, for smooth planforms of moderate aspect ratio
and for N < 4, all three methods produce consistent numerical results provided that quadrature accuracies
are maintained. Fully correct ‘aerodynamic’ results for AC, would require larger values of N, as is
demonstrated for the rectangular planform ; for cambered wings the need for a considerable increase in N
can be expected, and in this respect the points raised in Sections 3.3 and 4 may discourage the extension
of the NPL method to N > 4. The NLR method should remain satisfactory for larger values of N if an
appropriate value of g is applied. The functioning of the BAC method is shown to be unimpaired as N
increases.



It is observed that the NPL results show a slower convergence with respect to the number of spanwise
integration points than those of NLR. Obviously, the appearance of a near kink in the planform could
aggravate this phenomenon. But it is encouraging that discrepancies between the NPL and NLR results
tor the smoothed Warren 12 planform remain small when the rounding is reduced from x[(0) = 0-088s to
x(0) = 0-044s. The load distributions at # = 0 are very sensitive to the amount of rounding, and limita-
tions of this artifice are exposed.

In all cases considered, the convergence with respect to N is equally good for the three methods. But,
as is shown in Ref. 4, this convergence is strongly dependent on the accuracy of the spanwise integration,
especially as the aspect ratio increases above 4, say. Therefore it may be doubted whether the NPL
method will exhibit equally good convergence for wings of high aspect ratio owing to capacity restric-
tions on ¢.

The convergence with respect to m is excellent for the circular, rectangular and hyperbolic planforms.
For the Warren 12 planform, especially with the smaller artificial rounding, it is necessary to take more
than 15 collocation sections; even so, the NLR results with m = 31 differ primarily at # = 0 where
solutions have little relevance to the actual wing. For the practical objective of obtaining load distributions
at adjacent sections it is necessary to compromise between an accurate solution for too large a rounding
and one for too small a rounding that has not converged with respect to m.

Finally it is worth mentioning a number of subjects that require further research, e.g., the influence of
increasing aspect ratio or decreasing rounding on the rates of convergence with respect to the numbers
of spanwise and chordwise collocation points, the accuracy obtainable for the chordwise loading of
cambered wings, and the effects of collocation point positioning on the accuracy and stability of solutions.
The determination of reliable solutions for kinked planforms remains a crucial problem. However, it
may be assumed that the comparisons established in this report have achieved a sufficient appraisal of
the three basic methods with respect to each other.

LIST OF SYMBOLS

a, Coefficient of h,, varying in spanwise direction
A Unknown coefficients in equation (7)
A Aspect ratio; 2s/¢
¢ Local chord
c Geometric mean chord; §/2s
Cr Root chord, without artificial central rounding
CoL Local drag coefficient ; local drag/3pUZc
Cpv Vortex drag coefficient ; vortex drag/ipU?3S
C. Lift coefficient ; lift/3p U2S
CL. Local lift coefficient ; local lift/3pU?c
Cn Nose-up pitching moment about root leading edge/2pUZ2S¢
C, Pressure coefficient; AC, = pressure difference/3pU>
F, Function defined in equation (10)
h, Chordwise function in equation (5)
H, Initial chordwise integral
H, Regularized function defined in equation (12)
k,, Unknown coefficients in equation (13)
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Xac

Vortex drag factor nACpy/C? from surface pressures
Vortex drag factor nACpy/C? from wake integral
Coefficients in equation (14) with i = 1,2,...¢

Initial spanwise integral

Regularized function defined in equation (14)
Number of collocation sections

Number of spanwise integration points; g(m + 1) — 1
Mach number of undisturbed stream

Parameter specifying numerical integration with respect to X’ in equation (13)
Number of chordwise functions

Factor; (m + 1)/(m + 1)

Index numerating chordwise function

Radius of curvature of rounded leading edge at # = 0
Semi-span of wing

Area of planform

Velocity of undisturbed stream
Rectangular co-ordinates referred to root leading-edge

Local centre of pressure in terms of X

Ordinate of leading edge

Ordinate of trailing edge

Local chordwise position; (x — x;)/c, (x" — x;)/c
Centre of pressure referred to ¢; —C,,/C;.

Outer limit of artificial central rounding of swept wing
Local incidence of wing (radians)
Compressibility factor; (1 — M?)*

Increments in AC,/a in equations (23) and (25) due to increasing g
Increments in AC /o in equations (24) due to increasing N
Spanwise ordinate; y/s, y'/s

Spanwise parameter; cos ™!’

Angle of sweepback of leading edge

Index numerating spanwise loading function

Streamwise ordinate; x/s, x'/s

Density of undisturbed stream

Chordwise parameter; cos ™ (1 — 2X")
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TABLE 1

Results for the Circular Planform (M = 0, m = 11, N = 4).

Values of ¢C,; /eC,. Values of x,, Overall values
n
NPL NLR NPL NLR NPL NLR Exact
qg=238 g =10 qg=28 qg=10 qg=2=8 qg =10 Ref. 6
0 1-2844 1-2844 0-1980 0-1980 o 1-7903 1-7903 1-7902
02588 12387 1-2386 0-1970 0-1970
0-5000 1-1049 1-1049 0-1938 01938 —C,, | 05459 0-5461 0-5460
0-7071 0-8937 0-8937 0-1876 01877
0-8660 06219 06220 01764 0-1768 Xa 0-3049 0-3050 0-3050
09659 03138 03139 0-1551 0-1578
AC, jeaty =0 AC,/xaty = 05 AC,/a at = 0-866
X
NPL (g = 8) [NLR (g = 10)| NPL (g = 8) [NLR (@ = 10)] NPL (¢ = 8) [NLR (g = 10)
0-0050 19-481 19-480 19-591 19-591 20:040 20-026
00125 12:220 12-220 12-292 12-292 12-586 12:577
0-0250 8522 8-:522 8575 8:575 8790 8784
0-05 5-856 5-856 5-894 5-894 6-050 6-046
0-10 3-898 3-898 3921 3920 4017 4014
015 2982 2982 2993 2993 3043 3-041
0-20 2408 2-408 2409 2-408 2417 2:416
030 1-684 1-684 1-667 1-667 1-602 1-603
040 1-223 1223 1-192 1193 1-075 1-077
0-50 0-896 0-896 0-858 0-859 0713 0-715
0-60 0651 0-651 0614 0614 0467 0-469
070 0464 0-464 0432 0432 0-308 0310
080 0315 0316 0-295 0295 0213 0215
0-90 0-190 0190 0182 0-182 0153 0-154
0-95 0-125 0125 0123 0123 0116 0117
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TABLE 2

Convergence of x,. for the Circular Planform (M = 0)

(a) Effect of g
NPL method (m = 11, N = 4) NLR method (m = 11, N = 4)
n
qg=24 qg==©6 g=2=8 q=2=6 g=28 g=10
0 01981 0-1980 0-1980 0-1980 0-1980 0-1980
02588 0-1971 0-1970 0-1970 0-1970 0-1970 0-1970
0-5000 0-1939 0-1938 0-1938 0-1938 0-1938 01938
07071 01879 01876 0-1876 01877 0-1877 0-1877
0-8660 01783 01769 01764 01768 01768 01768
09659 0-1702 01597 0-1551 01573 01581 0-1578
(b) Effect of N
NPL method (m = 11) NLR method (m = 5)
i
N=2 N=3 N=4 N=2 N=3 N=4
g=4 q=>06 q =8 q=2_8 q=28 g=38
0 0-1958 0-1981 0-1980 0-1960 0-1982 0-1980
0-2588 0-1945 0-1971 01970
(-5000 0-1904 01939 0-1938 0-1905 0-1940 0-1938
07071 0-1828 0-1880 0-1876
0-8660 0-1702 01780 0-1764 01724 0-1786 0-1768
09659 0-1515 0-1603 0-1551
(c) Effect of m
NPL method (N = 4) NLR method (N = 4)
n
m=>5 m=11 m=735 m=11
0 0-1982 0-1980 0-1980 0-1980
(-2588 0:1970 0-1970
0-5000 01938 01938 0-1938 01938
07071 0-1876 01877
0-8660 0-1784 0-1764 01768 0-1768
09659 0-1551 01578
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TABLE 3
Results for the Rectangular Planform (M = 0, N = 4, g = 8)

NPL NLR BAC BAC BAC
m=15 m=15 m =17 m=9 m= 13
n Values of ¢Cy,/eC;.

0 1-2543 1-2543 12543 12543 12543
01951 12331 1-2331 1-2331 1-2331 1-2331
0-3827 1-1692 1-1692 1-1692 1-1692 1-1692
0-5556 1-0625 1-0625 1-0625 1-0625 1-0625
07071 09137 09137 09137 09137 0-9137
0-8315 07257 0-7258 07257 07257 0-7257
09239 0-5044 0-5044 0-5044 0-5044 0-5044
09808 02587 02587 02586 02586 0-2586

n Values of x,,

0 02199 0-2199 02199 0-2199 02199
0-1951 02187 0-2187 02187 02186 0-2187
03827 02149 02149 02149 02149 02149
0-5556 0-2085 02085 0-2085 0-2085 0-2085
0-7071 0-1996 0-1996 0-1995 0-1996 01996
0-8315 0-1886 0-1886 0-1885 0-1886 0-1886
09239 01773 01773 01773 01773 0-1773
0-9808 01685 01685 0-1688 01685 0-1685

" Values of ¢Cp,; /¢C?

0 0-1847 0-1848 01847 0-1848 01848
01951 0-1831 0-1832 0-1831 01832 0-1832
0-3827 0-1781 - 01781 01782 0-1781 0-1781
0-5556 0-1686 0-1686 0-1691 0-1686 01686
07071 0-1540 01541 0-1540 0-1541 01541
0-8315 0-1353 0-1353 0-1347 0-1353 0-1353
09239 01130 0-1131 0-1131 0-1130 0-1131
0-9808 00770 00770 0-0773 0-0770 00770

Overall values
C, 2:4745 2-4744 2-4744 2-4744 2-4744
—Cp 0-5182 0-5182 0-5182 05182 0-5182

X e 02094 02094 02094 0-2094 02094

K, 1-0104 1-0108 1-0107 1-0108 1-0108

K, 1-0007 1-0007 1-0006 1-0006 1-0006
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TABLE 3 (continued)

Results for the Rectangular Planform (M = 0, N = 4,9 = 8)

AC, joatn =0 AC,/aat n = 03827
X
NPL NLR BAC NPL NLR BAC
m=15 m= 15 m=13 m =15 m =15 m=13
0-0050 31-530 31-524 31-525 30-117 30-113 30-113
0-0125 19-782 19-779 19-779 18-873 18-871 18-871
0-0250 13-801 13-800 13-800 13-142 13-140 13-141
0-05 9-498 9-497 9497 9-010 9-009 9-010
010 6:355 6355 6355 5985 5985 5985
015 4903 4903 4-903 4-586 4-586 4-586
0-20 4-0006 4-006 4-006 3722 3722 3722
030 2-895 2-895 2-895 2-660 2-660 2-660
040 2200 2-200 2:200 2-002 2-002 2:002
050 1707 1-707 1-707 1-542 1-542 1-542
0-60 1329 1-329 1-329 1-194 1-194 1-194
0-70 1-020 1-020 1-020 0914 0914 0914
0-80 0751 0-750 0-750 0671 0-671 0671
090 0-485 0-485 0485 0434 0434 0434
095 0-330 0-330 0-330 0-295 0-295 0-295
AC, /o at n = 07071 AC, /o at n = 09239
X
NPL NLR BAC NPL NLR BAC
m= 15 m= 15 m=13 m=15 m=15 m=13

0-0050 25660 25659 25658 16.543 16-540 16-540
0-0125 15999 15998 15-998 10-198 10-197 10-197
0-0250 11-047 11-046 11-046 6911 6910 6910
0-05 7-451 7-450 7-450 4-491 4-491 4-490
0-10 4798 4-798 4798 2:691 2-690 2-690
015 3574 3574 3-574 1-874 1-874 1-874
0-20 2-828 2-828 2-828 1-398 1-398 1-398
0-30 1940 1940 1-940 0-884 0-883 0-884
0-40 1-421 1-421 1-421 0-632 0632 0632
0-50 1-080 1-080 1-080 0495 0-494 0-494
0-60 0-834 0-834 0834 0-404 0-404 0-404
070 0-640 0:640 0640 0-327 0-327 0-327
0-80 0472 0472 0472 0-244 0-244 0244
0-90 0305 0-305 0-305 0-149 0:149 0-149
095 0-206 0-206 0-206 0-093 0093 0-093
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TABLE 4

Convergence of Solutions with Respect to N for the Rectangular Planform (M = 0, m = 13)

Values of ¢cCy; /6C;. Values of x,,
n BAC method BAC method
N =4 N=35 N=6¢6 N=4 N=35 N =
0 1-2543 1-2543 1:2543 02199 02199 02199
0-1951 12331 1-2330 12330 0-2187 0-2187 02187
0-3827 1-1692 1-1692 1-1692 02149 0-2149 02149
0-5556 1-0625 1-0625 1-0625 0-2085 0-2085 0-2085
0-7071 09137 09137 09137 0-1996 0-1996 0-1996
08315 0-7257 07257 07257 0-1886 0-1886 01886
09239 0-5044 0-5045 0-5044 01773 01771 0-1770
0-9808 0-2586 0-2587 02587 0-1685 0-1679 0-1674
Values of ¢Cp,/cC}
n BAC method
N = N=35 N =
0 01848 0-1850 0-1850
01951 01832 0-1834 0-1835
0-3827 0-1781 01785 0-1786
0-5556 0-1686 0-1690 0-1693
07071 0-1541 01536 0-1539
0-8315 0-1353 0-1320 0-1315
09239 01131 0-1068 01033
09808 0-0770 00732 0-0701
Overall values
BAC method
N=4 N=35 N =
C; 2:4744 2-4744 2:4744
—-C, 0-5182 05181 0-5181
ac 02094 02094 02094
s 1-0108 1-0054 1-0033
K, 1-0006 1-0007 1-0007
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TABLE 4 (continued)

Convergence of Solutions with Respect to N for the Rectangular Planform (M = 0, m = 13)

Values of AC, /e atn = 0

Values of AC,/a at n = 0-3827

X BAC method BAC method

N=4 N=35 N=6 N=4 N=5 N=6
0-0050 31-5251 31-5175 31-5171 30-1132 30-0982 30-0956
00125 197792 19-7760 19-7759 18-8712 18-8646 18-8639
0-0250 13-7998 13-7991 137992 13-1408 13-1390 13-1394
005 9-4973 9-4986 9-4988 9-0095 90113 90124
010 6:3550 6-3571 63573 5-9847 5-9883 5-9891
015 49030 49047 49047 4-5856 4-5886 4-5889
020 40058 4-0067 4-0067 37225 3-7243 37240
030 2-8953 2-8949 2-8948 2-6598 2-6593 26587
0-40 2-2004 2-1994 2:1994 2-0022 2-0007 2-0005
0-50 1-7070 1-7063 17064 1-5417 1-5406 1-5408
060 1-3288 1-3288 1-3289 11937 11936 1-1939
0-70 1-0202 1-0208 1-0208 09136 09144 09144
0-80 0-7504 0-7510 07509 06710 0-6719 06716
090 0-4850 04849 0-4849 04339 04338 04336
095 0-3296 03291 0-3292 0-2951 02944 02945

Values of AC /o at n = 0-7071 Values of AC /o at 5 = 09239
X BAC method BAC method

N=4 N=>5 N==6 N =4 N=35 N=6
0-0050 256585 256809 256668 16-5395 17-0241 17-2606
00125 159976 16:0064 16-0010 10-1966 104213 10-5097
00250 11-0465 11-0472 11-0469 69101 6-9840 69872
0-05 7-4503 7-4452 7-4482 4-4904 4-4497 4-3966
0-10 47980 4-7909 47944 2-:6904 2-5929 2-5349
015 3-5737 3-5686 3-5706 1-8739 17871 17574
0-20 2-8284 2-8262 2-8266 1-3983 1-3421 1-3404
0-30 1-9400 1-9426 1-9413 08835 0-8892 09128
0-40 14214 1-4255 1-4246 06323 0-6677 0-6808
0-50 1-0796 1-0822 1-0823 0-4945 0-5243 05177
0-60 0-8335 0-8332 0-8338 0-4041 0-4084 0-3942
070 0-6402 06377 06379 0-3267 0-3074 0-3028
0-80 04723 0-4699 0-4694 0-2444 0-2230 0-2320
090 0-3049 0-3052 0-3049 01487 0-1530 0-1580
095 02063 0-2082 02084 0-0933 0-1131 01074
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TABLE 5

Results for the Hyperbolic Planform (M = 0, m = 15, N = 4)

Values of ¢C,,/¢C,, Values of x,,
i
NPL NLR BAC NPL NLR BAC
q= qg=28 q= g=23
0 1-1293 1-1290 1-1291 02739 02737 02738
01951 1-1284 1-1283 1-1283 0-2665 0-2663 02663
03827 1-1192 1-1192 1-1191 02545 0-2542 02542
0-5556 1-0872 1-0873 1-0872 02422 0-2420 0-2420
0-7071 1-0076 1-0078 1-0077 02217 02216 02216
0-8315 0-8512 0-8514 0-8513 0-1843 01843 0-1843
09239 06152 06153 06153 0-1354 01355 01354
09808 0-3216 0-3217 0-3216 00920 00920 00920
Overall values
NPL NLR BAC
q=2_8 q=28
C, 32335 3-2327 32326
—C, 2-4798 2:4789 2-4788
X e 07669 0-7668 07668
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TABLE 5 (continued)

Results for the Hyperbolic Planform (M = 0,m = 15, N = 4)

AC,jaaty =0 AC,/o at n = 0-3827
X

NPL NLR BAC NPL NLR BAC

q=28 =38 q= qg=38
0-0050 29-791 29-770 29772 31-643 31-714 31-709
0-0125 18-830 18-818 18819 19-965 20-006 20-002
00250 13-299 13292 13-293 14-060 14-083 14-081
0-05 9-378 9-375 9-375 9-857 9-867 9-866
010 6584 6-583 6-583 6-840 6-839 6-839
015 5325 5325 5325 5467 5463 5463
0-20 4-557 4-558 4-558 4-624 4-618 4-618
0-30 3-606 3-608 3-608 3-570 3-564 3-564
040 2993 2-995 2:994 2-885 2-880 2-880
0-50 2-530 2:531 2:530 2:367 2:364 2-:364
0-60 2-141 2-140 2-140 1936 1-934 1-934
0-70 1-781 1-778 1-779 1-551 1-549 1-549
0-80 1-415 1-410 11411 1-180 1-178 1-177
090 0-983 0978 0979 0-781 0-778 0778
0-95 0692 0-688 0-688 0-535 0-533 0-532

AC, fouat n = 0-7071 AC,fa at n = 0:9239
X

NPL NLR BAC NPL NLR BAC

q= q=28 q= q=38
0-0050 31-786 31-812 31-807 28-802 28-803 28-800
0-0125 20013 20-028 20-025 17-799 17-800 17-798
0-0250 14-043 14-051 14-050 12:107 12-109 12-106
0-05 9-771 9-774 9773 7-915 7915 7914
0-10 6-667 6:666 6-6606 4-766 4765 4-765
0-15 5230 5-228 5227 3298 3-297 3297
0-20 4-331 4-329 4-329 2409 2-409 2-408
0-30 3-188 3-186 3-186 1-383 1-383 1-382
0-40 2-437 2435 2436 0-833 0-833 0-833
0-:50 1-878 1-877 1-877 0-520 0-520 0519
060 1-431 1-431 1-431 0-336 0-336 0336
0-70 1-060 1-060 1-060 0-227 0-227 0-227
0-80 0740 0740 0739 0157 0157 0157
090 0-445 0-445 0445 0-101 0-101 0-101
095 0-290 0-290 0-290 0-069 0-069 0-069
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TABLE 6

Chordwise Loading of the Hyperbolic Planform (M = 0, m = 15, N = 4)

AC,fuaty =0
X NPL method NLR method

q=4 q==6 q=238 g=4 g==6 q=28
0-0050 29-992 29-822 29-791 29-750 29772 29770
0-0125 18946 18-847 18-830 18-806 18-819 18-818
00250 13-368 13-309 13-299 13-285 13-293 13292
005 9411 9-382 9-378 9-371 9-376 9-375
010 6588 6-583 6584 6-583 6-584 6-583
015 5-318 5322 5325 5326 5327 5325
020 4-545 4-553 4-557 4-560 4-560 4-558
0-30 3-593 3-603 3-606 3-610 3-610 3-608
0-40 2-984 2991 2-993 2996 2996 2995
0-50 2-525 2:530 2:530 2-531 2:532 2:531
0-60 2-139 2-141 2141 2-138 2-140 2:140
070 1-782 1-782 1-781 1775 1-778 1-778
0-80 1415 1-416 1-415 1-406 1-410 1-410
090 0982 0985 0983 0974 0-978 0978
095 0-690 0693 0692 0-684 0-687 0688

AC, /e at n = 0-3827
X NPL method NLR method

g=4 g=2=6 g=28 g=4 g==6 g=2=8
0-0050 31-749 31-531 31643 31-785 31-740 31714
00125 20-026 19-901 19965 20046 20020 20-006
0-0250 14-096 14022 14-060 14-107 14091 14-083
005 9-874 9-840 9-857 9-877 9-870 9-867
010 6-842 6-838 6-840 6-839 6-839 6-839
015 5-463 5-472 5-467 5459 5462 5-463
020 4616 4-632 4-624 4612 4617 4618
030 3:561 3-578 3-570 3-558 3-565 3-564
040 2-879 2-891 2-885 2:875 2-883 2-880
050 2:365 2:371 2-367 2:361 2-369 2-364
060 1-940 1940 1-936 1932 1-940 1934
0-70 1-558 1-554 1:551 1-547 1-555 1-549
0-80 1-191 1-184 1-180 1-175 1-182 1178
090 0-793 0-786 0781 0776 0-781 0778
095 0-544 0-540 0-535 0-530 0-533 0-533
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TABLE 6 (continued)

Chordwise Loading of the Hyperbolic Planform (M = 0,m = 15, N = 4)

AC,foatn = 07071

X NPL method NLR method

q=4 gq==6 q=28 qg=4 q="=0 q=23
0-0050 31-527 31682 31-786 31-838 31-823 31-812
0-0125 19-867 19-955 20-013 20-043 20-038 20028
0-0250 13959 14-010 14-043 14-060 14-060 14-051
0-05 9-735 9-757 9771 9777 9-784 9774
010 6-669 6-668 6667 6666 6676 6-666
015 5247 5237 5230 5225 5237 5228
020 4-355 4-341 4-331 4-326 4-338 4-329
030 3212 3-198 3-188 3-183 3192 3-186
0-40 2-456 2-444 2:437 2433 2:440 2-435
0-50 1-890 1-882 1-878 1-875 1-878 1-877
0-60 1439 1433 1-431 1-430 1-430 1431
070 1-065 1-061 1-060 1-060 1-058 1-060
0-80 0-746 0741 0740 0740 0737 0740
090 0453 0448 0445 0-446 0-443 0-445
095 0298 0292 0-290 0290 0-288 0-290

AC,fo at n = 09239
X NPL method NLR method

g=4 q="=6 qg=238 g=4 q="06 q=23
0-0050 28-768 28798 28-802 28-804 28-812 28-803
00125 17781 17-798 17-799 17-801 17-806 17-800
0-0250 12:098 12:106 12-107 12-110 12-114 12:109
0-05 7912 7915 7915 7915 7918 7915
0-10 4769 4-766 4-766 4765 4-769 4765
0-15 3-303 3-298 3-298 3297 3-300 3-297
0-20 2-415 2410 2-409 2-408 2411 2-409
0-30 1-388 1-384 1383 1382 1-384 1-383
040 0-837 0-834 0-833 0-833 0-834 0-833
0-50 0-522 0520 0-520 0-520 0-520 0-520
0-60 0-337 0337 0336 0-337 0336 0336
070 0227 0227 0227 0228 0227 0227
0-80 0-157 0-157 0157 0158 0157 0157
090 0102 0101 0-101 0-101 0-101 0-101
095 0070 0069 0-069 0-070 0-069 0-069
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TABLE 7

Convergence of AC, with Respect to q for the Hyperbolic Planform (M = 0,m = 15, N = 4)

NPL n=0 n = 03827 n = 07071 n = 09239
X EN 54 83 54 ER S 8; Sa
0005 | —0170 | —0-031 | —0218 0112 0115 0-104 0-030 0-004
005 | —0029 | —0004 | —0034 0017 0022 0-014 0-003 0-000
010 | —0005 | +0:001 | —0004 0002 | —0001 | —0-001 | —0:003 0-000
020 | +0008 0004 | +0016 | —0008 | —0014 | —0010 | —0005 | —0-001
0-40 0-007 0-002 0012 | —0006 | —0012 | —0:007 | —0003 | —0-001
0-60 0-002 0-000 0000 | —0004 | —0006 | —0-002 0000 | —0-001
0-80 0001 | —0001 | —0007 | —0004 | —0005 | —0:001 0-000 0-000
0-90 0003 | —0002 | —0007 | —0005 | —0005 | —0003 | —0-001 0-000
NLR n=0 n = 03827 n = 07071 n = 0:9239
X 53 54 53 54 53 54 53 64

0-005 0022 | —0002 | —-0045 | —0026 |—0014 | —0011 0008 | —0-009
005 0005 | —0001 | —0007 | -0003 | +0005 | —0010 0003 | —0003
010 0001 | —0001 0-000 0-000 0010 | —0-010 0004 | —0-004
0-20 0000 | —0-001 0-005 0:001 0011 | —0009 0003 | —0-003
0-40 0000 | —0-001 0008 | —0-003 0006 | —0-004 0001 | —0-001
0-60 0002 | —0-001 0008 | —0-006 0000 | +0001 | —0-001 0-000
0-80 0-004 0-000 0006 | —0004 | —0:003 0003 | —0-001 0-000
0-90 0-004 0-001 0005 | —0002 | —0:003 0-003 0-000 0-000

e A B
x& [g=6 X Jg=4 & [4=8 X Jg4=6
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TABLE 8

Convergence of AC, with Respect to N for the Hyperbolic Planform (M = 0, m = 15, n = 0-3827)

Values of AC /o
NPL method NLR method BAC method
X
N=2 N=3 N=4 N = N=3 N=4 N = N=3 N =
0-005 31-966 31-668 31-643 31971 31-691 31714 31971 31-687 31-709
005 9-906 9-862 9-857 9-908 9-866 9-867 9-908 9-866 9-866
0-10 6-840 6-841 6-840 6-841 6-843 6-839 6-841 6-843 6-839
0-20 4-589 4-623 4-624 4-590 4-622 4-618 4-590 4-622 4-618
040 2-846 2-882 2-885 2-847 2-880 2-880 2-847 2-880 2-880
0-60 1-922 1-934 1-936 1922 1932 1934 1-922 1932 1-934
0-80 1-192 1-179 1-180 1-192 1177 1-178 1-192 1-177 1-177
0-90 0-799 0-780 0-781 0-799 0780 0-778 0-799 0-779 0-778
NPL method NLR method BAC method
X
Ay A, A, A, Ay A,

0-005 —0-298 —0025 —0-280 0-023 —-0-284 0-022

0-05 —0-044 —0-005 —0:042 0-001 —0-042 0-000

0-10 +0001 —0-001 +0-002 —0-004 +0-002 —0-004

0-20 0-034 +0-001 0-032 —0-004 0-032 —0-004

0-40 0-036 0-003 0-033 0-000 0-033 0-000

0-60 0-012 0-002 0010 0-002 0-010 0-002

0-80 -0-013 0-001 —0-015 0-001 —0-015 0-000

0-90 -0019 0-001 —0-019 —0-002 —-0-020 —0-001

. (AC,,) N (AC,,) B (AC,,)
! 0 fn=3 0 [n=2 ' A [n=a X [nN=3




TABLE 9

Convergence of AC, with Respect to m for the Hyperbolic Planform
(M =0,y = 0-3827)

AC,/a by BAC method (N = 4)
X
m=9 m=13 m=15

0-0050 31-839 31-726 31-709

00125 20-075 20012 20-002

0-0250 14-122 14-087 14-081

0-05 9-882 9-868 9-866

0-10 6-838 6-840 6-839

015 5456 5-463 5463

0-20 4-610 4-618 4618

0-30 3-559 3-565 3-564

0-40 2-880 2-881 2-880

0-50 2-367 2:365 2:364

0-60 1-938 1934 1-934

070 1-551 1-548 1-549

0-80 1-174 1-174 1177

090 0771 0774 0778

095 0-524 0-529 0532

Values of AC,/a by NLR method
X N=34g=6 N=4,q=28
m=15 m =31 m=15 m = 31

0-005 31-691 31-685 31-714 31-709
0-05 9-866 9-866 9-867 9-866
010 6-843 6-843 6-839 6-839
015 5-467 5-467 5463 5463
0-20 4-622 4622 4618 4618
0-30 3-566 3-566 3-564 3-564
0-40 2-880 2-880 2-880 2-880
0-50 2-:362 2-362 2-364 2:364
0-60 1-932 1932 1934 1934
070 1547 1-547 1-549 1-549
0-80 1-177 1-177 1-178 1177
090 0-780 0-779 0778 0778
095 0-534 0-534 0:533 0-532
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TABLE 10

(M=0,N=4,q=28)

Results for the Warren 12 Planform with Rounding x,(0) = 0-044s

Values of ¢cC;/¢C,.
n

NPL NPL* NLR NLR BAC

m=15 m =15 m=15 m = 31 m=15

0 1-1789 1-1826 1-1813 1-1927 1-1834
0-1951 1-1934 1-1942 1-1931 1-1964 1-1944
0-3827 1-1572 1-1570 1-1563 1-1562 1-1570
0-5556 1-0746 1-0739 1-0735 1-0710 1-0737
07071 0-9484 09475 09473 0-9448 0-9473
0-8315 07768 0-7760 07757 07727 07757
09239 05529 0-5522 0-5520 0-5500 05520
0-9808 0-2878 0-2874 0-2872 0-2859 0-2872

Values of x,,
n

NPL NPL* NLR NLR BAC
m=15 m=15 m=15 m =31 m=15

O** 0-4049 0-3999 0-4002 0-3856 0-3982
0-1951 0-2995 0-2980 0-2981 02913 02976
0-3827 0-2650 0-2647 0-2647 0-2646 0-2647
0-5556 0-2524 0-2523 0-2521 02510 0-2522
0-7071 0-2353 0-2353 0-2350 0-2355 02353
0-8315 0-2071 0-2070 0-2065 0-2058 0-2070
09239 0-1549 0-1550 0-1545 01552 0-1550
09808 0-0972 00972 0-0970 0-0968 0-0972

Overall values

NPL NPL* NLR NLR BAC
m=15 m= 15 m= 15 m= 31 m=15
C. 27270 27324 2:7373 27576 27340
—C,** 3-1038 3-1051 3-1074 31155 3-1094
X, 1-1382 1-1364 1-1352 1-1298 1-1373

K, 1-090 1-075 1067 1-000 1-061
K, 1-010 1-010 1-010 1-008 1-010

*Instead of the standard m = 15 NPL rounding with x;(0) = 0-04401s, this NPL
solution and both NLR solutions use identical NLR roundings with x,(0) = 0-04394s.
The BAC solution uses the BAC rounding with x,(0) = 0-04394s.

*#The local aerodynamic centre x,{0) is referred to the actual root chord without
rounding, and the pitching axis is through the actual leading apex.
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TABLE 10 (continued)

Results for the Warren 12 Planform with Rounding x,(0) = 0-044s
(M=0,N=4,qg=28)

AC /uaty =0 AC, /o at n = 0-3827
X

NPL* NLR NLR NPL* NLR NLR

m= 15 m=15 m = 31 m=15 m=15 m= 31

0-0050 9-864 9-859 10-579 23-710 23701 23746
0-0125 6467 6465 6945 14-976 14-971 15-009
0-0250 4-834 4-831 5197 10-567 10-564 10-601
0-05 3767 3767 4057 7-437 7-435 7-475
010 3-102 3-103 3:333 5204 5-203 5-246
015 2-834 2835 3-028 4-197 4-197 4240
020 2671 2673 2-831 3-582 3-582 3-624
0-30 2441 2-443 2534 2-818 2-819 2854
040 2-246 2:249 2:277 2320 2:320 2:347
050 2057 2059 2:033 1-937 1-936 1955
0-60 1-860 1-862 1-795 1-608 1-608 1-618
070 1-645 1-646 1-553 1-303 1-302 1-307
0-80 1-386 1-386 1-287 0-999 0998 0998
090 1-023 1-023 0939 0-663 0-662 0-661
095 0742 0-742 0679 0-454 0453 0451

AC, /o at y = 0-7071 AC, /o at n = 09239
X

NPL* NLR NLR NPL* NLR NLR

m=15 m=15 m =31 m=15 m=15 m = 31

0-0050 30391 30-356 30-325 33-359 33-292 33260
00125 19-153 19-131 19-119 20-820 20:775 20:759
0-0250 13-461 13-445 13-446 14-395 14-355 14-350
005 9-398 9-386 9-398 9715 9-683 9686
0-10 6-462 6-454 6477 6217 6-188 6200
0-15 5114 5-107 5-135 4-552 4-525 4-541
020 4278 4271 4-301 3-501 3-476 3-495
0-30 3221 3215 3-245 2185 2-165 2186
040 2527 2-521 2:547 1-384 1-369 1-389
0-50 2003 1997 2:018 0-866 0-856 0873
0-60 1-574 1-568 1-582 0-535 0-529 0-541
0-70 1-203 1-197 1-205 0-338 0-334 0-341
0-80 0-866 0-861 0-863 0232 0-230 0231
090 0-538 0-534 0-531 0173 0172 0-168
095 0-355 0-352 0-349 0135 0-134 0-130

*Instead of the standard m = 15 NPL rounding with x,(0) = 0-04401s, this NPL solution and both
NLR solutions use identical NLR roundings with x,(0) = 0-04394s. The BAC solution uses the BAC

rounding with x,(0) = 0-04394s.
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TABLE 11

Convergence of AC, with Respect to g for the Warren 12 Planform

with Rounding x(0) = 0-044s (M = 0, m = 15, N = 3)

Values of AC Jaaty =0

X NPL method NLR method

qg=1 q=2 qg=4 g=2=6 g=1 q=2 g=4 qg=2=6
0-005 11-263 9920 9927 9-846 10:159 10-085 10-190 10-207
0-05 4-159 3-694 3-681 3-659 3736 3727 3-754 3759
010 3-356 3-:012 2993 2981 3019 3023 3037 3040
0-15 3033 2753 2:732 2-725 2-744 2753 2761 2763
0-20 2-841 2610 2-588 2-584 2:592 2-604 2-608 2-609
0-30 2:576 2-428 2-410 2-409 2-404 2417 2416 2417
040 2347 2275 2263 2-265 2253 2264 2260 2:260
050 2-110 2110 2-104 2-108 2:093 2:100 2:096 2095
0-60 1-852 1-915 1917 1921 1-907 1-909 1-904 1-903
0-70 1-564 1-679 1-687 1-692 1-679 1-677 1672 1-670
0-80 1-238 1-384 1-397 1402 1-391 1-386 1-381 1-380
090 0-842 0985 1-000 1-003 0996 0989 0985 0984
095 0-582 0-698 0710 0713 0-708 0702 0:699 0698

Values of AC /o at y = 0-3827
X NPL method NLR method

qg=1 qg=2 g=24 qg=2=6 g=1 q=72 qg=4 qg=206
0-005 27275 22995 23-518 23-547 24-341 23-652 23616 23613
005 8:240 7-299 7-408 7-414 7-588 7-441 7433 7-433
010 5:546 5-162 5-200 5-203 5273 5217 5214 5214
015 4-317 4-198 4203 4-203 4223 4211 4211 4211
020 3-570 3-606 3-591 3-590 3-580 3-595 3-596 3-596
0:30 2668 2-861 2-825 2-823 2-782 2-823 2:826 2-826
040 2-125 2:363 2321 2319 2:267 2-317 2:320 2320
0-50 1-750 1973 1934 1931 1-879 1-927 1931 1931
0-60 1-462 1636 1-603 1-600 1:556 1-597 1-600 1-600
0-70 1-:215 1-323 1-300 1-297 1265 1-294 1-297 1-297
0-80 0975 1-:013 1-000 0-998 0978 0995 0997 0997
0-90 0-689 0673 0:669 0667 0:659 0-665 0-666 0-666
095 0490 0461 0-460 0-459 0456 0458 0459 0459
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TABLE 11 (continued)

Convergence of AC, with Respect to q for the Warren 12 Planform

with Rounding x,(0) = 0-044s (M = 0, m = 15, N = 3)

Values of AC /o at # = 0-7071

X NPL method NLR method

g=1 q=2 qg=4 qg==6 g =1 g=2 q=24 qg==6
0-005 35452 29-902 30-241 30-350 31121 30472 30-355 30-348
0-05 10-472 9-289 9-363 9:385 9-548 9-409 9-385 9-384
0-10 6865 6418 6-447 6454 6513 6-460 6-453 6-452
0-15 5-198 5-101 5-108 5-108 5117 5-106 5-106 5106
020 4177 4283 4277 4273 4253 4266 4270 4271
0-30 2942 3-246 3-226 3-218 3167 3-205 3214 3215
0-40 2:207 2-559 2:534 2:525 2465 2511 2:521 2:521
0-50 1-715 2036 2010 2001 1943 1-988 1-997 1-997
0-60 1-360 1-602 1-580 1-573 1-523 1-561 1-568 1-568
0-70 1-083 1-224 1206 1202 1-165 1-193 1-197 1-197
0-80 0-840 0-880 0-868 0-865 0-843 0-859 0-861 0-861
090 0-582 0543 0-537 0537 0-528 0-534 0-533 0-533
095 0411 0-358 0354 0354 0-351 0-353 0-352 0352

Values of AC /o at 4 = 0-9239
X NPL method NLR method

g=1 g=2 qg=4 g==6 g=1 q=2 g=4 qg==56
0-005 36-609 33470 33-835 33-847 34-245 33-802 33-781 33-778
0-05 10-293 9-626 9-697 9-699 9-766 9-678 9674 9673
0-10 6-353 6-101 6122 6122 6-129 6-102 6-101 6-101
015 4-500 4446 4-442 4-442 4420 4422 4423 4-423
0-20 3-359 3-419 3-402 3401 3-364 3-382 3-383 3-384
0-30 1-998 2-168 2138 2137 2086 2:-119 2121 2122
040 1-228 1423 1-392 1-390 1-340 1-376 1-378 1-378
0-50 0764 0938 0911 0910 0-867 0-898 0900 0900
0-60 0-484 0611 0-591 0-590 0559 0-582 0-583 0-583
0-70 0318 0-387 0-376 0376 0-358 0-371 0371 0-371
0-80 0223 0234 0232 0232 0227 0-229 0230 0230
090 0158 0126 0-130 0130 0136 0130 0-130 0-130
0-95 0118 0-079 0-085 0-085 0-092 0-085 0-085 0085
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TABLE 12

Results for the Warren 12 Planform with Rounding x(0) = 0-088s
(M =0,N=4,q=078)

Values of ¢C,,/¢C,, Values of x,,
! NPL* NLR NLR** NPL* NLR NLR**

m=15 m=15 m =31 m=15 m=15 m = 31
o+ 12007 1-2002 1-2009 0-4009 0-4009 0-3998
01951 1-1977 1-1974 1-1969 0-2930 02929 02930
0-3827 11553 1-1552 1-1554 02647 02646 02651
0-5556 1-0697 1-0700 1-0698 02516 02515 02512
07071 09430 09433 09435 02356 0-2352 02355
0-8315 07714 07716 07715 0-2067 0-2062 0-2059
09239 0-5490 0-5490 0-5491 01554 0-1549 01553
09808 0-2855 0-2855 02855 0-0968 0-0966 0-0969

Overall values
NPL* NLR NLR**
m=15 m=15 m = 31
C, 2:7601 27634 27632
—C,t 31269 31272 31266
X, 1t 1-1329 1-1316 [-1315

*All three solutions correspond to the NLR rounding of equation (17) with yi = 0-19509s and
x{(0) = 0-08802s.

**All the values from the NLR method with m = 31, N = 4, q = 8 are considered to be accurate to
3 or 4 significant figures.

tThe local aerodynamic centre x,(0) is referred to the actual root chord without rounding, and the
pitching axis is through the actual leading apex.
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TABLE 12 (continued)

Results for the Warren 12 Planform with Rounding x,(0) = 0-088s
M=0,N=4,49=28)

AC,/uatn =0 AC,Joat n = 0-3827
X
NPL* NLR NLR** NPL* NLR NLR**
m=15 m=15 m =31 m=15 m=15 m = 31
0-0050 13-385 13-391 13-444 23-831 23-826 23-710
00125 8616 8:620 8-655 15-060 15057 14989
0-0250 6-265 6-268 6294 10-633 10-631 10-590
0-05 4-660 4-663 4-683 7-493 7-492 7-472
0-10 3-581 3-583 3-600 5-254 5-254 5-250
0-15 3119 3121 3134 4-243 4-243 4-246
0-20 2-838 2-840 2-851 3-625 3625 3632
0-30 2472 2-474 2-480 2-853 2-853 2-863
0-40 2203 2-205 2206 2-347 2:346 2:356
0-50 1-967 1-969 1-967 1-956 1955 1963
0-60 1-741 1-742 1-736 1-621 1-620 1-625
0-70 1-506 1-506 1-497 1-311 1-:310 1312
0-80 1-240 1-240 1-229 1-003 1-002 1-003
090 0-892 0-892 0-882 0-665 0-665 0-664
095 0-638 0638 0630 0-455 0455 0-454
AC,/a at n = 07071 AC,ja at n = 0-9239
X
NPL* NLR NLR** NPL* NLR NLR**
m=15 m=15 m = 31 m=15 m=15 m = 31
0-0050 30452 30-418 30-328 33-402 33-336 33-268
00125 19-196 19-175 19-122 20-851 20-805 20-764
0-0250 13-497 13-482 13-450 14-420 14-383 14-356
0-05 9-430 9420 9403 9738 9-705 9-690
0-10 6-494 6486 6-483 6238 6-209 6-204
015 5-145 5-138 5-141 4-573 4-545 4-545
020 4-308 4-301 4-308 3-521 3-496 3-498
030 3-248 3-242 3-250 2203 2-183 2-189
040 2-549 2:543 2:552 1:399 1-384 1-391
0-50 2:020 2:014 2021 0877 0-867 0-874
0-60 1-586 1-580 1-584 0-542 0-536 0-342
070 1-210 1205 1-206 0341 0-338 0-341
080 0-870 0-864 0-864 0233 0-231 0231
090 0-538 0-534 0532 0-171 0-170 0168
095 0354 0-352 0350 0133 0-132 0130

*NLR rounding.

#*AC /o is considered to be accurate to 3 or 4 significant figures.
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TABLE

13

Convergence of Solutions with Respect to N for the Warren 12 Planform
with Rounding x(0) = 0-088s (M = 0, m = 15)

tSee footnote to Table 12,

32

Values of ¢C,,/cC,, Values of x,,
n BAC method BAC method
N=2 N=3 N=4 N=2 N=3 N=4
0t 1-1989 1-2011 12015 0-3953 0-3985 0-3988
0-1951 1-1984 1-1981 1-1980 02921 02923 02923
0-3827 1-1558 1-1553 1-1552 02653 0-2646 02646
0-5556 1-0695 1-0695 1-0695 02514 02515 0-2516
07071 09428 09427 09427 02356 02356 02356
0-8315 07721 07712 07711 0-2076 02068 02067
09239 0-5489 0-5483 0-5487 0-1597 01551 01554
0-9808 0-2832 0-2857 02853 0-1095 0-1028 00967
Values of ¢Cp, /¢C?
] BAC method
N=2 N =3 N =
0 0-3578 0-3660 03679
0-1951 02303 0-2452 02449
0-3827 0-1366 0-1440 0-1427
0-5556 0-0668 0-0790 00781
0-7071 0-0058 0-0213 00213
0-8315 —0-0469 —0-0320 —-00214
09239 —0-0607 —0-0950 —0-0848
09808 0-0017 —0-0487 —-0-0911
Overall values
BAC method
C, 27601 2:7618 27621
—-C,t 3-1242 31264 31267
Xt 1-1319 1-1320 1-1320
K, 0942 0998 1-000
K, 1-008 1-008 1-008




TABLE 13 (continued)

Convergence of Solutions with Respect to N for the Warren 12 Planform
with Rounding x,(0) = 0-088s (M = 0, m = 15)

Values of AC fuaty = 0

Values of AC /o at 5 = 0-3827

X BAC method BAC method

N = N=3 N=4 N = N=3 N =
0-0050 14-479 13-783 13-629 24099 23-801 23-852
00125 9-243 8-837 8762 15214 15-047 15-073
00250 6635 6-388 6-358 10724 10-630 10-643
005 4-827 4-705 4-712 7-534 7-500 7-501
010 3-593 3572 3-603 5252 5-266 5259
015 3-066 3-092 3-126 4221 4-256 4248
020 2756 2-809 2-838 3-591 3-637 3628
0-30 2-380 2-454 2-465 2:811 2-860 2-855
040 2129 2:202 2-194 2-308 2-348 2:348
0-50 1919 1-978 1958 1929 1953 1-956
0-60 1714 1-752 1-732 1612 1-616 1-621
070 1492 1-508 1-497 1-321 1-307 1-311
0-80 1230 1-225 1-230 1-032 1-003 1-003
090 0880 0-861 0-883 0-703 0-668 0665
095 0626 0-607 0631 0-489 0-459 0-455

Values of AC /o at = 0-7071 Values of AC /o at n = 09239
X BAC method BAC method

N=2 N=3 N=4 N=2 N=3 N=4
0-0050 31-135 30-460 30-458 31980 33929 33-416
0-0125 19-585 19-201 19200 19-988 21-118 20-859
0-0250 13-723 13-500 13-500 13-855 14536 14425
0-05 9-526 9-432 9-433 9-407 9732 9-741
0-10 6-484 6-494 6:497 6-111 6-150 6:240
0-15 5-088 5-146 5-148 4-561 4467 4-573
0-20 4227 4-309 4310 3-590 3425 3-521
0-30 3-155 3-249 3-250 2372 2:156 2:203
0-40 2-470 2-551 2-551 1-606 1-406 1-399
0-50 1-969 2022 2:021 1-069 0922 0-877
0-60 1-568 1-588 1:587 0-675 0-598 0543
070 1226 1212 1-211 0-383 0380 0-342
0-80 0912 0-870 0870 0-172 0233 0-233
0-90 0-592 0537 0-538 0034 0129 0-171
095 0-402 0-354 0354 —0-005 0-083 0-133
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Central Chordwise Loading for the Warren 12 Planform

TABLE 14

with various roundings (M = 0, m = 15, N = 4)

Rounding NPL NLR BAC NLR BAC
" 0-19509 009739 0-10388 0-19509 0-20809
x(0)/s 0-04401 004394 0-04394 0-08802 0-08802
X Values of AC, /aat § = 0
0-0050 9-393 9-859 10-033 13-391 13-629
0-0125 6-182 6-465 6-568 8620 8762
00250 4-647 4-831 4-899 6-268 6-358
0-05 3-653 3767 3-804 4-663 4712
010 3:044 3-103 3117 3-583 3-603
0-15 2-802 2-835 2-840 3121 3126
0-20 2-655 2:673 2:673 2-840 2-838
0-30 2:442 2-443 2:438 2:474 2-465
0-40 2:256 2-249 2:242 2:205 2-194
0-50 2-:072 2:059 2:052 1-969 1-958
0-60 1-880 1-862 1-855 1:742 1-732
070 1-668 1-646 1-638 1-506 1-497
0-80 1411 1-386 1-378 1-240 1-230
090 1-047 1-023 1-015 0-892 0-883
095 0762 0742 0735 0-638 0-631
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(a) Circular planform (b) Rectangular planform
A=4/x A=2"

(c) Hyperbolic planform
A= 4

(d) Warren 12 planform
A=2/7

———x, (0)=0-08802s

Particular roundings
------- X (0)=0-04394's

Fi1G. 1. Four planforms used as examples.
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Fi1G. 2. Convergence of vortex-drag distribution on the rectangular wing with an increasing number

of chordwise terms in the solution.
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FI1G. 3. Convergence of vortex-drag distribution on the hyperbolic wing with an increasing number of
chordwise terms in the solution.
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Fic. 4. Convergence of chordwise loading on Warren 12 planform with an increasing number of

spanwise integration points (n = 0-3827).
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Fi16. 5. Convergence of chordwise loading on Warren 12 planform with an increasing number of

spanwise integration points (y = 0-9239).
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FIG. 6. Convergence of the chordwise loading on Warren 12 planform at # = 0-3827 with an increasing

number of chordwise collocation points.
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