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Summary

It has been shown experimentally at M = 2-58 that by removing a small quantity of air from the
boundary layer through fine slits in the surface of a cone the transition Reynolds number can be increased
from its natural value of 25 x 10° to 9 x 108, The air sucked from the surface has been discharged into
the cone base region and it has been shown that the measured axial force on the body at zero incidence
has been reduced over the whole test Reynolds number range (2:5 — 14 x 10°).
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1. Introduction

[t is possible to design wing shapes or combinations of wings and bodies which have low wave drag
at supersonic speeds. Some of these shapes such as combinations of bodies and complete or half ring
wings have very large wetted surface areas. Under these circumstances the skin-friction drag, as at sub-
sonic speeds, becomes a large proportion of the total zero lift drag and hence it becomes important to
try to reduce it. Maintaining a laminar boundary layer is one way to decrease skin-friction drag sub-
stantially. At supersonic speeds the favourable effect on base pressure of bleeding fairly small quantities
of low velocity, low total-head air into a base region is well known. Thus there appears to be a superficial
attraction in allowing air to bleed from a body surface to its base to maintain a laminar boundary layer
and simultaneously to reduce the base drag,

From the experimental viewpoint there are further advantages. Sucking the laminar boundary layer
does not require extensive ducting either inside or outside the wind tunnel together with suction pumps
etc. It is also possible to mount the model on a simple axial force balance so that complete measurement
of all forces is obtained, including the internal drag due to ducting air from the body surface to the base
region.

The experiment described in this Report has been done to explore this possibility of combining a
laminar boundary layer with a base bleed using a 5° semi-angle cone followed by a short boattailed
portion whose angle was varied from 0° to 9° in steps of 3°. The cone only was slotted and the air was
bled directly into its interior and then exhausted back into the tunnel stream at the base of the model.
Total axial force, base pressure and total pressure of the flow issuing at the exit were measured. Some
traversing of the boundary layer at the end of the 0° boattail model was done to try to separate wake and
internal drags.



2. Design of Slotted Cone

2.1. General

The model consists of a hollow slotted conical forebody followed by an unslotted parallel or boattailed
section as shown in Fig. 1. The slots communicate directly through the 0-094 inch thick walls with the
hollow interior, the air being exhausted through an annular hole at the base of the model. On any axial
station the slots necessarily cannot be continuous right round the circumference. The form of the slots
is shown in Fig. 2 and as will be seen the ends of the slots have been arranged in a spiral fashion around
the circumference to prevent the build up of end disturbances which might occur if they were on radial
lines through the cone tip. The slots were cut using a circular saw and vary in width between 0-004 inch
and 0-009 inch. This cone is known as the discrete slot cone.

A continuous slot cone which leads to a far more complex construction was also designed and manu-
factured but this has not been tested.

2.2. Calculation of Slot Positions

The model was designed for an 8 inch x 9 inch supersonic wind tunnel which had fixed nozzles giving
Mach numbers of 2-5 and 3-0 and having a total pressure range from approximately half to four atmos-
pheres. From the viewpoint of reflected shocks it was desirable to operate the tunnel at M = 3-0 and the
object of the design was to provide natural transition well forward on the cone at the upper end of the
stagnation pressure range of the tunnel. The evidence of Ref. 1 suggests (Fig. 3) that natural transition
at M = 3-0 and four atmospheres stagnation pressure will be about 3 inches downstream of the cone
tip provided the tip radius is kept very small. Thus the first slot was placed at this position and subsequent
slot positions were calculated from the following analysis.

For a segment of a cone length ds, radius r:

1pV2Cp2mr ds = %(p V22mr) ds (1)
so that
rC, rdo  Odr
rey _rav  var 2
2 ds + ds @
Now
F=sy

where 7 is the sine of the cone semi-angle, so that

SZ—Z +0= %cf (3)
where for given R, and a laminar boundary layer the local skin-friction coefficient for a cone
c, = /3¢, (4)
where C; is the local skin-friction coefficient for a flat plate.
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(where A4 has the Blasius value of 0-6642 for incompressible flow but has been modified to 0-627 to take
into account compressibility effects at M = 3-0) so that equation (5) becomes
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and hence
AR, C)*
Ry = { 3 + E} . (7
Now provided a small quantity of air is removed at each slot
—pV?*A0 = Vmy (8)
where my, = pvRg and R,; = Q,/v the slot Reynolds number.
So that
—pV?*AQ = pVWR,,
or

ARo = _Rsl' (9)

To calculate the slot positions (in terms of R;) equation (7) can be applied if it is assumed that a slot
will be placed just forward of a natural transition position as we proceed downstream from the cone tip.
The first slot has been placed at 31 inches downstream from the tip in accordance with the data shown
in Fig. 3 and subsequent slot positions have been calculated assuming that R, = 600" and slot
Reynolds number R, = 100. Applying equation (7):

For the first slot, when Ry, = 0, R, = 0so that C,; = 0, thus:

600 = %R;‘f,
/3
therefore
600% x 3 o
s,——w——zgl x 10°.
For the second slot,

0-384 x 2:81 x 10° C, *
200 = { 3 T 81 x 106)2}

therefore
C, = —676 x 108

Hence for the second slot position:
0-62 3C,) ¢
600 = %{Rsz + R—szz}
therefore
R,, = 3397 x 10°

and R;, — R,, = 0-587 x 10°.
Now if we take a Reynolds number of 0917 x 10%/inch (which corresponds to the M = 3, P, =4
atmospheres condition):

0-587 x 108
i 1 = —— e == {)* 1 .
Spacing between 1st and 2nd slots 0917 x 10° 0-64 inch

Subsequent slot spacing was calculated in a similar manner.



3. Models, Apparatus and Test Conditions

(a) Models and apparatus

The model was made up of a conical forebody of 5° semi-angle followed by a short parallel section
and then by a conical boattailed section of 0°, 3°, 6° or 9° semi-angle. The whole of the interior of the
model was hollow and plugs of differing exit area could be inserted into the rear of the model. The exit
plugs and their area are shown in Fig. 4.

For comparison purposes an unslotted forecone was made and this together with a base plug which
left only a small clearance around the balance windshield provided a datum case for each boattail angle.
The two versions of the forecone are subsequently referred to as the slotted and plain cone models re-
spectively.

As can be seen in Figs. 5 and 6 the model was mounted on an axial force balance. Three pitot rakes
at 120° were mounted on the sting windshield to measure base pressure and total pressure of the flow
issuing from the annular hole in the base. Some pitot tubes to measure the boundary layer on the external
surface of the model were also included in these rakes but were not used for quantitative measurement
due to the difficulty of deciding their precise location with respect to the model.

External boundary-layer profiles at the rear of the model were measured however with the rakes
shown in Fig. 7 in a separate experiment on the cone-cylinder body only. The rakes were placed in two
circumferential positions so that profiles were obtained every 60 deg around the circumference.

(b) Test conditions

Tests were made in the 8inch x 9inch supersonic tunnel in the High Speed Laboratory at RAE.
Bedford during 1964 and 1965. This tunnel is of the continuous flow closed circuit type and is powered
by a four-stage variable-speed centrifugal compressor. An auxiliary compressor enables the stagnation
pressure to be varied up to a maximum of four atmospheres. Mach number is changed by means of
replaceable fixed nozzle liners and a nozzle exists for a nominal Mach number of 3-0. The model was
designed for testing with this nozzle. At M = 3 the reflected nose shock is well downstream of the model
base. Unfortunately before the tests were initiated but after the model had been designed cracks were
discovered in the main compressor impeller. These necessitated modifications to the rotor resulting in a
deterioration in compressor pressure ratio and reduction in the possible maximum Mach number to
about 2-6. At this Mach number the reflected nose shock is just clear of the model base.

Tests were made at total pressures of 20, 35, 50, 65, 80, 95, and 110 inches of Mercury. This gives
the Reynolds numbers Re; (i.e. based on total length L of the model) shown in the following Table, the
range at each total pressure being due to small stagnation temperature variations which could not easily
be controlled.

P, in Hg Re, x 107°
20 2:653— 2-768
35 4-615~ 4-824
50 6:521- 6791
65 8:362— 8740
80 10-155-10-601
95 11-873—-12-432
110 13-525-14-132

4, Measurements

Axial force was measured at zero incidence on a strain gauge balance the output from which was
recorded on a standard R.A.E. self-balancing bridge unit. Temperature was measured in the sealed balance
chamber by means of a thermocouple to enable the strain gauge readings to be corrected for temperature
variation. Balance calibrations were made at the beginning and end of each day’s running.



Base pressures and exit total pressures were all measured on a silicon oil manometer with respect to
one particular base pressure which was measured absolutely on a standard capsule-type (Midwood)
manometer.

The flow was observed with the normal schlieren optical system and transition point could be fairly
casily located on top and bottom generators. Some initial experiments were done with the unslotted
cone to find transition location all round the circumference by spraying the model with acenaphthene
and observing the resulting pattern.

5. Data Reduction
5.1. External Drag
The forces acting on the model are shown in Fig. 8. The axial force measured on the balance is :

Fbalance = pconeAcone + Dfriction + Dinternal - pbaseAbase - phoattailAbaallail - pstingAsling' (10)

We define and present the total drag as the axial force measured on the balance with the sting pressures
as measured in the balance chamber corrected to mean base pressure:

Dtotal . Fbalance + (psting - pbase)Asting

total - (1 1)
° QwStotal qutotal
For the 0° boattail skin friction plus internal drag can be obtained from:
CDf + CDint = CDtotal - CDcone - CDbase (12)
(based on §,,,,,) where
( pC ) Amax
Deane = |7 — 1]
P (qoo/poo)Stotal
- ﬁbase Amax
T “Doase - 1 :
P (q oo/poo)Stota]
For the other boattail angles:
CD! + CDint = CDlotal - CDcone - CDbase - Dpoattaii (13)

where now

P (qoo/pco)stotal

I_)boattail _ 1) Aboattail
Py (Qm/poo)Stotal

Cbyonan 128 been evaluated by the process described in Section 6.2.

__CDhase — (‘Ebase _ 1) Abase

Dvoattann — (

5.2. Accuracy

The accuracy of the total drag coefficient is mainly dependent on balance accuracy, whilst that of the
base drag coefficient is a function of the cumulative errors associated with reading manometers. A Table
showing maximum errors which might be expected is shown below :

Max. ¥; error in | Max. % error in | Max. % error in
P, in Hg Cp,., OF Cp, + Cp,..,
20 +23 +24 +16'5
65 +0-8 +0-8 +83
110 +06 +04 +34




5.3. Internal Drag

It should be emphasised here that ‘internal’ drag is probably a misnomer, i.e. it is not what would be
obtained by a summation of pressure forces on the internal surfaces of the model. In fact ‘internal’ drag is
defined solely as a quantity which accords with the other drag terms that have been measured or can be
calculated so that the total is consistent with the total axial force as measured on the balance.

For simplicity consider the 0° boattail and apply the momentum equation to ABCDED'C'B'A’ in
Fig. 9 where BC (B'C’) defines the dividing surface between flow which is proceeding internally and that
which is to continue externally.

The pressure force on ABCDED'C'B'4’

F= Povoo + pongvoo - pbAex - pooVonoVex' (14)
The total drag (as defined in the previous section) is:
Dtotal = ﬁs(Amax - Aoo) + Dwake - pb(Amax - Aex) +F (15)

where p, is the mean static pressure on stream surface BC (B'C").
If it is assumed that p, == p, the cone surface pressure then

Dtotal = pcAmax - pcAoo + povoo - pbAex - pbAmax + pbAex + pooVooAao(Voo - Vex) + Dwake (16)

= (Pe = Poo)Amax = AmadPs = P} + Dyakce + PeoVirAoo(Vio = Vex) = (Pe — Poo)Aco.- (17)
Now
(P. = Poo)dmax = cOne wave drag
Py — Poo)Amax = base drag
s0 that,
Dinteraat = PooVeoA (Voo = Ver) — (e — Poo)Aco (18)
and hence
w240 2y Au_ [ppe) ~ 11As 19)
T GoSiotal Stotal 9o Stotal (deo/P 0)Stota1
Now

mex A(X)

C, = =
Q p(X) VwScone SCOHC

and for a cone semi-angle of 5° at M = 2-58 p_/p,, = 1-029, so that

[(pc/p )_‘ l]A Scone
Sl W o 0029 Cy x 22 20)
(qoo/peo)S!otal ¢ Stotal
therefore
P . (PP} (Po/P) - (AerfS
Dinternat = 1.971 CQScone —_ (2le/ ex) ( ex/ °°) ( °0/p00) ( ex/ total)- (21)
) Stotal 9w/Pe

Internal drag can also be obtained from equation (17) if D, .. is measured by boundary-layer traverses.

5.4. Exit Mass Flow, Total Pressure and Mach Number

Mass flow through the model has been evaluated from the measurement of total pressure at the exit
plane and base pressure.



From continuity :
AL (T = P AL ST, ). (22)

Assuming total temperature of the flow through the model remains constant, then:

pooVovoo . Mey =C __Pex Afx Aco
pOOVOOSC()nE pwVOOSCDIIE Q POO . Aﬁ) ’ Scone
P, A% A, A
=P, Ao AL Sen @)

where A, is the annular area 4., — A,

Thus for each rake m,, and hence A% /4., have been evaluated from P.../By,. P.,,/Ps, etc. and flow
tables where P, , p,, etc. are arithmetic mean values. Thus finally

1 Ax\ P A, A
N ex . €Xn . ) . 24
CQ { 3|:IZ:3(Aex)n Pw]scone A;ko} ( )

6.1. 0° Boattail Angle—General

Results are quoted in detail for the basic model. A number of tests for the 0° boattail angle were done
with the parallel section extended 0-5 inch (Fig. 4) so that the reflected shock impinges on the model just
upstream of the base. This does not appear to have any systematic effect on the values for C p, (plain cone)
or Cp, + Cp,,, (vented cone) but does have a sizeable effect on Cp,__ due to correspondmg changes of
base pressure. Values of C;, or Cp,, + Cp, are quoted for both with and without extension because
this leads to better definition of the variation of this quantity with Reynolds number.

6. Discussion of Results

6.2. Plain and Unvented Slotted Cones (0° Boattail Angle)

Measured values for Cp, ., Cp,, base pressure and transition point position (on the top generator
of the cone) are shown plotted versus Reynolds number (based on total length) in Fig. 10. The unvented
slotted cone results were obtained using exit plug 1 with a plasticine plug placed at a suitable section
around the central body and support struts so that no flow could pass through the model. There appears
to be a tendency for this configuration to give slightly higher values for Cp, than the plain cone. The
schlieren evidence indicates that transition is in a similar position, so that the difference is probably due
to a small increase in cone wave drag caused by the presence of the open slots.

The variation of transition Reynolds number (based on local cone flow conditions) with free stream
Reynolds number per foot is shown compared to some other cone results in Fig. 11. Nose radius was
kept as small as possible (0-002 inch) so that transition would occur on the cone at the lower end of the
Reynolds number range so that the effect of suction could be adequately demonstrated. However the
transition pattern is rather uneven around the circumference (as shown by the photographs of Fig. 12,
taken using acenaphthene as an indicator) probably due to either the presence of a small disturbance
from a window joint or to small angle variation of the incident airflow.

The uneven transition pattern shown in Fig. 13 should be borne in mind when assessing the schlieren
results for determining transition ‘point” location. As can be seen from Fig. 14 the schlieren result can be
optimistic particularly at the higher Reynolds numbers.

The variation of Cp, with Reynolds number is compared with other experimental measurements in
Fig. 15 and effectlvely xllustrates the same point. The boundary layer is probably not fully laminar even
at the lowest Reynolds number due to premature transition over part of the circumference. This has the
effect of spreading out the transitional part of the C,, , versus Reynolds number curve when compared
to other experimental results.

This uneven pattern of boundary-layer condition around the periphery is also well illustrated by the
results from the fixed rake traverses shown in Fig. 16 the distribution of skin friction now being the inverse



of the transition pattern (as shown typically at Re; = 6-5 x 10°). As can be seen good agreement between
rake traverse and force measurements has been obtained for the variation of Cj,, with Reynolds number.

6.3. Vented Slotted Cones (0° Boattail Angle)

Detail results (ie. Cp,...» Cp, + Cp, ,.,.» transition location, mass flow, base pressure and flow
conditions at the model exit) are presented for plugs 1, 1B, 2, 4 and 6 in Figs. 17 to 21.

It is immediately apparent that base bleed achieves laminar flow over the whole of the model up to a
Reynolds number of about 8 x 10° and over the slotted cone up to a Reynolds number of about 9 x 106
irrespective of exit area at the base. In fact there is little systematic change with exist area (Fig. 22) except
apparently in mass flow and exit velocity. Discussion of changes of total drag, skin friction plus internal
drag, mass flow and base pressure will be made under appropriate section headings.

As can be seen there is some scatter on repeat tests leading to fairly large variations of skin friction
plus internal drag. This is mainly because this quantity is of course the difference between two large
measured quantities Cp,_  and Cp, _ (see Section 5.2). An inconsistency in results for plug 2 will be
noted (Fig. 19) where there is evidently a difference in transition Reynolds number between results with
and without the 0-5 inch parallel extension to the model. Other repeat results (not quoted) with other
exit areas showed even larger discrepancies in transition Reynolds number the cause of which was found
to be a very slightly bent tip to the model. This caused premature transition so that no laminarisation
was achieved. It will be recalled that the tip radius was deliberately made as small as practically possible
to ensure that natural transition Reynolds numbers were not too high, so that the model was particularly
prone to distortion of this kind.

It is interesting to compare these results (as regard amount of laminar flow) with results obtained in
Refs. 5 and 6 (Figs. 23 and 24). These latter tests have all been on the same shape of model (an ogive
cylinder model) which has been developed in three series of experiments to give finally (in the latest series)
transition Reynolds numbers of 51 x 10° at M = 3 (Fig. 24). The main difference in the two configura-
tions apart from the obvious ones of body profile and suction-slot shape (continuous circumferential
slots in Refs. 5 and 6 as opposed to the discrete slots of the present model) was the ratio of slot area to
total surface area which was slotted as indicated on Fig. 23.

The failure of the present tests to extend laminarisation beyond about a Reynolds number of 9 x 10°
could be due to:

(1) influence of window disturbance,

(2) influence of refiected nose shock,

(3) ‘end effects’ of slots,

(4) incorrect spacing and/or sizing of slots.

The first two reasons could be checked by testing the model in a different, preferably larger, tunnel.
The third, by testing the continuous slot cone referred to in Section 2.1. This has slots which vary in width

form 0-002 inch to 0-003 inch and has a value of Slot area‘ - of 0-00525.
Total surface area which is slotted

Comparison of total drag, skin friction plus internal drag and base pressure for slotted and plain
cones is shown in Fig. 25. As can be seen the maximum reduction in skin-friction drag due to laminarisa-
tion has been obtained when the difference in total drag is a minimum. This anomalous result is of course
due to the corresponding base pressure changes. When the Reynolds numberis 7 to 8 x 109 the boundary
layer for the slotted cone is all laminar over the whole model but obviously transition takes place just
downstream of the base and before the closure of the base flow region. Hence the re-attachment and trail-
ing shock regions are associated with a very thin turbulent layer which leads to the low base pressure
recorded. For the plain cone on the other hand a similar condition in the base flow occurs at a much
lower Reynolds number (around 25 x 10°); at a Reynolds number of 7 to 8 x 10° the boundary-layer
transition is about } to 4 of the cone length from the tip so that the turbulent layer is considerably thicker
in the base region and hence the base pressure is higher. Eventually at higher Reynolds numbers the
boundary layer is all turbulent over the cone surface and base pressure will fall gradually in the normal
way as the turbulent boundary layer progressively get thinner.




6.3.1. Mass flow. As noted in Section 5 mass flow has been evaluated from an arithmetic mean
of each set of total pressure and base pressure data. Radial and circumferential variations of exit Mach
number based on these measured pressure data are shown in Figs. 26 and 27. As can be seen, the variations
both radially and circumferentially are small for small plug exit area but both distributions (circumferential
in particular) get considerably worse as exit area increases and mean Mach number decreases. Even on
this basis it would be possible to throw considerable doubt on the true mass flow. For instance a lower
bound to the value could be obtained by assuming that the low value of M,, measured on one rake was
applicable to % of the circumference (Fig. 28).

However if the rake and base pressure distributions are studied (Fig. 29) it will be seen that there are
further possibilities of uncertainty, particularly for the larger exit sizes due to the uneven distribution
of base pressure. Comparisons of the distribution of C, around the circumference based on taking the
mean base pressure or the base pressure nearest to the issuing flow are shown in Fig. 30 and lead to the
variations of mean C, with exit area for the two assumptions shown in Fig. 31. Thus the sum total of
this evidence would suggest that the large increase in mass flow through the model with increasing exit
area noted in Fig. 22 is probably much less in actual fact or put another way, the mass flow measurements
are probably only reasonably reliable at small exit areas and high exit velocities where the distributions
are fairly uniform.

This conclusion is supported by the balance and external boundary-layer traverse results (considered
in the next Section) which indicate that internal drag is practically invariant with exit area.

6.3.2. Skin friction and internal drag. Results from traverse and force tests for plugs 2, 4 and 6 are
shown in Figs. 32a to c. The slotted cone gives a roughly constant difference between force and traverse
results, which (as was seen in Section 5) is defined as the internal drag. For plug 2 this roughly coincides
with calculated values for internal drag using measured values for C, and exit Mach number. However
this agreement gets progressively worse as exit area is increased (plugs 4 and 6). As has been seen most of
this discrepancy is probably due to progressively large errors in measurement of C,. Indeed on this
evidence it would suggest that C,, is 0-0003 to 0-0005 irrespective of exit area.

When the flow is laminar over the whoie model the traverse values should compare with calculated
values which lie somewhere between the two curves shown. The top curve is the laminar skin-friction
drag for the complete model which is approximately (from Ref. 3)

*

c 124 x 2/ + 1)+ 31)
Dfconc-cylinder /3 RCL lc + 211,

and the bottom is the laminar skin-friction drag for the cylindrical portion taken in isolation:

c 124 y 21, vl
Dy, portion JRe,  L+2,4,

which corresponds to the case of the laminar boundary layer on the cone being sucked away completely.

6.3.3. Base pressure. A general qualitative explanation of the reasons for the variation of base
pressure with Reynolds number has already been given. Variation of base pressure with boundary-layer
momentum thickness is shown in Fig. 33 and illustrates the favourable effect of the base flow on the
turbulent boundary-layer base pressure.

As can be seen from Fig. 34 base pressure in this experiment appears to be consistently higher than
would be inferred from other experimental results. The only explanation for this would appear to be the
presence of the reflected nose shock in the region of the base.

6.4. Boattail Angles of 3°, 6° and 9°

6.4.1. General. These variations of boattail angle were undertaken primarily to see if, having
reduced the total drag of a high drag body (i.e. cone plus cylinder) by laminarisation, it was possible to

*Kinetic pressure changes have been ignored.

10



do the same for a lower drag body obtained by replacing some of the base area by boattail area. The
combination of boattail and base area would also increase the base pressure so that it was interesting
to see if the laminarisation would still operate with the reduced pressure difference.

6.4.2. Plain cone. Variation of total drag with Reynolds number and with boattail angle for
constant Reynolds number is shown in Figs. 35 and 36. As can be seen the reduction in total drag with
increasing boattail angle is in general small. This is primarily due to the unrepresentatively low base drag
that was obtained for the 0° boattail. To breakdown the drag into its components it is necessary to assume
that the skin-friction drag for the 3°, 6°, and 9° configurations is the same (with a small correction for
change of wetted area) as for the 0° configuration. Boattail and base drags are shown separately in Fig. 37
and their sum in Fig. 38a. As can be seen the boattail drag does not agree well with estimates above a
boattail angle of about 4°. The estimates have been made using the methods suggested in Ref. 9. In this,
boattail pressure coefficient is considered to be:

CPA = CPA1 + CPA2 + ACPBL

where C,,, is the pressure coefficient on the boattail alone (i.e. when it is situated behind an infinitely
long parallel portion)
Cpy, is the pressure coefficient which would exist at the axial station in question on a parallel
portion extended into the region of the boattail
AC,,, is an empirical correction which gives some indication of the magnitude of the boundary-
layer effects.

In this calculation C,, is based on quasi-cylinder linear theory and three characteristic solutions (as
given in Ref. 9). C, is taken from characteristic solutions (interpolated for Mach number) from Ref. 1C.
AC,_, is also given in Ref. 9.

Variation of base pressure with boattail angle (Fig. 38b) appears to agree quite well with estimates
made using the simple method of Ref. 11.

6.4.3. Vented slotted cone. In order to extract skin friction plus internal drag from the force and
pressure measurements, boattail drag has to be estimated. As was seen from the plain cone results the
boattail drag is (as expected) smaller for laminar boundary layers than for turbulent boundary layers
(Fig. 37). Using the amount of laminarisation obtained with no boattail as a guide, curves of boattail
drag variation with Reynolds number (Fig. 39) have been produced. These have been used to obtain the
detailed breakdown of the total drag into its component parts given in Figs. 40 to 48. Similar amounts of
laminarisation for these boattailed versions are indicated but the results are less consistent than for the
0° boattail. For instance no consistent trend with exit area is observable. Summary plots comparing
vented and plain cones for arbitrarily chosen exit areas are shown in Figs. 49 to 51.

No boundary layer traverses were made with the boattailed models.

In summary, it has been shown that similar amounts of laminarisation with boattailed versions of the
model have been obtained even with base pressures that approach free stream static pressure but under
these conditions values for Cp, + Cp,,, are consistently higher than for 0° boattail. However this latter
result may be only a reflection of inaccuracies in obtaining component drags (notably boattail drag).

7. Conclusions

It has been demonstrated experimentally at M = 2:58 that:

(1) by taking air from the surface of a cone via a number of fine slots and exhausting it into the base
area, boundary layer transition over the total length of the cone has been delayed from a unit Reynolds
number of about 2 x 10° (plain cone) to 6-5 x 106,

(2) over the whole test Reynolds number range (2:5 to 14 x 10°) the total drag of the complete body
(slotted cone plus afterbody) has been reduced by using the process referred to in (1). This reduction is a
combination of reduced external skin friction, the addition of an internal drag and changes caused to base
drag. These latter changes can be dominant and are a result of the external boundary-layer changes
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(laminar or turbulent boundary layers and variation of transition location) and the effect of the air
discharging into the base region (base bleed).

Further experimental work is required to determine the reason for the failure of this simple method of
laminarisation to continue above a Reynolds number of 6:5 x 10%/foot. More study of the interaction of
laminarisation and base bleed is required before the best combination of these two effects can be achieved
to give the maximum reduction in total drag of a complete body.

Small distortions at the tip of the cone cause an almost complete breakdown of the laminarisation and
hence it is conjectured that incidence could well have a similar effect. Thus it is recommended that further
work of this nature might best be done on the undersurface of a shape such as a caret wing.
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LIST OF SYMBOLS

A Cross-sectional area (square inches)
Cp Drag coefficient
Co Mass flow coeflicient
Drag
L Total length of body (15-86 inches)
L, Length of parallel section afterbody, 1e. L — {,
M Mach number

Afterbody length on boattailed models

=

P Total pressure

p Static pressure

q Kinetic pressure

r Radius

Re Reynolds number (based on free stream conditions)

Siotal Total surface area (excluding base area)

T Total temperature

|4 Velocity

X Axial length (from nose)

£ Boattail angle

B Cone angle

P Density

¢ Circumferential position

0 Momentum thickness
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RoL = L4+6 x 106

FIG. 12a.  Plain cone: Transition position obtained using acenaphthene. (Re, = 3-3 and 46 x 10°).
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R‘L = 6+6 x 106

ReL = 91 x 106

FIG. 12b. Plain cone: Transition position obtained using acenaphthene. (Re; = 6:6 and 9:1 x 10°).
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ReL = 114 x 106

FIG. 12¢c.  Plain cone: Transition position obtained using acenaphthene. (Re;, = 11:4 x 10°).
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