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Summary

An experimental investigation of the pressure recovery and drag characteristics of two series of
isentropic centrebody intakes (designed for Mach numbers of 248 and 3-27 respectively) has been made
at zero incidence and over the Mach number range from 2-14 to 3-27. At the design Mach numbers experi-
mental results have been compared with calculated values of drag at full mass flow and estimates of
shock pressure recovery. Approximate methods have been devised to predict the variation of full mass
flow and drag with Mach number at below design values.

The correlation of experimental pressure recovery with intake geometry for conical centrebody intakes
published in an earlier paper has been revised and generalised. It can now be used for all axi-symmetric
centrebody designs utilising external compression and internal contraction up to the maximum permis-
sible for ‘starting’ (without variable geometry).
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1. Introduction

The pressure recovery from the two shock system of a conical centrebody type intake can be improved
upon by reshaping the centrebody to produce a multi-shock or ultimately an isentropic external compres-
sion before the final normal shock. Such an intake must necessarily have a longer centrebody and deflect
the externally compressed air further away from the axis to achieve its greater compression efficiency.
Thus compared with the conical centrebody intake its losses other than shock losses may be greater, its
liability to flow instability and its proportionate decrease in pressure recovery with angle of incidence
will be worse and its external drag may be higher. However at Mach numbers from 3 to 4 the potential
gains in pressure recovery are such that if the external drag can be kept at a reasonable level, considerable
improvements in performance (as compared with conical centrebody intakes) are possible.

The work reported here has been done to explore this potential with isentropic centrebody intakes
designed for M = 2-48 and 3-27 with the prime object of reducing drag to a minimum consistent with
maintaining a pressure recovery which is appreciably higher than that obtainable with a conical centre-
body. This recovery will be somewhat lower than the highest that it is possible to attain with this type
of intake but nevertheless a higher thrust minus drag may result.

2. Design of Models
2.1 General

With an isentropic centrebody the characteristics are usually focussed at a point and the cowl has to
be positioned with respect to this point in a flow field where large changes in flow direction and Mach
number can occur for very small axial or radial changes of the cowl lip position. The problem is further
complicated by the presence of the boundary layer on the centrebody which can cause appreciable
distortions of the theoretical flow field.

Part of a characteristics network for a typical isentropic centrebody is shown in Fig. 2. High pressure
recoveries can be obtained by positioning the cowl at (a) where the mean entry Mach number is
approximately 1-24. However because of the large flow deflections, both pre-entry and cowl drags will
be high. Placing the cowl further forward where the flow deflection is smaller and the Mach number



higher as at (b) will reduce the drag considerably but will also adversely affect pressure recovery. With
a higher mean entry Mach number it is now possible to contract the duct internally to some extent.*
For conical centrebody intakes, this has been shown to have a beneficial effect! on pressure recovery.
Thus by adopting a moderate amount of isentropic compression it may be possible to attain higher thrust
minus drag than with either a low drag conical centrebody intake or with a high recovery isentropic
centrebody intake,

2.2. Models designed for M = 2-48

The tests performed at this Mach number were of a preliminary nature and were aimed to demonstrate
that the ideas enunciated above did lead to some overall advantage.

Cowl shape and lip position relative to the characteristics focus point for an isentropic centrebody
design that was tested and reported on in Ref. 2 are shown in Fig. 2. Cowl shapes SD2 and SD6 (which
had been combined with 30° conical centrebodies in Refs. 2 and 3) were used with their lips positioned
as shown in Fig. 2. In both cases the isentropic centrebody profiles were continued right up to the entry
plane so that Mach numbers at the cowl lip and on the centrebody surface were 1-67 and 1-30 respectively
for SD2 and 1-93 and 1-47 for SD6. Centrebody and cowl co-ordinates (including the original SD4
design of Ref. 2) are shown in Fig. 3.

2.3. Models designed for M = 3-27

Positions of the cowl lip relative to the focus point that have been chosen as a basis for cowl designs,
are shown in Fig. 4. As can be seen eight positions were tried at this Mach number and in addition the
centrebody was moved axially (relative to the cowl) for some configurations so altering the cowl lip
away from its design position in the compression flow field. Again in each case the isentropic profile
has been continued up to the entry plane so that the Mach number across the entry plane varies con-
siderably. Variation of this entry-plane Mach number is indicated in diagrams that are presented with
the pressure recovery results in Figs. 14 to 21. Maximum permissible contraction of the duct down-
stream of the entry plane for ‘starting’ has been incorporated on all centrebody profiles in their design
positions. These contractions are based on the arithmetic mean entry Mach number.

Centrebody and cowl co-ordinates are shown in Figs. 5(a to ¢).

One centrebody (Isentropic 3-27/E (s)) was made with perforations in the surface near the entry plane
(Fig. 5(b)). These holes lead to a central bleed duct which communicates with the free stream via hollow
connecting struts similar to arrangements tested in Ref. 3.

3. Apparatus and Test Procedure

Tests were done in the R A.E. No. 4 (53 in. x 5} in.) supersonic wind tunnel during 1957. The majority
of the tests were ones which combined the measurement of both drag and pressure recovery. Axial force
was measured on the complete model by mounting it on a strain gauge balance as shown in Fig. 6. Total
pressure of the air flowing through the model was measured at the exit station (Fig. 1) and also the base
pressure by means of the pitot-tube rakes shown in Figs. 6 and 7. Flow through the model was varied
by changing the exit ‘plug’ (Fig. 1) at the rear of the model. External drag (i.e. cowl plus pre-entry drag)
was obtained (the same procedure as in Ref. 4 where more details are given) by subtracting internal,
base, and external skin-friction drags, and the pressure force on the end of the balance sting, from the
total axial force measured on the balance. A turbulent flat plate skin-friction coefficient C, was used for
the appropriate free stream Mach number and Reynolds number (0-6 x 105 at M = 2:14 to 0-35 x 10°
at M = 3-27) to evaluate external skin-friction drag.

In addition, for the M = 2-48 tests only, pressure recovery was measured in a separate test at the
‘f” station (Fig. 1) using the pitot rakes, support, conical exit throttle etc. shown in Ref. 3. The difference
between the recovery at stations ‘f* and ‘ex” was not thought to be significant when using pressure
recovery results in the final correlation presented in Figs. 41 to 50.

* Up to the maximum for ‘self starting’ i.e. contracting the duct until the flow behind a normal shock
at the inlet plane accelerates just to sonic velocity.



4. Discussion of Results
4.1. M; = 248

As can be seen from Fig. 2 the length and shape of the pre-entry streamline and the shape of the cowl
leads to a high drag for the original design of Ref. 2. An exceptionally high drag was in fact measured
because the intake operated with a detached shock at the cowl lip under all conditions of flow through.

The lower drag versions designed with cowls SD2 and SD6 had attached cowl lip shocks and the
appreciable reductions in drag together with the accompanying fairly small reductions in pressure
recovery compared to the original design are well illustrated in Fig. 8. Also shown in this figure are
results quoted from Ref. 5 for two 0, = 30° conical centrebody designs using the same two cowl shapes
SD2 and SD6. As can be seen gains in pressure recovery of 0-07-0-08 for practically the same drag have
been measured for the SD6 cowl shape.

Detail results for pressure recovery and drag variation with mass flow at the three test Mach numbers
for the isentropic 2-48-SD6 and SD2 configurations are shown in Figs. 9 to 11.

42. M, = 327

42.1. General. The M, = 2-48 results having proved encouraging it was decided that the main
investigation should be at a higher Mach number where it might be much more difficult to obtain both
low drag and high recovery. At M = 3-27 investigations of conical centrebody performance® had shown
that maximum recoveries of about 0-48 could be combined with low external drag. Hence the primary
objective was to demonstrate appreciably higher recoveries than this for the same drag as well as con-
siderably higher pressure recovery with increased drag which nevertheless could be a better compromise
on a thrust minus drag basis.

a transition strip (two thicknesses of Sellotape) are shown in Fig. 12. In Fig. 13 the approximate position
of the shock intersection point is shown in relation to the theoretical characteristics focus point. The
actual shock intersection may not be a point but a region as analysed in Ref. 6. The point to note however
is the large influence of the separation region occurring on the centrebody in the absence of a transition
strip, on the position of this shock intersection region. Even the influence of the transition strip itself and
the resulting thickened boundary layer leads to a significant displacement of the shock intersection
point outside the theoretical characteristics focus point. In view of this result all testing at M = 327
was done with a transition strip on the centrebody.

4.2.3. Drag und mass flow at M, = 3-27. Drag coefficients at full mass flow at M = 3-27 have been
compared with calculated results for each configuration. Pre-entry drag has been calculated by dividing
the pre-entry streamline into a number of straight line segments and deriving the pressure coefficients
associated with each segment from the characteristics diagram. Cowl drag was computed by two
different methods i.e. by quasi-cylinder linear theory and by two dimensional shock-expansion theory.
In both cases the pre-entry flow has been taken into account but as Table 1 shows, in the case of linear
theory, the difference between allowing for or ignoring the pre-entry flow is small.

TABLE 1
Dcowig
Configuration
Linear theory Linear theory 2 dimensional
(no pre-entry flow) (with pre-entry flow) shock-expansion theory
Isen. 3-27/0-SD17 00250 00261 00459
0O-SD15 00164 0-0179 00252
E-SD18 00305 0-0305 0-0560
E-SD27 0-0404 0-0404 0-0909




For cowls with high initial slopes and small projected area it is probable that two-dimensional shock-
expansion theory will give the most realistic results. Maximum mass flows have been estimated from pre-
entry streamline shapes derived from the characteristics diagram.

Comparison between measured and calculated drags at full flow are shown in Figs, 14, 15, 16 and 19.
As can be seen in Fig. 14 the agreement between calculated and measured values for both drag and
maximum mass flow is quite good provided the maximum internal contraction limit is not exceeded.
The maximum mass flow tends to be 3 or 4 per cent below the theoretical value even when this limit is
not exceeded and as can be seen from the schlieren photographs this is due to additional deflection in the
pre-entry flow caused by the boundary layer on the centrebody. This tendency appears to be rapidly
exaggerated as more external compression is attempted as in the designs of Figs. 15, 16 and 17 and the
boundary layer on the centrebody thickens or ‘bridges’ part of the profile. These effects are shown
quite clearly in the schlieren photographs. Both the low Reynolds number of the tests (approximately
0-35 x 10° based on cowl lip diameter) and the means of fixing transition lead to artificially thick turbulent
boundary layers which aggravate this situation.

In the design of Fig. 17 the shock structure limit of Ref. 7 has been exceeded and this is probably the
cause of the detached shock at the cowl lip.

4.2.4. Pressure recovery results at M = 3-27. It has been shown with conical centrebody intakes
that the effect of contracting the duct internally (up to the maximum allowable for ‘starting’) on pressure
recovery can be uite large particularly if the centrebody surface Mach number at the entry plane is
greater than 1-3'. Further, for a given contraction ratio the effect of flow turning on the pressure recovery
can be characterized by the internal angle of the cowl at the cowl lip (this is discussed further in Section 5).
These two parameters have not been the subject of a systematic investigation in the present experiments
but the same trends of pressure recovery variation have been observed, as is shown in Fig. 18.

For conical centrebody intakes, provided the conical shock remains outside the cowl lip and the
maximum allowable contraction ratio is not exceeded, withdrawal of the centrebody with respect to the
cowl (i.e. increase of ) usually results in increased recovery. This is because the increase in mean entry
Mach number is generally small and for most normal cowl shapes the internal contraction of the duct
is increased. The same trend in results (as 6, increases) is not generally observed for the isentropic centre-
body intakes shown in Figs. 19 and 20. In these cases the beneficial effects of increased internal con-
traction are being counterbalanced by fairly large increases in mean entry Mach number which lead to
increased losses from the final normal shock.

The large decrease in maximum flow and pressure recovery and corresponding increase in drag due
to excessive internal contraction is well iltustrated in Fig. 20 (b) for Isentropic 3:27/S. Effects of changing
cowl shape are shown in Figs. 21 and 22 and do not change pressure recovery appreciably. These changes
involve both internal contraction and cow] undersurface slope.

4.2.5. Summary of pressure recovery and drag at M = 3-27. The results show that compared with
conical centrebody intake values it is possible to get a substantial increase in pressure recovery (from
0-48 to 0-55) for the same level of external drag, Cp_, == 0-03. Efforts to raise this recovery substantially
without radically affecting the drag were not so successful however as is illustrated in Fig. 23.

4.2.6. Effect of boundary-layer suction at M = 3-27. For configuration E the effect of sucking
boundary layer away through some flush holes in the centrebody surface appears to be small (Fig. 24).
As this is a configuration where the cowl lip has been placed at the focus point of the characteristics
system and the diffusion has been continued down to M = 1-4 so that boundary-layer effects on the
centrebody should be large, it is probable that the control was not operating effectively and much more
work is required in this area.

4.3. Drag and Pressure Recovery Results at M = 29, 2-48 and 2-14

4.3.1. General. Pressure recovery and drag versus mass-flow curves for Mach numbers of 2-9, 2-48
and 2-14 are shown in Figs. 25 to 33 for configurations which gave the most promising results at design
Mach number. Summary plots of maximum mass flow, drag and pressure recovery at maximum flow
versus Mach number are shown in Figs. 34 to 36. The penalty for adopting internal contraction (to



increase pressure recovery at design Mach number) in decreasing maximum flow and correspondingly
increasing drag at Mach numbers below design is well illustrated in Figs. 25 and 28 (comparing
3-27/J-SD6A and 3-27/0-SD15). The schlieren photographs (Figs. 25, 28 and 31) show that the shock
at the cowl entry only becomes detached at M = 2-14 for 3-27/J-SD6A whereas it is detached at Mach
numbers below 2-90 for 3-27/0-SD15.

It should be noted that 3-:27/J-SD6A is the only configuration that has an attached cowl lip shock at
both M = 29 and 2-48. As can be seen from Fig. 36 the drag at full flow varies very little between these
two Mach numbers. This would seem to indicate that the increased pre-entry drag is being roughly
cancelled by a decreased cowl drag due to the changed pre-entry flow in front of the cowl. Below M = 2:48
the drag rises rapidly due to increasing shock detachment at the cowl lip.

4.3.2. Estimation of maximum mass flow (Ay/Aen)max and external drag at maximum flow Cp,_, .
An accurate estimation of (A,/Aca)max and Cp,, at Mach numbers below design could be made
(assuming no shock detachment at the cowl lip) by constructing a characteristics network for the appro-
priate Mach number. An approximate method has been devised (see Appendix A) however which could
be useful for quick estimates. Comparisons of estimated and measured values for (4,/Aeq)max for the
range of test Mach numbers are shown in Fig. 37. The agreement (except for 3-27/E for which the external
compression is taken down below the ‘shock structure’ limitation) is quite good.

The drag estimates (see Appendix B) shown compared with measured values in Fig. 37 do not agree
so well as the maximum flow values. This is probably due to the assumptions concerning the rate of
movement of the detached cowl lip shock with spillage (in the cases with excessive internal contraction)
which do not agree well with measurements taken from schlieren photographs. As shown in Fig. 39
drag values calculated using measured shock positions in front of the entry plane agree more closely
with experimentally determined values.

4.3.3. Estimation of pressure recovery. In Fig. 40 the measured pressure recovery is shown com-
pared with the calculated shock recovery (using the approximate construction of Appendix A) for the
3-27/J-SD6A configuration. These curves should (and do) tend to converge at the lower Mach numbers
because the internal contraction is getting closer to the maximum allowable for ‘starting’ (it slightly
exceeds it at M = 2-14) which as has been seen tends to reduce appreciably the losses other than shock
losses.

General pressure recovery estimation is dealt with more fully in Section 5.

5. A General Correlation of Pressure Recovery Results for Centrebody Intakes

The pressure recovery of centrebody intakes is affected by the shock losses, the mean Mach number
and the boundary-layer thickness at the entry plane, the internal contraction ratio, the rate of turning
of the airflow at or just downstream of the entry plane, the area distribution and the total wetted area
of the subsonic diffuser. In Ref. 1 a general correlation of the majority of published pressure recovery
results for conical centrebody intakes was achieved by plotting P,/P,, cos n; versus A, /A,. This takes into
account the effect of internal contraction 4,/A; and flow turning (characterised by the use of #; the initial
angle of the cowl undersurface) but does not take subsonic diffuser variations and Reynolds number or
roughness effects into account.

The same method of approach can be taken a stage further so as to be appropriate to multi-shock
and isentropic compression surfaces by plotting

AP, , Aal,
2 - — 1 (Aeo/ Admax
p, (L = sin(d; — )} versus = —

where

AP . .
“—L = shock recovery (assuming a final normal shock at M = M) minus measured pressure recovery

o i.e. losses other than shock losses

&, = inclination to the horizontal of the centrebody surface at the entry plane



n; = initial angle of the cowl undersurface

Ay . .
R actual total contraction ratio
1

(Aoo/Aen)max (measured)
AifAen X A A;

A . . . .
( j‘i) = maximum theoretical value for the total contraction ratio
t max

— (A oo/Aen)max (theoretical)
(Ai/Aen)Theoretical X (At/Ai)max for

corresponding to ‘starting’
the design M, corresponding to M,

This provides a correlation expressing the losses other than shock losses in terms of the geometric
quantities and flow conditions at the entry plane for a series of values of mean entry plane Mach number
Mi'

As with the previous correlation the degree of success achieved by the use of such simple parameters
(which obviously have many limitations) is judged simply by the results shown in Figs. 41-50. In general
a slightly better collapse of the results is achieved than was obtained for the conical centrebody results
of Ref. 1. This is probably due to explicit use of the mean entry Mach number and to the use of a slightly
different parameter to express flow turning (1 — sin(; — #,)) rather than cos #;. Even so this parameter
cannot be regarded as wholly satisfactory as of course it is possible to have different rates of flow turning
with geometries for which the values of (4.,/A4,)/(Aw/A)max and {1 — sin(8, — #;)} are identical. A study
of this situation has in fact been done in Ref. 9 but the results are somewhat inconclusive and cannot be
regarded as a general result. However they do indicate that any extra effect not indicated by our para-
meters is probably fairly small.

As before one obvious limitation of this correlation is the absence of any parameters dealing with the
extent and shape of the subsonic diffuser and the Reynolds number of the tests. These effects are probably
well illustrated by the differences between the majority of published British and American test results
for similar configurations. In general American subsonic diffusers are longer and have lower initial
rates of diffusion than British diffusers and the American test Reynolds numbers are higher. Thus the
slope of the curves of (AP,/P,,){1 — sin(8; — #,)} versus (Aw/A)/(Aw/A)may for similar mean entry Mach
numbers are different. The American results for no internal contraction give a value of (AP/P,){1 —
sin(d; — #;)} of approximately 0-033 for all values of M (Fig. 45) whereas the British results give a value
of about 0-05 for all values of M; > 1-35, but this decreases to 0-025 as M, decreases below 1-35. This is
consistent with the generally observed result that when the terminal normal shock separates the com-
pression surface boundary layer, the effect of a slow initial area variation in the subsonic diffuser is
beneficial but has the opposite effect (due to higher mean velocity and hence higher skin-friction in the
duct) when there is no separation. Thus the generally higher initial rates of diffusion of the British diffuser
geometries lead to the results just observed.

Results for isentropic and multi-shock intakes are not numerous but those available fit in well with
the single cone shock results. There does not appear to be any consistent effect of the greater boundary-
layer thickness at the duct entry plane (due to the larger wetted area and the effect of the larger adverse
pressure gradient) compared with the conical centrebody case.

It must be remembered that the results plotted are only applicable to attached or nearly attached
shock configurations. Thus they are not applicable for predicting pressure recovery where the con-
figuration has excessive internal contraction or where the external compression exceeds the ‘shock
structure’ limit of Ref. 7.

Example of Application of Correlation Curves
An isentropic centrebody intake designed for M = 3-45 with the characteristics focussed at the cowl
lip at this Mach number. From Ref. 7, M; corresponding to the ‘shock structure’ limit = 1-83.



Shock pressure recovery = 0-798.

From Fig. 46 (AP;/P,){1 — sin(6; — #,)} = 0017 for maximum internal contraction.

Thus the design having minimum drag at the design Mach number will have an internal cowl angle
such that the internal cowl lip shock is just attached.

ie.as M; = 1-83 and §, = 362

= 16-5°
Thus
AP; 0-017
il A = 0026
P, 1 — sin(36:2 — 16°5)
or
B
— = 0772
P, 0
For no internal contraction:
AP, .
P—{l — SIn((Ss - T’]l)} = 0048
therefore
B
— = (726
P 0

6. Conclusions

Isentropic centrebody intakes can be designed with limited amounts of external compression both at
M = 2-48 and 327 so that their external drags are the same as equivalent conical centrebody designs.
These designs then have pressure recoveries that are some 0-05-0-08 higher than the conical centrebody
intakes and their drag, maximum mass flow and pressure recovery can all be fairly well predicted by
simple means.

Isentropic centrebody intakes with rather more external compression than those referred to above
give higher drags, lower maximum mass flows and lower pressure recoveries than are predicted theoretic-
ally by simple means. The boundary layer on the centrebody would appear to be responsible for these
discrepancies and better agreement would probably be obtained if the Reynolds numbers were sub-
stantially increased above the present values of approximately 06 x 105 (M = 2-14) to 0-35 x 10°
(M = 327).

External compression to entry Mach numbers below the ‘shock structure’ limit of Ref. 7 results in
detached shock waves at the cowl entry and hence to high drags.

Approximate methods for calculating the maximum mass flow and drag at maximum flow at below
design Mach number have been suggested that appear to give reasonable agreement with measured
values.

A correlation of a large amount of the published information for the pressure recovery of axi-symmetric
centrebody intakes has been made. This is similar to the correlation suggested for conical centrebody
intakes suggested in Ref. 1 but extends its applicability and appears to give results which could prove
useful in the prediction of the performance of any design.

APPENDIX A
Estimation of (A ./ Aen)max @ Mach Numbers below Design

As shown in Fig. 51 the isentropic centrebody surface has been approximated by an ‘equivalent’
multi-shock body and the shock wave shapes and streamline patterns behind these shocks have been



determined by an approximate construction. The method of construction used for the curved shocks
was suggested in Ref. 10. There remains the determination of the ‘equivalent’ multi-shock centrebody
ie. d;, 8,, d3—etc. The choice of 8, is arbitrary but as shown in Table 1A the influence on the final
answer in a selected case does not appear to be very great. §,, &5 etc., are chosen so that the increases
in entropy through the shocks emanating from 4,, J,, ; etc. are all approximately equal. In practice
the angles ,, d; etc. have been decided on the strength of the first segment of the shock wave. This is
made somewhat clearer in the following Section which explains the full procedure.

A.1. Details of the Construction used for Determining (Ap/Aey)max (Fig. 51)

(a) It is assumed that there is a linear variation of Mach number and flow direction with ray angle 0
between the values just behind the initial cone shock and the values at the first cone surface.

(b) A constant flow deflection equal to the deflection at the surface (i.e. §,, §, etc.) is assumed for each
of the subsequent shocks.

(c) &, is chosen arbitrarily and the position of the first kink is determined by the intersection of this
line (inclined at &; + 6, to the horizontal and lying tangential to the actual isentropic centrebody profile)
with the extension of the initial cone surface.

(d) Cone ‘surface conditions are known and hence for the surface deflection &, the wave angle 0.,
is known and the shock wave is assumed to be inclined at this angle from the surface until it intersects
with the first ray 0, where 6, is say 0, + 3°.

(e) At this intersection point the flow is assumed to have a new Mach number and direction (as given
by (a) above) and thus the second portion of the shock is constructed having an inclination 6,,, between
the rays 0, and 8, where 8, = 6, + 3°.

(f) The above procedure is repeated until enough of the wave shape has been determined. The straight
streamlines (which will slightly converge) are then drawn from the intersection points.

(8) 0, is chosen so that the static pressure rise (which is proportional to the entropy gain) is the same
for the first element of the third shock as it was for the first element of the second shock. The kink
point is again found as the intersection of the line inclined to the horizontal at (6, + 8, -+ 8,) lying
tangential to the original isentropic profile with the line inclined at {6, + J,) to the horizontal.

(h) The construction of the third shock is exactly as for the second, the shock being assumed straight
between successive streamlines.

(i) Finally the dividing streamline is traced back from the cowl lip to the second shock. The ray
defining the intersection of the dividing streamline with this shock is then determined (#') and the ratio
A,/A' is obtained from the conical flow data of Ref. 11 where ¢’ replaces 0, and A’ replaced A4;.

(j) As A" and A., can be found from the diagram, 4,,/A4., is determined.

This applies only to intakes whose internal contraction is equal to or less than the maximum for
‘starting’. Where this internal contraction limitation is exceeded, choking at the internal throat will
impose an additional limit on the maximum mass flow through the intake. The additional calculation
for this case is detailed below.

A2. Calculation of (Ae/Aen)max When the Internal Contraction is Above the Maximum for ‘Starting’

Knowing (4./Aen)max from Section 2 above, we can calculate A}/A4; from:
AEk _ (Aoo/Aen)max X A::J/Aoo
Ai B 1/P X At/Aen
where *i” denotes condition at the entry annulus and P/P,, is assumed to be the total head loss through
the initial cone shock only.

From supersonic flow tables the value of M, the mean inlet Mach number corresponding to A¥/A;
can be.obtained:and hence assumlng a normal shock at the entry at this Mach number the new restricted
(Aw/Aen)max due to choking at'the throat 4, is found from:

A\ PYP x PJP, x AJA,,
Aen max Ai)/AOO




where P/P; is the total head loss across a normal shock at M = M,. This does not take into account the
fact that the shock will be detached from the entry lip and will occur at a mean Mach number higher
than M, and thus probably the method will tend to overestimate (A4,/Aen)max-

TABLE 1A

, Ay

Configuration M, N (A )
Isen. 3-27/E 2:90 12 0-7126
10 0-7337
8 0-7412
2-14 10 0-4852
7 0-4829
5 0-4876

APPENDIX B

Estimation of Cp,,,, at Mach Numbers Below Design

The maximum permissible internal contraction is not exceeded for the whole Mach number range
327 to 2-14 for the configuration Isen. 3-27/N-SD24 (8, = 23-6) and for the configuration Isen. 3-27/J-
SD6A for the Mach number range 3-27 to 2-48. Hence for these configurations the shock at the cowl
lip should be attached. In all other instances of estimating the external drag at full mass flow the cowl
lip shock will be detached due to excessive internal contraction.

B.1. Attached Shock at the Cowl Lip
In this case the drag, as is usual, is the sum of the pre-entry and the cowl drags which, for our

approximation to the flow pattern in front of the intake will be (see Fig. 52)

1 B
Co.pp = g A {j (P — Po)dA + (p1 — P)(Ac — Ap) + (P2 — P)Ap — A¢)
w‘tmax A

+ (p3 = Po){AE — Ap) + (Ps — P)(Ar — Ap) + (Ps — Po)(AG — AE)} .

. : B (P - poo) dA
As for mass flow, the pre-entry drag for the portion AB of the streamline J‘ T
' A 9 o Amax

from Ref. 11 where 6’ replaces 0, and Cpy,., 50 derived is based on Ap and hence has to be multiplied
by AB/Amax'
Two dimensional flow is assumed over the cowl DG to obtain the pressures ps, p, and ps.

is obtained

B.2. Detached Shock at the Cowl Lip

The method adopted for dealing with the case when the cowl lip shock is detached due to excessive
internal contraction is the same as described in Appendix V of Ref. 5. A linear movement of the shock
is assumed with mass flow, from the attached position at full mass flow (4,/A4cn)max Calculated assuming
that there is no internal contraction to a position at zero mass flow calculated (by the method of Ref. 12)
treating the intake as a closed ‘bluff’ body.

10



The pre-entry drag (Fig. 53) is now given by

B D
{J; P — p)dA + (p1 — P Ac — Ap) + (P35 — PMAp, — Ac) + @~ Pwo) dA}

1
C req — 4
bereo qooAmax Dy

B
f (p — ps) dA is evaluated in the same manner as suggested above in 1.
A

D
The portion f (p — po)dA cannot be evaluated as the static pressure varies in some unknown
Dy

fashion from the pressure behind the assumed normal shock (at M = M;) to the stagnation pressure
at the cowl lip D.

Thus the same method used for conical centrebody intakes is adopted and it is assumed that an under-
estimate of Cp,,., given by taking:

D
(P — Po)dA = (ps — Po)(4p — 4p)
D,
is counterbalanced by an overestimate of the cowl drag given by calculating this exactly as in the pre-
ceding Section (i.e. two dimensional flow is assumed and the effect of the shock detachment on the under-
side of the cowl lip is ignored), as is known the effect of subsonic pre-spillage is to decrease the cowl
drag from the value at full mass flow.

LIST OF SYMBOLS

A Cross-sectional area
Cpooun Cowl drag coefficient
Cop... External drag coefficient
Dore Pre-entry drag coefficient
C; Skin-friction drag coefficient
M Mach number
p Static pressure
P Total pressure
q Dynamic pressure 3p V2
r Radial co-ordinate
x Axial co-ordinate
AP; .
7); Losses other than shock losses (residual loss)
o Change in inclination of centrebody surface
s Inclination of centrebody surface to horizontal at entry plane
0 Angle to horizontal of a line passing through tip of the centrebody
n Angle to horizontal of cowl undersurface
A Angle of flow to the horizontal

11



At the constant area measuring section

At the duct inlet

At the cowl lip

At the centrebody surface

At the duct minimum area section

Immediately behind a shock wave

In the free stream

At the duct entry

At the duct exit

At full mass flow

Maximum value
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F1G. 7. Strain gauge drag balance with exit flow and base pressure pitot tube rakes.
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Fic. 50. Correlation of relative contraction ratio and residual loss.
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F16. 51. Approximate construction for determination of (4.,/4en)max-
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F1G. 52. Calculation Cp_, at below design Mach number (attached shock at cowl lip).
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FiG. 53. Calculation of C,,m0 at below design Mach number (detached shock at cowl lip).
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