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Summary. 
The flow of air past an infinite shell is considered. In its undisturbed state the shell is a circular 

cylinder. A portion of the shell between two normal cross-sections is flexible, the rest of the shell being 
rigid and fixed. The flexible portion is closed by planes normal to the axis of the cylinder. 

In the absence of any oscillations of the flexible portion there is a uniform flow outside the cylinder, 
which has the direction of the axis of the cylinder. When the flexible portion oscillates, the uniform 
flow is perturbed and there is also an acoustic field generated in the space within the flexible portion 
with the result that there are oscillating perturbation pressures on both sides of the shell surface. A 
method of determining these perturbation pressures is given when the flexible portion oscillates 
harmonically with given frequency in a given mode. Expressions for these perturbation pressures are 
then used to obtain formulae for the associated generalised airforces. 
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1. Introduction. 
When structures are immersed in fluid flow they may vibrate as a result of some excitation such as 

random pressure fluctuations in a boundary layer, or there may be self-maintained vibration. The 
vibration in turn induces additional fluctuating pressures which have to be taken into account in any 
analysis of the nature of the vibration. It has been common practice to obtain the pressure on an 
oscillating cylindrical shell in supersonic flow by means of piston theory, or modified piston theory, for 
panel flutter studies. At low supersonic speed the accuracy of piston theory is not good and a more 
accurate theory should be used. For  studies of turbulent boundary-layer excitation, where aerodynamic 
damping is of particular importance, accurate aerodynamic theory is required. 

Randall 1 has considered the supersonic flow past quasi-cylindrical bodies of almost circular cross- 
section, and the method he used may be extended to obtain the pressure on a cylinder oscillating 
harmonically in a given uniform flow. Strack and Holt  2 suggest this extension and in fact carry out 
part of the analysis. The present Report considers an oscillating flexible portion between two cross- 
sections of a circular cylinder and gives a complete linearised analysis of the determination of generalised 
airforces acting on the outside surface of this portion. 

There is also a discussion of the generalised airforces acting on the inside wall of the flexible portion 
of the cylinder when this is closed by planes normal to the axis of the cylinder. 

2. Derivation of Generalised Airforces Actin9 on the Outside Surface of the Cylinder. 
Consider an infinite cylinder as shown in Fig. 1 with its axis along the axis of z. Outside the cylinder 

there is a fluid flow which is a combination of a uniform flow of Mach number M in the positive direction 
of z and a superposed perturbation caused by the vibration of a portion of length l of the cylinder surface, 
intercepted by two planes normal to its axis. Apart from this portion of length l, the cylinder is assumed 
rigid and fixed. 

The origin of co-ordinates is taken at an end of the portion of length l so that the whole of this portion 
has positive z co-ordinate. Cylindrical polar co-ordinates r, 0, z are used to define the position of a point 
in space. 

The normal displacement at time t of a point (a, 0, z) on the surface of the cylinder in a mode j of 
vibration will be denoted by wj(O, z/l, t). If we consider harmonic oscillations of circular frequency co, 
then we shall write 

^ Z 

wj(O, ~, t) = a wj(O, 2) exp (i~ot) (1) 

where "a' is the radius of the outside surface of the cylinder. As is usual, only the real part or the imaginary 
part of a complex quantity has physical significance. 

Because of the assumption that only a portion of length 1 vibrates, while the rest of the cylinder remains 
fixed, we must have 

' z ~< 0 '  (2)  

Let 

2n 

0 

x exp ( -  inO) dO (3) 



and 

l 

ff~,(n,k)=~f~,(n, 1 )×exp  (-i-~-)dz. 
0 

(4) 

Then 

~,(O1), = j , × exp(inO) (5) 

and also 

(oz  ' Z i  , ~J '7 = ~ ~(n ,k)  × exp ~ino+-v) ak; (6) 

The perturbation velocity potential q~i at a point (r, 0, z) of the perturbed flow outside the cylinder 
when it is oscillating according to equation (1) can be written in the form 

G z !) c~j = Va q~ , O, l '  v, M, exp (iogt) (7) 

and the corresponding perturbation pressure p~ in the form 

where 

= p (  z pj pV z j ,O,~,v,M, -/a ) exp (icot) (8) 

ooa  
v = ~ (9) 

is a frequency parameter, V is the main stream speed and M = V/ao is the Mach number, where a0 is 
the speed of sound. 

The perturbation velocity potential ~bj satisfies the boundary condition 

(I0) 



on the outside surface of the cylinder. 
If we substitute for Cvj(0, z/l) from equation (6) into equation (10) we get 

~ = a  4n2 
/ ikz (k---~+v) Nj(n,k'exp~inO+T+ie~t)dk (11) 

Let us consider the velocity potential ~b of the perturbed flow outside the infinite cylinder, which 
satisfies the boundary condition 

~-r = - V exp inO + ix ioot 
r = a  a 

(12) 

on the surface of the cylinder. The coefficient of z in the exponential term on the right of formula (12) 
is x/a, rather than k/l which was used in formula (11), for this is the more natural coefficient to take in 
considering a boundary condition of the form (12) over an infinite cylinder. The minus sign in formula 
(12) is used so that certain functions derived in Appendix B should collapse to ones obtained by Randall 1 
when the frequency of oscillation tends to zero. 

The velocity potential q~ will be of the form 

- , v ,  exp nO+ixz-+io)t . 4) = Va ?5. x ,  a a (13) 

Expressions for the function ~,(K, r - ,  v, M) are obtained in Appendix A for positive v, all integral a 

values of n and all x. If v is negative, then we use the relation 

~" 'a ' v'M = (9" 'm' (14) 

where the asterisk denotes the complex conjugate of a function. The relation (14) is easily obtained 
from (12) and (13) on taking real or imaginary parts, changing the sign of e), and again forming a complex 
function from its real or imaginary part. 

The perturbation pressure p corresponding to the perturbation velocity potential q5 of equation (13) 
will be of the form 

p = p V 2 p " @ ' ; ' v ' M )  x exp ( inO+ixz-+io)t)a (15) 

where, according to the linearised Bernoulli equation 

p = p + ~b (16) 

we have 

= - , v ,  . (17) ~, ,a,V, i(x+v)~5, X,a 



By comparing the boundary conditions (11) and (12) and applying the principle of superposition to 
the solutions we get 

( ) t' i 2 Z ka - ,  v, M x exp nO +---[- + iv) x dk p j = - ~ z p V  --[-+v x~(n,k)xp,  k_~,r / ikz "~ 
a 

1 z ~  ? {ka ~.a J ,2 (k__~ r M) / ikz \ 
- v ,  x exp x , , LinO+--~+io),) dk. (18) = ~-~pV ~,T+V) × ~ ( , , . k ) x ~ .  a 

t l  = - c o  - o o  

Let us write 

/ q~. u, a , v , M  = ~,, , r , v , M  x exp(i~cfl#)d~ 

- o o  

(19) 

where 

B = ~/IM ~ -  11. 

We may then use the convolution theorem to replace (18) by 

1 2 Z 1  2 
P~= 2~fl pV a + i  x # j  n, 

n = - - O ~  - -GO 

{Z-Zo r_ M) 
, , v, d z  o x $ " \  fla a 

(20) 

x exp (inO+ icot) (21) 

The function #j (n, zo/l) is continuous but its first derivative O/(3z o ~,j (n, zo/l ) may have discontinuities 
at z o = 0 and z o = I. These will give rise to Dirac delta functions in the expression (a a/Oz o + iv) 2 
#i (n, zo/l), which must be taken into account in evaluating formula (21). 

The genera!ised airforce coefficient Q~. given by 

2 r~ l 

QJj'exp(i°gt)=p~if f IP~],=,ffg'(O,1)dOdz 
0 0 

2" i 
0 --oo 

(22) 

is of interest in studying the dynamics of the cylinder. 



If we substitute from (21) into (22) and use the expansion (5) for v~j, (0, z/l) we get 

Q j j ,  - -  
4re 2/~ a 1 -- 22 

2 ~  

f exp(inO)xexp(in'O)dOi#~,(n',~)dzx 
0 - - o o  

1 Z 2rc ~ al  
n = - -  o~  - oo  - oo  

2 (n,T z × 

×~ (Z-~o ) . , . , , \ - - ~ , I , v , M  dzodz 

n = - o o  - i - c ~  

~,~ (n, v) 1 N 

x ~i, (--n, u+v)dv  

- 2-~ a =- 49. -~-~,l,v, du - ~-~+i #j(n,v) x 
- o~  - o o  

[t-~ ~ 4~,,-~,u+~,l~ x ~ +  

1tlt2 - 2 3 a ,,=- ~o.I- ~ 1, v, dux ~v+i  #j(n,v 
- u  

1 

[(-l ~---~+iv)v~j'(--n,u+v)J dv+ fq~,,(-~a , l,v,M) du 
0 

1 - u  

0 

(23) 

and in this final form no Dirac delta functions occur. 



In order to evaluate the generalised airforce coefficient Q~j, using formula (23) we need the values of 
l l 

q~. (u, 1, v, M) in the range -fl-a < u < fl-a" The formula (19) as it stands is not suitable for the evaluation 

ofqS. (u, 1, v, M) for a range of values ofu since the infinite integral is only slowly convergent. In Appendix 
B formula (19) is replaced by another which is of more practical value. 

We write 

(o. 'ar'v'M = e x p  ~ - - y - x u  x ~ .  ,-,V,a (24) 

for M < 1 and 

~,(u,r ,v ,M) = e x p  Q-ifl2Vu)x(I.(u,r,v,M) (25, 

for M > 1. Formulae from which (k. (u, r/a, v, M) can be easily evaluated numerically are given in 
formula (132) for M < 1 and in formulae (194) and (207) for M > 1. The ~. (u, r/a, v, M) are real for M > 1. 
If r = a these formulae simplify to those given by (133), (195) and (207). 

The generalised airforce coefficient Qjj, may then be determined from (23) by evaluating the integrals 
with respect to u numerically. 

3. Derivation of Generalised Airforces Actin 9 on the Inside Surfaces of the Cylinder. 
We now consider the inside of a section of length I of the cylinder. The ends of the section are assumed 

to be closed with rigid flat surfaces. The normal displacement of a point (0, z) on the surface of the 
cylinder in a mode j of vibration is again given by wj (0, z/l, t) and in a harmonic oscillation formula (1) 
applies. 

The radius of the inside surface will, of course, be smaller than that of the outside surface, but we 
shall assume the thickness of the cylinder to be so small that, for our purposes, the inside and outside 
radii can be taken to be the same. It would be an easy matter to take different radii if this were thought 
necessary. 

By equation (3) 

and let 

2 ~  

#j n,~ = wj 0,~ x exp(- inO) dO (26) 

l 

-- l f w @ Z  ) (~-~) Wj(n,k)=7 J '7 x c o s  dz. 
0 

(27) 

Then by equation (5) 

o~ 

~j 0,~ = v~j , x exp(inO) 

n ~ - c o  

(28) 

and also 



co 00 

",  ~ J , i )  = 2~ k~(n,k)exp(inO)xcos 
n = - c o  k=O 

(29) 

where 

1 }  k = 0  
e~= 2 .  k > 0 "  (30) 

The perturbation velocity potential @~ at a point (r, 0, z) of the perturbed flow inside the cylinder when 
it is oscillating according to equation (1) can be written in the form 

( z ,) cbj= Va~j a,O,~,Vo, a exp(kot) (31) 

and the perturbation pressure P~ at the point (r, O, z) corresponding to the oscillation can be written in 
the form 

Pj Pa~pj(r,o,~ ! )  = , v 0, exp (iogt) (32) 

where 

~ a  

Vo - (33) 
a o  

is a frequency parameter and ao is the speed of sound. 

The perturbation velocity potential @j satisfies the boundary conditions 

0 Ldrd ,=a ~t wj 

= ivo ao ~vj (O, ~ ) exp (ioot) 

on the inside surface of the cylinder and 

0 
z=O z = l  

at the ends of the section of cylinder. 
If we substitute for v~j (0, z/l) from equation (29) into equation (34) we get 

22 [0.j] 1 
- - - '  ao ~k Wj (n, k) x exp (inO) cos k # r J  r = a -  2~ tv° 

n=--oo k=O 

(34) 

(35) 

(36) 



Let us consider the velocity potential ~ of the perturbed flow inside the cylinder, which satisfies the 
boundary conditions 

~ r  ,.=,~ = -- ao exp (inO) cos ~__fz exp (io~t) (37) 

on the inside surface and the ends of the section of cylinder. The velocity potential will be of the form 

- , v  o x exp(inO) x cos - -  x exp(icot). = aao U~. ~' a (39) 

An expression for ~ ,  (~, r/a, %) is obtained in Appendix C and is given in formula (231). 
The function U~, (ic, r/a, %) is a real function and the relations 

: - - : '  r - -  r r - -  r 

are true. 
The perturbation pressure P corresponding to the perturbation velocity potential ~ of equation (39) 

will be of the form 

, - , v  0 × exp(in0) x cos - -  x exp(icot) (41) 
a 

where, according to the linearised Bernoulli equation 

00  
P = p ~ (42) 

we have 

(,) (ro) - , v  o = i v  ot~. ~ , - , v  . (43) P n  /¢~ ¢/ (2 

By comparing the boundary conditions (36) and (35) with (37) and (38) and applying the principle of 
superposition to the solutions, we get 

2 2  ) (v) 1 2 ( k a ,  r ,  Vo Pj = ~ P ao ivo k x ~ (n, k) x P,~ \--~-- a x exp (inO) x cos x exp (io~t) 

n = - - o O  k = O  

f k a  r "~ ~z z 
= P a2 v2 k X Wj (n, k) x U~, ~ ,T '  a '  %)  x exp (inO) x cos - -  x exp (loot). 

n = - - o o  k = O  

(44) 



We are interested in the airforce coefficient O.jj' given by 

2r~ l 

(~jj, exp(ie)t) = ~ f f[Pj],=,×~j,(O,~)dOdz. 
0 0 

(45) 

If we substitute for [Pi]r=a from (44) into (45) and use the expansion (29) for if j, (0, z/l) we get 

2 2  ) O_.#j, = 1 v2 Vgj (n, k) × W;, ( -  n, k) × V~. ,1, v o 
n = - - c ~  k = O  

(46) 

which is the final expression. 
It is possible to express (~jj, in terms of the ~,j (n, z/l) instead of the W~ (n, k) but the result is still a 

doubly infinite series. 

4. Discussion. 
The generalised forces on a flexible portion of an infinite cylinder oscillating in a uniform flow are 

expressed in terms of the surface velocity potentials outside and inside the flexible portion. Explicit 
expressions for these velocity potentials are derived. Some care is required in the numerical evaluation 
of these expressions since they involve integrals with integrands that are singular at the limits of integra- 
tion. Apart from this the numerical evaluation is straightforward. 

No numerical results for (J, (u, r/a, v, M) are given for they would serve little purpose unless very 
extensive tables of them were given. A programme for a high speed digital computer has been written 
to determine numerical values of ~, (u, 1, v, M) for any given values of u, v and M > 1 and for low 
values of n. 
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APPENDIX A 

We consider an infinite cylinder with its axis along the axis of z. Outside the cylinder there is a fluid 
flow which is a combination of a uniform flow of Mach number M in the positive direction of z and a 
superposed perturbation caused by the vibration of the cylinder surface. The velocity potential ~b of 
the perturbed flow is assumed to satisfy the boundary condition 

O~b = - Vexp inO+i~-+ia)t 
r m  a a 

(47) 

on the surface of the cylinder. In equation (47), V is the velocity of the uniform flow relative to the axes 
of co-ordinates. The circular frequency co is assumed to be a non-negative number in the development 
below. Results for co negative are easily obtained from those for co positive by use of formulae (13) 
and (14). 

The velocity potential q~ of the perturbed flow satisfies the linear partial differential equation 

M2[O+ 1 2 
V 4= \Yz Fb/  (48) 

and behaves like an outgoing wave at infinity. 
The function 

(49) 
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is a solution of the partial differential equation (48) provided that the function g(s) satisfies the ordinary 
differential equation 

d29(s) ~- 1_ dg(s) + M 2 1 + v_ - 1 r e 2 _ _ _  9(s) = 0 (50) 
d s  2 S ds re s 2 

where 

f o a  

v = --V- (51) 

The differential equation (50) is a Bessel equation. The form in which it is best to write the solution 
of this equation for our purposes depends on whether [M 2 (1 + v/re) 2 -  1] is greater than or less than zero. 

The boundary condition (47) is appropriate to the case of waves travelling with speed -v/re x V in 
the direction of positive z on the surface of the cylinder. The speed of the mainstream relative to these 
waves is supersonic if [ m  2 (1 q- v/re)  2 - 1] is greater than zero whereas it is subsonic if [M 2 (1 + v/re) 2 - 1] 
is less than zero. 

We have that 

when 

M y  M y  
re > M + 1 or re < - M--~- (53) 

if M > 1 and when 

M y  M v  
- 1  + ~  < re < 1------M (54) 

if M <  1. 

In these cases the function ~b given by (49) will be written in the form 

x exp n O + i r e - + i e ) t  
a (55) 

where A and B are constants of integration appearing in the general solution of the differential equation 
(50). The values of A and B are determined from the boundary conditions. 

To consider the radiation condition we consider the solution (55) in a frame of reference moving 
with the main stream flow. The point with co-ordinates (r, 0, z) with respect to the original frame is at 
time t the point with co-ordinates (r, 0, Z) with respect to the frame moving with the mainstream flow, 
where 

z --  z +  v t .  (56) 

14 



The solution (55) then becomes 

c~-.= [AH~ 1' {rx/  IM2(1+v)2-11  tc 2} +BH~2'{r~ [M2(l+V)2-11 ~c2}1 x 

Z+ tV } x exp { inO + ix --a "--a (x + v) t (57) 

and this will be the complete velocity potential with respect to the frame moving with the mainstream 
since the unperturbed velocity potential is now identically zero. 

For large values of r/a we can use the asymptotic expansion of Hankel functions to obtain 

~z  x { l + 0 ( a ) t  ex p {inO+ixZ+iV(x+v)t} 
~b= r e  I M Z I ~ v y - l l  rc 2 a a 

× IAexpi {-r a~/ I M2 (1+v)2-11 tc2-¼~z-½nn} W 

+Bexp-i  { r e  IM2(1+_~)2 1 ]t¢2 ¼zc_½mz }1"  (58) 

Now when 

t ¢  > _ m  
My 

M+I (59) 

we have 
t g q - v  = - -  

v 

M+I 

>0 (60) 

so that in this case we can have an outgoing wave at infinity only if A = 0. 
When 

~¢ < _ m  
My 

M-1 (61) 

and 

M > I  (62) 

we have 

t g - b v  < - - -  M-1 

<0 (63) 

15 



so that in this case we can have an outgoing wave at infinity only if B = 0. 
The remaining constant is determined by substituting the form (55) for ~b into the boundary condition 

(47). This then leads to the following expressions for q~: 
(i) if 

M y  
M >  landtc> -M+I-- (64) 

o r  

My Mv  
M < land I+M < x <  1-M (65) 

we have 

(ii) if 

we have 

?(,+V)2__,] 4 
Va .4. 

~ , =  x x 

~/ [Mz( I+V)  2-1]  tC 2 H,2)'{ ~/  [M2(I+V) 2-1]  K 2} 

,66, 

mv 
M >  l a n d x <  - M - ~  (67) 

, = 

H'*){--rX/IMZ(I+V)2-1 ] jc 2} 
Va ×--" a x 

V//r [M2(1_l_V)2_ll ~2 H~,y{ ~ [M2(l+~)/ 1] ~c z } 

We have that 

when 

Z 
x exp i n O + i ~ - + i e ) t  . (68) 

12 

IM2( l+V)2-11  <0  (69) 

Mv M y  
- M - ~  < x < M + 1 (70) 
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if M > 1 and when 

My My 
x > ~ or x < -M+-----I- (71) 

i fM < 1. 

In these cases the function ~b given by (49) is better written in the form 

(72) 

where A and B are constants of integration appearing in the general solution of equation (50). The values 
of A and B are again determined from the boundary conditions. 

We must have B = 0 since I.  1 - M  2 1 + x z tends to infinity when _r tends to a 
infinity. The constant A is determined from the boundary condition (47). This then leads to the following 
expression for ff : 

(iii) if 

or if 

My Mv 
M >  l a n d - - - < x <  (73) 

M - 1  M + I  

Mv My 
M <  l a n d x > ~ o r ~ c <  I + M  (74) 

we have 

r v x2 } (75) ~ b = -  Va ×K" {a× ~/ [ 1 - M 2 ( 1 + ~ ) 2 1  

[ 1 - M 2 ( l + V )  2] x 2 K'.{ ~ ~ I - M  2 (l+'V)21 x z}  

Collecting results, and writing all the Hankel functions in terms of modified Bessel functions of the 
second kind, we have that the perturbation velocity potential ~b in the flow of mainstream Mach number 
M, which satisfies the boundary condition (47) is given by 

c~= Va X,a,V,M × exp nO+ix +ion (76) 
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where 

(1) If M >  1, x >  Mv 
M+I  

,~ , ~ , ~ ,  v, = 
i~/{M2-1) {@+~--]--1)M2v'~2 

× 
M 2 v 2 

&T- ]-~2j 

~ ~c + ~7-i-_ 1) (M-7--i-)2f x exp ( 2 ) }  
(77) 

(2) If M >  1 , - - -  My 
M - 1  

< t £ <  - - - -  
Mv 

M+I  

K, a 
~ /  { M2 V 2 

(M 2-1) (M2_1) 2 
M 2  v "~ 

r ~ M 2 v 2 

x 
f M 2  v 2 

M2v. 

M2v \2  (78) 

(3) If M >  1,~:< Mv 
M - 1  

a 
/ M2_l~ t,~+~_~_~) IM'~-I) 2 

K. a x M 2 -  1) (M 2 _  1) 2 

K,n [ v/(M2__ I) f ` M2 v2 
[ (~-----i)2 

MZv "~2} 
~: + M ~ - I )  exp 

MZv \2 
+w~-,) } x exp 

(-2)1 
(-2)1 

(79) 
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Mv Mv 
(4) I fM < 1,~: > 7---;7.. or x < l -- JVl 

I _ M  

K,n I ~/(I_M2) {(K M2v )2 M2v2 
1 - M  2 (1-M2)2} I 

(5) If M <  1 , - - -  
Mv My 

l + M < X < l _ - - - - - ~  

[ M 2v 2 (~_ M 2v'~2 
i ; ( 1  -M2)  [ (1-~-~)2 1_M2] } 

K, [ r ; ( l _ M 2 ) {  M2v2 [" MZv "~2 
( l_M2) 2 ~ c - ( 1 - M 2 ) J  } e x P ( 2 ) ]  

x 
M2v2 - ( x -  M 2 v  2 

K" f ; (1-M2) t.(1-MZ)2 ( l - M 2 ) )  } e x P ( 2 ) . l  

(8o) 

(81) 

APPENDIX B 

Derivation of Expressions for ~). ' a ' v, 

In this Appendix we obtain a numerical means of evaluating 

r v,M = ~. t¢,- ,v,M x exp(it¢flu) drc. ~ n ' a '  a 
- - c O  

(82) 

Expressions for ~, (x, r/a, v, M) have been obtained in Appendix A, but insertion of these into the 
integrand of the integral on the right of equation (82) and straightforward evaluation of the integral is 
not practical since the convergence of the integral is very slow. The integral expression on the right of 
equation (82) will, in what follows, be transformed into other expressions by means of complex contour 
integration and we do this separately for M < 1 and M > 1 since the processes are different for these 
two cases. The resulting expressions are much more amenable to numerical evaluation than is the original 
expression on the right of equation (82). 
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I. We consider first the case M < 1. 
If in the integrand on the right of equation (82) we make the change of variable 

K' M 2 v 
= (83) 

P 

and write 

- ( r M) ~ ( , r M) (84) (~n K , ~ , Y ,  = n l £ , - - , Y ,  
a 

then we get 

~, ,a,V, ~ ~, X,a,V, exp f '  M2v~ 
- - o o  

= e x p ~ t - - ~ - - × u / ]  x ~ .  u,-,V, (85) 

where 

~"(~'r M ) 1  i t r M ) (  1 - , v ,  = x ~. x ' , - , v ,  x exp i~c'u xdK'. 
a ~ . a 

- - O 9  

(86) 

The function ~. (x', r/a, v, M), when continued analytically from the real axis into the complex t(-plane, 
has branch points at 

Mv Mv 
x ' -  and K ' = - -  (87) 

and these are symmetrically placed with respect to the origin in the complex x'-plane. 
We observe from formulae (80) and (81) that 

and hence from (86) we have 

( r )  = - ,  v, M (88) ~ n  - -  K~' a 

( r )  - . , S , v , M  . (89) 

In order to continue - ' ~b, (K, r/a, v, M) analytically from the real axis into the complex ~c'-plane we 
write 

~ c ' + ~  = r 1 x exp(i00 (90) 
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x'- Mv = r2 × exp (i02) (91) 

• take 

M2v2_] ~ {i(01+02)} (92) 
j~2 J = ~ r  2X exp "2 

and define 

1 Kn f r x  I x'z M2-v21 ½} 

x /?z j (93) F(x') = Fx,2 M 2 v2 

L 

In this Report we use the square root sign x/  to denote only the positive square root of a positive 
number. A quantity raised to the power ½ will be the more general complex function which is two-valued 
and which may be complex. 

In order to be able to distinguish between the different branches of F(x') which are defined by equations 
(90) to (93) we make the further definitions 

0 ~ 0 1 ~ 7 ~  
Vl(x') = F(~') for 3rr (94) 

--~- ~< 02 ~< -re 

0~<01~<~ 

F2(x') = F(x') for 0 ~< 02 ~< g" (95) 

Now, consider only u > 0. 
From Cauchy's theorem of residues we get (see Fig. 2) 

f +~+ f + f + f Fl(x')exp(ix'u)xdx'=2z~iZR1 
AP1 Fi ~ P2B BC CA 

DP3 I'2 P4E EF FD 

(96) 

(97) 

where ZR 1 is the sum of the residues of Fl(x') x exp (ix'u) at its poles in the upper left quadrant of the 
complex x'-plane, and ZR2 is the sum of the residues of F2(x') × exp (ix'u) at its poles in the upper right 
quadrant of the complex x'-plane. 

It is an easy matter to show that 

eli__m0 . 4 F l ( x '  ) _  x exp (ix'u) x dx' = 0 (98) 
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and 

lira f 
-~ 0 , ~ F 2 ( ~  ) x exp (ix 'u) x d~'  = 0 

r ~  

(99) 

where e is the radius of the circular arcs F + and F~. 

When the radius R of the circular arcs CA and EF (Fig. 2) becomes indefinitely large, then we have 
on CA 

and on EF 

F,(x')"~ l ~ / a e x p  { x ' ( r - O }  (i00) 

as is easily shown using asymptotic expansions of the modified Bessel functions. Thus, for u > 0, we 
have 

lim 
Fdx '  ) x exp (ix 'u) x dx' = 0 (102) 

R --~ z ~  Q /  

CA 

and 

lim f F2(x' ) × exp (ix'u) × dx' = 0 (103) 
R - ~ o o  

EF 

Neither CA nor EF in formulae (102) and (103) could be replaced by the whole semi-circle of radius R 
and centre origin in the upper half-plane since the behaviours of Fl(x' ) and F2(x' ) are still given by 
formulae (100) and (101) over the whole semi-circle and there would be divergence of the limits. 

If we proceed to the limits e = 0 and R = ~ in formulae (96) and (97) we therefore get for u > 0 
My 

f i ;  + + F,(x') x exp ( ix 'u)  x dx '  = 2h i  1 

- o o  M v  0 

and 

(104) 

M y  B 

f +  q-  F2(X' ) x exp (ix 'u) x dx '  = 2h i  2.  
o My 0 

P 

(1o5) 

The function Fl(x' ) has been defined so that 

F l ( X ' ) = ~  ( ' r M)  n K , - - ,  "V, a 
(106) 
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on the part of the real axis 

X' < - - - -  

and the function F2(x') has been defined so that 

on the part of the real axis 

M y  

F2(x') = ~)" ' a '  v, M 

M y  
I<.' > - -  

(107) 

(108) 

(109) 

in the x'-plane. It so happens that the formula (108) is true also on the part of the real axis 

M y  
O < x ' < - -  /~ 

From formula (86) we then get 

m v  
# 

(t,, , r ,  v, = ~ F l (x '  ) x exp (ix'u) x d~c' + 

- -o3  

(110) 

o 

i f  ( r +~ ~. x, a 
My 
.# 

co 

i f  -k ~ F2(I¢' ) x exp (ix'u) x dx'  

o 

(111) 

and, using (104) and (105) this reduces for u > 0 to 

o 

- , v , M  = • ~, , , v , M  - F l ( x ' )  exp(ix'u) dx '+  ~"U'a ~ 
My 

~oo 

o 

(112) 
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On BC we may write 

x , + _ ~ [ =  / 2  / M Y \ 2  
V s + t T )  × expE,,(s~J 

1¢,_ My / s  2 / M Y \  2 
fl = ~/ +t--~- ) x exp[-i(rc+,(s))] 

where s is real positive and y(s) is the acute angle 

fls 7(s) = tan- 1 
Mv " 

Hence, using (90) to (93), we get on BC 

(113) 

(114) 

(115) 

Ft(x' ) = 

On DF we may write 

K. [ r x T s 2 + ( ~ - ~ ) Z x  exp ( - 2 ) ]  
× 

K ' [  I z  fMv'~ 2 
~ + t T ) x e x p  ( - 2 )  ] 

(1.16) 

My z + x exp [iT(s)] X ' + - -  = 

X ' - - - -  ,/s (~)~ Mv _ 2+ x exp [i(n-~(s))] 
P 

where s is real positive and ?,(s) is the acute angle given by formula (115). 
Hence, using (90) to (93), we get on DF 

(117) 

(118) 

F2(t¢' ) = 
1 ×K. I~x 7sZ+C~--Y-v)Z×exP(2) ] 

K'.[TsZ+ x exP(2) ] 
Therefore 

ioo ,f 2--~ { F z(x ')-  F I(x') } exp (ix'u) dx' 
0 

~-~ ~x,(~)l 

(119) 
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exp ( -  us) ds 
X 

v/s~+(~) ~ 

{, ijs~+(~y I }2+ {~ljs~(~)] }, 
exp ( -  us) ds 

X (120) 

On P2B we may write 

My Mv 
x'4  . . . .  (1 +s)  exp (i0) (121) 

/ ¢ r m - -  Mv My 
= -~ ( 1 -  s) exp ( -  in) 

P 
(122) 

where s is a real number in the range 

- 1  ~<s~<O. 

Hence, using (90) to (93), we get on P2 B 
d~ 

FI(x' ) = 

1 K. E r Mv . ~~-s~exp  (-~)1 
× 

My i-~-×,/1-=2 K;[ M~ 

(123) 

(124) 

where 

Also on P2 B, according to (81) and (84) we have 

(" ) i~ n x ' , - , v , M  = 
a M ~  iTx,/1-=2 

=.i r = , - ~  (~)] 
-x--ff-×~/1--Sa x exp 

[ M - S x x / 1 - s 2  ( 2 ) ]  K'n x exp 

Mv 
I¢ r = ----~ S 

and s is a real number in the a'ange (123). 

(125) 

(126) 
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Therefore 

0 ,f 
2re 

My 

r Mv 2 i7~ 

,Tv- 

3.h, \ 
exp( i  ~ -  su Jds 

N//~--S  2 

- ~ / 1  - s  2 exp ] 

lx 

m ~  

x 

N~[ --  S 2 

_y .  [ r  My /7--- ~ Mv 

(127) 

It now remains to determine the residues R 1 and R 2 at the poles of F10c' ) exp (i~c'u) and F2(~c' ) exp (i~c'u) 
respectively in the upper left and right quadrants. 

According to formulae (90) to (93) we have 

× 1 (128) 

1 } K ' ~ [ " / / q l r 2 e x p {  i(01+2 

Therefore, according to formulae (94) and (128) the poles of Fl(~c') exp (ix'u) in the upper left quadrant 
must occur at the values of rt, r2, 01 and 02 with 

01 + 0 2 
~< - -  ~< 0 (129) 

2 2 

2 is zero. 

Also, according to formulae (95) and (128) the poles of F2(/¢' ) exp (iN'u) in the upper right quadrant 
must occur at the values of r 1, rE, 01 and 0 2 with 

01+02 ~z 
0 ~< ~ ~< ~ (130) 
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forw=~..~[~,exp{"O'+O~'}]~ isz-- 
r 

But (see Randall 1) K', L~l r2 exp 

the ranges (129) or (130). 
Hence 

{,,o,;o~,}] 
has no zeroes when ( ~ k ~ )  lies in either of 

~RI + ~R2 = O. (131) 

Substituting the results (120), (127) and (131) into formula (112) we then get for u > 0 

(,,=) 
" ' a '  

s2+ Mv z {,,,[,/s~+ (~)'] }2+{ <[,/ (~) ]}~ 
exp ( -  us) ds 

X 

X 

_ .  My us) ds exp t --fi- 
x 

~ / 1  - s 2 

If r = a, then expression (132) simplifies to 

I~,,(u, 1, v, M) = ~ - 

0 {,.. [?+(~; ]  t ~+ {<,[ j,+(~)~] } 
exp ( -  us) ds 

X 

1 

7 X 2 

(132) 
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M~ 

× 
1 - s  2 (133) 

An expression for 5,  (u, r/a, v, M) for u < 0 can be obtained in an analogous manner, but it is quite 
unnecessary to follow the procedure through since the expression is easily obtained from (132) by use 
of formula (89). 

2. Secondly we consider the case M > 1. 
If in the integrand of the integral on the right of equation (82) we make the change of variable 

~' M2v 
tc = ,B /j2 (134) 

and write 

then we get 

ct~ 

q~.(u,r,v,M) = 1 (" / , r ~ J  ~,,~X,a,V,M ) exp {i(tc'-M-~flV)u} dr' 

= exp t - - -~  u 5 ,  ' a '  v, (136) 

where 

oo 

5.  ' a 'V '  = ~  ~" ' a ' V ' M  exp(ix'u) dt( .  
- -GO 

(137) 

The function ft. (x', r/a, v, M), when continued analytically from the real axis into the complex x'-plane, 
has branch points at 

Mv My 
x' = - - -  and x' - (138) 

P P 

and these are symmetrically placed with respect to the origin in the complex x'-plane. 

In order to continue ft, (x', r/a, v, M) analytically from the real axis into the complex K'-plane we 
write 

M~ 
x ' + - ~ -  = r 1 exp(i01) (139) 

r ' -  My = r2 exp (i02) (140) 
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take 

82 r '2 = x//~l r2 exp (141) 

and define 

1 a L  /~2 

In order to be able to distinguish between the different branches of F(r') which are defined by equations 
(139) to (142) we make the further definitions 

- 2 g  ~< 01 ~ - ~  
Fx(r'  ) = F(r')  3~ (143) 

- - - f  <~ 02 <<. - ~  

F 2 ( r '  ) = F(r') 
0~<01~<~  

0~<02~<n  
(144) 

Fa(r '  ) = F(r') - re  ~< 01 ~< 0 
- - ~ < 0 2  ~<0 ' (145) 

(i) Consider contours in the upper half r '-plane as in Fig. 3. From Cauchy's theorem of residues we 
get (see Fig. 3) 

f +'f~+ f + f + f F~(r')exp(ir'u)dr'=2~iZR~ (146) 
API r i  ~" P2B BC CA 

I ff5 -]- -1- q- F 2 ( r '  ) exp (ix'u) dr '  = 2n 2 
DP3 1"2 P4E EF FD 

(147) 

where ~ R  1 is the sum of the residues of FI(x '  ) exp (ix'u) at its poles in the upper left quadrant of the 
complex x'-plane, and ~R2  is the sum of the residues of F2(x') exp (ix'u) at its poles in the upper right 
quadrant of the complex x'-plane. 

It is an easy matter to show that 

lim _ ~  , 
-~ o ~ F l ( x  ) exp (ix'u) dr '  = 0 (148) 

r¢ 

and 

lim t "  , , , 
~ 0~J~2(x ) exp (ix u) dx = 0 

r~  

(149) 
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where e is the radius of the circular arcs F~ and F~. 
When the radius R of the circular arcs CA and EF (Fig. 2) becomes indefinitely large, then we have 

on CA 

and on EF 

1 { -  i x ' ( r - - 1 )  } (151) F2(~c' ) ~ --~-7~, exp 

as is easily shown using asymptotic expansions of the modified Bessel functions. 
Thus, for 

t" 
u > - -  1 (152) a 

we have 

lim fF (x') exp ( ix 'u)  dx '  = 0 
R - * o o  

CA 

(153) 

and 

F 2 ( x '  ) exp ( ix 'u)  dx '  = O . 
R 

EF 

(154) 

r 
If we proceed to the limits ~ = 0 and R = ~ in forrmalae (146) and (147) we therefore get for u > - 1 

a 

M 
0 i~  

- c ~  My  0 

(155) 

My 

+ - F2(x' )exp(ix'u)dx' = 2n  2.  

0 
. T  

(156) 

The function Fl(x' ) has been defined so that 

- , v ,M F I ( x '  ) = ~ .  X ' , a  (157) 
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on the part of the real axis 

M v  
K t < - - - -  

and the function F z ( x '  ) has been defined so that 

on the part of the real axis 

M~ 

From formula (137) we then get 

,•n - ~ v~ 
• a 

My My 

= ~ Fl(x')exp(ix'u)dx'+12n " ',-,V,a exp(ix'u)dx'+ 
-.-T- 

(158) 

(159) 

(160) 

¢o 

+1 f F2(x' ) exp (ix'u) dx' 
My 

r 
and, using (155) and (156) this reduces for u > - -  1 to 

a 

o 

r 1 
My 

- T  

{~.(x',r,v,M)-F~(x')}exp(ix'u)dx'+ 

Mv -g- 

exp (ix'u) dx' + 

(161) 

+ l !  {F2(x')-Fl(x')}exp(ix'u)dx'+i{ERl+ER2}. (162) 

On BC we may write 

M ~  
x ' - b - -  = ~/s2 + ( -~  ) 2 exp { - i(2r~- 7(s) ) } (163) 
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K r - - - -  MY- ~/s2+ ( f l )  

where s is real positive and 7(s) is the acute angle 

7 ( s )= tan -1  Mv " 

Hence, using (139) to (142), we get on BC 

(164) 

(165) 

FI(• t) = 

On DF we may write 

1 K.  s 2 + exp ( -  in 
X 

K'.[ /s 2 /My\2 . q ",/+~7) oxp~-,,,~] 
(166) 

=v= js~+(~_] ~ 
~:+ fl exp {iT(s)} 

~ - T  = s=+ - -  exp [ i (=-~(s ) ) ]  

(167) 

(168) 

where s is real positive and 7(s) is the acute angle given by formula (165). 
Hence, using (139) to (142), we get on DF 

F2(x' ) = ~$2"~'- (-'~) 2 Ktnl ~/s2-~(~t2exp(/7~)] (169) 

Therefore 

ioo 

0 

r 2 My 2 . 'xPd 
K' 2 My 2 . / .[ Js +(~) =p,=,] 

r 2 2 ~. [aJS +(~) .xp,-=] 
K'n[ ?s2+ (~-)2exp(-in) ] 

exp ( -us )  ds 
• /  2 [" Mv'~ 2 

=+~7) 
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= ('-1)"f { K " [ r - ' / s 2 + { M v ' ~ 2 ] '  r 2 M y 2  , 2 My , ~  ,~ : , ' . [ , /"+(%-I . [~Js _,_(~)],,,.,[/s ...,_(_~)~} 
o { ,,:, [,/:_,_ (~)~, ] },_,_,.,:, {,,.[,/.,.,_,_(~)-, ] }.~ 

exp (-- us) ds 
x ,/.+(~;)2 

On P2B we may write 

M y  M y  
~'+--fl--= ~ ( l+s)exp(-2i l r )  

/ £ 1  M y  M y  
fl = fl (1-s)exp(-iTr) 

(170) 

(171) 

(172) 

where s is a real number in the range 

- l ~ s ~ O .  (173) 

Hence, using (139) to (143), we get on PzB 

Fl(x') = 
M y  

On DPa we may write 

M y  M v  (1 + s) exp (i0) ~'+ ~=- - f  

x ' -  M y  = M y  (1 - s) exp (in) 

where s is a real number in the range 

0 ~ < s ~ < l .  

Hence, using (139) to (142), we get on DPa 

F ~ ( x ' )  = 
M y  ~/1 - s 2 

"n[ rM~ ---if- ~ exp (i~r~ 

(174) 

(175) 

(176) 

(177) 

(178) 
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Also on P2B and DPa, according to (78) and (135) we have 

1 , r  
. x , - , v , M  = a My K, , , I  M v  

where 

M y  

/¢' = T S  

(179) 

(180) 

and s is a real number in the range (173) over P2 B and in the range (177) over DP a. 
Therefore 

0 

' f  2~ 
My 

{~.(x',r,v,M)-F,(x')} exp(ix'u)dx' 

° I ~v ~.~ ] [ '~ 1 !  K,, - f f  K. a--fl---x/1-s2exp(-in 

2re_ ~K,,, [_M_~_ Iv/T-Z--~js2] I- K',, FMV~exp(-in)l 
LI3 

exp (,~,.),s 
1N/ ' i~  S 2 

1 M y  2 , M y  2 i -~.,-,~j ~ . [ ~ ; ~ - . q  
K'.[~ 1~ ~-s2] {(-1)"K'.I~-~+rcil ' .[~-~ } 

MV ex, (-,-~s,),s 
X (181) 

and 

My 
# 

1 I K~ {~,,(x',r,v,M)-F2(x')} exp(ix'u)dx' 

1 r M y  2 
---if- x/1 - s z exp (in)] 

K'. l x / ] ~ -  s 2 exp (iTt) 

oxp(,~s~),, 
I N ~ ' ~  S 2 
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i 1 M v  2 , M v  2 

exp(i-~-su)ds 
X 

~/1 - s  2 

If we add the results (181) and (182) we get 

0 

2r~ 
My 

Z--g- 

M y  m 

0 

0 

(182) 

x [(-1)" My I -~ cos ( - ~ s  u ) x / l _ s 2  • 
(183) 

It now remains to determine the residues R1 and R2 at the poles ofFl(x') exp (ix'u) and F2(x') exp (ix'u) 
respectively in the upper left and right quadrants. 

According to formulae (139) to (142) we have 

F(x') = (184) 
x//~-lrzexp {,(zc+0,+02,2 ) K. . [ rx//~lr~ex p {i(n+~+02,_ } 1  

Therefore, according to formulae (143) and (184) the poles of Fl(x') exp (ix'u) in the upper left quadrant 
must occur at the values of r 1, r2, 01 and 02 with 

- e  ~<(~+0~+02)~ _ _ ~  • (185) 
2 2 
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Also, according to formulae (144) and (184) the poles of Fz(x')ex p (ix'u) in the upper right quadrant 
must occur at the values of r~, r2, 0~ and 02 with 

(~ ~- 01 -[,- 02) 
2 ~< 2 ~< ~ (186) 

 sze o 
N°w(seeRandallX) K" Ix/~11rzexp {i(r~+0'+02)}]2 has I ~  ] s i m p l e z e r o e s i n e a c h o f  

the ranges (185) and (186), where the square brackets [ ] are to be interpreted as denoting the integral 

part of the number ~ appearing within them. 

LetthezerosofK', [x//~lr2exp{ i(rc+01+02)}] 2 " in the range (185) be at 

q = l , 2  . . . . .  

re+01 +02 
2 - 7z+ ~b~ 

(187) 

wherethe(aqarep°sitiveacuteangles'Thenthezer°s°fKi'Iw/-~lrzexp {i(~+Oa+Oz)} in the  

range (186) are at 

x/~-l r2 = Z~ / 

q = l , 2  . . . . .  I [ ~ ]  (188) 

Note that there are no zeros at all ifn = 0, and the zeros for positive n are the same as those for negative 
n since K.(z) = K_,(z). The values of the moduli X~ and of the phases ~b~ can be determined as functions 

n . t of n and q only. In lact z = - X~ cos 4~q + i Z~ sin q~q are zeros of K,(z). 
We can now determine x~, the value of x corresponding to a zero (187), by use of equations (139) and 

(140), and write 

(189) 

. / M v  "~ . I 'Mv\ My 
where Xq~fl-)and Y~ ~--fl-) are positive functions f o r ~ -  positive. Then corresponding to a zero 

(188) the value gq of x' will be 

l Kq 
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We note that when v = 0 we get 

X~ (0) + i Yq" (0) = Z,~ exp (i ¢~). (191) 

The residue of Fx(x') exp (ix'u) at the pole q in the upper left quadrant is then found to be 

1 1 K~ [ rx~exp { - i ( x - ¢ ~ ) }  1 
R~,~ = -  z 

i {X~(-~)+iY~'(~-~)} K" [z~exp { - i ( r c - ~ b ~ ) } 3  

×exp [-u {X~(-~-)+iY~"(-~-) }] 

1 

l 

( X~ (0) -F i yqn (0) } 2 

K i [  r ziexp {-.i  ( r ~ - ¢ ~ ) } l  

The residue of F2(x') exp (ix'u) at the pole q in the upper right quadrant is found to be 

1 1 R~,n = -  
i 

K~' [2~ exp {i(~- ~b~)}] 
× 

1 
" = - 7  

! 

{x~ (o)-f  r: (o)} ~ 

{ xnfMv _i [n ~ + {x~ (o)-  i Y: (o)} ~] 
× 

× 

K~ [X~ exp {/0r- ¢~)}] x exp 

(192) 

(193) 
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r 
Substituting the results (170), (183), (192) and (193) into formula (162) we get for u > - -  1 a 

+,, (u,_:, v,,_,,,, ) 

Mv\2q , F / 2 /Mv'~2l /Mv\Z-I , ~,~ _i,,, L~ s -,-,,.~., _~-,,,[: [,/s. +(-~)'-I - t~)  JK. }~ ] ( : L a y  ,,. = ( _ l ) . f  ~K.[r /se+ i s ' +  

o {.:, [,/s. + (_~)' ] }' +.,, { , (  ,/s ,, + ~ j  ,'-,,,,,',' _, 
} 

1 

-f 
0 

exp ( -  us) ds 

• /  2 t" Mv'~ 2 
s +t,Y) 

K"{--r-~ 1~-Sqa I" [-~ I~-s2] -I"[~ Mv~]~-- K: [ ~  l~-s2] } 

( -  1)" sin ( ~ u s )  +Tr 
I .  ~os(~,s) ds 

+E 
q = l  

{x~ (o)+ i ~" (o)} ~ 
./My\ ) 

I 
x 

In 2 + {X: (0) + i Yq" (0)} 2] 

IC[rz~exp {- i (n-~)}]  
x 

K. [X~ exp { - i (~ - ~)}]  
~--u { /Mv\ . 

exp X~--fl-)+iYq"(-~-)}] + 

+ [ ~ ]  {x: (o)- ~ ~o m)} ~ 
q=x {Xn~(-~)--i hi'MY 

~,, [_:,<~,x,, {,(,:_,,,,~)i] 
x exp K,. [Z,~ exp {i (Tt- ~)}] 

1 
[n ~ + {x~ (o) -  i ~ (o)} ~] '< 

(194) 
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• ( ) ~ ~" 
Since K,(xe-i~) is the complex conjugate of K,(xe~), the expression (194) for ~k, u, a' v, M is wholly 

real. 
If r = a, then expression (194) simplifies to 

(ft.(u, 1, v, M) 

• =(-1)" io (K'.[ ;s2+(--~)~} )2+n 2 {I'.[ 7s2+(--~-)2} ) 2× 

exp (- us) 

s2 + 

1 

1 

/'My 
× ( -  1)" sin L--f us) 

+ ~  , 1 - - - 7  + 

q = l  

+4{X~(O)}2{Yq"(O)}2]+2 n 2 Yq"(-~)X~(O)Yq" (0))cos [u Yq" (--~) I + 

×(n2+{X~(O)}2-{~(O)}2)+4{X~(O)}2{Yq"(O)} 2] )sin Iu Yq"(-~/l 

M y  

{ yq. (_~.)} 2){(n2+{X](O)}Z-{Yq"(O)}Z)z+4{X~(O)}2{Yq"(O)} 2 

(195) 
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It may be noted that 

lim ~ (  r ) (u r ) 
v_..}o~b, U , a , V , M  = V, , (196) 

where the V, ( u , ; )  are the functions obtained by Randall 1. 

(ii) Consider a contour in the lower half-plane as in Fig. 3. 
From Cauchy's theorem of residues we get (see Fig. 3) 

GQI F -  Q2Q3 r -  Qal IHG 
1 1 

exp (ix'u) dx' = - 2 z ~ i ~ 3  

where ~ R  3 is the sum of the residues of F3(x' ) exp (i~c'u) at its poles in the lower half-plane. 
It is an easy matter to show that 

f f  0 e l y  0 + Fa(x') exp (ix'u) dx' 
FV r~- 

where e is the radius of the circular arcs F~- and F~. 
When the radius R of the circular arc IHG becomes indefinitely large, then we have on IHG 

(197) 

(198) 

F 3 ( x '  ) ,-~ ~ exp 

as is easily shown using asymptotic expansions of the modified Bessel functions. 
Thus, for 

(199) 

we have 

F 
u < - - I  

a 

R~oolim f F3(~J')exp (ix'u) dx' = 0 
IHG 

(200) 

(201) 

F 
If we proceed to the limits e = 0 and R = oo in formula (197) we therefore get for u < - -  1 

a 

i F3(t¢') exp (ix'u) drc' = - 2rci~'~R3. (202) 
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The function F3(x') has been defined so that 

( r )  F3(x' ) = i~, to', a '  v, M (203) 

r 
on the whole of the real axis. From formulae (137) and (202) we therefore get for u < - -  1 

a 

(204) 

It now remains to determine the residues R 3 at the poles of F3(x') exp (ix'u) in the lower half-plane. 

According to formulae (145) and (184) the poles of F3(x') exp (ix'u) in the lower half-plane must occur at 
the values of rl, r2, 01 and 02 with 

(~+01 + 02) ~< rc (205) 
2~< 2 2 

for which K', ~ r 2 exp is zero. 
• 2 

Hence 

R 3 - -  0 (206) 

?. 

a n d  consequently Ior u < - -  1 
a 

~,, (u,r, v,M) = 0  (207) 

which is to be expected since disturbances are confined to z > fl - 1 in supersonic flow. 

We can obtain a power series solution for ~.  u, - ,  v, M which is valid for small u by means of 
a 

the following procedure. 
If we take the Fourier inverse of formula (137) we get 

i~, x', a ,  v, = ~,  u, a , v, M exp (-- ire'u) du. 
- - 0 0  

(208) 

The formula (208) is in the first place valid for real tO', but because of formula (207) the integral on the 
right hand side remains convergent when the quantity ~c' becomes a complex number with negative 
imaginary part. By analytic continuation we can then say that formula (208) is valid in the lower half-plane. 

The analytic continuation of ~.  x ,  a '  v, M into the lower half-plane is given by 
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(,r ) 
~. x , -d ,v ,M = F3(x' ) 

where F 3 0c') is given by formulae (139) to (142) and (145). 

Qn JH (see Fig. 2) we may write 

(209) 

x ' + - - ~ =  J S 2 +  ( - - ~ ) 2 e x p  { - i y ( s )}  

K'-  Mv 

where s is real.positlve and 7 (s) is the acute angle given be formula (165). 
Hence, using (141), we get on JH 

(210) 

(211) 

and, from (142) and (145) 

M~ 
If s is very large compared with unity and with ~ we can expand (213) in the asymptotic expansion 

F3(~c')"~exp { - ( r - l )  s I l+s { (4n2-1) a 8 r 8 2 (4nZ+3)  1 ( r - l )  ( _ ~ )  2 }~2+ 

(16n*-40n2+9) a 2 (16n*+8n2-3) a (16n4-8n2+33) --+ 
+ 12 r 2 64 r 128 

+ 

(4n -1 )  a (4n2+5) 
+ 16 r ~ q  

(4n 2 + 3) 
16 r )  ( My 2 - f l )  + 

1 2 * I 

(64n6-560n*+ 1036n2-225) a 3 (64n6--112n4_84n2+27) a 2 
+ 3072 r J 1024 r -~ 

(64n 6 - 48n 4 + 140n z - 33) a 
1024 r 3072 

(64n6-368n4-1364n2+747)+ 
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(16n4-40n2 +9) a z 
+ \ -5-g-g r" 

(48n4+ 104n z -  29) a - +  
256 r 

\ 

(48n4 +136n2 +123)-(16n4-8n4 + 33) r "~ My 2 
-~ 256 256 a ,] fi + 

(4n2--1) a (12nZ+25) (12nZ+25) r 

+ 64 r 64 ~ 64 a 

(4n2q_3) r 2 ) ( f l ) 4  1 ( r )  3 ( _ ~ )  6t(~_~) 
64 a 2 -4-8 a - 1  + 

(214) 

Now, from (208) we get on using (207) that on JH (Fig. 2) 

(,r ) Fa(rc')=~k2 X ' a ' V ' M  --i n 
a 

r v , M )  exp ( - su )  du U~ a 

= e x p  { - - ( r - - l ) s }  i ~n (u+r-l ,r ,v,M) exp(-su)du. 
0 

(215) 

If, for u > 0, ~ .  ( u+r-l'r--'v'M ) a  has the power series expansion 

oO (ur' )Z 
~. + a - l , a , V ,  = a,,u" 

n = O  

(216) 

then, according to Watson's lemma, we have the asymptotic expansion 

03 t~O 

, a 
o = 

(217) 

i (  ) If we substitute for ~.  u + - - l , - ,  v,M exp (-su) du from (217) into (215) and compare the a a 
o 

result term by term with (214) we get expressions for the a,. We then have the power series expansion 

U,-, V, = 1 a 
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1 ~!16n4-40n2+9) a 2 ~(16n4+8n2-3) a÷ (16n4-SnZ+33) 
+2 ( 128 r e 64 r 128 

+( a ) l(r 1) z(~_) 4} (u r+O 2 (4n2-1)16 r (4n2+5)-t8 (4n2+3)16 a \(Mv~ 2+ I a- 

1 ~f (64n 6 -- 560n 4 + 1036n 2 -  225) a 3 (64n 6 -  112n 4 -  84n 2 + 27) a 2 
+6 /. -3- 0-72 r a 1024 r -~- 

(64n 6 - 48n 4 + 140n 2 - 33) a (64n6--368n 4 -  1364nZ+747) 
1024 r 3072 

+ ( (16n ~ - 4 0 n  z + 9) a z 
r z 

(48n 4 + 104n z -  29) a 
256 r 

(48n4+136nZ+123) (16n4_8n2+33) r) (__~) 2 
- + 

256 256 a 

+ \((4nZ-1) a ~  r (12n2+25)64 -t(12n2+25) r 6 4  a (4n2+3)r2)64 a-2 ( _ _ ~ ) 4  

r )} 
7 -  a 

(218) 

/ ,  

for u > - - 1 .  

If r = a the expression (218) reduces to 

1 [(4n 3 ) 1  ( _ ~ ) 2 1  z 11(8n 3) 1 (~_v 1 ~,(u,l,v,M)=l-~u-~ 8--~-2 u +~ 8---4-~ )z u4+... (219) 

for u>O. 

In particular, we have 

1 1 2 5  ~l (u , l ,0 ,  M) = 1-~u--~u + u3+ .. .  (220) 

The first three terms of formula (220) should agree with the three terms of formula (54) given in Ward 3. 
1 In fact the coefficients of the third term are different, being - ] ~  in formula (220) of this paper and ~11 

32 
in formula (54) of Ward 3. 
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APPENDIX C 

(r)a 
--,V 0 Derivation of the Expression for ~. x, 

The velocity potential • inside the cylinder is assumed to satisfy the boundary conditions, 

(v) = - a 0 exp (inO) cos exp (kot) 
r = a  

(221) 

and 

on the surface and ends of the cylinder. The internal radius of the cylinder has been taken to be the same 
as the external diameter on the assumption that the thickness of the cylinder wall is very small compared 
with the radius. It is quite easy to take different values for the internal and external radius if this is desired. 

The velocity potential • satisfies the linear partial differential equation 

1 dz~b (223) 
V2 ~ = a~o &---T. 

The function 

(r)exp(inO)cos(~--~ f )  exp(iot) (224) O=g 

is a solution of the partial differential equation (223) provided that the function #(s) satisfies the ordinary 
differential equation 

d2g(s) q -1 d { n2 } 
~ o ( s ) +  v ~ - ~  2 x 2 - -  = 

ds 2 s s2 g(s) 0 (225) 

where 

(Da 
= - -  (226) V0 

ao 

The differential equation (225) is a Bessel equation. The form in which it is best to write the solution 
of this equation for our purposes depends on whether (v~ - rt 2 x 2) is greater than or less than zero. 

The boundary coiadition (221) is appropriate to the case of standing waves on the surface of the cylinder. 
These standing waves are equivalent to a super-position of waves travelling in the direction of positive 

and negative z with speed v° ao and this speed is supersonic if (v~ - rc 2 x 2) is greater than zero, whereas 
7t/£ 

It is subsonic if (Vo 2 -rc  2 x 2) is less than zero. 
If Vo 2 -  n2 x2 is greater than zero we write the solution of (226) in the form 

g(s) = A J .  [s x/v~ - rc 2 x 2] + B Y. [s x/Vo 2 -  ~ 2  x2] (227) 
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and if v g -  7~ 2/¢z is less than  zero we write the solution of (226) in the form 

9(s) = A I ,  Es ~ /x  2 ~c 2 - v 2] + B K ,  Es n/~z 2 x 2 - v 2] (228) 

Since the velocity potent ial  must  be finite on the axis of  the cylinder, we must  have B = 0 in both  (227) 
and (228). 

ak  
The function (224) satisfies the bounda ry  condit ions (222) automatical ly ,  if ~c = ~ -  and k is an integer. 

The constants  A in formulae (227) and (228) are determined by mak ing  the function (224) satisfy the 
bounda ry  condit ions (221). We then get 

a a o 

, /vg-~  
q ) =  

a ao 

,/~2~-v~ 

If we write 

then 

(r) 
= aaoU~ . ,a,VO 

(r)  
~n KT, -- ,  V 0 

a 

We m a y  note that  

, / 4 -  ~ ~ 

N/~2  K2 __ Vg 

r v~_rc~ ] 

j ,  [~/v  2 _  n 2 ~2] exp (inO) cos - -  

r rJ,~ ~ ~2- 4]  

exp (iogt) 

for v 2 - n  2 xa > 0 

exp(inO) cos ( ~ ) e x p ( i c o t )  

for vg--7t 2 x2 < 0 

(7) exp (inO) cos - -  exp (iwt) 

(229) 

(230) 

(231) 

J'. E,/4-~2 ~23 = o (232) 

when 

~ /vg -  ~2 ~:2 = j'.,m (233) 
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o r  

• ~ 2 2 "~0 = %/(Jn,m) + 7~ If. 2 (234) 

where 

°t Jn,m m = 1,2 . . . .  (235) 

are the zeros of J~(z). 
The velocity potential (230) becomes indefinitely large for the value (234) of Vo so that in physical 

reality no oscillation satisfying (221) and (222) is possible. This corresponds to a resonant condition within 
the cylinder. 
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FIG. 1. Diagram of flexible part of the infinite 
cylinder. 
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FIG. 2. Contours of integration ~in K' - plane for 
subsonic flow. 

IC m - PLANE 
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/ n- / r~- 
- M~u M'~ 

FIG. 3. Contours of integration in K ~- plane for 
supersonic flow., 
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