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Summary. 

A solution to the problem of incompressible conical flow past a cone is presented, in which the boundary- 
layer equations are solved by an implicit finite difference procedure. Comparisons are made with experi- 
ments by Rainbird, Crabbe and Jurewicz, and with calculations made by Crabbe who used an approximate 
method due to Cooke. The present calculations agree reasonably well with experiment and show that 
the approximate method gives a fair overall picture. 
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1. lntroductioh. 

General solutions of the three-dimensional boundary-layer equations require a high-speed computer 
with a large store, and even if this is available the organisation of the computation is very complex and 
beset with pitfalls. The onlymethod of solution for problems with completely general boundary con- 
ditions known to the author is that due to Raetz 1. This method seems rather difficult to follow and nobody 
else, so far as the author is aware, has yet attempted to use it. A difficulty in the method seems to be 
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that it is necessary to ensure that the finite difference intervals in the streamwise direction are very much 
smaller than those normal to it. Raetz indeed finds that this limits the number of steps across the boundary 
layer to about 20 usually, though he has sometimes used 40. It does not seem possible to increase this 
number if one wishes to cover a reasonable area of surface in a reasonable time with acceptable accuracy. 
Again, the variables chosen by Raetz are somewhat unusual, especially the choice of the z-co-ordinate, 
where z is distance from the wall along the normal to the surface. Raetz replaces z by ( = (1-u/ue) ~, 
where u is the velocity component which is approximately streamwise, and ue is its value in the external 
flow. This may lead to difficulties if there is overshoot, that is, if there is some place where u is greater 

than ue. 
For  these reasons it was felt that the development of another method ought to be attempted, and that 

it was advisable not to go the whole way at first but to try a problem which is only quasi three-dimensional 
to start with in order to gain experience. Incompressible conical flow was decided upon for this reason~ 
and because some experiments and approximate computations for this case had been done by Rainbird, 

Crabbe and Jurewicz 2. 
Details of the method used are given later in the Report and in the Appendices. The equations are 

non-linear and so recourse has to be made to an iterative process. The method of Smith and Clutter 3, 
suitably extended, seemed to represent one possible line of attack, but experience at Farnborough has 
suggested that it is better to integrate across the boundary layer by a matrix method, since the method 
of Smith and Clutter would lead to a difficult double interpolation to obtain the correct values of the 
first derivatives of the two velocity components at the wall. This is avoided here, and it makes it possible 
to tie in the solutio of the problem to the values of the velocity components at both ends, instead of 
leaving one end fre as is necessary if one integrates outwards from the wall. No difficulty as regards 
stability was found ut the method broke down as separation was approached. Since the type of singu- 
larity encountered,  t separation is known from the work of Brown 4 it was simple to extrapolate the 
solution up to the separation point, which thus could be found with fair accuracy (usually to three 
significant figures). 

So far only the incompressible case has been dealt with, but there would seem to be no particular 
difficulty in extending the method to the compressible case, though machine time and storage space 
will be considerably increased. 

2. The Boundary-layer Equations. 
We use an orthogonal curvilinear co-ordinate system for which the line element is given by 

ds 2 = h 2 d~2+h 2 dq2+d(  2 

where the surface is denoted by ( = 0, and ( measures distance along normals, whilst ~ = constant and 
r / =  constant are two families of co-ordinate curves on the surface, h 1 and h2 are generally taken to be 
independent of (. The equations for incompressible flow in this system are 

U S U  VOU w B U  V2 1 ap ~ ( OUt  
h , c~ ~ l- h2 - ~  + - ~  - K 2 U V + K , = - p h t ~-~ + ~ v ~ 

vv+r  v = 
hi ~ 2 tl ( ph2 ~rl a r~  

1 Oh 2 1 Oh1 
K1 = - h i  h2 t~ ' K2 = hi h2 Orl " 



For  a cone (not necessarily right circular) we write ~ = r, ~/= 0, hi = 1, h 2 = r, where r is distance 
from the apex and 0 is the angle between any generator and a fixed generator measured in the plane into 
which the cone can be developed. 

The equations now reduce to 

OU VOU OU V 2 1 8p 02U 

u ~r+-;-~+ w T ( - -  ;- = - p  o-7+ v o T  

OV VOV OV U V  1 Op OZV 
U N + r  ~ +  W-~+-7- = prO0 e v O~ ~ 

OU U 1 OV OW 
~ - - + - _ - - _ +  _-- .  = o .  

Or r r OO 0~ 

We now suppose the external flow to be conical. Hence we have Op/Or = 0. In this case it is possible 
to find solutions of the equations in which U and V are functions of (/r  ~ and 0 only. We shall in fact 
write 

Z=-- r  ' W = U e e  

U V 

Ue V~ 

In conical irrotational flow we have V~ = dUe~dO and we write 

K =  Ve 1 dUe M =  1 dV~ 

Ue Ue dO ' U e dO 

and the equations reduce to 

- l z u + ~ K 2 z v  t - K 2 u v - K v u o  - K 2 v  2 g z z  - -  Uz W - -  -~ ~ , 

[" 1 1 z ) 
v= - vz ~w --~ zu + ~ K zv - v(u + M y ) -  K v  Vo = - 1 - M ,  

1 
wz = ~ z u z - u -  M v -  K Vo - 1  K 2 zv~ . 

Finally the equations are simplified by writing 

and they become 

1 1 
f f ~ - - ' z  z u  +-_ K 2 z v  = w 

2 2  

U z z - -  WU z - -  K 2 u v - -  K vu o = - K 2 v 2  (1) 

v= - wv~ - v(u + M y ) -  K v  Vo = - 1 - M (2) 

1 z 3 
W z = - ~ K  v - ~ u - K v o - M v .  (3) 



The bounda ry  condi t ions  are 

w = u = v = O  a t z =  0 ,  

u = v = l  a t z  = o~. 

W h e n  difficulties arose in the computa t ion  a further t ransformat ion  was made, namely writ ing 1 - u ,  
1 - v  instead of u, v. This did not resolve the difficulty, which in fact lay elsewhere. However,  as a result, 

the equat ions  actually solved were 

u z ~ - w u z - K 2 u ( 1 - v ) - K u o ( 1 - v )  = K 2 ( - v + v  z) (la) 

Vzz-WV~-v(1 + 2 M - M v - u ) - K  Vo (1 - v )  = u (2a) 

1 3 
w ~ = - ~ K 2 ( v - 1 ) +  ( u - 1 ) + M ( v - 1 ) + K v  o, (3a) 

the bounda ry  condi t ions  now being 

u = v = l ,  w = 0  f o r z = 0 ,  

u = v = 0  forz  = oc, 

3. Numerical Solution. 

The method used is basically a Crank-Nicho lson  process and is described by Catherall  and Mangler  5 
and in more detail by Hall  6. The a t tachment  line is taken to be at 0 = 0 and the integrat ion proceeds in 
steps of 0, advancing 0 by an a m o u n t  60. The outer b o u n d a r y  is at z = co. We take it at z = Zo where 
z o is sufficiently large for the accuracy required, z o = 5 was found to be adequate in the present problem. 
The range z = 0 to z = z o is divided into N + 1 intervals, where N +  1 = Zo/6Z. 

We shall denote  u(O, z) = u(m 50, n6z) by u,.,. ; we note  that m = 0 on the a t tachment  line and n = 0 
at the wall. We then use the central difference scheme: 

/" ~\0~} = 1 (U,.+ 1,n--Urn,n) (4) 
m+~,n 60 Wv/ 

m+~,. 46Z 
1 

(urn + 1,. + 1 - u,. + 1,.- 1 + u,.,. + 1 - u,.,._ 1) ( 5 )  

O~__~Uf] 1 (U,.+ --2U,. 1 .+ +U, . .+t - -2U, . .+U, . . -O z 2],.+~,. = 2 ( 6 z ) 1  l , . + t  + . U m + ~ , . - 1  . , , 
(6) 

1 
Urn+l, n = ~(Um+ l,n+Um,n) (7) 

1 
u, .+i , ._  ~ = ~ (u.,+ 1, .+ u,.+ 1,.- 1 + u,.,. + u,.,._ l) ( 8 )  

C~z)  wm+ ½,.- w,.+ ½,._ 1 (9) 
rn + ~ ,n - -  ~ ~Z 
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Equations (1) and (2) are written in finite difference form using the above scheme, being evaluated 
at the point 0 = (m+½) 60, z = nfz. Equation (3) is evaluated at [(m+½) 60. (n-½) 6z]. The difference 
equations are written out in full in Appendix A. Equations (1) and (2) thus become equations for u,,+, 
and v,,+ 1 for all n. They involve w,,++, which is found from equation (3). We suppose that all the u's and 
v's have been found up to the line 0 = m60, and the problem is to find u,, + x and v,, + ~ for all n. As these 
quantities, not yet known, occur in equation (3), we put assumed or extrapolated values for them into 
equation (3) and thus w,,++ is found for all n. Now equation (1) is linearized in u,,+ ~, again putting in 
assumed values of Vm+ 1. The solution is given in Appendix B. This gives a better estimate for u,.+ t. This 
is used in equation (2) which is similarly linearized and solved, thus obtaining a better value for v,, +~. 
The iteration is repeated until sufficient accuracy is secured. The test for accuracy used is 6*, defined by 

go 

6* = f ( 1 - u ) d z .  
0 

When this changes by less than some small amount the iteration is stopped and we proceed to the next 
step, advancing 0 by an amount 60. 

A separate and simpler procedure is required to find u and v on the stagnation line itself (0 = 0) before 
the main step-by-step procedure begins. 

4. External Flow for the Right Circular Cone. 
If the semi-angle of the cone is denoted by 0~ and the incidence is c~, then according to Crabbe we have, 

by slender body theory 

Ue 
- -  = sec 0 c 
Uo 

[COS Ct- 2C~ tan 0c c°s ( s i ~ 0 ~ t  ] • 

V~ = 2~ sin (si~O~) 
Uo 

where Uo is the velocity at infinity. Slender body theory requires O~ and ~ to be small and ignoring cubes 
and higher powers of these quantities we may write 

(o) 
& / ' x  

= 2~ sin I I 
Uo \Oc] 

Hence if we put 2 = ~/0c we have 

K = 
22 0c sin (0/0c) M = 22 cos (0/0c) 

UdUo UdUo 

and so 

[,=++,,+] 
Kr,++ = (UJUo)m++ I ~ , Mr,+½ = (U~IUo)m++COS Oc . 

We note that at 0 -- 0 

K = 0 ,  M = 2 2 U 0 / U  e. 



5. Results. 

The first computations were done on a Mercury computer. Limitations of storage space were such that 
only 50 points across the boundary layer could be taken. The value of 60 was 0-02 or 0.03 initially, but 
it was found necessary to halve this interval as separation was approached, sometimes more than once. 
Even then the method finally broke down. The accuracy test for changes of 6" per iteration was 0.0001. 
As a check, some of the computations were repeated on an Atlas computer with the intervals 6z and fi0 
both halved and the accuracy test reduced to 0"00001. It was found that in no case was the change in any 
computed quantity more than one half of one per cent, and was usually less. 

Calculations were made for a cone angle of 0~ = 7½ deg with 2( = ~/0,) having values 0.5, 1.0, 1.3 and 
2"0. Fig. 1 shows the u profile on the stagnation line for 2 = 0.5 as calculated by the present method, 
compared with that by Moore 's  method 8 and Cooke 's  approximate method 9 as worked out by CrabbC.  
The latter method of course assumes a profile and only the scale comes out of the calculations. Moore ' s  
profile show a rather surprising overshoot, but one would only expect Moore 's  results to be good when 
2 is small. They come from the sum of the first two terms in an expansion in powers of 2 (the first term 
being the Blasius distribution) and here 2 = 0.5. 

In Fig. 2 we show a comparison for 2 = 1.3 between the experiments of Rainbird et al e, the approxi- 
mate method 9 and the present method, in respect of surface flow angle, that is, the angle between the 
limiting streamlines and the generators of the cone. Rainbird et al believe that their experiments gave too 
low a surface angle because the injected dye they used was somewhat too thick and probably gave the 
direction of flow at a point very near to but not quite on the surface. 

Figs. 3 and 4 give comparisons between the present solution and the approximate method in respect of 
streamwise and cross-wise skin friction for the case 2 = 1. For  the streamwise skin friction the approxi- 
mate method gives values in general too low and for the cross-wise skin friction the opposite is the case. 
However, as separation is approached the approximate method comes closer to the correct answer but 
goes too far. Fig. 5 shows the surface flow angle (fl) for all four cases as far as they could be computed. 
Expressed in terms of 0 the curves all end quite near to separation since they are coming down towards 
fl = 0 very rapidly. In Appendix C we show that near separation we might expect a curve of 0 against 
(tan fl)2 to approach a straight line and in Fig. 6a we see that this is indeed the case and separation can 
be estimated quite accurately by extrapolation of the lines to the 0 axis, at any rate for the higher values 
of 2. At 2 = 0.5 a more refined procedure is necessary, as seen in Fig. 6b. This value of 2 is indeed a critical 
value in that for 2 = 0-5 separation occurs almost exactly on the leeward generator of the cone and will 
not occur at all for lower values. The boundary layers going round either side of the cone encounter one 
another at the leeward generator and what occurs in this region does not yet seem to be fully understood. 
We show in Fig. 7 some cross-flow profiles at the point where 0 = 0.2, that is, approximately 90 deg round 
the cone from the stagnation line 0 = 0. It was not possible to make a direct comparison between these 
results and those given by Crabbe 7 owing to lack of detailed information but we can compare the maximum 
values of V~/Qe and these we give in the table below : 

2 Max (Vc/Qe) 

Exact Approx 
0"5 0"032 0.034 
1-0 0"052 0'061 
1-5 0-078 0'083 

In each case the approximate value is too large. 
Finally in Fig. 8 we show the position of separation as calculated by the present method and as found 

by the experiments. The calculations by the approximate method are not shown. They form a curve below 
that of the experiments but not so low as the present method. One must remember that the external pres- 
sure distribution used in the present calculations were those based on slender-body theory. In a complete 
theory, the external pressure distribution would have to be calculated for a flow which includes the vortex 
sheets associated with the separation; possibly, the slenderness assumption would have to be dropped. 
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The actual pressure distribution was not measured in the experiments but if it had been one could have 
obtained a fairer comparison between the experiments and the theory. Rainbird et al 2 consider that 
although they could not be certain about the surface flow angle of their experiments their measured 
separation points are not in doubt. They did attempt to allow for a changed external pressure distribution 
in their approximate calculations and they found separation to be earlier than that obtained by the simple 
slender-body assumption. Such corrections have not been attempted in the present study. 

6. Conclusions. 

The problem was undertaken (1) to test the possibility of the method of approach used for solving the 
partial differential equations concerned, with a view to its extension to the more important compressible 
case, and (2) to provide a means of testing Cooke's approximate method against an exact solution. 

It was found that the method was indeed capable of solving the incompressible problem studied to 
satisfactory accuracy with reasonable economy of machine time, and of providing a good estimate of the 
position of the separation line. The test of Cooke's approximate method of calculating general boundary 
layers in three dimensions shows that in some cases at least the approximate method is capable of giving 
a fair qualitative picture of the flow and of predicting the point of separation. 
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A P P E N D I X  A 

Finite Difference Equations. 

We write down  equat ions  (1), (2) and (3), namely  

U z z - -  WU z - -  K 2 u v - -  K v  Uo = - K 2 v 2 

v= - wv z - v(u + M y ) -  K v  Vo = - 1 - M 

1 2 3 
w . = ~ K  v - - ~ u - K v o - M v  

in finite difference fo rm using (4), (5), (6) (7), (8) and (9). The  bounda ry  condi t ions are 

Ura,O = Vra,O = Win+½, 0 = 0 

Urn,N+ l ~ l)m,N+ 1 ~ 1 .  

Equa t ion  (A.3) is solved first. It  m a y  be writ ten evaluating it at  [(m + ½)60, (n-½)6z]  

36z 
-~ (Um+ l,n+Um+ l .n-l  WUm.n'+'Um.n-X) 

(A.1) 

(A.2) 

(A.3) 

K 6 z  
- 2,50 (v,. + 1.. - v,... + v,. + 1.. - 1 - v,... _ 1). (A.4) 

. In this and the succeeding equat ions  we have writ ten for brevity K for K.,+~ and M for M,.+~. We give 
n the values 1, 2 . . . . .  N in succession and thus if values are given for the u's and v's then w.+~ can be 
obtained.  

The  solut ion of (A.2) requires some care in the me thod  of  linearizing. In the produc t  VVo the te rm vm + 1 
occurs  in each factor. One  of these is supposed known by ex t rapola t ion  and  the other  is taken as unknown 
and to be determined.  It  seems essential to decide correct ly which to take as known  and which unknown.  
It  was  found that  it was necessary to take the v,.+ 1.. which occurs in vo to be that  which is unknown.  

Equat ions  (A.1) and (A.2) are evaluated at  [(m+½)60, n 6z]. (A.1) m a y  be writ ten 

a .  u,. + 1 .. + 1 + b. u,. + 1 .. + c. u,. + 1 . . -  1 = d. (A. 5) 

where  

1 
a .  = 

(~_z) 2 1 K 2 -  K b .  = - v 

Cn = 5 " [ " - - W m + ~ ' n  
46z 

1 2 d. = - -~  K -V2-a~  u,~,~+ l - b .  u,~,~-c,  um,~_ l 

K m 

60 Vum,. 
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where 

(A.2) may be written 

where 

where 

~m _  13m+l,n_~_l)m, m Um+I,N+ 1 = 1, Urn+l,0 = 0 .  

a ' n l ) m + l , n + l _ k b ' n t Y m + l l n . . k g ' n U m + l , n _  1 m d '  n (A.6) 

a'n = an, C'n = Cn 

(a--Z) 2 K -  1W+MV ] fin= -2-~ v-a 

a n = - 1 - M - a n V m , n + , - b ' n o m , n - c ' n V m , n _ l  

K - -  
- -  ¢~-'-'0 U l)m,n, 

~ U m + l , n + U m , n ,  l )m+t,N+ 1 ~ 1 ,  /)re+l,0 = 0  . 

For equations (la), (2a) and (3a) the corresponding formulae have a~, a~,, cn, C'n unchanged, but have 

bn = - + 2 ~ K ~ I V - 2 ) + ~ O ( v - 2 ) ,  

, 
dn-=~  , 

- -  an him,n+ 1 - -  bn Um,n - -  Cn Um,n-  1 , 

/ / ~ 2  1 1 - -  K - 1 - -  
b ~ = -  - ~ + ~  M (V- 4) +~--~ (V- 2)+~ U, 

K _ 1 a'n = ~(v-2) v~.+~ U 

-a'nVm,n+l-b'nvm,n-C'nVm,n_l. 

The solution of (A.5) and (A.6) is described in Appendix B. 
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APPENDIX B 

The Solution of the Linearized Finite Difference Equation. 

We wish to solve an equation of  the type 

a n Un+l+bnun+CnUn_ 1 = d n ( l ~ n - " - N )  

where we have omitted the first subscript in the U's. It is m +  1 throughout. 
We give n the values 1, 2 , . . . ,  N in succession and we find that we must solve the matrix equation 

a u  = d ,  

where A is a tri-diagonal matrix having the value 

bN CN 0 0 [ • 0 0 0 

aN-1 bN-1 CN-i 0 [ 0 0 0 

0 aN-2 bN-2 CN-2 [ 0 0 0 A = 

0 0 0 0 [ a 2 b 2 c 2 

0 0 0 0 [ 0 al bl 

and u and d are column matrices of the u's and d's except that we write d N-aN = aN in place of dN if 
un+l = 1, Uo = 0 or d l - c l  = al in place of dl ifuN+l = 0, Uo = 1. 

Now A can be split up into two triangular matrices, that is A = LU or written in full 

A = 

1 0 0 0 ] 0 

IN_ 1 1 0 0 [ 0 

0 IN-2 1 0 [ 0 

0 0 0 0 [ 12 

0 0 0 0 [ 0 

0 0 

0 0 

0 0 

1 0 

11 1 

On carrying out the multiplication we find 

and hence we have 

In-1 Un = an-1, 

Un_ 1 ~ bn_ 1 

U N e N 0 [ 0 0 0 

0 UN_I..,.CN- 1 [ 0 0 0 

0 0 UN_2[ CN_ 2 0 0 

0 0 0 [ 0 U2 c2 

0 0 0 [ 0 0 U1 

U N .-~ b N 

In-1 cn+Un-1 = bn-1 

U N = b N 

an- 1 Cn 

(2~< n ~< N) 

Un 
(2~< n~< N).(B.1) 
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Next we solve L U u  = d by writing it as U u  = y,  L y  = d. The triangular matrix equations are easy to 
solve and lead to 

YN = dN, Y , -  x = d , _  1 a . _  1 Y ,  (B.2) 
U, 

1 yx (B.3) u.=u(y.-c.u._l), u l  = 

Since the a's, b's and c's are known we can first find the U's by equations (B.I) starting at n = N and 
going down to n = 2. Having found the U's we next find the y 's  by (B.2) again going down from n = N 
to n = 2. Finally we find the u's by (B.3), going up from n = 1 to n = N. 

Hence the solution is effected. 
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APPENDIX C 

The Singularity at Separation. 

The nature of the singularity at separation has been investigated by Brown 4. In the present notation 
she writes 

1 t "~z' = ( 0 ~ -  0)~, ~ = 4 ( 0 ~ -  0) 

~k = 2 3/2 ~af(~,t/), s = 2 -~ g(~,t/), 

where 

u' as v' a~, 
= 7 z "  = az  - -7  

and 0~ is the value of 0 at separation. 
She finds that 

f(~,t/) = ~. ~"f.(tl) + terms involving powers of log ¢, 
n=O 

and that 

g(~,q) = ~ ~" g.(q)+ terms involving powers of log ¢, 
n=O 

1 
fo = ~ 3 ,  go = O, f l  = ~1 ~2, gl = 0 

f2 = 0~2 ~]2--1~2/~5 , g 2  = B 2 / / 2  . 

where ~1, ~2, B2 are unknown constants, depending on the particular problem. 
If we denote the surface flow angle by fl we have 

= 4 ~  3 f .  
tanf l  = ~ z,=O .=o 

-4al[(Os-O)~+~(Os-O)~'l = A ( O ~ - O ) ~ + B ( O s - O ) ~ B 2  
(say). 

Hence we have for 0 sufficiently near to 0 s 

0~- 0 -'- (ktan fl)2 

where k is a constant. 
Now we have fl = 0 at separation and hence if we plot 0 against (tan fl)2 the above analysis suggests 

that we should obtain a straight line near to separation. We can extrapolate this line to fl = 0 and hence 
determine the value of 0 at separation. We do in fact find a line which is remarkably straight for the 
higher values of 2. (See Fig. 6a). This is not so for 2 = 0.5 and for this case it is necessary to take in the 
second term. 

15 



~ E  

1,0 

0-8  

0 - 4  

0"2 

MOO~E 7 

f 

:00  

0 

40 

35 

30 

j3 

dD 

ZO 
2 
<. 

0 
J 
U. 

16 

I0 

5 

2, 3 4 5 o 
,,/3z 

/l 

/,I 

J 
0 

/ \ 
/ \ 

/ 
/ / 

/ E Y,,~'I" 

/ 
I 
I // 

t 

O-lO 0"?~o O 

A P P R O ~  

- . - -  E :~PT.  

t ' SEP~I~,TION 

I 

| 
I 
I 
I 
I 
| 
I 

0 . 3 0  0"4.0 

FIG. 1. Profile on s tagnat ion line. FIG. 2. Surface flow angle 2 = 1.3. 



-I.O 

0 " 8  

jU-Uo, J U o 

0 - 4 -  

-O-?. 

I 

A P P R O ~  
METHOD 

SEPAR.Kt'ION 

\ 

.05 .10 

FIG. 3. 

• 16 -gO -~5 . 3 0  "35 O 

Stream-wise skin friction 2 = 1. 

-" ~.5 

- '?.0 

~ - N o 4 ~  

-15 

/ / 
-'K / 

-.0 ~. 

/ 
:) -OS 

-- .O,~ 

/ 
/ 

/ 
/ / / 

"10 

/ 
/ 

/ 
/ 

El /ACT  
P / 

" - . \  

\ 
\ 

\ 

\ 

-15 
O 

APPRO'~ 
NETHOD 

\ 
\ 

\ 

-~o 

\ 
\ 

-as .5c 

= 5EPAR.ATIOI~ 

N 

FIG. 4 .  Cross-flow skin friction, 2 = 1. 

17 



4,S 

35 

3 o  

{3 

Z ~o 

3 

ua 15 

~0 

5 

0 
0 0"10 0 . 2 0  0 " 5 0  0~40 

0 

FIG. 5. Surface flow angle. 

18 



Z 

"O-EO 

(~. ~)~ 

.0"15 

O- I0 

O.0~ 

0.?_~ 0 • Z6 0"?.7 

® CAkCULATEO POINTS 

\ "--... 
O.Z6 O.a9 0.30 

0 

~-.~ 
0-31 0.3?. 

FIG. 6a. Determination of separation point, 2 = 1, 1.3, 2. 

0.04. 

0 "03 

(t .~)~ 
0-0?. 

0"01 

\ 

0 .?.8 0.'30 0.3Z 0.34. O. 56 0-56 0.4-0 
e 

FIG. 6b. Determination of separation point, 2 = 0.5. 

19 



C-, ' -L  

. . j  

~< 

{#'} 

,.< 

© 

_> 

3"O 

! -5  

I-0 

0*6 ~0 
I J I 0 / 

-O! -0~ .03 .0~ .05 -06  -07 "0~ 

Qe 

FIG. 7. Cross-flow velocity profiles at 0 = 0'2. 

0-45 

0"4'(2 

0 "36 

e~ 

0-3C 

0 " ~  

0 

k ~ "  "o., . 

C ~ L C .  
. . . .  ~ P T .  

L,.-,O. 

0 . 6  !-0 I -6  2-0 2. S ), 

FIG. 8. Pos i t ions  of separa t ion .  



i 
.................... 

R. & M. No° 38 .  

(C) Crown copvr(ght 1967 

Pnbhshcd by 
HI, R MAJESIY'S S 1A I I()N|Z~R~ ()YFI('[. 

To be purchased from 
49 thgh Holborn, London w.< .I 
423 Oxlbrd Street, London w.1 
13A Castle Street, Edinburgh 2 

109 St Mary Street, CardlffCFl 1JW 
Brazennose Street, Manchester 2 

50 I:alrfax Street, Bristol I 
258 259 Broad Streel, Birmingham 1 

7 1 I Lmenhall Street, Belfast BT2 gAY 
or through any bookseller 

Ro & M. NOo 35 . . . . .  

S O Code No 23 3." 


