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Summary. 
Five methods for the approximate solution of the momentum integral equations for the three- 

dimensional turbulent boundary layer are presented. These include the removal of the usual small 
cross-flow velocity restriction and the development of the streamwise shape parameter is calculated by 
means of an extension of Head's 1 entrainment hypothesis. The predictions of these theories and of 
those of a method due to Cooke 2 are then compared with the results of a series of experiments with an 
apparatus designed to simulate the case of an infinite yawed wing. A considerable discrepancy is shown 
to exist between theory and experiment which is attributed either to the streamwise skin friction being 
inadequately represented by an expression derived from two-dimensional flow or possibly, if less likely, 
to the neglect of certain terms in the derivation of the streamwise momentum-integral equation, 
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1. Introduction. 

Three-dimensional turbulent boundary layers are, in all probability, the most commonly occurring 
form of boundary layers. Nevertheless the methods available for calculating the development of these 
layers are very few and until the work of the present author had been undertaken none had been compared 
to any extent with experiment. These methods were also in general characterised by the neglect of terms 
due to cross-flow in the boundary layer and the assumption that the streamwise shape parameter was a 
constant. The methods presented here represent an attempt to develop calculation methods to include 
these cross-flow terms and to calculate simultaneously the development of the streamwise shape para- 
meter. The predictions of these methods are then compared with the results of a series of experiments 
which produced three-dimensional turbulent boundary layers upon an apparatus which simulated an 
infinite yawed wing. 

The main results of. this comparison between theory and experiment are that, although the cross-flow 
terms would appear to be adequately allowed for by the theories developed here, there still exists a 
considerable disparity between theory and ~xperiment. This is attributed either to the streamwise skin 
friction being inadequately represented by any of the usual expressions taken from two-dimensional 
flow or possibly, if less likely, to the neglect of certain terms in the derivation of the streamwise momentum- 
integral equation. 

The method of shape-factor prediction involved is an extension of Head's 1 entrainment hypothesis 
to the three-dimensional case and is shown here to give fair agreement with experiment. ~' 

2. The Boundary Layer and Momentum-Inteoral Equations. 

A system of orthogonal curvilinear co-ordinates (~, ~/, () is used. The surface on which the boundary 
layer lies is denoted by ( = 0 and ( measures the distance from the surface along a normal. On the 
surface ( = 0 are two families of co-ordinate curves ~ = constant and ~/= constant orthogonal to one 
another. In this system an element of length (ds) within the boundary layer is given by 

ds 2 = h 2 d 4 2 + h~ d~l 2 + d( 2 

?Since this work was completed the author has been informed that this extension has been also derived 
independently by Cumpsty and Head. 



where ha and h 2 a r e  length parameters which may be taken as functions of ~ and ~/only provided that 
the surface curvature does not change abruptly and that the boundary-layer thickness is small compared 
with the principal radii of curvature of the surface. 

In this co-ordinate system the  boundary layer and continuity equations as given by Cooke 2 for 
incompressible flow are: 

u Ou v Ou w Ou 1 OP 1 3 [- Ou -7 
h, ~¢ + ~  ~ + W  -k~uv+k~ ~ = phi 3¢ ~ ~ [ , ~ - p ( u  w' ,] (2.1) 

u Ov v Ov wOv 1 0 P  1 3 I#av )] 
hi 0¢+-h-2 ~-~q+--~--kauv+k2u 2 -  t-p ph 2 Orl ~ ~ - p  (v' w' (2.2) 

OP 
0 = - -  (2.3) 0~ 

-~(ph2 u)+-~-~q(pha v)+ (Phi h2 w) = O. (2.4) 

The velocity components in the ~, r /and ( directions are given by u + u', v + v', w + w' where u and u' 

are mean and fluctuating parts respectively. The mean of a product f '  g' is denoted by ( f '  g'). P is the 
pressure, p the density, # the viscosity and k a, kz are the geodesic curvatures of the curves ~ = constant, 
r /=  constant respectively, i.e. 

1 ah2 1 Oha 
ka = - k2 = 

ha h2 0~ ' hl h2 &l 

The last terms on the right-hand side of 2.1 and 2.2 consist of derivatives of shear stress terms # (~u/O0 
~u 

and # (av/30 together with Reynolds stresses - p  (u' w') and - p  (v' w'). We write zi = # ~-~-p (u' w), 

0v , , 
z2 = # ~-~- p iv w ) and denote their values on the surface by 3o a and %2. 

The values of OP/d~ and OP/&l are obtained from the flow at the edge of the boundary layer, i.e. 

2 1 aP (2.5) u~ Oue ~ ve Oue k2u~ve+ka v ~ = 
ha 3~ hz Oq phi 3~ 

Ue ODe l)e 01)e 2 1 OP (2.6) 
ki Ue re+k2 ue = 

ha 0~ h 2 0~] ph 2 011 

We may integrate equations 2.1 and 2.2 term by term across the boundary layer using equation 2.4 to 
eliminate w and equations 2.5 and 2.6 to eliminate P. We then obtain momentum integral equations and 
if we put these into streamline co-ordinates so that ve = 0 and assume the external flow to be irrotational 
so that we may put h 1 = 1/u~ the momentum-integral equations then become 

0011 1 0 l O u  e 1 30a (2.7) 
0~ F ue--h z Or I (0a2)+ ~ -  (201a -~61)- ka (011 - 0 2 2 )  = PH3e 

Ue h2 
oozl 1 0(022) i_2 Oue o 1 ~_~ - ~ 2 a  4 (Oaa +Oz2 + G ) - 2  ka Oza = 302 
0~- ~ O~ Ue h2 u~ ue pu~ " 

(2.8) 



An axially symmetric analogy is found by assuming the cross-flow velocity (i.e. v) and its derivatives 
in the q direction to be small. With this assumption and writing (1/h 0 (0/0~) = O/Os and h 2 = r so that 

1 Or 
kl - the momentum integral equations take the form 

r 0s 

ds t-011 (H+2)  Os r -~s = pu 2 (2.9) 

0 0 2 1  [ l OUe+l_ Or ] l t~Ue 
Os +2021 ~ Os r Os + ~ r  -ff~q (Olx+6 , )=  ~oz (2.10) 

p U e  2 " 

The various momentum and displacement thicknesses are defined as 

Ue U e ' 
0 0 

u V__d~,O21 = ~,022 = - 
012  "e Ue J u2 ~e de '  

0 0 0 

(2.11) 

and H = t~i/011. 

3. The Assumed Velocity Profiles and Wall-Friction Values. 

The various suggestions for the form of the velocity profiles have been comprehensively reviewed by 
Cooke 2 and it is intended here only to mention those which are necessary for the calculation methods 
of Section 5. Since the streamwise velocity profiles in three-dimensional flow are similar to those in 
two-dimensional boundary layers, it has usually been assumed that the streamwise velocity profile 
follows a power law of the form 

u/u~ = (~/6)" (3.1) 

and substitution of this into the definition of H the streamwise shape parameter yields 

H - 1  

. 1  
n = ~ so that u/ue = (3.2) 

The form assumed for the cross-flow velocity profile is usually 

. . . .  ~ (3.3) 
Ue U e 

with ~ = tan fl = %2/%1 where fl is the angle between the direction of a streamline in the free stream 
and the corresponding limiting streamline on the surface of the body. 

Eichelbrenner 3 has suggested that v/ue should be written as a quintic in u/ue, 

- -  = 0~1- - '1 -N2  - t -~3  
Ue U e 

-t-o~ 4 q-c~ 5 



he then defines 

Lim v Lim v 

u/u~ ~O u u/u~ ~ l ( u -  ue) " 

If one assumes that V/Ue is to be linear with respect to u/u~ at u/u~ = 0 and 1, i.e. 

U/Ue)Z,] o \O(ulu~)Z) ' = O ,  k a U / U e J  o = 0~, 1 \auluJ 

then applying the further boundary condition (1)/Ue) 1 = 0 one obtains 

-----C~ 

u-~ = o~ [~e--6 (~-e) 3+8 (~)4--3 (~-e) 5] -c [4 (~-e) 3--7(~-e) 4+3(~ee) 5] (3.4) 

Unfortunately the assumed boundary condition \a (.lu~)~/ = 0 is suspect since we may write 

a~(v/,o) a(V/Ue)a~(u/u,) [-~('/'e) 1 : [_a~(V/',) 1 
a~2 =O(u/ue) a~z ~- L a~ J L~(u/u~)ZJ 

(3.5) 

which at the wall with the above boundary conditions reduces to 

(U/lie)l 
- a 2  ~ J o=~L a~ ~ Jo 

But at the waU the boundary layer equations 2.1 and 2.2 give 

02v 1 0 P  82u 1 ~P 

# 0 - ~ = h  2 at / '  / ~ - ~ = h  a¢ 

therefore 
1 ~P / 1 aP 

O~ i 

'h2 a~l/ hi d~ 

i.e. the limiting streamline is normal to the isobar. This implication, which may also be deduced for the 
triangular profile suggested by Johnston 4 is in direct contradiction with all the experimental evidence 
so far produced. 

To overcome this we assume here a quartic in u/ue for v/ue and only apply the four boundary conditions 

= o~ and = c .  
v =o, °(u/u.)~J ~ L~J 

' La (u/ue)J o 

This gives 

v u 2_i_3 u s u 4 2_5 
- -  = c~ - - c 3 . ( 3 . 6 )  ue ~ -  3 +2  

\ u e /  \ u e /  \ u j  j 



The streamwise wall skin friction is assumed to be given by the well known two-dimensional relation- 
ship due to Ludwieg and Tillmann 5 

%1 = 0-123 x 10- ° '678n  :tteOll'~ -0.268 
pUe 2 

(3.7) 

or by a relationship due to Young 6 

( u £ ~ )  -1/5 
"%1 0"0088 (3.8) 

PUe 2 --  

The cross-flow skin-friction component %2 is taken to be %1 tan fl with 

tan fl = Lim v/u. 
(--*0 (3.8) 

4. Shape-Factor Prediction in Three Dimensions. 
In order to predict the shape factor in three dimensions it is desirable that we first consider the 

established two-dimensional methods. Cooke 7 in fact did this in the case of small cross flow with an 
application of Spence's 8 method. This yielded fair results in one case and very poor results in another. 
Thompson 9 however has shown that most two-dimensional methods, including Spence's method, can 
be unreliable when used in situations very different from those from which they were initially derived. 
Thompson, however, shows that Head's 1 method is generally more reliable than other methods. 

Head showed that if we assume the entrainment by the boundary layer of fluid from the external 
stream (i.e. the rate of change of volume flow in the boundary layer) to be a function of the velocity- 
profile shape, the external flow and some measure of the boundary-layer thickness an equation of the 
form 

V 7 l d 
[u(6-6" )[  = F (H~_o,) (4.1) 

u dx L J 

is obtained. Here 6" is the displacement thickness, 6 the boundary layer thickness, u the velocity of the 
external stream, H~_o, = (6-6*)/0 and 0 is the boundary-layer momentum thickness. F(H~_~,) is a 
function derived by Head which he obtained by plotting (I/u) (d/dx) [u(6- 6*)] against H~_ ~, for several 
sets of experimental results. 

As has been mentioned previously the streamwise velocity profiles in three-dimensional flow are 
similar to those in two-dimensional boundary layers. This being so we might hope to derive a similar 
equation to 4.1 for the three-dimensional case with due allowance being made for the convergence or 
divergence of the external streamlines and the effect of mass addition or subtraction through the sides of 
the control volume. 

To do this we consider the continuity equation 2.4 

1 ~ (hzu) 
h 1 h 2 a~ 

1 3 h " ~ ( ~v)+=-;: = O. 
hi h2 &l c~, 

Integrating this term by term across the boundary layer yields 

i f  1 3(h2u) ' -  11~ 3 I O W d ( = O  
h2 hi ~ a~+~- tJ  ~ (hlv)d(+ c3-~ 

o o o 



Writing 

1 
i.e. 

h2 hi 

1 1 
h2 = r , - -  = h 1 

Ue ' , h i  

0 f h2ud ~ 

0 

gJ 

c~ fh t v  

0 

- -  d~ = - w e  
ue 06 1 

0~ h 1 0~ h 1 h 2 0 0 

6 

0 = 0 1 3 _ 0 and 6 2 =  - f V d (  
0~ Os'h 2 00 On U e 

0 

(4.2) 

4.2 becomes 

0 ( r f u d ~ )  

1 o Ue062 Ue06 
- - w e ,  ( 4 . 3 )  
r Os 3n O s  

where w e signifies the value of w at the edge of the boundary layer. The terms on the right-hand side of 
4.3 represent the entrainment of the externalflow by the boundary layer and, following Head, we assume 
this to be a function of the streamwise velocity-profile shape, the external flow and some measure of the 
boundary-layer thickness. We choose these parameters to be H a_ ~ l, ue and 6 - 6 i respectively and rewrite 

4,3 as 

r Os 
062 = f (Ha-al ,  ue, 6 -  61) U e ~-~n 

or 

1 O[ru. (6- 60] u. 062 
7 as 

= f(Ha-al,  u ~ , 6 - 6 , ) .  

The left-hand side of equation 4.4 has the dimensions of a velocity so that 4.4 may be written as 

1 3[ru~ ( 6 -  61)] c~62 
r 8s u~-~Tn = u~F(Ha-al)  

1 3 [ r u ~ ( 6 - 6 1 ) ]  062 
Uer Os On = F (H6-al) " 

Now Lighthill 1° has shown that the true displacement thickness 6" is given by 

6* = 61 q -~e  r 62d ~ 
0 

(4.4) 

(4.5) 



Therefore 

rUe6* = rue61 4 - -  

,¢ 

O I 62d~ 

&t 

O(rUe6* ) O(ru e 61) 1 06 z 
_ _  - -  _ _  + 

Os Os hi O~I 

or 

1 O(rue6* ) 1 O(rUe~ ) 062 
- -  = ~ - - -  (4.6)  

uJ  Os uJ  Os On " 

Therefore 4.5 may be rewritten 

1 0['rUe(0-0*)'[ = F(H~_oO. 
net OS 

4.5 may also be written 

1 0[u~(6-61)] 1 Or 062 = F(H~_~x) 
u e Os ~ ( 6 - 6 1 )  r 0 s  0n 

and it will be seen that the second and third terms represent the effects due to convergence or divergence 
of the external streamlines and the addition or subtraction of mass through the sides of the control 
volume respectively. 

5. Approximate Solutions of the Momentum-Integral Equations. 

Cooke 7 made the assumption of small cross flow velocity and hence the momentum-integral equations 
took the form 

OOll I( 0ue+10r] 0s q-011 H + 2 )  1 = %1 (5.1) 
u~ Os r Ts pu~ 2 

O02x I 1  Oue+l Orl 1 Oue 
t~s q-2021 ~ ~-s r Oss +U-Jet --~q (011+61) = pue 2 r°2 (5.2) 

He then assumed that H is constant and equal to 1.5 and that Z01/pUe 2 = 0'0088 (U e 01 l/V)-1/5. This 
resulted in 5.1 becoming 

O(~)Uegrl'2) = 0"0106 Ue4r 1"2 (5.3) 
0s 

where 



For the solution of equation 5.2 he assumed that the streamwise and cross-flow velocity profiles are 
given by 3.2 and 3.3 respectively, i.e. 

H - 1  

u v 1 
u-; = 'u-; = \ - ? /  Vee 

where a = tan fl ~ fl and fl is the angle between the limiting and external streamlines. Then once more 
assuming that H is constant and equal to 1.5 he obtained 5.2 in the form 

a~ 0-0166g 2.187 aue 
Os ~ ® - u~ 2"s Or/ (5.4) 

where 

~ f l r U e  3 / 2  . 

This method has been programmed in Mercury Autocode for solution on the University of London 
Atlas Computer. 

As will be mentioned in greater detail in Section 7, results with this method did not agree well with 
experiment and so the cross flow term (l/r) (a012/0q) was next included in the streamwise momentum- 
integral equation. We now work with the equations 

0011 1 0(012) I( 1 Oue+l Or] fox 
0 ~ -  t - -  t-01i H + 2 )  - (5.5) 

r ~ -~s 7 ~ puo ~ 

and 

0021 [ 1  Oue+l Or] 1 ~_~Ue %2 
Os t-2021 ~ ~ r Os +u-~r (011+6,) = . (5.2) tl pUe 2 

Assuming the velocity profiles 3.2 and 3.3 we find 

1 4 1 4 2 -I 
012=a6 - H + H + I  H + 2  H + 3  ~- J 

and (5.6) 

6 ( H -  1) - 2 a 6  
011 - 021 = 

H (H + 1) H ( H +  1) ( H +  2)" 

In the general case the derivative with respect to t /would have to be first ignored, whilst a solution for 
several streamlines was obtained, and then accounted for by iteration. In the case of the infinite yawed 
wing to be considered here, however, we find that we may write 

l O  v l O  
r 0~1 u~ Os 

where ul, vx are velocity components in the x,y axes respectively, x and y are cartesian co-ordinates 
normal and parallel to the leading edge of the wing respectively. Thus, consider axes s and n along and 



normal to the external streamline respectively inclined at angle ~b to the x,y axes so that tan q~ = vt/u 1 
and Ue 2 = U12+Vl 2. Then 

x = s cos i f -  n sin ~b 

y = s sin ~ + n cos 

a ~ ax ~ dy ul a 

Os=Ox ~s ~Oy Os Ue OX 

13 Ox 0 ~y vl 

an ax ~n + ay On ue ~x" 

(The derivatives with respect to y vanish as the wing is infinite and yawed). 

1 a a vl d 
Hence - - -  

r at/ an ul as 

We now assume that H is constant and equal to 1.5. It will be shown in greater detail in Section 7 
that the variation of H only produces small changes to the results obtained from the streamwise 
momentum-integral equation but it may have significant effects upon the prediction of fl the angle 
between the limiting and external streamlines particularly if fl is large and OH~as significant. However, 
with the assumption of constant H we find that 5.6 becomes 021 = - 8 / 7  ~011, 01z = 0-498~01r The 
momentum-integral equations 5.5 and 5.2 may therefore be rewritten as 

a011 0.498 vl a01___L - vl a~ to,  _ ~  
as ul as 0 " 4 9 8 0 1 1 - - - - =  U 1 ~S pUe 2 ~I i IH+2) I aue 1 a~l 

+7 

--~--S --ff011~S = ~pUe2-[---'7 -0~011 OS r ~S 

-4 0i  1 (2.5). 
Ul Ue 

We now assume that To1/pUe 2 = O'O088(UeO 1 l/V)- 1/5 and thus have two simultaneous differential equations 
in the two unknowns, 011 and ~. These have been recast into a form in which they could be solved on 
the computer by means of a step-by-step process involving a library routine of the Runge-Kutta-Merson 
type. 

These equations are 

aoll - @i-0.436 h ~2 
as ul 

as 42 a a011 
a--s = -0"875011 011 as 

where 

( u _ ~ )  -1/s 3-5 au e 1 dff_s~ 
¢~1 = 0"0088 --011 [~-e ~-S "1'-7 

10 



-l/s 1 Kue+l_ Kr + v l  2"5011 
4~2 = 0"0088a + ~011 Ks r ut u--~ Ks 

A comparison of the results obtained by the use of this method, known as Method 1, and those obtained 
experimentally will be made in Section 7. 

After the extension of Head's ~ entrainment hypothesis to the three-dimensional case had been derived, 
an attempt was then made to include the variation of H in the streamwise momentum-integral equation 
for small cross flow 5.1 and simultaneously to calculate H. This will be known as Method 2. 

The entrainment equation is 

u~r Ks Kn 

If small cross flow is assumed we have 

1 Krrue (~$- c$1)1 
Uer KS 

= F (H~-bl). (5.7) 

We assume F(H,~_,~I) and H~_~I as a function of H to be given by Head's curves and use the analytic 
form for these curves quoted by Standen 16, 

H~_61 = 1.535 (H-0-7) -2"715 +3-3 1 (5.8) 

F(H~_6t) = 0.0306 (H6_~I - - 3 " 0 )  - . 6 5 3  . J 
We now assume that Zol/pue 2 is given by the Ludwieg-Tillmann s relation 

z°l- = 0.123 x 10 -0.678// (Ue011~ -0.268 
pUe 2 

and thus have two simultaneous differential equations for 0t t and c5- ~t i.e. 

a011 [(  Kue+lKr] 
Ks t-011 H + 2 )  ~ r ~s = 0"123 x (5.9) 

8(6-c5,) =0"0306 r (c5-6') O] -'~s3 r 1 ar 1 Kuel 
K------7--- L 011 3 . j  Lr  Ks J (5.10) 

and 

H = 

= . 1 / 2 . 7 1 5  L ,ij 01----- ~ -  3"3 

1-535 +0"7 

from 5.8 above. This method has also been programmed for solution on the computer. 
It is also possible to include the variation of H in the momentum integral equations 5.5 and 5.2 allowing 

11 



for cross-flow. We thus have the three equations 

a(6-6,) F(Ha_ol)_(6_6, ) [ I  Or 1 OUel 
as - Lr ~ + ~  as 3 

cnO,, 0(0,2)_ %, I OUeo [ H + 2 ] _ 0 x  ' 1 Or 
~ -  4 Oft pbte 2 U e ~S '' ; N = ~' 

002, 1:o2 _ 2 0 2 , ( g  Oue + 1  ¢3~s )_O11(H+l )  1 0 u  e 
as = pUe 2 -~$ r u e an -- (f12" 

"?.'..~:,u assume the velocity profiles 3.2 and 3.3 so that from 5.6 we have 

02, = f a  (H) 011 e = 
201, 

( H -  i) (H + 2) (5.11) 

and 

012 = f2 (H) 0,,  e = O, ,eH(H+I)  [_1  4 1 4 t_H~__~I 
( H - l )  H - ~ H + I  n + 2  H + 3  

We also assume that the skin-friction term is given by the Ludwieg-Tillmann relation and we have 
O/On = -(vl/ut) (O/Os). The momentum-integral equations may thus be written as 

001, 4- f2a(Oxl ulV' Olx °~s  = dp, (5.12) 

0,, N ~0-fff-l-fl 0011 0~ a ~ - -  - 4,~ (5.13)  

Hence substituting for 0 (01~ ot)/t3s in 5.12 from 5.13 we obtain 

as ul ~ as asj = ¢'+vlu, 4'2=~1 

or 

or 

where 

~01, ~_Vlaol OH[f2 af, a f 2 ]  
Os u, O-ss k ~  OH 3H = at 

0011 b v ' ~ 2  
Os u, dHo_~l L Os os .J 

f2 ~fx af2 
~2 fx aH ~H 

12 



so that 

[ d/-/ a(6~al)l 8011 --01 O~ O~ 2 --  " 
O---s - = al Ul dHo-~ l  

/ F1 - v l  H dH "] 
L u l n a 2  ~-~'dH~_~lJ / 

(5.14) 

5.13 may be rewritten as 

O~ I Ofl 0011] / 

o r  

O---s = c~2-f  i a--~s-s - a  O---H O---Ha_,l - ~s H'-*l  Os ,I (5.15) 

and we have also that 

O(6-3X) = o'o306 (H6-'s1- [~ ~s+~(~r 1 Sue]os j (5.16) 

From 5.8 we have 

H~_ ~l = 1"535 ( H -  0"7)- 2.71 s + 3"3 

so that 

V i 1/2"715 

in,-ol-3.3| 
H =  L 1"535 d +0"7 

and 

dH 
dH~_ ~1 4.1675 

In this form the equations have once more been programmed for solution on the Atlas computer. 
It is also possible to include the cross-flow term, a(f2)/On in the entrainment equation. This has been 

done here and will be known as Method 4. We have the equations 

0(6-61)  852 = ( 5 - 6 ~ ) [  1 Or 1 Oue] 
OS Ot 1 " r Os u e OsJ +F (H ~-~ l )=q ~3  (5.17) 

doll  00i2 to1 
0~  --1 On pUe 2 

0r 
1 O U e o l i ( H + 2 ) _ _ O i  i ~s = dpl 

u e OS 

0021 r°----L-2021 - 0 1  ( H + I ) - -  - -  = tk2. 
Os pu~ 2 Os r ~s 1 u~ On 

We now make the same assumptions for the velocity profiles and skin friction as we did in Method 3, 
so that 

13 



tU ! t -'268 r°~ "123 × 10 -0"678H e l  
pUe 2 - -  

021 = f :  0tl  ~ = 
2 0 i l a  

( H - 1 ) ( H + 2 )  

00il cq I O(6-fil) 
- -  - + c~4  - ( 5 . 1 4 )  

Os ~4 ~4 Os 

and 

[ .  o117/ 
~3s = cPz-°~011 ~s -J~ ~ O~s ] f:  O:l (5.15) 

and in this form the equations 5.19, 5.14 and 5.15 have been programmed for solution on the computer. 
In addition to his expression for the cross-flow velocity profile 3.4 Eichelbrenner s has suggested a 

calculation method which is not restricted to the case of small cross flow. For the shape parameter 
equation he multiplies the streamwise equation of motion by u and then integrates with respect to ( to 
obtain the three-dimensional counterpart of the energy integral equation. The term which appears on 
the right-hand side of this equation 

Ou 

o 

he assumed to be given by a two-dimensional expression due to Rotta : 

6 

f du d 
0 

p U e  3 

- 0"0056 ( u _ @ )  - 1/6 

This type of technique does not yield as good results as the entrainment approach in two dimensions 11 
and so a method has been developed which uses the entrainment approach together with the quartic 
(3.6) velocity profile. This will be known as Method 5. 

The use of the quartic velocity profile 

- - = c ~  - 3  + - - c  3 
Re 

- 5  +2  

together with the form for the streamwise profile 

Ue 

yields 

012 =f2011~ = 0110~ H - 1  H + I  H + 2  H + 3  t- 
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and in addition 

f ~ 16aOll H 
52 = v d~ = ( n - 1 ) ( n + 3 ) ( n + 5 )  = - f 3 ~ O ~ x .  

5.17 may therefore be written as 

~(5-50 vl ~ 0 ~  df3 
~11f3 /)1 ~011 = (/)3 as Os ul ~ " 

Substituting for O(aO1 O/as from 5.13 gives 

a(a-a,).l_Vl 01, If3 df, af31 
as ul ~ as asJ 

o r  

a(b-S1).l_Vl0H ctH If3 ~f, ctf3q 
as ul 7 s  ~ aH aHJ 

~(~--(~l).[_~)lo~[f3aflaf31dH [a({~ ~1) a01,1 
o, u, ~ an anj ~",-,1 ~s H,_,, as j 

But from 5.14 

aOll ai a,,-1 8(6-51) 
= 

as a,, ~z4 8s 

where 

~1 = ~1 +131Ul ~11 ~2 ' 0~4 
dH 

= 1-v-!laa2H~_~l 
ul dH~-~i 

f3 = e:~+~-y-[e:~ 

f 3  

= ~ + ~  T, :~ 

= ~b3+u~ f3 ~ .  

so that we may write 

o r  

a(5-6,) 
as 

where 

a(~-9') (1 +~5)-c~s H~-~, L ~4[~*+ \(~'- 1/~4 ,/a(~-5')-Ias .j = ~b3 +V~ul f, f3~b2 

Jl A-~5--a5 Ha_a1 /c¢4- 1'~ [ ~ ~b3 .-[- o~ 5 °~1 vl f3  L t / J  

= u 1 ~ aH aHJ aHa_~l 
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From Method 3 we also have 

6 6 

Or1 = uff ue (n+ l)(2n+ l),61 = 1 -  d~ - n+ l 
o o 

so that 

and 

H - - 2 n + l  
011 

5 : e  3 3 ') 
62 d ( =  - a  n + l  2n+ l  F3n+~ 4 n + l  - c  

o 

(2 3 5 q_4_n~t ] n + l  3n+ l  

- ~ d ~ = - a  
e n + l  

3 3 
t 

3n+l  4n+ l  
1 0 (3 3 5 +ff~-~t ] 5nq- - c n + l  4nq-1 

= f  [ = ( 1  4 
v - - - U V d ~ = - 6 2 + 0 2 1 = - 6  n + l  2n+~ 012 J Ue Ue 2 

0 

6 4 _ ~ )  
3n+1 4n+1 

- c  n+l  3 n + ~ 4 4 n + l  5n+ 

f v  2 I ~ (  1 6 1 5  20 15 
022 d f f =  - -  • 2 t t 

= -  ~z  2n~-I 3n+l  4n+ l  5n+l  6n+ l  
o 

7n+l  

(5.20) 

3 14 26 24 11 2 \ 
-2~c 3n+l  4n+l  ÷5n+l 6n+l  }7n+~ 8n 0 

t4 9 3o 3: 2o 4 ) ]  
+c2 nTF-1 5n+l  t 6 n + l  7n+ l  8n+ l  

With these assumptions we may reduce all the quantities in the momentum and entrainment equations 
to functions of 0 l 1, a, c and H. At this stage however we have only three equations and four unknowns 
so a further equation is required. 

Eichelbrenner 3 has suggested an equation which relates c to the external flow, which for irrotational 
flow may be written 

0c 
Os 

1 Or 1 O ue'] 2 Oue {5.21) 
c 7 Os Ue O S /  Ue On 

This equation has been accepted here. As before in the general case derivatives with respect to n would 
have to be accounted for by iteration but in the case of the infinite yawed wing we may write O/On = 
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- (vi/ul)  (alas) and so include them directly. This being done we have four equations in the four unknowns, 
0t 1, e, c~ and H, which after rearrangement have been programmed for solution on the computer. These 
equations are not given here because, as will be mentioned in greater detail in Section 7, this method 
yielded unrealistic values for the angle between the limiting and external streamlines. 

The main features of all the methods outlined above are listed for easy reference in Table 1. 
All the momentum-integral equations mentioned above include the term (I/r) (Or/?s). Cooke7 has shown 

that for  an infinite yawed wing 

r =  A ui 
Ue 

where ul is the velocity component of the free stream normal to the leading edge of the wing and A is 
an arbitrary constant. We may therefore write 

1 ar_ U e ~__(Ul/Ue) 
r aS Ul aS (5.22) 

but 

Ue2 ~ Ul2-[-Vl 2 

and v i is a constant. We have also that 

u 1 a 

aS U e aX 

so that 5.22 becomes 

1 Or Ue O vl z dui vi z Oul vl z 1 0 U e  
- ~s (udue) . . . . .  ( 5 . 23 )  

r Os ul ue 3 dx ul Ue 2 0 S  Ul 2 U e OS 

by means of which the term (l/r) (Or/as) has been accounted for in all the computations mentioned above. 

6. The Experimental Measurements. 

The model used to obtain three-dimensional turbulent boundary layers was basically a flat plate 
swept at 26½ deg and mounted horizontally between vertical false walls in the 30 in x 39 in working 
section of the Queen Mary College low-speed blowdown wind tunnel. Beneath this plate and also swept 
at 26½ deg was a porous circular cylinder fitted with a Thwaites 12 flap. Boundary-layer suction was 
applied to the cylinder to prevent boundary-layer separation. The Thwaites flap could be put at any 
desired angle and the distance between the cylinder and plate varied so that different pressure distributions 
could be obtained on the plate. This somewhat unusual arrangement was used in preference to a simple 
swept wing as it offered the advantage of a flat surface on which to measure the boundary layer so that 
traverses normal to the surface were easily accomplished. 

By using a constant-temperature hot-wire anemometer the boundary-layer velocity profiles in both 
magnitude and direction were measured along the centreline of the plate for the nine pressure distributions 
shown in Figure 1. The theoretical prediction of these pressure distributions was accomplished by 
means of an extension of a theory which had been developed for an unswept version of the apparatus. 

Further details of the apparatus and measurement techniques will be omitted as it is hoped to publish 
these in full detail together with details of all the measured velocity profiles as a separate report. 
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7. Comparison of Theory with Experiment. 

7.1. The Prediction of Momentum Thickness. 

All the velocity profiles mentioned in Section 6 have been analysed to obtain experimental values of 
01 ~ the streamwise momentum thickness, fl the angle of the limiting streamline and H the streamwise 
shape factor. Cooke's theory and the five other theories detailed in Section 5 have then been used to 
predict theoretically the variation of these parameters for each of the nine runs. The results for streamwise 
momentum thickness are shown plotted against x, the distance normal to the leading edge of the plate, 
in Figures 2 to 10. In each case the theory was started at x = 4.34 in and again at x = 15.97 in, thefirst 
point measured in the adverse pressure gradient. The start at x = 4.34 in rather than at 2.55 in was chosen 
as the pressure distribution was not given accurately by the theory at the latter value. 

For easy reference the main features of the methods under test are listed in Table I. 
There are two series of Runs, Runs l to 5 and Runs 6 to 9, the pressure gradients are highest in Run 

l and lowest in Run 5 for the first series, and highest in Run 6 and lowest in Run 9 for the second series 
(see Figure 1). 

Dealing first with the prediction of streamwise momentum thickness 011 as shown in Figures 2 and 10 
it is immediately apparent that apart from Run 1 (Figure 2) there is a discrepancy between the experi- 
mental points and the theoretical predictions. Moreover the magnitude of this discrepancy appears to 
increase as the values of the pressure gradients involved decrease. This being so, it seems hardly likely 
that the discrepancies are due to cross-flow effects, which might be expected to be greatest at the higher 
pressure gradients, especially as will be shown below, the theories seem to take reasonable account of 
these. Nor does it seem likely that the discrepancies can be attributed to departure of the experimental 
conditions from those pertaining to an infinite yawed wing, as here also it might reasonably be supposed 
that these departures would be greatest in the cases involving the larger pressure gradients. It appears 
possible, therefore that the skin-friction term ro 1/PUe 2 is responsible as this will assume greater importance 
in the momentum-integral equation as the magnitude of the pressure gradient decreases. To account 
for the observed discrepancies in Figures 2 to 10 the skin friction t e rm  Zol/pUe 2 would have to be lower 
in the case of a diverging flow with a favourable pressure gradient and higher in the case of a converging 
flow with an adverse pressure gradient than would be so in the two-dimensional case. 

In an effort to be more precise about this an attempt was made to evaluate the magnitude of the skin- 
friction term for the Runs 1,2 and 5, used in Table 2, by accounting for all the other terms in the momentum 
integral equations. Unfortunately to do this the term dO~ ~/~s must be obtained from graphical differen- 
tiation of the experimental results. This latter procedure is always difficult and in this case there are 
too few points for ~0~ i/?s to be evaluated to a degree of accuracy which would ensure a meaningful 
figure for the resulting value of the skin-friction term Zo dpue z. To resolve this matter the direct measure- 
ment of the skin friction would have had to be attempted which, in the circumstances, was out of question. 

Another possible if less likely explanation for the discrepancy between experiment and theory is that 
certain terms which have been neglected in the derivation of the equations may not necessarily be negli- 
gible in this case. These terms are such that if they are included the streamwise boundary-layer equation 
becomes 

uOu v t3u w Ou k 
h? +E 2uv+kl = 

F Ou ~ 7 3(u'v') 1 1 ~p~_pl 0 L #-~-p(uw)j 1 0(~ '2) 
ph I c3~ ~ h 2 Orl h I O~ 

1 O(ff 2) is generally ne- The terms in question are the last two on the right-hand side. Of these the term h l 04 

glected on the assumption that rates of change in the ~ direction are far smaller than those in the (direction. 
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c ~ 

The other term 1 O(u'v') would be zero in a two-dimensional boundary layer and we might hope to 
h 2 0?I 

neglect it here on the grounds that rates of change in the q direction are far smaller than those in the 
• ~ direction. Turcotte 13 suggested that this term might be responsible for the discrepancy between ex- 
periment and theory found by Ashkenas and Riddel114 for the growth of a turbulent boundary layer on 
a yawed flat plate. Ashkenas 15 made an attempt to measure this term but states that his measurements 

1 O(U'V') 
were of questionable validity although they did indicate that - -  was of the correct sign but too 

h 2 017 

small a magnitude to explain the discrepancy found by Ashkenas and Riddell. The effect of this term in 
the present series of experiments is a matter which could only be settled by further experiment and 
unfortunately the author is no longer in a position to do this. 

As mentioned above an analysis of the orders of magnitude of the various terms in the streamwise 
momentum-integral equation has been made in the case of three runs, numbers 1, 2 and 5, and is presented 
in Table 2. We rewrite the momentum-integral equation in the form 

0011 T0i 0(012 ) 1 0Ue(2011.1_61)_~ Or 1 Or 
Os --  pUe 2 On u~ O----S ~(011)-t- ; ~S(022) (7.1, 1) 

The terms (1/ue)/(Oue/Os) and (1/r)/(Or/Os) have been calculated from the theoretical pressure distribution 
and 01 i, 61 and 022 are taken from the experimental measurements. The term O(012)/On has been obtained 
by graphical differentiation of the measured values of 01z. The skin-friction term is as given by the 
LudMeg-Tillmann 5 relation but as mentioned above this may well be in error. It is immediately apparent 
from study of Table 2 that the last term on the right-hand side, (l/r) (Or/Os) (022), is negligible in comparison 
with the other terms. The term O(01a)/On would appear to be at least of the same magnitude as the term 
011(l/r) (Or/Os). This cross flow term O(012)/On would appear generally to amount to less than 10 per cent 
of the total 0011/c3s and study of Figures 3 to 10 reveals that the increments in 011 predicted by those 
theories (2, 3, 4 and 5) which attempt to account for this term are greater by this amount than those which 
do not. The comparison here should be made between Cooke's method, which does not allow for the 
cross-flow term, and Method 1 which does, and between Method 2, which allows H to vary but does 
not allow for this term, and Methods 3 and 4, which also have H varying and account for the cross-flow 
term. This would appear to confirm that the cross flow is adequately accounted for by the present theories. 
Figures 2 to 10 also indicate that the variation of H has little effect upon the final result as is the case 
in two dimensions for moderate pressure gradients.* An increase in H increases the magnitude of the term 
(1/ue) (Oue/Os) (2011 +61) but decreases the magnitude of the term Zol/pu~ 2, the net result being little or 
no change in the value of O011/Os. It will also be noticed that Methods 3 and 4 coincide as might be 
expected from the above-mentioned insensitivity of the streamwise momentum-integral equation to H, 
the only difference between Methods 3 and 4 being the inclusion of a small cross-flow term in the shape- 
parameter equation. To summarize it would appear that the cross-flow terms in the streamwise 
momentum-integral equation are fairly small for chordwise pressure gradients of the order investigated, 
thus giving some support to Cooke's original assumption, although they may amount to 10 per cent of 
OOtl/Os, but the skin-friction term may be significantly different from that in the corresponding two- 
dimensional ease and some experimental determination of the magnitude of the terms neglected in the 
derivation of the streamwise momentum equation is desirable. 

*This may be seen by comparing the results obtained by the use of Cooke's method, which assumes 
small cross flow and H constant, with the results obtained by Method 2 which also assumes small 
cross flow but includes the variation of H. 

19 



7.2. The Prediction of~3. 
Turning to the prediction of/3, the angle between the limiting and external streamlines, shown in 

Figures 11 to 19, it will be seen that the agreement between experiment and theory is in general quite 
good apart from the predictions of Cooke's method and Method 1 in the region 10 in < x < 16 in for 
all runs and for x > 10 in for run 6. It will be recalled that Cooke's method and Method 1 are theonly 
methods, of those tested, which do not include the variation of H, the streamwise shape parameter. 
Rewriting the cross-wise momentum-integral equation 2.10 in the form 

63021-2"°2-2021t~s pyre 2 f 1~ 63ue +l- r bl el cgue (Oll (7.2,1) 

it will be remembered that for Cooke's method and Methods 1 to 4, 021 w a s  obtained in terms of/3, 
H and 011 by means of the relation 

2/3011 
021 --  (H - 1) (H + 2) 

so that 

0021 2 fl0011 0/3 O H [ - 1 7  
0~7  = ( H - 1 ) ( H + 2 )  c3~'q-011-~-s +/30xa-~-s [ ) J ( H - 1 ) ( H + 2  (7.2,2) 

substituting in 7.2.1 gives 

013= ( H - 1 ) ( H + 2 ) [ / ~  "col I OU~(Oll+01)I 
Os 2011 [' pUe 2 Ue 

1 c~u~+l ~r] +BaH 
-2 f l  ~ Os r ~ss Os" (7.2, 3) 

For Cooke's method and Method 1, H is taken to be constantly equal to t.5 so that the last term on 
the right-hand side of equation 7.2.3 is assumed to be zero. This will clearly not be so should/3 be large 
and OH/c3s be significant as is the case for Run 6 x > 16 in. In the other cases of failure mentioned above 
for x > 10 in we have/3 small and (1/ue) (63u~/On) negative so that the first term on the right-hand side is 
negative. H is generally about 1.2 in this region so that the assumption of H -- 1.5 produces values of 
O/3/Os which are more negative than actually is the case as can be seen from Figures 11 to 19. 

Method 5 has not been plotted in Figures 11 to 19 as it gave values of//which varied wildly. An example 
of this is shown in Figure 20. The reason for this is thought to be as follows. Method 5 assumes 021 to 
be given by 

3 4 11) ( 3  2 . . . . . .  c (7.2, 4) 021 - 6  ~ n~-I 3 n + l + 4 n + l  5n+ nSq-1 4 n + l  

where 

= tan fl 

H - 1  
n - 2 (7.2, 4) 
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and ~ and c are of the same size with c usually slightly greater than ~. Taking a typical value of H, 1"4, 
and substituting in 7.2.4, and 7.2.3 gives 

n = 0 . 2  
(7.2, 5) 

021 = - 6 [ e  ( .006)-c  (-1)] 

so' that 021 depends to a very much greater extent upon the value of c than upon the value of ft. Similarly 
O021/Os will depend'much more upon the value of Oc/~3s than upon the value of Ofl/Os. Unfortunately it 
is this latter much smaller term which we are attempting to calculate by allowing approximately for all 
the other terms in the cross-flow momentum-integral equation. In other words we are attempting to 
calculate the small difference of two large numbers neither of which are known exactly. This sort of 
procedure usually results in the type of result shown in Figure 20. It must be mentioned here that despite 
the doubt concerning one of the boundary conditions employed in its derivation, the quintic velocity 
profile 3.4 due to Eichelbrenner 3 was incorporated in a calculation method similar to Method 5 and 
similar wild variations in fl resulted. The predictions for 011 by this method were virtually identical 
with those given by Method 5. 

7.3. The Prediction of the Streamwise Shape Parameters H. 
The predictions for H as given by the various methods are shown in Figures 21 to 25. It will be seen 

that there are only slight differences between the predictions of the various methods, the greatest 
differences occurring, as would be expected, in those cases involving the largest cross flows. The difference 
between Methods 3 and 4 is that the latter includes the term O62/On in the entrainment equation 4.5 and 
it can be seen that, apart from when the cross flow is large, there is little to choose between them, thus 
confirming that the assumption of small cross flow for the entrainment equation in Method 3 was valid. 
The comparison between the experimentally determined value of H and the theoretical predictions is 
encouraging particularly when it is remembered that Cooke's attempt to apply Spence's two-dimensional 
method to three dimensions resulted, in one case, in values of H twice as large as those determined ex- 
perimentally. The scatter of the experimental points for Run 6, x < 13 in, is rather large but the velocity 
profiles at these positions were rather unusual. 

7.4. The Prediction of  the Parameter e. 
Method 5 involved the calculation of the variation of the parameter c by means of equation 5.2,1 due 

to Eichelbrenner 3. Figures 26 to 29 compare the results obtained by the use of this equation with those 
obtained experimentally. The experimental values were determined from polar plots (V/Ue against u/ue) 
of the velocity profiles, c is defined as 

Lim v 
C =  

U/Ue-'~ I U - - U  e 

and the large scatter of the experimental results reflects the difficulties involved in determining this 
quantity. These difficulties are naturally greatest when there is little or no cross flow as inaccuracies in 
the measurement of the flow direction then become dominant. This explains the odd values of c obtained 
for Run 1, x = 9.7 in and 11.5 in and Run 6, 11.5 in. Although the scatter of the experimental points 
makes assessment difficult it would appear that equation 5.21 gives fair results for e. This point will 
not be pursued further because, as mentioned above, the use of this equation in Method 5 resulted in 
unrealistic values of the parameter/~, and the knowledge of/3 is far more important than that of c as the 
former parameter is required to give some indication of three-dimensional separation. 

5. Conclusions. 
It has been shown that a discrepancy exists between the values of streamwise momentum thickness 

predicted by the theories detailed in Section 3 and those found experimentally. This discrepancy is thought 
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to be due to the skin-friction term not being adequately accounted for by a 'two-dimensional' expression 
or possibly if less likely to the neglect of certain terms in the derivation of the streamwise momentum- 
integral equation. Certainly, in any future experiments on three-dimensional turbulent boundary layers, 
it would be of great value if the magnitude of skin friction and the neglected terms could be measured 
directly although this is not to suggest that such measurements will be easy to accomplish. 

The inclusion of the cross-flow terms in the streamwise momentum-integral equation results in the 
examples given here in a small improvement in the prediction of the streamwise momentum thickness. 
In the general case, unlike the infinite yawed wing considered here, these terms can only be accounted 
for by an iterative process. Where the cross-flow terms are manifestly small, however, it is debatable 
whether the increase in accuracy obtained by their inclusion is justified by the additional complexity 
involved in the calculation. Should their inclusion be required, however, the methods presented here 
appear to take reasonable account of them. 

As in the two-dimensional case the variation of the shape parameter H produces little changes in the 
values of the streamwise momentum thickness from those obtained by the assumption that H is a constant. 
This assumption has been shown, however, to produce inaccurate values of/3, the angle between the 
limiting and external streamlines, for cases involving small values of fl and low values of H. This could 
of course to some extent be rectified by choice of a smaller constant value of H, but more serious errors 
in the prediction of fl are to be found in cases in which fl becomes large and ~H/~s becomes significant. 
For safety it would appear advisable to include the variation H in the prediction of/~. This variation 
may be calculated by the extension of Head's entrainment hypothesis to the three-dimensional case, 
presented here. The use of the type of calculation procedure suggested by Eichelbrenner 3 appears, in 
the cases tested here, to suffer from the defect that/~ may not be calculated with any reliability. 
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LIST OF SYMBOLS 

Orthogonal curvilinear co-ordinates with ( measured normal to the surface 

Metrics in the ~, r/, ~ co-ordinate system (h3 = 1) 

Velocities in the ~, r/, ~ directions respectively 

1 ahz 
- hi  h2 04 geodesic curvature of the curve ~ = constant 

_ 1 Ohl geodesic curvature of the curve q = constant 
h 1 h 2 t~/'/ 

Directions along and normal to an external streamline respectively 

= h 2 

Displacement and momentum thicknesses defined by equation 2.11 

Skin-friction components in the 4, ~/directions respectively 

= fil/0~1 the streamwise shape parameter 

= (6-61)/011 shape parameter used in entrainment theory 

The density of the fluid 

• The viscosity of the fluid 

# / p  the kinematic viscosity of the fluid 

The static pressure in the fluid 

Cartesian co-ordinates 

( u _ ~ )  i/5 
= 011 parameter used in Cooke's method, Section 5 

= flrue-3/2 parameter used in Cooke's method, Section 5 

The boundary-layer thickness 

The true displacement thickness 

The angle between limiting and external streamlines 

= tan/3 

limit v 

= U/Ue ~ 1 u -  Ue 

External to the boundary layer 
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TABLE 1 

The Turbulent Boundary-Layer Methods. 

Cooke's 
Method 

Method 
1 

Method 
2 

Method 
3 

Method 
4 

Method 
5 

Assumes the streamwise shape parameter H to be constant and equal to 1-5. Assumes 
small cross-flow velocity and the velocity profiles to be given by 

UlUe = ((lt~)lt- 1/2 and v/u~ = (1 - (/a) 2 (ulue) 

with Ct = tan fl = zOE/ZOl, with ZollpUe 2 = 0 " 0 0 8 8  (U e 011//3)- 1/5 

Not  restricted to small cross-flow velocity. All other assumptions as for CookeL, 
method. 

Assumes small cross flow but allows for the variation of H in the streamwise momentum- 
integral equation by means of the equation 

(1/uor) (a [r uo (3 - ~ 1)]/as) = F ( H ~ _  ~ 1) 
with 

H~_al = 1.535 (H-0-7 ) -2715+3 .3  
and 

F (H~_~l) = 0"0306 (H~_~I - 3"0)-'65a. 

The streamwise skin friction being given by the Ludwieg-Tillmann relation 

"rOllpUe 2 = 0"123 x 1 0 - 0 " 6 7 8 / / ( U e 0 1 1 / / 3 ) - 0 ' 2 6 8 .  

Not  restricted to small cross flow. Velocity profile assumptions as Method 1 but H 
calculated as for Method 2. 

As for Method 3 except that H is calculated by the equation 

(1/uer) (a[rue (3 - 61)]/~s)- ~f~2/t~n = F (na_~l) . 

Includes all the terms in both streamwise and cross-wise momentum-integral equa- 
tions. Assumes the Ludwieg-Tillmann relation for the skin friction and the velocity 
profiles to be given by 

- - =  and - - = ~  - - c  3 2 _  
Ue Ue L Ue "\UeJ 

+ 2  

Calculates the variation of H by the same equation as Method 4. 
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T A B L E  2 

Orders of Magnitude of Terms in Streamwise Momentum-integral Equation. 
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