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Summary. 

Properties of'Real Air' in isentropic nozzle flow are compared with those of either 'Classic Air' for which 
= 1.4 exactly or 'Ideal Air' for which y may vary, but which obeys the Ideal Gas law Pv = RT. 
Having shown that there is little difference between Classic Air and Ideal Air in the total temperature 

range from 270 to 400 deg K, the present results are presented as ratios of Real Air/Classic Air mass-flow 
intensity, and again as ratios of Real Air/Classic Air isentropic velocity. Operating conditions cover 
pressure ratios from 2 to i00, levels of inlet total pressure of 1, 4, 7 and 10 arm, and levels of inlet total 
temperature of 270, 290, 300, 350 and 400 deg K. 

At inlet conditions of 10 atm and 290 deg K, Real Air isentropic velocity falls about 0.4 per cent below 
Classic Air, while Real Air mass-flow intensity rises about 0-6 per cent above Classic Air. 

Strictly, the calculated results are for expansion of the respective fluids over exactly the same pressure 
ratio, which requires a flexible nozzle, but fixed nozzle operation is discussed. 
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1. Introduction. 

A convenient standard by which the efficiency of a propelling nozzle may be judged is the thrust 
produced by isentropic expansion of a reference gas. The usual reference fluids, either Ideal Air* or Classic 
Air*, are not suitable for accurate comparisons when the nozzle inlet pressure is high and the inlet 
temperature is low, as for many model test experiments. Under these conditions a more appropriate 
reference fluid is Real Air*. 

A previous Note 1 examined the magnitude of the Real Air effect in model propelling nozzles using the 
data in Hilsenrath's tables z for Real Gas properties. In these earlier calculations, by means of desk 
machine, it was found necessary to avoid pressure-wise interpolations in the tables and so only a skeleton 
array of results was possible at that time. 

More recently, calculations have been made by R. C. Johnson 3 on the effect of Real Gas upon the 
isentropic mass-flow intensity within a convergent nozzle, for a number of different gases, including air. 
His preliminary calculations also made use of Hilsenrath's tables to fit temperature polynomials which 
were used to calculate both the virial coefficients for the equation of state and to calculate the Ideal Gas 
specific heats. Thence his main computer program proceeded without further reference to the tables, 
being based upon Real Gas theory. Ratios of Real Gas to Ideal Gas mass-flow intensity were plotted for 
nozzle pressure ratios up to 2 - i.e., just greater than the critical or choking (M = 1) pressure ratio. 

The opportunity has now been taken, as described in the present Report, to extend the calculations 
of Reference 1 with the aid of an electronic computer. Tedious pressure-wise interpolations were now 
possible although, in the event, these interpolations turned out to be numerically unstable and it became 
necessary to fall back on Real Air theory for this part of the calculations. 

Ratios of Real Air to Classic Air isentropic mass flow intensity were to be checked against Johnson's 
results at the low pressure ratios (up to 2). Then for the wider range of interest for propelling nozzles 
(i.e., pressure ratios up to 100) results would be obtained on Real Air to Classic Air isentropic thrust 
ratio. 

2. Definitions. 

Types of air are classified according to the definitions of Reference 1 which are repeated here for 
convenience. For inlet temperatures around 300 deg K there is little difference between Classic Air and 
Ideal Air - in fact Johnson has used the word 'ideal' where the present text would have preferred 'classic'. 

2.1. Classic Air. 

A mixture of diatomic gases in which the internal energy consists of the translational and rotational 
modes only, the energy levels being fully established. The specific heats are constant at the values: 

Cp = 3"5 R (1) 

and 

C. = 2.5 R (2) 

and so the ratio of the specific heats is constant at the value : 

Cp 
7 = - - =  1.4. 

C~ 

2.2. 1deal Air. 

A mixture of gases that obeys the Ideal Gas law: 

(3) 

Pv = R T  (4) 

*For definitions of Classic Air, Ideal Air, Real Air see Sections 2.1, 2.2, 2.3. 



The Ideal Air specific heat C o varies with temperature, but is independent of pressure (it is equal to the 
Real Gas Cp at low pressure). Ideal Gas C o is given by: 

C o - C o = R (5) 

where R is a constant for the gas. 
Since C o (and C o ) varies with temperature, the specific heat ratio: 

C o o 
~ o  _ p Cp 

- ~C, - C°p-R (6) 

also varies with temperature, but not with pressure. 

2.3. Real Air. 
A mixture of gases that obeys the Real Gas law : 

Pv = Z R  T. (7) 

Here, Z is the Real Gas compressibility factor which suffers the greatest departure from unity at low 
temperature and high pressure. 

Real Air specific heat Cp varies with both temperature and pressure. The difference of specific heats 
is not equal to R, but is given by: 

(8) 

together with Equation (7). 
The ratio of the specific heats varies both with temperatures and pressure. 

3. System of Units and Notation. 

The equations in this Report have been written within the framework of the m.k.s, system, the units 
of which are listed in the List of Symbols. 

Of the innumerable variations in use within the ft.lb.s, system, the one quoted in the List of Symbols 
the fundamental mechanical fl.lb.s, system - is self-consistent and can be compared with m.k.s. 

Entropy and enthalpy data are tabulated by Hilsenrath in non-dimensional form as S/R and ( I f -  ~'( ~' 
R T o respectively. However, to avoid excessive complication in Appendices HI and IV the Notation S 
and H is used there to denote these non-dimensional quantities. 

4. Calculation Methods. 

4.1. Basic Principles for Propelling-nozzle Thrust. 

Referring to Figure l the gross (gauge) thrust of a propelling nozzle is given by : 

X~ = Q Ve + A~ (P~e- P~) 

where the index (e) denotes 'in the exit plane'. 

Dividing by Q x//~, we obtain the specific (gauge) gross thrust: 

X~ V e A e 
- -  b - - -  ( P ~ e  - P o o ) .  

(9) 

(10) 



When operating a 'fixed nozzle' at the design pressure ratio (D.P.R.), the static pressure in the nozzle 
exit plane, p e, is equal to ambient pressure P~ so that we obtain the specific thrust at D.P.R. from 
Equation (10): 

DPR ~ "  (11) 

With a 'flexible nozzle', the area ratio can in principle be adjusted so that any pressure ratio becomes 
the D.P.R. The essential thing is that 

i.e. 

P, 
rDPR ~--- L P ,  ..] DPR = P-~ 

Ps e, DPR = Poo 

(12) 

(13) 

The isentropic relationship between velocity and enthalpy is shown in Appendix I to be: 

V : , , /2 (H t - H~). (14) 

Equation (14) can be used for either Real Air or Ideal Air. The enthalpy difference for Real Air is discussed 
in Section 4.2. and Appendix III, while for Ideal Air it is discussed in Section 4.3. and Appendix IV. 

4.2. Real Air Isentropic Velocity and Mass-flow Intensity. 

Details of the calculation are given in Appendix III for the computational path ABCD illustrated in 
Figure 2. 

Briefly, the method is to 'interpolate' the tables of Hilsenrath to find the temperature T,,REAL at the 
pressure Ps for the given pressure ratio, at which the entropy Ss is equal to the initial entropy St. Having 
found Ts, REAL, the tables are interpolated for enthalpy, H~. Thence isentropic velocity, VREAL , is evaluated 
from Equation (14), the initial enthalpy H t having been read from the tables. 

Unfortunately, the calculated velocity was found to be extremely sensitive to error in the pressure-wise 
interpolation of entropy (path B ~ C in Figure 2) at the lower pressure ratios, as shown by the curve in 
Figure 3. In fact, all the standard numerical methods of interpolation* failed, as discussed in Appendix 
III, because the pressure intervals were to0 wide in the tables. Success was finally achieved with a pressure- 
wise interpolation by Real Air theory as described in Appendix III. 

Real Air velocities were divided by Classic Air velocities, calculated as described in Section 4.4 to give 
the ratios, VREAL / VCLASSl o 

Finally the ratios of Real Air to Classic Air mass-flow intensity were found from : 

(p V) REAL Ts, CLAS SIC VREAL 

(pV)cLASSI C Zs >( Ts, REAL X VCLASSIC (15) 

since 

PREAL -- Ps / Ps 
(16) 

PCLASSIC ZR Ts,REAL / R T~,CLASSI c 

*The 4-point Lagrangian interpolation, for which the Hilsenrath tables are said to be designed, was 
found to be numerically unstable and quite useless for the present calculations. Of the other methods 
investigated, a logarithmic transformation gave a good linear interpolation of S versus log P to within 
5 digits in the last decimal place of entropy data (i.e. to 5 parts in 20 000) but this was not quite good 
enough for the present purposes. 



4.3. Ideal Air Isentropic Velocity and Mass-flow Intensity. 
Details of the calculation are given in Appendix IV for the computational path ABCDE illustrated in 

Figure 4. 
The calculation is much simpler than for Real Air. Ideal Air enthalpy H ° is independent of pressure, 

while a simple logarithmic pressure relationship exists for Ideal Air entropy S °. In view of the basic 
simplicity of the calculation, and to take advantage of the greater precision of the tabulated values 
(S o data is given to 1 part of 200 000) it was decided to do a reverse interpolation of second degree for 
T~,IDEA c (path D --, E in Figure 4) instead of the linear reverse interpolation used in the Real Air program. 

Having calculated entbalpy H ° from T~.~DEA L, the Ideal Air isentropic velocity was found from Equation 
(14). 

Ideal Air velocity was divided by Classic Air velocity, calculated as described in Section 4.4, to give 
the ratio, VIDEAL/ VCLASSI C. 

Finally, the ratio of Ideal Air to Classic Air mass flow intensity was found from 

since 

(p V)IDEAL T~,CLASSlC V, DEAL x (17) 
(p V)CLASSIC T~, IDEAL VCLASSIC 

PIDEAL - -  Ps Z P~ 
PCLASSIC R Ts,  IDEAL / R  Ts,  CLASSIC 

4.4. Classic Air lsentropic Velocity and Mass-flow Intensity. 
Isentropic velocity following expansion through the pressure ratio r is given by 

(18) 

where 

and 

while 

= [ 7R TtM 2 

VCLASSIC 1 + ~  M 2 

M 2 =  2 ( rLml 1 ) 7 - 1  ~ - 

r = Pt/P~ 

7 = 1.4 exactly for Classic Air. 

Equations (19) and (20) can be combined to give: 

(19) 

(20) 

(21) 

VCLASS,C = L ~ - 5  Z - 

Mass-flow intensity is given by the product of velocity from Equation (22) with density from" 

Ps 
P - R T s  

(22) 

Pt 1 ~- 1 
- -  , r  

RT, r 

(23) 



Hence 

(pV)cLASS,C = i 7 ~ 1 - P t Z - - ( l ~  ~ { 1 - - ( ! ) z - ~ } l  ~ (24) 
RT,~rJ  

Thus for Classic Air, the isentropic velocity and mass flow intensity can be calculated directly from 
Equations (22) and (24) for given nozz!e inlet conditions Pt, Tt at any pressure ratio r, putting y = 1"4 
exactly. 

5. Results. 

All the results presented in this Section 5 and shown in Figures 5, 6, 7, 8, 9, 10, and 11 are in the form 
of ratios of the properties of Real Air to those of Classic Air when the two fluids are expanded over exactly 
the same pressure ratio. This can be achieved in a 'flexible nozzle', but is strictly impossible in a 'fixed 
nozzle'. A full discussion is given in Section 6. 

5.1. Comparison of Classic Air with Ideal Air. 

Classic Air for which 7 = 1.4 exactly is a convenient reference fluid. Calculations of isentropic velocity 
VCLASS~C, and mass-flow intensity (p V)CLASSlC are much simpler than their counterpart for Ideal Air, 
VIDEA L and (p V)mEAL. So it is of practical interest to know the range over which Classic Air can be accepted 
as equivalent to Ideal Air. 

Curves of VIDEAL/ VCLASStC'and (p V)m~AL/(P V)CLASSIC are plotted in Figures 5 and 6 against pressure 
ratio for various Tt levels above 300 deg K at a total pressure of 10 atm. It can be seen that if T t is less 
than 400 deg K, both the velocity ratio and the mass-flow ratio remain within 0"1 per cent of unity. 

Thus at the lower temperatures it is satisfactory to use Classic Air, instead of Ideal Air, as the basis 
for comparison with Real Air. Consequently, in this Report, properties of Real Air are published as 
ratios to the corresponding property of Classic Air. If the ratio of flow properties for Real Air/Ideal Air 
should be required, this can be found by the use of Figures 5 and 6. 

5.2. A Comparison of Calculation Methods for Real Air Mass Flow. 

Johnson 3 has published his results in the form of graphs of: 

(p V)R~AL 
y -- (pV)IDEA e 1 (25) 

plotted against: 

x = 1 -  Ps/Pt 

1 
- 1 ( 2 6 )  

r 

at T~ = 305-55 deg K, for Pt levels of 10, 40, 70 and 100 atm, for a range in pressure ratio r from 1 to 2. 
Before comparing his results with those of the present calculations, two comments are necessary. 

Firstly, Johnson's label 'ideal' is synonymous with our label 'classic' for air with ~ = 1-4 exactly. SecOndly, 
Johnson's equation for (p V)CLASSIC would be identical with our Equation (24) were it not for his inclusion 
of an 'arbitrary factor' (sic) Z o in the denominator. For  purposes of comparison his Zo factor has been 
removed to give the curves of (pV)REAL/(p V)CLASSIC plotted on Figure 7 for pressure ratio over the range 
from 1 to 2. Two inlet pressure levels are shown, 10 atm and 40 atm. 

Results from the present calculations are also plotted on Figure 7 for pressure ratio r from 2 to 5. 
(At r less than 2 the present calculations are unreliable due to sensitivity to error in entropy data as shown 
on Figure 3). For  r greater than 5 there is little further change in the level of the curves at least up to 
r = 100. 



5.3. Real Air/Classic Air Ratio of lsentropic Mass-flow Intensity. 

Ratios of (p V)R~:aL/( p V)C~.ASS~ c are plotted in Figure 8 for inlet-pressure levels of  P, = 1, 4, 7 and 10 
atm over the range of  pressure ratio from 2 to 10, all at a constant  inlet temperature of  T t = 290 deg K. 
It is seen that the extent by which the ratio (p V)RI+AL/( p V)CLASSIC increases from unity depends upon the 
inlet pressure level, but the effect is nearly independent of pressure ratio over the range from 5 to 100 
(constant results for r > 10 are not shown). At inlet pressure of  P, = 10 atm the ratio (p V)REAL/(p V)CLASSIC 
rises to between 0-6 per cent and 0.7 per cent in excess of  unity (at the temperature of T, = 290 deg K 
for which Figure 8 is drawn). 

To show how the ratio (p V)R~A~]( p V)CLASS~ c varies with inlet temperature,  Figure 9 has been drawn 
for T, = 270, 300, 350, and 400 deg K all at a constant  inlet pressure ofP~ = 10 atm. As the inlet tem- 
perature increases from 270 to 400 deg K the ratio (p V)R~AL/(p V)CLASSlC decreases towards unity. At 
even higher temperatures, the ratio would pass through unity and decrease below it, but the use of  
Classic Air is unsuitable as a reference fluid for temperatures greater than about  400 deg K see Section 
5.1 and Figure 6. 

5.4. Real Air/Classic Air Ratio of lsentropic Velocity. 

Ratios of  VREAL/ VCLASSl c are plotted in Figure 10 for inlet pressure levels of Pt = 1, 4, 7 and 10 atm 
over the range of  pressure ratio from 2 to 10 all at a constant  inlet temperature of  T t = 290 deg K. 
Again, ratios of  VREA~ j VCLASS~C are plotted in Figure I1 for inlet temperature levels of T~ = 270, 300, 
350, and 400 deg K - all at a constant  inlet pressure of Pr = 10 atm. 

Effects of inlet pressure (at constant  inlet temperature) or inlet temperature (at constant  inlet pressure) 
are nearly independent of  pressure ratio over the range from 2 to 100. (Results for r > 10 are not shown). 
The effect of  increase of inlet pressure (Figure 10) is to cause the ratio VRI:.A U VCLASS~ c to fall away below 
unity - the opposite sense to the pressure effect on (pV)REAL/(pV)cLASSm in Section 5.3 and Figure 8. 

At P, = 10 atm, the ratio VR~A~j VC~.ASSJC is about  0.4 per cent less than unity at the inlet temperature 
of  T~ - 290 deg K. As inlet temperature increases from 270 to 400 deg K with the same P, (Figure 11) 
the ratio VRfV~ U V(LASS~ c rises to unity. At even higher inlet temperatures,  the velocity ratio would 
increase above unity, but the use of  Classic Air is unsuitable as a reference fluid for inlet temperatures 
greater than about  400 deg K - see Section 5.1. and Figure 5. 

6. Discussion. 

6.1. Interpretation of Pressure Ratio. 

The results for VIDEAL/ VCLASSl o (pV)mEAL/(pV)cLASSlO V~EAL / VCLASSl c and (pV)REAL/(pV)cLASSlC 
plotted in Figures 5 to l 1 are ratios of  one fluid property to another  at a common pressure ratio (P,/P~). 
The velocity ratios in the Figures are identical with the isentropic specific thrust ratios when the fluids 
are imagined to expand fully within a 'flexible nozzle '  so that P~ at exit is exactly equal to ambient pressure. 

In Figure 10 for example the curve for P~ = 10 atm shows VREAL / VCLASS~ c = 0"9960 at the pressure 
ratio of  P,/P~ = 10. This velocity ratio would apply if Real Air, on the one hand, were to expand iscn- 
tropically in a flexible convergent-divergent nozzle to P~ = 1 atm exactly at nozzle exit, while for com- 
parison Classic Air were to expand isentropically to the same Ps = 1 atm at nozzle exit. The 'flexible 
nozzle '  area ratio (A",/A*)Rt~AI" for Real Air would be slightly less than the area ratio (Ae/A*)cLASSlC for 
Classic Air if the same P~ were to be achieved at nozzle exit. But if the two fluids were imagined to flow 
in fixed convergent-divergent nozzles of  the same area ratio (as would be required for reference standards 
for 'fixed nozzle '  isentropic efficiency) then the P~ at exit with Real Air would be slightly less than the 
P~ at exit with Classic Air. Figure 12 has been drawn to illustrate these distinctions using inlet conditiofis 
of P, = 10 atm, T~ = 290 deg K, as an example. 

Application of the results for flow in 'fixed nozzles '  is discussed in the following sections. 



6.2. Chokin9 Mass Flow in Fixed Convergent Nozzles. 

Mass flow intensities (p V) calculated for Real Air and for Classic Air are shown in Figure 13 for inlet 
conditions Pt = 10 atm, T, = 290 deg K, plotted separately against pressure ratio Pt/Ps. The position 
and shape of the Classic Air curve can be relied upon quite precisely and gives a choking mass flow of: 

(p V)CLASSIC = 2404"4 kg/s.m 2 

at the critical pressure ratio of: 

(Pt/P~)cLASSlC = 1"893. 

(27) 

(28) 

There is less certainty about  the Real Air curve, particularly at these lower pressure ratios (see sensitivity 
in Figure 3) and so we cannot pick off the exact choking pressure ratio from Figure 12. What  we can say 
for Real Air is that, approximately 

(Pt/Ps)REAL ~ 1"90 (29) 

and 

(p V)REA L ~--- 2414'5 kg/s.m z. (30) 

Hence for Pt = 10 atm, T t = 290 deg K, we have : 

(p V)REA L 2414"5 
- -  - 1.0042. (31) 

(p V)CLASSIC 2404"4 

Now for a common pressure ratio of, say, PIPs = 1.9 for both Real Air and Classic Air we would have 
from Figure 13 : 

(p V)REA L 2414"5 
- -  - 1.0042. (32) 

(p V)CLASSlC 2404"4 

At any other nearby common pressure ratio, say Pt/Ps = 2.0, for both Real Air and Classic Air we 
would have from Figure 13 : 

(p V)REA L 2410"1 
- -  - 1.0042. (33) 

(P V)CLASSlC 2400"1 

This latter result could have been read off the appropriate curve plotted on either Figure 7 or Figure 8. 
Comparing the exact Equation (31) with (32) or (33) it would seem to be sufficiently precise to take 

results for (p V)REAL/(p V)CLASSIC at any common pressure ratio near choking for both Real Air and 
Classic Air in a fixed convergent nozzle. A sufficiently accurate measurement of actual mass flow of Real 
Air in a choked convergent nozzle is then : 

(pV)REAL 1 * 
QREAL = ( P - V ~ c  3 . . . .  x (p V)CLASSIC X A* 

choking 

(34) 

where the first factor on the R.H.S. of Equation (34) can be read off the curves of (p V)REAL/(p V)CLASSIC 
that are plotted against common pressure ratio (e.g., Figures 7, 8, 9). The second factor (p V)CLASS~C can 
b e  calculated from Equation (24), or in any other convenient way. 



6.3. Mass-flow Intensities in Fixed Convergent-Divergent Nozzles. 

Consider a convergent-divergent nozzle of fixed area ratio Ae/A * through which Real Air flows with 
given inlet conditions Pt, T t. Then by the continuity equation" 

p VA = constant = (p VA)* (35) 

we have for the mass-flow intensity at nozzle exit" 

V * A *  (pV)~EAL = (p)REAL~V" (36) 

Similarly, for Classic Air flowing through the same 'fixed nozzle' we have : 

A* * m (P V)~LASSIC ~--- (P V)CLASSIC Ae (37) 

Therefore from Equations (36) and (37)" 

(p V)~EAL (P V)~EAL 
(p V)~LASSI C (p V)CLASSI C (38) 

Hence the ratio of Real Air/Classic Air mass-flow intensity in the 'fixed nozzle' exit plane (or in any 
other plane within the 'fixed nozzle' ) is independent of pressure ratio and of area ratio, when the two 
fluids are imagined to flow in turn through the same fixed choked nozzle. 

It should be carefully noted that this phenomenon of a constant ratio of (p V)REAL/(p V)CLASS m applies 
only to flow of the two fluids through a.fixed convergent-divergent nozzle. It does not hold when the 
two fluids are imagined to expand through 'flexible nozzles' over a given pressure ratio, as can be seen 
for example from Figure 7, or as illustrated in Figure 12. 

It has already been shown in Section 6.2 that the ratio (pV)REAL/(pV)cLASSlC can be read from curves 
that are plotted against a common pressure ratio, such as Figures 7, 8, or 9. The curves should be read 
in the neighbourhood of r = 2'0 to give the appopriate value for Equation (38) for the particular inlet 
conditions of P,, T,. For example, from Figure 7 or 8 we have : 

(P V)REAL = 1.0042 (39) 
(P V)CLASSIC 

for P, = 10 atm, T, = 290 deg K. And this value remains constant at every plane within a 'fixed nozzle' 
of any area ratio, operating at any pressure ratio greater than the choking value. (Since we are considering 
uniform isentropic flow, the possibility of flow break-away from the nozzle walls does not arise.) 

6.4. Thrust Ratio with Fixed Convergent-Divergent Nozzles. 

It has been pointed out in Section 6.1 that it is impossible to operate a convergent-divergent nozzle 
of fixed area ratio with exactly the same static pressure in the exit plane for both Real Air and Classic 
Air. For  given inlet conditions, Pt and T~, the static pressure at exit with Real Air, pse,REAL, will be less 
than that with Classic Air, P~,CLASSlC. Nevertheless one feels (and hopes) intuitively that the curves of 
Real Air/Classic Air isentropic velocity ratio, VREAL / VCLASSlC, might still apply approximately to the 
case of the 'fixed nozzle' with area ratio Ae/A * designed to suit one of the two fluids. Such a belief is 
examined below. 

Now with a 'flexible nozzle' the ratio of Real Air/Classic Air isentropic thrust for full expansion to 
the common static pressure: 

Pse, REAL = pse,CLASSIC = Poo (40) 

is given by the velocity ratio VREAL / VCLASSI C read from the curves in Figures 10 or 11. 

I0 



With a 'fixed nozzle', the area ratio 

A e 

A* 

(P V)REAL 
(P V)~EAL 

(41) 

would give correct expansion of Real Air to : 

Pse,REAL = Pco (42) 

at exit. 
The performance of Classic Air in this 'fixed nozzle' is calculated as follows. For the area ratio given 

by Equation (41), the exit Mach number for Classic Air can be found from" 

A e 1 t - - ~ -  ----7 t [ - 2 + ~ ' - l M 2 - ]  ~+1 _ 2 c ~ -  1) ( 4 3 )  

A* M ky+l  7+1 j 

solving for M by iteration. Thence the corresponding pressure ratio and velocity can be calculated 
directly from : 

(~__ts)CLASSlC= [ 1 + ~ _ ~ M 2 1  ~,Zl (44) 

and 

M 
VCLASSIC = (~R Tt)½ [1 _t_~@1 M21 ½ 

(45) 

These calculations have been made for the inlet conditions Pt = 10 atm, T t = 290 deg K, and some 
of the results are shown on Figure 14. From the Figure it can be seen that if Classic Air were to flow 
through a series of 'fixed nozzles' with area ratios designed to suit Real Air (i.e. Ae/A * equal to 1.70357, 
1.81734, and 1.92563 for (Pt/Ps)REAL equal to 8, 9, and 10 in Figure 13) then the ratio of Real Air/Classic 
Air isentropic velocity would be approximately: 

I VREAL ] "~ 0"9965 (46) 
VcLaSSlC_l 

FIXED NOZ 

in each case. The corresponding velocity ratios when expanding through a 'flexible nozz!e' over a common 
pressure ratio for the two fluids would be approximately: 

VREAL 1 ~ 0'9960 (47) 
VCLASSIC 

FLEXIBLE NOZ 

in each case. 
It was found that over the whole range of pressure ratio from r = 2 to 100, the 'fixed nozzle' Real 

Air/Classic Air velocity ratio was only about 0.05 per cent higher than the 'flexible nozzle' velocity ratio. 
Furthermore, the slight excess of static pressure at nozzle exit with Classic Air in the 'fixed nozzle' 

would add a little pressure-thrust to help redress the balance of velocity-thrust in the Real Air/Classic 
Air isentropic velocity ratio. 

11 



Hence it would seem that the curves of V REAL/ VCLASSIC in Figures 10 and 11, although plotted for a 
common pressure ratio for the two fluids such as would be achieved with a 'flexible nozzle', are, never- 
theless, a good approximation to the Real Air/Classic Air velocity ratio in a series of 'fixed nozzles' 
designed to suit only one of the fluids. 
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LIST OF SYMBOLS 

Symbol 

A 

b 

Cp 

C~ 

E 

f 
h 

H 

K 

l 

M 

P 

P 

Q 

r 

R 

S 

T 

/) 

V 

W 

Description 

Mean slope of compressibility data 

Units 

Fundamental I 
mechanical 

ft.lb.s. 

I 

1/atm or, ft2/pdl 

m.k.s. 

l /atm or, rnZ/N 
-- Z 2 - - Z l  

P 2 - - P 1  

Flow area 

Mean slope of@--T) 

P 2 - P 1  

Specific heat at constant pressure 

Specific heat at constant volume 

Internal energy 

General function 

Tabular interval = xl - Xo 

Enthalpy 

Kinetic energy 

Length of flow element 

Mach number 

Relative interval of interpolation = x p -  Xo 
h 

Pressure 

Mass-flow rate 

Pressure ratio = Pt/Ps_ 

Gas constant = 287-041 J/kg deg K for 
air 

Entropy 

Temperature 

Specific volume = 1/p 

Velocity 

Work 

f t  2 

1/atm deg K or, 
ft2/pdl deg K 

ft.pdl/lb, deg K 

ft.pdl/lb, deg K 

ft.pdl/lb 

as appropriate 

as appropriate 

ft.pdlflb 

ft.pdl/Ib 

F ft 
I ! N . D .  

pdl/ft 2 or, atm 

lb/s 

N.D. 

ft.pdl/lb, deg K 

m 2 

1/atm deg K or, 
m2/N deg K 

J/kg. deg K 

J/kg. deg K 
f 

J/kg 
J 
i as appropriate 

! as appropriate d 
I J /kg  
F 

J/kg 

m 

N.D. 

N/m 2 or, atm 

kg/s 

N.D. 

J/kg. deg K 

ft.pdl/lb, deg K J/kg. deg K 

deg K i deg K 

ft3/lb I i m3/kg 

ft/s m/s 

ft.pdl/lb J/kg 
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LIST OF SYMBOLS (contd.) 

Symbol 

X G 

Z 

~2 

P 

[] 

Description 
Fundamental 

mechanical 
ft.lb.s. 

Units 

m.k.s. 

either (i) length of duct 
or (ii) independent tabular variable 

Gross (gauge) thrust 

Compressibility factor 

P 
- p R T  

Ratio of specific heats 

C p 

C o  

First difference of tabulated function 
(see Table 1, Appendix III) 

Second difference (see Table 2, Appendix 
IV) 

Density 

Subject of mathematical operator, 
usually 6[ ] 

ft 
as appropriate 

pdl 

N.D. 

N.D. 

as appropriate 

as appropriate 

lb/ft  3 

m 
as appropriate 

N 

N.D. 

N.D. 

as appropriate 

as appropriate 

kg/m 3 
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LIST OF SYMBOLS (contd.) 

Symbol Description 

Suffices 
CLASSIC 
IDEAL 
REAL 

n o r a  

i s  

S 

t 
O0 

1,2 

1 1 

1 1 i T, - 1~ 

Indices 
e 

o 

t 

t see 2.1, 2.2, 2.3. Section 

Pressure level between tabulated P1 and P2 

(i) necessarily at Thorn, a selected temperature near to Ts 
(ii) but also at pressure Ps in the case of S . . . .  Hnom, Z,om 

either (i) at standard temperature To = 273-16 deg K 
or (ii) at 0 deg K in the case of Eo ° 

Isentropic 

Static 

Total, i.e., stagnation 

Ambient 

Tabulated data points 

Tabulated levels 
Defined by Tables 1 and 2 

Nozzle exit plane 

Ideal Air 

Redefined data point at temperature 10 deg less than previously 

Choking, i.e. M = 1 
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APPENDIX I 

Basic Principles in Propelling-nozzle Performance. 

In Section 4.1 the specific thrust of a propelling nozzle operating at the D.P.R. was shown to be : 

DPR - -  ~ as Equation (11) 

o r  DPR 

An expression for this velocity in terms of an enthalpy difference is derived as follows. Applying the 
principle of the conservation of energy to the flow within a duct of changing cross-section, we have : 
'The increase in kinetic energy and internal energy of an element of gas is equal to the net work done 
on the gas by the changing pressure forces (in the absence of friction)'. Referring to the lower diagram 
in Figure 1, we imagine the expansion, due to translation dx, to occur in two stages, thus: 

Stage 1 = Translation without change of volume v, in which there is a net pressure difference k dx I 

on the element. This pressure difference is constant even though the pressure level changes to (Ps + dP~). 
Hence we have for the work done on the element : 

dW~ = --~x ) A dx (I.02) 

= - ( I A )  dP, 

= - v d P ~  ( I . 0 3 )  

Stage 2 = Pure expansion at constant pressure without translation. Hence we have for the work done on 
the element: 

d W2 = - (P~ + dP~) dv (I.04) 

= - P f l v ,  to first order. (I.05) 

Now, the change in kinetic energy of unit mass of the gas is : 

d K  = d(½V 2) 

= Vd V. (I.06) 

Then, denoting the change in internal energy as dE, it follows from the conservation of energy that: 

d K  + d E  = d W l  + d W 2  

therefore substituing from Equations (I.03), (I.05), (I.06) in (I.07): 

Vd V+ dE = - vdP s - P f l v  

= - d(P~v) 

(I.07) 

(I.08) 

(I.09) 
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i.e. 
Vd V+ d(P,v) + dE = O. 

But a change in enthalpy is defined as: 

(I.10) 

therefore Equations (I.10), (I.11): 

dH,  = d(Psv) + dE (I. 11) 

Integrating Equation (I. 12)' 

Vd V+dH~ = 0. (I.12) 

i.e. 

- +  H s = constant = H~ (I.13) 

V =  a / 2 ( H , -  Hs). (I.14) 

Hence, the isentropic specific gross thrust for full expansion is found by substituting for Vfrom Equation 
(I.14) into Equation (I.01). 

The equations established above can apply generally to the isentropic expansion of either Classic Air, 
Ideal Air, or Real Air. The main problem to be solved in the present work is to calculate values ofenthalpy, 
Hs~ following an isentropic expansion of Real Air, in order that isentropic velocity may be found from 
Equation (I.14). 
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APPENDIX II 

A Calculation of Real Air Entropy. 

An essential step in the calculation in Appendix III is the interpolation at constant temperature Tnom 
of a value for entropy Snore at pressure Ps between two tabulated levels S 1 at P1 and $2 at P2 (path 
B ~ C in Figure 2). Unfortunately all the standard numerical methods for interpolation failed because 
the pressure intervals were too wide in the tables. So it was necessary to fall back on Real Air theory as 
developed below. (The basic thermodynamics can be found in Hougen and Watson4.) 

Since entropy is a point function it can be expressed by the exact differential equation : 

But 

and 

Now from 

or 

we obtain 

~.__T) C p = - -  

p T 

T P" 

iII.O1) 

(II.02) 

(II.03) 

Pv = ZR T (II.04) 

ZR T 
v - (II.05) 

P 

(8-ff--T) Z R R T [ S Z \ p  \6"17 = --p--+-p--i=-_ le. (II.06) 

Hence, substituting in Equation (II.01) from Equations (II.02), (II.03), (II.06) 

ds _ C fl  T V RZ R T['OZ '~ ] 
LT+Y kT L J 

dS Cp d T [ Z T ['aZ "~ ] dP 
i.e. -R-=R T I L + k ~ )  p J ~ 

(II.07) 

(II.08) 

Equation (II.08) may be integrated to give a change in entropy corresponding to a change in pressure at 
constant temperature Tnom. Thus for a change in pressure from tabulated level P1 to any other pressure 
P,, within the tabular interval P1 to P2, we have : 

S n  i S 1  

R 

Pn 

Z +Tnom ~ dP (II.09) 

Pn 

R.H.S. of Equation (II.09), | Z a / ' .  An examination of Hilsenrath's tables Consider the first term Oil J P 
P1 

shows that Z is a nearly linear function of P, i.e. 
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where 

Z = Z l+a (P-PO (II.10) 

Z 2 - Z  1 a - - -  

P2 - P 1  
(II.11) 

(The mean slope a between P1 and P2 is in fact negative.) Hence we have for the first term an R.H.S. 
of Equation (II.09) : 

Pn Pn 

PI Pz 

Z +a(P-P1)] dP -Y 

= ( Z , - a P , )  In P(-fi~)+a (P.-P,). 

(II.12) 

(II.13) 

Pn 

Next consider the second term on R.H.S. of Equation (II.09), i.e. I Tn°m cC?~-T) dP ~ - .  The partial deriva- 
P1 P 

tive 0(g~)e is required as the instantaneous derivative at the temperature T, om, i.e. not a mean slope 

betweenT"°mand(Tn"m+lOdeg) givenby6½ [ Z ] ' F u r t h e r m ° r e ' (  0~-T)eisrequiredatapressureP" 

that is not tabulated. Hence we have, first for a tabulated pressure level" 

= ~ x (mean value of 6~ and 6_~) (II.14) 

- i-O x ~ Z + 6 _ +  Z . ( I I .15)  

Having calculated (OZ'~ and(c~Z) for the tabulated pressure levels Pt and P2, by means ofEquatio n 

(II.l 5), we then obtain (O~?--T), by linear interpolation. Thus : 

where 
(OgT) = (c3~-T) +b(P-P1) (,I.16) 

P PI 

b = P 2 -  PI 

P2 - P 1  
(II.17) 

Pn 

Hence, f Tnom 
Pl 

OZ dP _Wnom f 
3T p P  

PI 

--y (ii.18) 

20 



= Tr io  m In P + bP 

Pt 

Finally, substituting from Equation (II.13), (II.20) into (II.09) : 

(II.19) 

(II.20) 

OZ ~.~--~ I~+~o~t~~a+~om~,~ 1 ~ 
Tnom) (P.-PO } (II.21) +(a+b 

Equation (II.21) was used successfully for a pressure-wise 'interpolation', as Equation (I II.06) in Appendix 
III, after all the usual numerical methods interpolations had failed. 
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APPENDIX II1 

Calculation Procedure fi)r VREAL and (p V)REAL 

An electronic computer program has been written for the calculations of the computational path 
illustrated in Figure 2 and described below. 

Entropy and enthalpy data are tabulated by Hilsenrath in non-dimensional form as S/R and ( H -  E°)/' 
R T  o. To avoid unnecessary complication, the Notation S and H is used in this Appendix to signify these 
non-dimensional quantities. Only at Equation (III.20) and after, will dimensional form be used. 

Path A ~ B, (preliminary selection of  data). 

For each given value of T, and r, calculate 

Z-I 
T, CCASSlC = T,/r (III.01) 

for 
7 = 1'4. \ 

Select T, ..... = nearest temperature to T~,CLASmC in Hilsenrath's tables (steps of 10 deg C). 
For each given value of P, and r calculate : 

Ps = Pt/r. (IlI.02) 

Select Pl, P2 = nearest pressure levels, below and above P~, in Hilsenrath's tables at temperature Tn,,m. 
Extract the following data from Hilsenrath's tables: 

Z ,  Z~ ~ [Z , ]  6~ [Z d 6__~ [Zx] 6-~ [ Z d  

$1 $2 ~_ IS1] (~½ [$2] ~-½ IS1] ~-½ [$2] 

where the 6's are tabulated first differences for changes in temperature from T . . . .  at constant pressure. 
The Notation for 6 is illustrated in the following Table, using Z at constant pressure as an example: 

TABLE 
r 

x = T : f [ x ]  = Z 6 [ Z ]  

(~-1½ = Z - l - - Z - 2  

x - 1  Z_~ 

Tno m ~ X 0 

5_~ = Z o - Z - 1  

Zo 

Z1 

(~½ = Z 1 - Z 0 

XI  

ba~ = Z z - Z 1  

x 2 Z 2 

(N.B. The suffices i and 2 for data points defined in Figure 2 are meant to be distinct from the suffices 
in Table l.) 
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The tabular interval used throughout Hilsenrath's tables is : 

h = x 2 - x  I = xl - -xo ,  etc. 

= 10 deg C. (111.03) 

Path B ~ C. 
Much difficulty was experienced in the early attempts to interpolate for S,o m at constant temperature 

T.o m between the tabulated $I, $2. Very high precision was required because of the sensitivity of the final 
VREAI~ to error in S. It was found that the 4-point Lagrangian interpolation recommended in the Hilsenrath 
tables was numerically unstable. Several other interpolation methods were tried, viz: quadratic fit to 3 
tabular points, quadratic fit by least squares to 4 tabular points, Fourier series fit to 4 tabular points, 
either linear 2-point or Langrangian 4-point fit to S versus log P. All of these were inadequate, although 
the S versus log P transformation came within 5 digits of the last decimal place of S, or 5 parts in 20000 
which was very near to the required precision. Finally, it was decided to interpolate by the theoretical 
relationship established as Equation (II.21) of Appendix II, putting: 

and 
P.  = P~ (III.04) 

S n = Snom. (III.05) 

Thus, committing the gas constant R to memory : 

where 

and 

and 

Snnm = S 1 -  Z1-]-Tnom c3Z -(a+bTnom)P 1 Inff~l+(a+bT, o J ( P s - P 1 )  (1II.06) 
PI 

g 2 - Z  1 
a - - -  (III.07) 

P2 - -P1 

b = P2 e~ (III.08) 
Pz - P1 

P = i ~ x ~  _~ z + ~  P p 
(III.09) 

Equations (III.06) through to (III.09) make use of numerical methods of finite differences, neglecting 
differences higher than the first. It is believed that the resulting value of S,om is precise within 1 digit in 
the last decimal place of the tabulated $1 or Sz data, i.e., within 1 part in 20 000. 

Interpolations at constant temperature Tnom for H,o m and Z,om were found to be adequate by linear 
2-point methods, viz : 

H"°m = H1 ( z -  1) x ( P s - P 0  (III.10) 

and 
(Z~ - Z O  

Znom = Zt~,.-_p~)tr2 x (P~-P1)  (III.11) 

The procedure described above for the interpolation path B ~ C in Figure 2 would apply with the same 
intrinsic precision for the path B' ~ C. Values of H . . . .  Z.o m would be identical by either path, but slight 
numerical discrepancies arise in S,om from inconsistencies in the tabulated $1, $2 (e.g. effects of rounding 
off error in the last decimal place are noticeable). 
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Path C --* D. 
We need to find the temperature ~'.R~¢AL, at constant pressure P~, at which the entropy S~ is equal to 

the initial entropy S,, i.e. an isentropic process. This is achieved by reverse linear interpolation. Thus, in 
the standard notation of numerical methods, neglecting terms in higher differences than the first" 

f .  = f o + p a ~ +  . . . . .  (III.12) 

For case (a), T~ > Tnom, Equation (III.12) becomes: 

S t =  Snomq" T s - T n ° m  1 ~  x 3~[S]p s (III.13) 

therefore 

10 
T s = T n o m . - [ - - - ( S t - S n o m ) .  (III.14) 

For case (b), T, < Thorn, 

10 
T s = T n o  m ~_4~[S]p,(Snom-St) (III.15) 

Here, the first differences 6~ [S]es and ~_½ [S]v~ are required at the pressure P~ (which is not tabulated) 
and are therefore calculated from the tabulated first differences 3~ [S]v,, 6½ IS]v2 and 6_~ IS]v,, 3-½ IS]v2 
by linear interpolation. 

Having obtained the temperature T s by Equation (III.14) for case (a), or Equation (III.15) for case (b) 
we proceed to calculate H~ and Z~ by linear interpolation. Thus for case (a): 

H s = Hnomq- ~)½[~o]PS(Ts-Tnom) (III.16) 

and 

Z s = Znom-] a-i" [ZIp  s z~ T.om) (III.17) 

or for case (b)" 

and 

H s = Hno m (~-½Lm]Ps(Tnom-Ts)[- ( I I L l 8 )  
10 

(~ --i-[ZIPs (Tno m -- Ts), (III.  19) Zs = Zn°m l0 

As before, the first differences 6~[ ]vs, 6_ ~[ ]Vs at pressure P~ which is not tabulated, are calculated from 
the first differences tabulated at pressures P1 and P2 by linear interpolation. 

Having evaluated the properties at point 'D' in Figure 2, the Real Air velocity can be calculated from 
Equation (I.l 4) of Appendix I : 

V~E~,. = ~ /2  ( / - f , -  H~) 
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However, this equation is in dimensional form and would give velocity in units of [m/s] if the enthalpies 
were given in units of [J/k9]. But the calculations up to this stage in this Appendix have used non- 
dimensional enthalpy (H- E°)/R To as tabulated by Hilsenrath, which had been simplified to the Notation 
'H'. Hence, putting : 

and 
R = 287.041 J/k9. deg K 

To = 273-16 deg K 

(III.20) 

(III.21) 

we need to multiply the enthalpy difference in Equation (I.19) by the factor: 

RTo = 78408"0 J/kg. (III.22) 

Thus we obtain the practical equation for isentropic Real Air velocity : 

VREAL = .,,/156816 (Ht-Hs)m/s (III.23) 

where both Ht and H s are non-dimensional values. 
Classic Air isentropic velocity is calculated from : 

where 

putting 
y - 1  

= 1.4. 

m/s (III.24) 

(III.25) 

The Real Air/Classic Air isentropic velocity ratio, VREAL / VCLASSI C can be obtained from Equations 
(III.23) and (III.24). 

The Real Air/Classic Air isentropic mass flow intensity ratio can be obtained by substituting from 
Equations (III.01), (III.14) or (III.15), (III.17) or (III.19), (III.23) and (III.24) in the following: 

(P V)CLASSIC ~k Zs X Ts,REAL / \ VCLASSIC] 
(III.26) 
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APPENDIX IV 

Calculation Procedure for VIDEA L and (p V)IDEAL. 

An electronic computer program has been written for the calculations of the computational path 
illustrated in Figure 4 and described below. 

Ideal Air entropy and enthalpy data are tabulated by Hilsenrath in non-dimensional form, as S°/R 
for the standard pressure of l a t m ,  and (H ° -  E°)/RTo which is independent of pressure. For  the most 
of this Appendix, the Notation S0atm and H ° are used to signify these non-dimensional quantities. 

Points B and C (preliminary selection of  data). 

For each given value of T~ and r, calculate as Equation (III.01). 

putting 
Ts,CLASSI C = Tt/F 

~, = 1 . 4 .  

? (IV.01) 

Select Tno m = nearest temperature t o  Ts,CLASSI C in Hilsenrath's tables (steps of 10 deg C). 
Extract the following data from the tables : 

S° atm, Tt 

HOt 

S° alto,Thorn ~ . [ S  O] ~ _ ~ [ S  O] 61½[S 0] 6_ 14£[S°~ 

H°.o~ 6~ [H°]. 

The 6's here are the tabulated first differences for changes in temperature from T,o m. In the present 
Appendix we shall make use of the second differences which are calculated as shown in Table 2 below. 
The extra complexity is justified by the increased precision of the S o data for Ideal Air which is tabulated 
to four decimal places (i.e. l in 200000) instead of three decimal places for Real Air. 

TABLE 2 

x = T  

x _  2 

X -  1 

Tno m : X 0 

X1 

X 2 

f [ x ]  = s o 

S°_2 

S°~ 

First differences 
6 [s °] 

= S o_ 6-1½ 1 - S ° 2  

0 0 
(~_~ = S o - S _  1 

Second differences 
6 ~ [s °] 

~2 1 0__I - -0_  1½ 

s o 

s o 

s o 

= s ° -  s°o 

: $ 2 - - S  1 6a ~ o o 
(~ 21 ~. (~1½ -- (~ ½ 

(N.B. The index ~0~ denotes Ideal Air.) 
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The tabular interval used throughout Hilsenrath's tables is" 

h = X 2 - - X  1 ~ X 1 - - X  O, etc. 

= 10 deg C. (IV.02) 

For enthalpy, it was sufficient to read only a single first difference 6~ [H°],  since these differences 
varied very little with temperature (and are independent of pressure). 

Path A ~ B ~ C - *  D. 
The general equation for Ideal Air entropy change is found from Equation (II.08) of Appendix II by 

3Z 
p u t t i n g Z =  l a n d  0 T  - 0 :  

dS ° _ Cp ° d T dP (IV.03) 
R R T P '  

Hence for the path A -~ B at constant temperature Tt (committing the gas constant R to memory): 

or, 

o - In  P t  (IV.04) St  O -  S1 atm, Tt ~ 1 

(S1 atm,Tt--  St  O) = In -~ (IV.05) 

For the path B ~ C ,  the entropy change is given by the tabulated data : 

0 0 
(St arm,Thorn-- St atm,rt) (IV.06) 

And for the path C ~ D  we have again from Equation (IV.03) : 

S O S O ~ - In P~ (IV.07) 
nom--  1 atm,Tnom) ~ T " 

Hence for the complete path A~B--.C--+D, adding up the separate legs from Equations (IV.05), (IV.06), 
(IV.07) we have : 

0 0 (Snom__St  ) inPt+(SOatm,r~om__ o = $1 atm,Tt) - -  In P~ 

o o o S°om = S1 atm,T~om) St  - -  (S1 atm,Tt--  -I- lg/ 

(IV.08) 

(IV.09) 

Path D --* E in Figure 4. 

We need to find the temperature Ts,IDEA L a t  constant pressure Ps, at which the entropy S ° is equal to 
the initial entropy St ° (i.e. an isentropic process). This is achieved by a reverse interpolation of second 
degree, since the precision of the S o data (1 part in 200000) justifies the better-than-linear technique. 
Thus in standard notation for numerical methods : 

(w.1o) 
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In our present Notation, Equation (IV.10) becomes: 

where 

o , 0 S s = S ° o m + P b t [ S ° ] + ~ ( p  2 2 [S°]+62 

Ts-- Tnom 
P - 10 exactly 

(~v.11) 

(IV.12) 

Equations (IV.I 1), (IV.12) are solved for ~ by iteration, using successive approximations for p. 
If it should happen that T~ < T, om, then new values are defined thus : 

T'no m =- Trio m -- 10 deg 

o, S O S n o m :  nom-- ~-½ [S°l 

o, 0 Hnom = Hno m-6½ [H °] 

(IV.13) 

(IV.14) 

(IV.15) 

(~  [H °] is a sufficiently close approximation to the ,~ ~ [H°]). Thus each of the differences required by 
Equation (IV.11) is taken from the next level in Table 2. The corresponding computational path would 
be C' ~ D' ~ E' in Figure 4 for this case. 

Having obtained the temperature T~,JDEA L by Equations (IV.11), (IV.12) we proceed to calculate 
enthalpy by linear interpolation which is sufficiently precise. Thus- 

or 

no o a+ [u °] 
---- H"°m+ 10 (Ts- T"°J 

no o, ~ [ u°]  = n.o., + - - y 6 - -  ( T -  7-'ore ) 

(IV.16) 

(IV.17) 

Finally, the Ideal Air isentropic velocity is obtained from an equation similar to Equation (III.23) deve- 
loped in Appendix IlI" 

VIDEAL -- ,,,/156816 (H ° - H °) rn/s (IV.18) 

where both H t and H~ are non-dimensional values as discussed in Appendix IlI. 
Hence from Equation (IV.18) above and Equations (II1.24), (III.25) at Appendix III, we obtain the 

isentropic velocity ratio, VIDEAL/ VCLASSlO 
Since the compressibility is: 

Ps 
Z -  - 1  p R  Ts (IV.19) 

for both Ideal Air and Classic Air, we obtain the ratio of mass flow intensities as : 

(pV)IDEAL __ (T~.cLASSIC') (V.?EAL "] 
(P V)CLASSIC \ Ts, IDEAL / \[/'CLASSIC .] 

(IV.20) 
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FIG. 1. Basic principles. Propelling-nozzle performance (see Appendix 1). 
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FIG. 7. Real air : classic air isentropic mass-flow ratio. Comparison of calculation methods. 
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Real air: classic-air isentropic mass-flow ratio. Effect of inlet temperature (at P, = 10 atm). 

35 



1.000 
(N.B. EACH FLUID EXPANDED OVER EXACTLY THE SAME PRESSURE RATIO) 

Pt = 1 atm 
VREAL 

VCLASSIC 
0~J99 

0 '998 

ogg7 

0.99( 

0995 

F~G. 10. 

1.000 

0.999 

0'998 

0.997 

0.996 

0.995 

0,994 .... 

Fu;. 11. 

4 otm 

7 arm 

10 arm 

I N I I I m 1 I 
2 3 4 5 6 7 8 9 10 

PRESSURE RATfO Pt I Ps 

Real air'. classic-air isentropic velocity ratio. Effect of inlet pressure (at T, = 290 deg K). 

(N.B EACH FLUID EXPANDED OVER EXACTLY THE SAME PRESSURE RATIO) 

VREAL "It = 400 ° K 

VCLASSIC 

300°£ 

270°g 

I I I I I I I I 
2 3 4 5 6 7 8 9 

PRESSURE RATIO, Pt / Ps 

Real air : classic air isentropic velocity ratio. Effect of inlet temperature  (at P, 

1 

10 

= 10 atm). 

36 



FIXED NOZZLE (SAME AREA RATIO):- 

r= Pt 
~ Pse 

PL= 10 atm ~ 

Tt 290°K ~ . ~  

EXIT 
AREA 

® 

r ~EAL = 10 

pseREAL = 1 atm 

B/~= 1. 9256 

r CLASSIC= 9'9532? 

~ ' ~ ~  P£~CLASSIC = 1.00469atm 

VI~EAL - 0 996 0.996 

/ (p v)~ REAL (p v) e REAL 
= 1 .oo~ = 1 .ooh 

V • (p) CLASSIC (pv} e CLASSIC 

FLEXIBLE NOZZLE (SAME PRESSURE RATIO):- 

_ / ' -  b.Xl - " " ~ - ' - - - ~ -  " T "~ EXIT 
% AREA 

A r'REAL = 10 rCLASSIC = 10 

~ j ~ ~ ~ ,  PS, REAL = 1 at m Ps CLASS IC = 1 at m 

1 B/Af= 1' 9256 C~'= 1"9306 

Ve REAL I / S A M E  AS 
= 0 996 FIXED NOZZLE 

VeCLASS IC 

{pv) e R E A L  9.,.IDIFFERENT FROM 
(pv)eCLASSIC = 1 0 0 .  FIXED NOZZLE 

FIG. 12. Comparison of fixed and flexible nozzles. 
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Real air and classic air isentropic velocities at exit from fixed con-di nozzles. 
(At Pt = 10arm, Tt = 290 deg K). 
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