MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL

Investigation of High Length/Beam Ratio
Seaplane Hulls with High Beam Loadings
Hydrodynamic Stability Part 21
Some Notes on the Effect of Waves on Longitudinal Stability Characteristics

By
D. M. Ridland, A.F.R.Ae.S., G.I.Mech.E.

August 1955

MARTNE ATRCRAFT RXPERMMYYAL ESTABEISIMENT, FELIXSPOXE SUTFOIK.

INVESTIGATTON OF HUGH LENGTH/BEAM RATIO SEAPLANE HULLS WITH HIGH BEAM LOADINGS
 HYORODYNAMIC STABILITY PART 21
 SONE NOTES ON TEE FHFEDT OF WAVES ON IDMGTYUDTNAL STABTLTTY CHARACTE ISTICS

by

D. M. RIDIAND, A.F.R.Ae. Ss, G.I.Mech. E.

SUMMARY

In this report the results are given of tests on three models of the series, designed to provide information on the corrclation between stability with disturbance and stability in waves. No correlation was observed, but tho results are andysod and compared with previous work, and some importent general conclusions drawn as to the nature of disturped stability and the bchaviour of flying boats in waves.

LIST OF CONTENTS

1. Introduction
2. Stability with disturbance
2.1. Test technique
2.1.1. General
2.1.2. Present investigation
2.2. The effect of disturbance on stability limits
2.3. Mechanism of disturbed instability
3. Wave tests
3.1. Test technique
3.1.1. General
3.1.2. Present investigation
3.2. Scope of tests
3.3. Discussion of results
3.3.1. Comparison of Model A with Princess and Shetland
3.3.2. The wave diagram
3.3.3. Model A results
3.3.4. Model B results
3.3.5. Model L results
3.3.6. General
4. Correlation between stability with disturbance and stability in waves
5. Discussion

List of Symbols
List of References

ITST OF TABIES

-	Table No.
Model aerodynamic data	I
Model hydrodynamic data	II
Test points for wave tests	III

IIST OF EIGURES

Figure No.
Comparıson of longituõinal stability limits for Models C and N 1
Longituadinal stabilıty limits for various degrees of disturbance 2
Relation betreen points investegatod and stability Iinits 3,4
Motion of Model A in waves of height 2.35 feet 2 tu 7
Comparison of oscillations or Model A, Princess and Shetland scalea to Princess siac 8
Comparison of maximum/mean amplitudes of oscille.tion for Riodel A, Princess and Shetland 9
Typical rave diagram on a mave length/height ratio base 10
Typical trave diagram on a mave lent wh vase 17
Nodel wave diagrams 12 co 16
Comparison of model :rave dic'grams 17
The effect of wavos on attitudu 18

I. INTRODUC'PION

In carrying out routine assessmcnts of the longitudunal stability characteristics of the various modols in the prosent research pros-arnue (References 1-20) tests were made both with and without disturbance to give a complete representation of calm water stability characterisuics. As it was known that the application of disturbance impaired model stability in calm water and that full scale seaplane stability generally was adversoly affected by rough seas or siells, it was thought that it might bu possyble to usc the disturbed limits obtained in the calm water tests to assess full scale rough vater characteristics. In this connection consideration has been given to the signfficance of the disturbed limits and 0 . 3 umber of experiments have been made to ouscuve model behariour in raves. Dotanls of tnese tests are given and discussod in connection vith availabie information. on disturbed limits.

The subject of mwo-disturbance comrelation was briefly considered in Reference 1, but most of the information guven there is repeated belori and dascussed in conjunction witn the results of furthor tusts.

2. STABIITTY WITH DISTURBANCE

2.1. Test technique

2.1.1. Goneral

Disturbance techniques for stability testing have boen usca in the R. A.E. Seaplane Tank for some timc. In Reference 21 (1935) it was sucgested that, as calm water conditions :rould icldom be roulisod lull scale, some disturbance of the vater during a mode! test was desirable. This was achieved by doing each test run while the water surface tas itill disturbed from the previous rusn If mstability did not develop, howvor, the model was "disturbed fairly violently" (by lhand) and the subsequent motion was observed. It was noted that sometinec the large disturbance caused instability where the smaller onc (that duc ic the disturbod water surface) did not; on such occasions the interprctation of the results was to some extent a mattor of judgment and it, as found that a slightly pessimistic prodiction of the full soule behaviour pas orten madu.

A morc detailod icchnique was wojsitated by the fact that in 1938 tro seaplanea, the Lertich anci the Nutuders-Roe R2/33, stable model scale with the techniques then uscd, bccane unstable full scale, the lattor crashing as a result of this instability. The revision of technique is reported by Gott ${ }^{22}$ tho statos that "a serious difficulty appears when it is necessary to duclac what is a suitalle ciisturbance to glv the model" and that "it has always been gencrally arreed that the model disturbance should be corroctly scaled dorm from tho marimum disturbance the full scale flying boat can receive in service. Unfortunately, individual judgment as to what this means in practice shows enormous variations and disturbances given to models have varicd from a gentle touch with o. 10 finger to a push which changed the attitude of the model by perhaps 5 degreus". The apparent discrepancy betroen model and full scale behaviour of the Lerwick mas explained when the mothod of applying disturbance, as iell as the amount given, was found to bo of fundurental inportance. It was noted that a nose dow disturbance was more effective in producing instability than a tail dow disturbance of aqual magnitude and that a tram of about six waves could cause the onset of instability, quite as woll as a manual disturbance, even though they were waves of small height, as long as the wave length was of the righi order to froduce a resononce effect ${ }^{3}$. It was
/concluded
F So-called; it is not suggested by the author of the present report that true resonance occurs, but the term benng commonly uscd in this context it will be retained.
concluded, howevor, that the wavt teconique is tou time-consumng and that a suitable manual disturbance must be given to the modol: this disturbance must not be too small an case an unstable region is missed, it must not be too large, so that the airciaft uider consideration as not unduly rimlised, i. e. so that the aurcraft under cumideration is not made to appu worse . than it is under normal operating conditions, and it must be of' 'ho mght kind. What the right disturbance is must bo detormaned by trad.

The disturbance in general use in 1944^{23} is quoted by with wid White in a roview of foxpoieing phonomena, as boine a sevoro nose lown angular disturbance of the order of 10° anrplitudo though, in the more recent tests on the Saunders-Roe $E(6 / 4424$, the applied disturibances were of the gencral order of $6^{\circ}-8^{\circ}$ nowe dow, excopt atine angle ci' trim, then the kecl attitude was lowoerd to 0°, i, $e^{\text {. the }}$ disturbance was less than 60 . The latter is substan: illy the sam as the method duscribod 111 the most recont revic: of tan: wating technique (Reforence 25) where it is stated that "If no oscıllau un... develoos, tie rear cord (modol guide string) is jerked to giv, tr, :ouel an impulsive nose dom ansturbance of about 60 , or sufficient to ivduie the keel altitude to zoro, whichover is the smizller".

It can be seen the the above techiquas are not well dorand and Icave a groat deal to the , dianont of the oporator, quite apart from t io dfficulty of applyys a eivcı iugrec of disturbance. While they may bu satisfactory for tasis on 1udividunl specific aircritt they are not suntiole for tests on a rescarch sirios ur models; furthermors, the sigriticance of applying a givon degrce or distaroance is not fully understocd. The rovised technquis doscribed below werc thorcfore uscd in the present investigation.

2.1.2. Frosent jevustigation

In ordor to ootwin Linnts wnoh whe both reproducibie and compariule from model to rocol, two ats ci^{2} lurits wore obtanned for each model at cach weis, $1 t$, cue binj fur the undisturbed case and the other for the case with maxinum dinturbunce so cofancd below. The urdisturbed lamits indicate whut can bu expectu I'u-1 scale in very calm water witnout disturbonco and ore procist, arre tiu tust conditions are those on which the theoreticul treament yo basec. Tho disturbed Inmits are similarly precise and roproducisile when ontanasi by the nethod used, which was
(2) to give a nos, iu" impulsive disturbance to the model by jorkants on the win uncu string, and
 wos niduced ai ill spucds ard ititudes at whic' it was feasible to 10 so ,
and mere obtanez for usu in cosijunction with the unaisturbed limits to give a complete plcture or the calm "iater stabilsty characteristics.

That both seti ff linits are necessary for a complote representation of calm water stability churcceristics is illustratod by the comparison of limits in Figure l, ur two of the models, C and N, wioh trere usca in this programme (Reforcncus 5 and 18). In the undasturbed case C appoars to be the better model, but orlly just, whereas if is much superior under disturied conditions, For good all-round stability N is uncuestzonably the better hull form, but no such clear cut decision could have becn formed fron a compurison of the undisturbed Inaits only, nltomativcly, constderation of the disturbed limits only would indzeato that C in for worse then if for normal operating condutions, which, of course, it is not.

It vas hoped that in adcrtion to helping tovards a complete understanding of calm water stability characteristacs the disturbed limits could be used as an indication of rough water behaviour. Details of experiments conducted to determine whother this was in fact possible are gaven later in the report; the remainder of this section is concerned with dusturbance limits only.

2.2. The effect of disturbance on stability linits

The effect of disturbance in the region unstable without disturbance is to produce a discontinuous increase in the amplitude of steady porpoising 3 , 7, 11 (it follows that there must be a critical disturbancc in this region, such that if $i t$ is exceeded, the model unll ofillute at the higher amplitude). Furthor, wis tho dogree of disturbance is zucreased, so is the magnitude of the unt.blu region until a limit is roachod when no further instability can be induccd regardiess of the disturiance; this is referred to as the limit -ith maxinum dasturbance. Partial limits for various degrees of disturbance for Modcas A^{3} and D^{7} are show in Figure 2 and illustrate this point; a comelete set on graded limits could have been obtanned, but this was considered unnecuasi..y. It can be seen that the lumt with maximum disturbance is, by its nature, a completely reproducible limit, since to render a configuration unstable it is only necessary to exceed the critical disturbonce ${ }^{5}$, not remoduce it. Furthermorc, it appears that a slight misjudgment of whet constitutes the maximum disturbance is uninlely to be significant, as evidoreed by Figure 2, where an almost correct fina limat as obtanod with 6° of aisturonce, so that the error in a limit obtairied with groater amounts on disturbance shoula be very small.

The limits in Figure 2 are josed on observations taken during normal stability tests and the morked similarity of the two diagrous may bo noted. (Kodel D differs fron riduj A c.iny irith rospect to afterbody length; that of hiodel D is one beam luss than thet of Model A). The numiur 0 indicates the limit obtomed with zero disturbs ace and at which the wimplude of porpoisung is 2°; each or the other numbers indicates the limits defingng unstable regions ihich cise obtasuch with thet number of degrees of disturbance, but the amplluaie of porpoisming at the limit is not necessarily 2°, in fact it is generdilly grater. This is shown in Figure 5 of Refercnce 1 , Where the unstable fegions heve bcon divided into zores of equal steady oscillations, or in Fi,ure 14 or Reforojoe 3 and Figuro 15 of Reference 7, where porpoisino ampli udua ai specific points are rarked. This feature is worth moting; in the unduinubod cass ture is a natural gradation of amplim tudes from stable to unsteble rorions and to talk on a 2° Inmit infers that cverywhere along the limat jorpoising amlitudes of 2° will be found (Ingurc 13, Reforence 12 for instancu. In the disturbod caso to speak of a 20 limit implies only that porpolsing oubice the limit is of freator amplitude than 20; amplitudes of porpoising on the linit right ve of any higher value. It would bc better to tall of a linm obtaincd with x^{0} of disturbance, or an x^{0} disturbance limit.

Exammation of figure 2 also slows that with disturbance the midplaning region becomes unstable first, roaching a maximum width with about 5° of dhsturbance; furthor increases in the degrec of applied disturbance only raise the hich spuca low limit. In the vicunity of the latter it has been noted that the ervator the dinsturbance necessary to produce instability, the more violont is the rosulting porpoising; an particular, following a

An investigation by Lucke and Hughr ${ }^{27}$ nnto disturbance el'fects substantiates the existence of different limits for different degrees of disturbance and of a finai lumit rinich further increases in magntude of disturbance dc not alter: This work is interesting because it was restricted to the upper limit region, where the present data are rather sparse, yet lad to the same conclusions.

2.3. Mechanism of disturbed instability

So far, no mathematical theory has bcon advanced for the case or stability with disturbance and the phenomenon is not well understood. Gott has offered an explanntion of the unstable motion following a disturbonce, in terms of afterbody suctions ${ }^{28}$. His account is clear and, as It is generally supported by recont experience, it is repeated below.
> "Consider a nodel osc:llating with a smill armin ude, so that the motion is dumped, and then let the amintude be increased until it inciudes an attitudo at whien suction effects occur. If the suction effect is sufficiently localised it will act likc on impulse applied at a particulor phase in the ascilletion and it is not difficult to shov, from the usual expressions for ? darped harmonic oscillation, that is tre phase of the mpuise is suitable the wodel winh thon oxurute a contanuous undarped oicillation
>
> "A cording to this thecry the essential feature is not the dis:turbence required to start porpolsing considered as a fucce or a moment, hut the amplitur of oscill.tion ro, ured to rusch an atritude at which suction uffucts occur. An indication of the correctness of this view was obtained on are unstulle model which ras mande to uscillate at mall steade amplitu,es by runnag through a long and very shallo: ineve, thenever the double amplitude reached abuut 5°, porpoising of much larger amplitude commenced. The riticel condition need only be recched once and cound be recchcal full scale due to uny number of chance car mustancus wich do not exist at all under the contrulled condut.ons of tank testing."

As las buon seon, the existence of the cratical condition referred to by Gott is confirmod by the presont anvestigataon, in which it has been referred to a; the cratical disturbance.

3. WAVE IEGTMS

3.1. Test technique

3.1.1. Gencral

Like disturbance teats, wave tests have been made in the R.A.E. Seaplane Tank for some tinu facd the tank apparatus scems to have undergone little, if any, modification in that time. The wavemaler is of tho oscillating flap type and reproduces a decp sea rave or long srell; the raveform is approxmatcly sinusoidal but deteriorates (1) for meme length/height ratios of about $20: 1$ and bclow, when the raves fail to reach the far end of the tank without change of form and (in) when the mavemaker is operating under heavy loads, which givo riso to illformed ciouble-crested waves ${ }^{29}$. The model can only be rua head on into the wavetran, and the runs may be made with acceleration or decelcration, or at steady speeds 25 .

The general outlook whth respect to tests in waves is interesting. In 1935 It was the practice to make brief tests in waves of two lengths, the shorter being about equal to the length $0 i=$ the hull, and the longer three times this length; the chief object of these tests was to obtain an assessment of the general seavorthiness of the hull21. It was considered that tests in waves mercly accentuated any porpoising tendency and were not necessary (from the stability point of vier ${ }^{\text {) }}$ ir the normal routine tests had been made. These views seem to have been generally held, where tests on specific aircraft are concerned, up to the present day. Some thorough seaForthiness tests on the Saunders-Roe E6/44 rere roported in 1946 Reference 24, and in the most recent review of tank testing tochniquo 25 most of the emphasis is on seaworthiness when waves are considerod. A method is descrabed, however, for recording the motion in pitch and hoave of a model during a run through waves and reference is made to a scries of tests on models of the Princess and Snotiand 30 in which this method was used. These tests mere vory limitod in scope, cue probably to the time-taking nature of wave tests in gicneral, and, apard from tho presont programme, they appear to be the oilly tesis done in the F. A.E. tank with the sole object of examining aircraft stabilaty in mavos.

3.1.2. Present invostigation

Apart from the cencration of waves 29 , and their effects, the general proceduro for cach of the prosent series of test runs was identical to that usca in the corrospcialing calm water case without disturbance. All wave tests werc made with zero Ilap, no ilipstroam, one C.G. position and at one beam loading, $C_{j}=2.75$; the me Jol was towd from the wing tips on the lateral axis through the c . G. ith the model frce in pitch and heave: and runs were made with selected olovator settings and at constant speeds, all of wich were in tho pluning speod range. \sim re occasion ins the model given any manual aisturbs ce.

Attempts were mado to road the trum, as wull as any change in trim, but these vere not entirely succossful. Sonetimes the trim indicatur (pointer) was stcedy aid at other times it h.d a constont amplitude, high frequency vibration superimposed on the obviously steady trim andication from the moael; on thosc occasions the motion vas classed as stable. When the model oscillated in pitch a stcady oscillation of greater than 2° amplitude was called unstablu, but on a great number of runs the amplitude of tho motion varicd over the rum. Whon this happened a cortain amount of discretion was used; if, for anstance, the meximun amplitude was sustained for say only two or threc cycles and only this maximum valuo was groater than 2°, then the run was classed as stablc; if it was sustainod for about fave or six cycles the run was tormed unstanlc. O2 some runs the pitchine oscillations wore violont and the motion was obviously unstable. at no tinc, when deciding whether a motion snould bc called stable or unstabic, idas any allowance made for the motion iz heave, which was occasionally very pronounced, as the mann reason for doing the tests was to provide a corparison with the calm water test results, ihen only the motion in pitch ids considered.

Having selected a spocd and clevetor sotting the procedure adopted was to choose a wave length/hoight ratio and, starting whth waves of small height, effectively increaso the height ihilo kocping the ratio constant until instability sot 2 il . It was iound that by ropesteng this for several wave lencth/hcight ratios curves of definstc form could be obtaincd (Figure 10) scpuratifig regions of stable and unstable motion; similar curvos were obtannod for oach speed - clove.to.' combination tested.

Critical disturvances were determined by carrrying out test runs in calm water and applying dusturbances, the magnitudes of ohich were progressively ircreased until instabillity sct in.

During most of the tests only visual observations verc taken because of the time othervise involvod in analysis, but recordings of a small group of runs were made, by the mothods of Reforcnce 1 , for comparison with the results of Reference 30.
/3.2. Scope

3.2. Scope of tests

Wave tests were made on models A^{\prime}, B and L of the series, aerodynamic and hydrodynamic data for which arc given in Tables I and II respectively. As the initial ain was to determine the extent of any wave-disturbance correlation the points in the (n, v) plane examined at first were in the region betweon the undisturbed and disturbed stability limits; later, in the case of Modcl L only, the tests rere oxterded to include points in that part of the stable region which was unaifectcd by disturbance. All of the points considered are numbered and listed in Table III; for conveniencc they trill be referred to henceforth by the number and letter given in thas table, e. g. 4B will indicate that Model B 2s beang considered at a speed of 32 feet per second mith elevators sct at -4 dogrees. The relationships between these points and the corcesponding scts of stability limits are shown for cach model in Figures 3 and 4 , which havo koel attitudes and elevator angles rospectavely as ordinatos.

The tests on Model A were of two kinds and all wore made at point 1A in the mid-planing region. In the first case a serics of runs, made through waves of fuxed height but of dif"oring, long h/hcight raulor, were recorded for comparison with similer resuits for the Princess and Shotland. In the second casc, a curve of incitula wave hoights for stability was obtainod on a vave longth/height ratio basc. In dotormining the points for this curve no recordings vore made, the runs boing classed as staiole, borderlıne or unstable ta the momor indicatod in the Exevious paragraph. The nature of these tests was mainly expionatory and fuller tests weru for convenience made on Modcl B.

The tests on Model B consistod of obtanning curvos of limiting wave hoights for stability at five points, Is to j, and ois determining the critical disturbance at each point. These results maà it aarly clear that no detailed wave disturlance correlation would be forthcoming, though some useful general results were obtanned with respect to the behaviour of the model in different wave systems. Further tests ;ero made on Model L, but for this reason no critical disturbances were determined.

The tests on ilodel L vero mado to cheok the general rosults of Model B on a model having vastly dufrerent disturbcal limits, and, in addition, wave tosts were mado at points in'regions of the stability diagram which were completely unaffucted by disturbancc. Cruator coveroge of the (η, V) plane was made $3 n$ an offort to obtain a betior understanding of stabzility in waves and one curve, that for point 6L, was oxtended as far as possible within the limitations of the wavemekne system.

3.3. Discussion of results.

3.3.1. Comparison of inodel A with Princess and Shotiand

Those tests wero made for comparison with similar tests on the Princess and Shetland30, and test concitiuns had to be chosen accordingly. The design loading for Model if was taken as $150,000 \mathrm{lb}$., the lond cocfficiont as 2.75 ane the point selected for test, la, was in the mad-planing region. Test runs were made an vaves 2.35 ft . ${ }^{[}$high and, in the comparison of results with the Princess, lunear dimensions for Lfodel A and the Shetlend were scaled up in the ratios $2.35: 3$ and $2.25: 3$ respectavoly.

Six rocordings werc made, one for each of the wavc length/height ratios $80: 1$ to $130: 1$ and they are shorm in Tisures 5, 6 and 7. Maximum and mean pitching and heaving amplitudes and their ratios are given in Table IV, togethor with corresponding results for the Princoss and Shotland, which were taken from Reference 30; the amplitudcs are plotted in Figure 8 and their ratios in Figure 9.
/The

* This figure was arrived at by scoling dow the Princess wave height of 3 ft . by the cube root of the ratio of the aircraft weights, viz:-

$$
\text { Wave height }=3\left(\frac{150,000}{310,000}\right)^{1 / 3}
$$

The most obvious feature or the Model A records generally is the apparent difference between the motions. This is probably due to the motion in each case being compounded of several basic olements the magnitudo and frequency of each being proportional to different physical characteristics of the motion. In only one, that for a wave longth/height ratio of 110:1, is there a regular constant amplituade motion. The $80: 1$ rocoraing resembles a beat between two frequencies, the 90:1 is 1rregular, the 100:1 has an envelope of square waveform, while in the 120:1 and 130:1 recordings a certan tendency to regularity can be observec. It is clear that any detanled analysis of such results en masse would have to be statistical and many more recordings would be necessary, so only a rough picture can be obtained from the present get of curves.

The results are compared with those for the Princess and Shetland in Table IV where the steady speeds are speeds for the hull form concerned scoled up to the design loading and the tabulatod figures are for runs through the waves of the heights indicated. When the Shetland weve height is scoled up to Princess size, so is the speed, but when PiodeI A wave height Is increased to Princess size the speed becomes 84 knots approximately, much higher than that for the Princess. To obtain the same scaled spoed for Liodel A as for the Princess would have meant runuing Model A at $\mathrm{CV}=5.9$, which is in the undisturbed unstable region (Figluc 3). The correspondence chosen, viz: that each of the throe points is reprusentative of the mid-planing region, is considered reasonable, but the much higher specd of Model A should be borne in mind.

The mean pitching and heaving amplitudes of Figure 8 are of about the same order, as far as one con generalise, for the tirec hull forms, but the maximum values for Model A are greatur than thoso for the Princess and the Shetland, particularly in the case of heave. In Figure 9 the ratios maximum amplitude:mean amplitude in both pitch and heave are seen to be greater for Model A thon for the other tiro hulls. It should be noted that these ratios, amongst other things, constitute a measure of the 2 rregularity of the motion, and that one large oscillation could groctly increase those values; the plots in Reference 30 were faired by hand, there being no offective damping in the recording systom, and it is possible that occasional high peaks were unwittingly smoothed out. Some interesting points do arise, however, from this limitod data. Resonance occurs for Model A at a wave length of 330 feet, it ocours for the Princess at 300 feet, although the curves for pitch and heave are out of phase, and it occurs for the Shetland at 270 feet (Figure 9); in each casc one completu oscillation of the model corresponds to its passage through two wave crests. The greatest amplitudes of oscillation in general occur at a wave length of 330 feet for iliodel A , at 270 feet for the Shetland and at 270 feet for the Princess (Figure 8); the values at 300 feet for the Princoss are, horrever, only slightly smaller than those at 270 feet. It may be said thorefore that maximum amplitudos and resonance are found at the same wave longths.

Consider notr the length (from forrard porpendicular to aft step) and maximum beam of each of these hulls scolud to $310,000 \mathrm{lb}$.:

Hull Forra	Beam ft.	Lerigth. It.	I / b	C_{Δ}	bI sq.ft.
Model A	12.05	132.6	11.0	2.75	1,600

If now the ratios of the resonant wave $l \mathrm{en}_{\mathrm{c}}$ ths to the réspective hull lengths be determined, they are found to be almost equal, viz:

Model A	$\frac{330}{132.6}=2.5$
Princess	$\frac{300}{121.0}=2.5$
Shetland	$\frac{270}{112.1}=2.4$

It would appear from this that the rusonant wave length is a simple multiple of the hull length and that it is independent of hull shape or length/beam ratio.

3.3.2. The wave diagram

Before considering the remaining tests, a detazled examination of the extended wave diagram thich was mentioned in Section 3.2 wall make it easier to follow the subscquent discussion. The curve was obtained lor point 6L (Table III) and it is given as originally plotted on a wrave length/ height ratio base in Figure 10. In thas form it has a shape charactoristic of this type of diagran but the plot on a wave length basc in F'igure 11 is. easier to appreciate, though curves plotted in this mannor have rather more varied shapes. Both figbrus aro non-dzmensional and normal stability diagram 'notation has beon used for tho stable, borderline and unstable points respectively. Maximum amplituaces of oscillation arc indzcated by the figures near the relevant poants; if the observed motion was regular this is indicated by the underlining of the fagure, othorwiso the notion was irregular.

It can be scen from Figure 11 that there is a minmum wave helght of 0.05 beam below which there is no instability. It may also be seen from Figure 10 that there is an upper limiting wavo length/height ratio for instability; in this cese the motion is stablo above a ratio of about 850. Thore may also be a luticr lamiting value, but this as not indicated by the diagram. Returning to "igurc 11, the motion near and below the limit at the higher wave lengths is mainly oscillatory, regular and of small amplitude, while that found at the lower wave lengths is as onten irregular as rogular, and the transition from steady to oscillatory motion is rather sharp. It may be noted that at these wave lengths (below 25 beams) had the limit been dram wath resuect to regular motions only it would have been less severc. In goneral, ith ingress into the unstable region, porponsing amplitudes seem to increase at first and then reach a maximum value of the order of 8 degrecs; one pozint ($h=0.351$ beam, $L=3 j .10$ bcums) is unmarked on Figure 11, but it lies well anto this recion and still has a maxinum amplitude of only 8 degrees.

The existonce of limiting values of wave length, height and length/height ratio for stability could huve becn cxpected. With regard to wave height, a wave of infinitesmal hught could have no offect on the motion; it would have to reach finite size before a 2° amplitude oscillation could be induced. In the ceso of wave longth, as this is increascd at constant height the water surface approaches a plane, for practical purposes, and the motion becomes as for calm water. When the wrave length is decreased, it reaches a minmmur value for a given wave height, bolow which a stablo waveform carnot exist 32 . There is thus a limiting wave length/height ratio (7) for the existence of stable waves and neither of the curves in Figurc 10 or Fisure 11 would therefore touch the y -axis.

The remaining results are presented in the form of Figurc 11. Only the curve or limit is dram in each case, but the poats defining this curve are given in the relevant tablc. Lancs of constant wave length/ wave height ratio are show in each figure to aid discussion and it may be
noted that the maximum wave lengths and heights in which the general tests were made were 35 beams and 0.5 beam respectively. This gives a smaller coverage of the wave length range than in the case discussed above.

3.3.3. Model A results

The curve of limiting wave height for stability at different wave lengths is given for point IA (see Table III and Figures 3 and 4) in Figure 12 and the points defining the curve are given in Table V. It is of simalar form to that of Figure 11 when account is taken of the different vertical scales and as wave length is increased there is a progressave jucroase in the wave height at which instability is met. The rate of decrease $1 s$ reducod as wave length increases, until a minimum wave hoight for instability of the order of 0.06 beam is indicated.

The six points marked at' a mave height of 0.25 boam and length/ height ratios of 80 to 130 respoctively are the points at which the recordings shom in Figures 5, 6 and 7 were made. Each of those recordings illustrates the type of motion which occurs at one point in the kind of diagram no. being considered. It is interesting to see that the six points all lie well within the unstable region and thot if there is a tendency here to a limiting porpoising amplitude as mentioned in the previous section, it was probably reached by each of the three models, Model A, Princess and Shotland, durang the tests considered in Section 3.3.1.

3.3.4. Model B results

The curves of limiting wave height for stability at diffurent mave lengths are given for points $1 B$ to $5 B$ (sec Table III and Figures 3 and 4) in Figures 12 and 13 and the points defining the curves are glven in Tables VI to X; the relevant critical disturbances are also given in theso tables. The general tendency in all of these diagrams is tho same as in that for Model A; as wave longth is increased thorc is a progressive docrease in the wave height nocessary io produce instability and, olthough the curves end rather abruptly, there is in three of the cases a definite tendency towards a minimum wave hoicht for instability, the value if which differs from casc to case. Too much attention should not bo paid to the irrogular shope of the curves for points $2 B$ and $3 B$; the nature of the motions involved and their ropresentation by stable or urstable points should be remembered (Secticn 3.1.2).

An examination or the five curves shows that in a given wave system the most stable conifguration, or port of the stability diagram, is that represented by point $5 B$ and the least stable by point 3B. If the five curves are put in order of quali.ty with the poorest first me get 3B, $2 B, I B, 4 B$ and $5 B$, $2 B$ and $1 B$ are at the same elevator setting (Figure 4) and indicate an improvement in stability, 1. e. an increasc in the wave hoight necessary to induce instability, with inccease in speed, while 3B and $1 B$ are at virtually the same speed and show an improvement with increase in clevator setting. Points $1 B, 4 \bar{B}$ and $5 B$ are for both procressively higher speeds and elevator settings and should, it the changes already noted are progressive and additive, show a much greator degree of improvenent than the individual changes; this is in fact the case.

It may thus be tentatively concludod that stability characteristics in waves will be improved by on increaso in specd or an increase in elcvator setting, ${ }^{5 n}$
3.3.5. Model I results

The curves of limiting wave height for stability at different wave lengths ore given for points 15 to $14 工$ (sce Table III and Figures 3 and 4) in Figures 13 to 16 and tho points defining the curves are given

If i. e., a change of elevator setting which will increase the nose down pitshing momeint.
in Tables XI to XXIV. The general tendency for the wave height necessary for instability to be reduced as wave length is increased can still be seen in these figures, but the greater coverage of the stability diagram by the test points has resulted in a duversity of curve forms.

It is convenzent to consider the curves in the followng groups:
(i) 6L, 3L and 7 L where $\eta=-12^{\circ}$,
(ii) $2 \mathrm{~L}, 1 \mathrm{~L}$ and 8 L where $\eta=-8^{\circ}$,
(iii) 10 L and 4 L where $\eta=-4^{\circ}$ and
(iv) 12L and 13I where $\eta=0^{\circ}$;
this allows the effect of ancreasing speed to be assessed at different elevator settings; a regrouping
(v) 6L, 1L, 10 L and 14 L where $\mathrm{C}_{\mathrm{V}}=6.9$,
(iv) $8 L, 4 L$ and $12 L \quad$ where $C_{V}=8.2$ and
(vii) $7 \mathrm{~L}, 9 \mathrm{~L}$, 5 L and 11L where $\mathrm{C}_{\mathrm{V}}=9.2$,
allows the effect of increasing elevator setting or angle to be determined at different speeds.

The curves of the first group show, with the exception of that for $2 L$, that with increasing speed the wave height necessary to induce instability is increased and that the elevator setting has little bearing on this change. (It should be remembered that these remarks apply to any given wave system within the range tested and they are therefore general). The exception to this rule, point 2 L , shows that much higher waves can bo encountered without instability resulting than is the case at the next higher speed, point 1 L . Point 2 L represents the lowest speed tested, however, and is just past the hump, while the remaining points are at or above low planing speeds. The conclusion that increase in speed increases the wave height necessary for instability applies therefore only at low planing speeds and above, not at hump speeds.

The second group shows that at all speeds, as elevator angle is increased so is the wave hoight necessary to induce instability and, as speed is increased, so is the rate of this change.

The best configuration when planing in waves therefore is one where both speed and elevator angle are high.

3.3.6. General

From the foregoing results three general conclusions can be draw. They apply over the range of wave systems covered in the main tests, that is in waves having wave length/height ratios of up to 200:1 or in waves of lengths which are less than thut at which the minimum wave height for instability is found. The conclusions are that
(i) at any point in the planing speed range the wave height necessary to induce instability decreases with increase of wave length (probably until the resonant wave length is reached, after which it increases),
(ii) at any point in the planing speed range and at any wave length the wave height necessary to induce instability increases with increase of elevator angle, and
(iii) at any point in the range from low planing speeds upwards and at any wave length the wave height necessary to induce instability increases with increase of specd.

Minor exceptions to these conclusions can be found, but they are not felt to be significant.

It may be noticed that here and elsewhere in the discussion points have been defined in terms of η and V not $a \pi$ and V, i. e. elevator angle has been used in prererence to keel attitude. The reason is that whilc boik are usually know accurately in caln water tests, this is not generally so in waves. ihen the model oscallates in pitch during wave tests it is difficult to obtain an attitude reading and when the model $2 s$ reasorably steady tho attitude $1 s$ usually different to thot obtained in caln water for the same speed and elevator setting. Observess were left wath the impression that attitudes were increased by waves from their caln mater values and, to check this, readungs were taken at seven points, 4L, 5L, 7L, 8L, 9L, 10L and $14+5$ (Tables XIV, XV, XVII, XVIII, XIX, XX and XXIV). Then the motion was oscillatory and of smell amplitude the mid-point between maximun and minimum readings (sec Figure 5 for instonce) ras taken as the attitude for this purpose if it was not possible to obtain a steady reading before any instability built up. The mean of the readings outained in different wave systems for each point was then plotted against the corresponding calm water attitude and the resulting curve, which is of derinite form, is given in Figure 17.

It can be seen that for this particular model, L calm wawer attitudes of less than 8° are increascd by waves, hile those freater than 8° are decreased. Maximum and minmmum values of attitude apparently exist for planing in waves and in this case are 8.0° and 6.8° respectively; the moan working attitude ronge has thus been reduced to $1 \frac{1}{4} 0$ for this nodel. The speeds and elcvator settings at which each sot of wave tests trere made aro indicated; speed alone does not appear to be signaracont, thile'elovator angle decreasos more or less progressively with incruase in attitude at cach speed. The long afterbody of Model L (7 beams) has undoubtedly playcd a large part in fixing the changes quantitaively (tho reduction of the attitude range for instance, would probaily not be so groat with a shorter afterbody), but it is considered that in goneral the calm water otiitudes of all the models of this series will be similorly modificä by waves.

It is interesting to examinc the test rosults for liodel L in the light of the resonant wave length found at $2 \frac{1}{2}$ times the hull longth with thrce other models. Since the hull length of Model I is 13 beams one rould expect a resonent wave length of 32 beans if this 10 tio js to be maintaincd. As can be seen from Figure 11 this is consistont moth the test results if a little latitude is allowd in the drawing of the ofave curve. Considering the diversity of shapes represented by the four hulls concerned the agrecment botweon the ratios rescnart : ave length/hull length is romarkably good and suggests that in fact there may be a general relationship involving this factor.

In Figure 17 a comporison $1 s$ madu of the wave stability characteristics of irodels A, B and Is In the iirst diagram curves for the three models are compared at a mid-planing speed and medium elevator setting. The basic model (A) is the poorest, a large improvoment results from forebody warp (B) and a further but lesser mprovement is obtained with forebody warp and s long aftorbody (L). This àes not of coursc mean that for any given model an increase in aftorbody lousth will be more effective than application of forebody wary in improving behaviour in waves, since it may well be that, in the instance quoted, most of the possiblu amprovement was offected by the addition of forebody waro, leavang little soope for any
progressively higher speeais and andzentc that while the long afterbody is slightly better in short waves it shows a progressive deterioration relative to Model' B with speed at the higher wiave lengths, ise. the characteristics of the short afterbody model irprove at a greater 'rade with increase of speed than those of the long istorbody modicl.

An aitumpt to corrclate the crfcets of waves and disturbances on undisturbed calm water stabilıty characteristacs may bo madu in several ways and the correlation may bo dotailed ox general. In the detailed type: of corirclation the critical disturbances and wavo ofugrams at corresponding speeds and elevetor settings are compared in an atumpt to obtain a point \ddagger to point corresponderice over the wolc (i. V) plane; thas can obviously be applied only to Nodel E results in tho present case. In, tho guneral.: type of corrclation an attompt is made to draw conclusions concorneng whole areas of the (η, V) plane; Modol. I results are most suitable fur this type of treatment by wartue of the faxily gool coverage of the ($\eta, V)$ plane with test points.

It should be noted that in all or the tests now under consideration the stability critorion was takon to bo un oscillntion $2 n$ pitch of 2° amplitude and,' because of the weve effoct on attztude, rosults are expressed in terms of clevator angle, not keel attitude.

For correlation the critical disturbance, i. e. the snallest disturbance which rould zaduce instability at any speed and elevator, setting, . is assumed to bo wqurralent to ay wave systom which would similarly just inducc unstatility.

A detailed correlation may be made in the followng mannor. Let an x° disturbance Limit be chosen (see Soction 2:2); the pounts at *hich the criticel azsturbances are greater than x^{0} ill be stable and those at which the ciruical disturbences arc loss then x^{2} mil bo unstable. If a wave cystem ($\alpha \in f$ nea by wow hoigill h and wave length L) can be found which, by vartue of thu nluvant curves of crithcal, wave heights (e.g. Figures 12 and 13), remders tix points stable and unstable in exactly the sone ray as doos tho x° disturbence limit and if tho procedure cen bo ropeated with disuuribance limits of vamous vilues, from one wimeh axcludes to one when includes all the ponts, then a detorlca correlation may be said to have hoen coteblushud. In such a corrolation the converse need not necessaraly bo truc. The ain is to intorpret disturbance limits in torms of stebilaty ir .revers, not vicc vursa, and in the cvent of a, detailed correlation therc ma, romein rave systems ihich hove no corrosponding disturbancc limit.

Applyzng tris technique to :odel 5 and choostan initially a 3.5° disturbance lamat, and boaring in mind the liagnitude on the critical disturbonces, points $2 B$ and $3 B$ vall iv isteivlo, points $1 B$ and $4 B$ vill bo unstable and point 5A will be borderline, i. c. the roprescintative point will be on or noor the stability limit. Jurazag to Jigure 13 it can bo secn that borderlino stebulity will be obtained at point 5B an sevoral weve systoms having wovo holghts of the order of 0.2 beams. Selecting a wave system of wave heaght 0.2 beams and wave length 20 beams it con bu seen that points a $1 B$ to $4 B$ aro ronderod untanle thurovy and inis occurs with any system lying on the $5 B$ curve. In thas case thorefore detailed correlation camot be estolished. The same is true of any limit obtained with disturbances in the range 3.0° to 4.5° for liodel B.

In attompting to makc a general comrolation no particular method was used; instead the wave curves and the calm ratcr, stability limits obtained with maximurn disturbance for Model L wore compared and any relevart 'facts were considered.

The region of instability obtanned with disturbance is much smaller for Model L than for i iodel B and, because of this, wave tests were made at points $2 \mathrm{~L}, 4 \mathrm{I}, 5 \mathrm{I}$ and 7 L to 10 I , which are in the stable region which is unaffected by disturbance, in addrtion to points outside this region. Even at these pounts rave systems rere encountered which could induce instability and lt is'clear", therefore, thet at these points there can be no ware-dasturbance correlation. In the previous discussion on Hodcl B results, limits obtaned iath garen degroes of disturbance mere considerod in conjunction rath criticil disturbancos; in the caso of Model I no critical disturbances were dotermined and tine disturbed lamit (Figure 4) is that for maxmmen dusturoanco. Inis, as can be seen from Figure 2, is probably a compouna limit involving various degrees of disturbance. In a wave systom when is the equivalent of this disturbed limit the previously montionce points must be stable, points IL, 6L, III, 12 L and 13 L must be unstable eni 3 L and 14 L must be bordenline, i. c. the roprosentative points must lio on or near the limits. Considering the curves for points 31 and 14 L in Figures 14 and 16 it can 00 soon that no wave system which is common to the two curves con be found. Therc is thus no correlation between stability characterastios in maves and the stability limit obtained with maxanuin disturisance.

This lack of correlation in the case of Model It as imolicat in the conclusion (ia) of Section 3.3 .6 , which statos in offect that as elevator angle is increased stabiluty characteristics in waves are improved. As some of the high elovator angle points (11L, 12L, 13L) 12c within the disturbed unstable rogion (Figure 4, Wodel L) wherc for any sort of correspondence a detcrioration rould be expected, there can bo no wave-disturbance correlation.

It would appear frcm fundarental considerations that if any correlation were obtaintd, it would bu purely fortuitous. irrom the discussion on disturbancc linits (Suction 2.2) It follows that there is a physical disnontinuity at the lumit, un goung from stuble to unstable regions a sudden change from steady motion to porpoising of large amplitude is obtanned, whoreas with the rave curves, thero is a progressive Increase in the anplitudus of porpolsang with ingross into tho unstable rogion and, by defiantion (Section 3.1.2), porpozsang on the curve is of 20 amplitude.

It is clear from the foresoing that disturbance limits camot be interproted in torms of stability an waves.;

5. DISCUSSION

It has been concluded that thoro is no sigrificant relationship betwoen stability with disturbance and stability in waves, so tnat information on the latter with respect to a given hull form nust be obtained by carrying out tests in wavos. In future tosts on a dynamic model therefore, for a complete assessment of longatudinal stability sharacternstics, three types of stability must be invcstigatod, viz: undisturbed and disturbed stabılity and stability in raves. For a satisfectory intorpretation of tost results the meoring of each of the se types of stability should bo understood and to this end a summary or the jmortant points relating to stability with disturbance and stability in weves is given belori.

When disturbanco is applied tho stable region obtained without disturbance is reduced and this reduction continues as the dogree of disturbance is increased until a minmum region, which is unaffected by further increases in the applica disturbancc, is obtamnod. The limat dofining this region, which is known as the limit with maximum disturbance, is reproducible and is obtained by giving to the model the maximum nose.down impulsive disturbance compatible with safety. Like limits obtained with any other degree of disturbance, it marks a discontinuity in the type

$$
-17
$$

of motion encountered; therc is a sudden cnange from the steady planing of the stable region to large amplitude porpoising when the limit is crossed. In general, the increase in the unstable region obtained with dusturbance commences in the mid-planing region following the application of the smaller dusturbances, though instability here may be prevented by a suitable hull modificarion, e.g. a long afterbody, and the fanel stages of the increase occur in the high speed, low attitude region followng the application of the larger disturbances; instablitity can always be found in this region if, large enough disturbances are applied. The violence of the porpoising following a disturbance is increased where larger disturbances are necessary to induce instabilaty.

As disturbed limits cannot be anterpreted in terms of stabzlity in waves, but clearly reprosont stability characteristics with disturbance, the question of what constitutes a full scale disturbance deservos closer examination. The wash of a boat, such as that which caused the crash of the Saunders-Roc R2/33 22 , or a sudden yaw, such as that which caused porpoising and finally damage to the Solent II. J. 20133 are acceptable examples, but a type of disturbance which occurs regularly full scale is that encountered during landing. The suggestion that cvery landing constitutes a disturbance was consicored in essence by Gott 31 and upheld in the light of his experience, and it wras made (quite independently) in Reference 10 and supported by American evidence. It is considerea therefore that limits with maximum disturbance indicate either stability characterıstics in take-off or planing when a severe disturbance is encouriered, or the worst stability characteristics in landing.

In waves, therc is a minimum rave hoight and a maximum wave length/ hoight ratio below and above which respectiveiy no instability is obtanned. The minzmum wave hight appears to occur at a wave length of $2 \frac{1}{7}$ times the hull length; this factor of $2 \frac{1}{2}$ has carlier beon foura to be significant with throc other hull forms, the rosonaıt wave lengu in each case being $2 \frac{1}{2}$ times the hull lorgth, and this may well be a universal figure. In general, it appears that at a constant planing speed and elevator setting the wave height nocossary to induce instability decreases monotonically with increasc of wave length until the resonant wave length is roached, and then increases. Again, the rave height nocessary to inducc instability at a given trave length is incroased by increase of specd or elevator anglo or both.

These results mar bo uscd to formulate a technque for future stability tests in waves, wnich can bo nade very brief. r'he :rorst and best wave stebiluty characteristins riall be obtained at low planing speeds with low elevator angles and at hagh planing spoeds with high elevator angles respectively, while botween ihese extromes there is a more or less steady change. Diagrams for thcse points will therefore give all the information ncessary on the mave stability charactoristics of a gaven hull in the planing specd range.

It is felt that in future tests account should be taken of motion in heave as will as that in pitch, which was the only motion of direct intercst in the prosent invoztreation. During the present tests it mas observed that the heaving motion occurred occesioncily in the complate absence of any fitching motion, so that for any absolute assossmont of the motion in waves of o given hull form the simple 2° pitch criterion is clearly inadequate; it is necescary to take account of several factors. These will include the amplatude, f'requency and degree of regularity of the motion, both in pitch and heave. A suitable form of presentation for such comprehensive tests would probably be a carpet graph of anplitudes of oscillation in pitch and heave rolated to wave length and wave height for each clevator speed combination, wh some allowance being made for the frequency of oscillation.

Some mention should bo made of the luck of longitudinal freedom in the stability test rig uscd in the tests of the present report. This lack of longitudinal frcedom has been given full theoretical consideration in the undisturbed calm wator case in Reforence 2ϵ, where it was concluded that variations of longitudinal velocity had only a slight effect on stability, and these conclusions vere given arı exporimental check (Reference 21) when it was found that the model behaviour was smmilar under the two conditions, with and whout longitudinal freedom, and that when porpolsing was present the period and character of the motion taking place ras unaffected by the introduction of the additional degree of frecdom.

In the wave tosts now under conslderation most of the conclusions are based on curves or linaits which wore draw with rospect to porpoising of 2° amplitude. It is folt that while thore will undoubtedy be an effect due to the longitudinal constraint, at those small amplatudes it wil probably be negligible and at nighcr amplıtudes it will be more quantitativo than qualitative; the general conclusions of the report should in any event not be affected. The magnitude of the effect should, howevor, be determined if possible, together with those of the corresporiang effects on the heave and fomard motions, and if any of tho effects is large it will obviously be necessary to arrange for longitudmal froedom in future tests.

It is possible to use the results of the present tcsts to suggest a method for making full scale take-offs in waves. It has becn show that greater wave heights can be encountered under conditions of maximum elevator and speed whout inducing instability than otherrise, so the best course is to keep the control column forward and increase speed as quickly as possible. This implies that the effect of acceleration is (a) not detrimental and (b) roughly constant over the (\cap, V) planc. In tho present wave tosts instabality was damped out wile running up to speed and, as in the calm water case (in which accoleration is beneficial) t has not been considerod worthwhile in the light of expericnce to check the constancy of the effects of acecleration on stability over the (τ, V) planc, these points can, for the present, bo neglected.

Whale keeping the stick forward during take-off undue concern about the nose of the aircraft dageing in or being sucked dow need not be felt. The andication of a minmum mean atritude in Section 3.3 .6 suggests that in faci the oppositc vill happen; the pilot vill have to hold his aircrart dow and allow it to become airborne when flying specd is reached.

Porhaps the most enlightaning conclusion bearing on take-off's in waves is that the rosonant wave length is $2 \frac{1}{2}$ times the hull length; during ' take-off raves of this length should be avoided by as much as possible. Waves of just less than rosonant longth and above, may be effectivoly lengthened by following a takc-off path as near parallel to the waves as possible, when thore mill bc little risk of instability, but application of this technique in shorter wave lengths may cause rosonance and is therefore dangerous; in short waves take-ofis should bo made hoad on into the waves. The pilot can decide on which coursc to follow after making or obtanning an ostimate of the weve longth relative to the longth of his aircraft.

An analogous technique could be devised for landing and would nocd only a suitable allowance for deccleration effects.

LISI OF SYMBOLS

b	beam of model
C_{L}	Iift coefficient $=L / \frac{1}{2} \rho S^{-7}{ }^{2}(L=$ lift, $\rho=$ air density $)$
CV	volocity cocfficlent $=V / \sqrt{\Omega^{5}}$
C_{Δ}	load cocfficiont $=\Delta / \mathrm{m}^{3}$ ($\Delta=$ load on water and
	$\mathrm{W}=$ weight per unit volume of water) *
c_{Δ}	load coofficiont at $V=0$
CX	longitudinal spray coefficient $=\mathrm{x} / \mathrm{b}$
CY	latoral spray coefficicnt $=\mathrm{y} / \mathrm{b}$
C_{Z}	$\begin{aligned} & \text { vertical spray coefficient }=z / b \\ & \{(x, y, z) \text { co-ordanates of points on apray onvolope } \\ & \text { relative to axes thnough step point }\} \end{aligned}$
S	gross ing area
V	velocity
α_{K}	keel attitude
η	clovator sotting
h	wave hcight
L	wave leneth

ITST OF REIMEEMCES (Conod.)

IIST OF REHEREICES (Conta)

Ref. ${ }^{\text {No. }}$	Author(s)	Title
18	D. Mo Ridland	Investigation of High Length/Bean Ratio
	J. K. Friswell	Seaplane Ilulls with Figh Beam Loadings:
	A. G. Kurn	Hydrodynamic Stability Part 18: The
		Stability and Spray Characteristics of
		Model N.
		I. A. E. E. Report No. F/Res/254. Apı'zi 1955. A. R.C. 17,894.
19	J. K. Friswell	Invertigation of High Lexgth/Beam Ratio
		Seaplane Fiulls with Figh Becin Loxdings:
		Hydrodynanic Stability Piait 19: The
		Interaction of the Effects of Forebudy
		Warp, Afterbody Length and afterbody Angle
		on Longitudinal Stabilyty Characteristics.
		September, 195
20	D. M. Ridland	Investigatzon of High Length/Beam Ratzo
		Seaplane Hulls with Hich Beam Loadings:
		Fydrocynamio Suab.lity Part 2C: The
	- •	Efitect of Slipstream on Stabulity and
		Spray Characteri.tics.
		Li. A. E. Report ITO. F/Res/256.
		a. R.C. 18,211. September 1955
21	In P. Coombs	Tho Use of Dynamically Sumilar Models
	iV. G. A Perring	for Determining the Porpozsing
	L. Johnston	Characterzstics of Seaplanes.
		^. R.C. R.c. M. No. $1718 . \quad$ November 1935.
22	J. P. Goti	Mote on the Technique of Tank Testing
		Dynomic Models of Flying Eoats as Affected by Recent Full Scale Experience.
		ㅍ. A. E. Report No. B. A. 1572. December 1939.
23	A. Go Smith	
	H. G. White	of Seaplanes. -
		A. 2. C. Ro de M. No. 2852. February 1944.
24	G. In Fletcher	Tank Tests on a Jet-Propelled Boat-
		Seaplane Fighter (Saunders-Roe E6/44).
		A. Roc. Ro \& M. No. 2718. January 19460
25	T. B. Owen	Model Testing Technzque Employed in the
	A. G. Kurn	R. An E. Seaplane Tank.
	A. G. Smith	R. A. E. Report No. Aero. 2502. September 1953.
26	W. G. A. Perring	The Stability on the Water of a Seaplane
	H. Glauert	in the Planing Condition.
		A. P.C. R.\& M No. 1493. September 1932.
27	F.W. S. Locke	A Method for Studying the Longitudinal
	W. C. Hugli	Dynamic Stability of Fly yng-Boat-Full
		Wifdels at Fiigh Planing Speeds and during

IIST OF REFERENCES (Conta.)

TABIE I

MODEL AERODYNAMIC DATA

Mainplane

Section	Gottingen +36 (mod.
Gross area	6.85 sq. ft.
Span	6.27 ft .
S. M. C.	1.09 ft .
Aspect ratio	5.75
Dihedral \{	$3^{\circ} \mathrm{c}$
Sweepback $\{$ on 30% spar axis	$4^{\circ} 0^{1}$
Wing setting (root chord to hull datum)	$6^{\circ} 9^{\prime}$

Tailplane

Section	P. A. F. 30 (mud.)
Gross area	$1.33 \mathrm{sq}. \mathrm{f}^{2}$.
Span	$2.16 \mathrm{ft}$.
Total elevator area	$0.72 \mathrm{sq}. \mathrm{ft}$.
Tailplane setting (root chord to hull datum)	$2^{\circ} 0^{\prime}$

Fin

Section
Gross area
Height
S. Ato F. 30
$0.30 \mathrm{sq} . f t_{0}$

1. $I_{+} f^{\prime} t$.

General

w. C. G.	position
	distance forward of step point
	0.237 ft.
distance above step point	0.731 ft.

3 $\frac{1}{4}$ chord point S. M. C.
distance forvard of step point 0.277 ft.
distance above step point 1.015 ft .
m Tail arm 1 (C. G. to hinge axis) 3.1 it.
F Height of tailplane root chord I. E. above hull crow

F These distances are measured either parallel to os normal to the hull datum.
/TABLE II

TABLE II

MODEL FYDRODYNAMIC DATA

Miodel	A	B	I
Beam at step	$0.47{ }^{\prime}$	0.475^{\prime}	0.47^{1}
Length of forebody	06	6	Eb
Length of afterbody	56	30	70
Forebody waxp (per beam)	\%	$4{ }^{\circ}$	40
Angle between forebody and afterbody keels	6°	6°	6°
Forebody deadrase at step	25°	25°	25°
Afterbody deadrise	300	30°	30°
Step depth	C. 250	0.13 b	0.15 b
Step form	Unfaired transvease		
Pitchung moment of inertia (10. ft. ${ }^{2}$)	22.9	21.3	2b. 5

/TABTE III

TEST POINAS HOR WAVE TESTS

Point	Model	Speed	CV	Elevator setting
		ft. /sec.		degrees
1	A, B, I	于 28	7.2	- 8
2	B, L	24	6.1	- 8
3	B, L	29	7.4	-12
4	B, L	32	8.2	-4
5	$B, ~ L$	36	9.2	-2
6	L	27	6.9	-12
7	工	36	9. 2	-12
8	L	32	8.2	-8
9	L	36	9.2	-5
10	L	27	6.9	-4
11	L	36	9. 2	- 1
12	L	33	8.4	0
13	L	37	9.5	0
14	L	27	6.9	$+4$

FThis speed should be 27 ft /sec. for Model I .

Note: The point number and model letter ars used to identify tho test pounts, e. g. 3 L will inducate Model L at 29 it ./sec. with elevators set at -12°.

TAETE IV

TEST DATA FOR RECORDED STEADY SPEED RUNS

Wave Length/Ht. Ratio	Maxamum Pitching Amplitude	Mean Patching Amplıtude	Maximum Amplitude in Heave	Mean Amplitude in Heave	$\frac{\text { Mar. Pitch }}{\text { Mean Pitch }}$	$\frac{\text { Max. Heave }}{\text { Hean Heave }}$
	(degrees)	(degrees)	(feer)	(feet)		
MODEL A. Steady speed $74 \mathrm{knots} .\mathrm{Wave} \mathrm{heighr}$,2.35 ft .						
80:1	12.0	5.5	13.0	5.0	2. 18	2.60
90:1	15.0	9.0	17.0	10.0	1. 66	1.70
100:1	14.0	6.0	15.0	3.3	1.75	1.76
110:1	14.0	12.0	15.5	1\%0	2.17	1.20
120:1	12.0	8.5	11.0	7.0	1.41	1.57
130:1	27.5	4.5	5.5	3.0	1. 6.1	1.83
PRINCESS. Steady speed 69 knots. Wave height 3.C fir.						
$80: 1$	11.1	8.3	12.8	9.4	1. 34	1. 36
90:1	12.6	9.3	16.3	12.3	1.35	1.33
100:1	10.7	8.5	16.1	12. 1	1.26	1.45
110:1	10.0	7.2	17.3	10.4	1. 39	1. 66
130:1	12.1	8.3	20.8	12.8	1.45	1.63
SHETLAND. Steady speed 59 knots. Wave height 2.25 ft .						
80:1	12.5	11.5	9.7	9.0	1. 09	1.08
90:1	14.8	13.6	12.8	12.8	1.09	1.08
100:1	6.6	4.0	5.2	2.9	1. 64	1.79
110:1	7.6	5.7	4.7	3.2	1.34	1.47
120:1	7.9	6.5	5. ${ }^{\text {' }}$	4.1	1. 22	1. 31
130:1	10.1	6.7	7.0	5.1	1.49	1. 38

	Assumed design loading	$\mathrm{C}_{\Delta_{0}}$
Model A	$150,000 \mathrm{lb}$.	2.75
Princess	$310,000 \mathrm{lb}$.	1.08
Shetland	$131,000 \mathrm{lb}$.	1.08

TABTE V

WAVE TEST DATA FOR MODEL A

Point $1 A_{0} \quad C_{\Delta_{0}}=2.75, C_{V}=7.2, \eta=-8^{\circ}$

TASIE VI

HAVE TEST DATA FOR MODEL B

Point 13. $\quad C_{\Delta_{0}}=2.75, C V=7.2, \eta=^{\prime}-8^{\circ}$. Critical disturhance $=3.0^{\circ}$.

h ft.	L ft.	h b	L	L / h				Remarks	
0.033	6.67	0.070	14.04	200	1. 14	S		.	
0.042	8.34	0.087	17.54	200	1.28	US			
0.042	6.25	0.087	13.15	150	1.10	B		Juit under 2° amplitude.	
0.050	7.50	0.105	15.80	125	1.21	US		Just under 2^{0} amplatude	
0.062	5.00	0.132	10.50	80	1.00	B		Just under 2° amplitude.	
0.092	4.58	0.193	9.65	50	0.94	US			
0.083	4.17	0.175	8.77	50	0.90	US			
こ. 075	3.75	0.158	7.90	50	0.85	B			
0.083	2.50	0.175	5.26	30	0.68	B		Just under 2° amplitude.	
0.083	2.75	0.175	5.79	33	0.72	S			
0.092	3.00	0.193	6.31	33	0.75	5			
0.100	3.00	0.217	6.31	30	0.75	US			

TAEIE VII

WAVE TEGT DATA FCR MODES B

Poznt 2B. $C_{\Delta_{0}}=2.75, C_{V}=6.1 . \eta_{1}=-8^{\circ}$. Cr_izcal disturbance $=4.0^{\circ}$.

TABIE VIII

WAVE TEST DATA FOR MODET B

Point 3B. $C_{\Delta_{0}}=2.75, C_{V}=7.4, \eta=-12^{\circ}$. Critical disturbance $=4.5^{\circ}$.

$\begin{aligned} & h \\ & \text { ft. } \end{aligned}$	I ft.	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~b}_{1} \end{aligned}$	$\frac{\mathrm{L}}{\mathrm{b}}$	I/h				Remarks
0.025	5.00	0.053	10.50	200	0.98	S		
0.033	6.67	0.070	$1{ }_{1} .00_{4}$	200	1. 14	US		
0.042	8. 34	0.087	17.54	200	1.28	US		
0.050	10.00	0.105	21.05	200	1.42	US		
0.033	5.00	0.070	10.50	150	0.99	S		
0.042	6.25	0.087	13.15	150	1.10	US		
0.100	3.00	0.211	6.31	30	0.75	US		
0.083	2.50	0.175	5.26	30	0.68	B		
0.075	2.25	0.158	4.74	30	0.65	S		
0.062	3.33	0.132	7.01	53	0.80	B		
0.058	2.91	0.123	6.13	50	0.74	S		
0.058	5.00	0.123	10.50	86	0.99	B		
0.050	5.00	0.105	10.50	100	0.39	S		

TABLT IX

WAVE TEST DATA FOR MODEL B
Point 4B. $\quad C_{\Delta O}=2.75, C_{V}=8.2, \gamma_{I}=-4^{\circ}$. Critical disturbance $=3.0^{\circ}$.

$\begin{aligned} & \text { h } \\ & \text { ft. } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{ft.} \end{aligned}$	h b	L	L/h				Remarks
0.042	8. 34	0.087	17.54	200	1. 28	S		
0.050	10.00	0.105	21.05	200	1.42	S		
0.058	11.66	0.123	24.55	200	1.53	US		
0.058	8.75	0.123	18.42	150	1. 32	B		
0.100	3.00	0.211	6.31	30	0.75	S		
0. 108	3.25	0.228	6.84	30	0.78	S		
0.117	3.50	0. 246	7.36	30	0.82	S		
0.142	3.75	0.298	7.90	26	0.85	S		
0.100	5.00	0.211	10.50	50	0.98	5		
0.117	5.83	$0.24,6$	12.27	50	1.07	US		
0.100	7.00	0.211	14.73	70	1. 17	US		
0.092	6.41	0.193	13.50	70	1. 12	S		

TABLE X

WAVE TESE DAPA FOR MODEL B

Point 5B. $C_{\Delta_{0}}=2.75, C_{V}=9.2 ; \eta=\dot{-2}$. Critical Cinsturbance $=3.5^{\circ}$.

$\begin{aligned} & h \\ & f t . \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{t}} \\ & \mathrm{f} \end{aligned}$	h	L b	I/h	$\begin{array}{ll} c_{0} & 0 \\ \text { do } & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$			lemarks
0.042	8.34	0.087	17. 54	200	1.28	S		
0.050	10.00	0.105	21.05	-200	1.4.2	S		
0.058	11.66	0.123	24.55	200	1. 53	3		
0.100	17.50	0.211	36.80	175	2. 98	US		
0.108	13.60	0.228	28.65	125	1.68	US		
; 0.100	12.50	'0.211	26.30	125	1. 60	Us		
0.092	6.67	0.193	. 14.04	73	1.14	S		
0.108	7.59	0.228	16.00	70	1.22	US		
- 0.092	5.00	0.193	10.50	55	1.00	S		
0.100	5.00	0.211	10:50	50	1.00	S		
0.108	5.40	0.228	11.36	50	1.03	S		
- 0.100	9.00	-0. 211	18. 95	90	1.34	S		
0.096	14.40	0.202	30.30	150	1.74	US		
0.092	18.33	0.193	38.60	200	2.05	US		Just over 2° amplitude.
0.083	15.00	0.175	31.60	180	1. 78	S		
0.092 0.108	11.45 3.50	0.193 0.228	24.10 7.36	125 32	1.52 0.83	B S.		Just below 2° amplituda.
0.125	3.50	0.263	7.36	28	0.83	S		
0.117	5.83	0.246	12.27	50	1.07	S		
0.125	6.25	0.263	13.15	50	1.10	S		

TABLE XI

WAVE TEST DA'TA FOR MODFI I
Pount 1工. $\mathrm{CAO}_{0}=2.75, \mathrm{CV}_{\mathrm{V}}=6.9,7=-8^{\circ}{ }^{\circ}$

$\begin{aligned} & h \\ & f t . \end{aligned}$	L. f.t.	b i	$\begin{aligned} & L \\ & b \end{aligned}$	L/h				Remarks
0.033	5.00	0.070	10.50	150	0.99	S	;	
0.058	7.50	0.123	15.80	129	1.22	US	$4 \cdot 5$	Not periodic.
0.050	7.50	0.105	15.80	150	1.22	US	4	Irregular.
0. $0_{4} 2$	6.25	0.087	13.15	150	1.10	B	1	Tregular.
0.071	5.00	0. 149	10. 51	71	0.99	B		Nearor a periodic oscillation of 1. 5°.
0.112	5.85	0.237	12.30	52	1.07	US	7	Periodic.
0.079	5.85	0.167.	12.30	74	1.07	US	7	Two step porpoising.
0.087	4.80	0.184	10.10	55	0.97	US	4	Nearly regular.
0.067	3.85	0.140	8.10	58	0.86	S		,
0.067	5.00	0.140	10. 51	75	0.99	S		
0.050	5.00	0.105	10.51	100	0.99	S		
0.067	6.66	0. 140	14.00	100	1. 14	US	2.5	Periodic, "jerly" type of motion.
0.117	4.65	0.246	9.79	40	0.95	US	5	Periodic.
0.092	4.00	0.193	8.41	4	0.88	US	4	Poriodic.
0.083	3.35	0.175	7.05	40	0.80	US	2.5	Periodic.
0.067	2.65	0. 140	5.58	40	0.70	S		
0.100	3.00	0.211	6,31	30	0.75	US	2	Steady, interspersed with 3°.
0.033	6.65	0.070	14.00	200	1. 14	S		
0.033	8.35	0.070	17.57	250	1.28	S		Steady except for one swing of 1. 5°.
'0.042	8.30	0.087	17.47	200	1.28	3		Steody except for occasional ... "flicker" of 1°.
0. 046	10.00	0.097	21.05	218	1.42	US	4.5	
0.042	10.40	0.087	21.90	250.	2.45	US		Perıodic "kicks" of 5°.

WAVE TEST DATA FOR MODEL I

Point 2L. $C_{\Delta_{0}}=2.75, C_{V}=6.1, \eta=-8^{\circ}$.

$\begin{aligned} & h \\ & \text { ft. } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{ft} . \end{aligned}$	$\begin{aligned} & h \\ & b \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~b} \end{aligned}$	L/3				Remarks
0.067	13.35	0.140	28.10	200	-1. 66	US	4	Follows wave frequency.
0.108	8.00	0.228	16.83	74	1.25	US	2.5	Divergent - convergent.
0.033	8.00	0.070	16.83	240	1.25	B	1.5	Periodic.
0.058	8.35	0.123	17.57	143	1.28	S	1	Built up erratically to 1.8° then down to 1.5°.
0.042	8.35	0.087	17.57	200	1.28	5	1.2	Erratic motion, amplitude 0.9 ${ }^{\circ}$.
0.092	8.35	0.193	17.57	91	1.28	US	6.5	Steady. Before porpoising built up, wake cross-sections just of f step widened and narroved alternately - apparently at same frequency as waves met hull. When unstable, afterbody was wetted for a max. of lb and then completely clear.
0.071	6.65	0.149	14.00	94	1.14	S		Steady except for slight oscillation. Wake section fluctuation, almost allowed wake to touch afterbody above ohine.
0.054 0.075	10.70	0.1.14	22.50	197	1.47	S	1.5 2.7	Erratic. Wetting of afterbody from 1.5 b to 0 but rarely completely clear.
0.075	12.00	0.158	25.26	160	1.56	US	2.7	Fairly steady. Wake nearly touched afterbody wall, and afterbody alternately clear and wetted up to max. 1.5 b , mean lb.
0.075	9.00	0.158	28.95	120	1.34	S	$\begin{array}{r} 6.7 \\ \text { to } 8 \end{array}$	Lt start fairly steady, built up erratically. Afterbody wettang initially between 1.0 and 0.1b finally between 1.5 b and clear.
0.083	6.65	0.175	14.00	80	1.14	S		Steady afterbody planing area starting at 1.5 b and running of f end - in phase with similar movement on forebody - obviously of same period as waves.
0.130	7.50	0.272	15.80	58	1.22	S	<0.4	Steady, Motion as for previous run. Heavy vertical oscillation.
0.240	7.35	0.509	25.46	30	1.20	S		Steady in pitch. Large oscillation in heave.
0.175	9.70	0.368	20.40	55	1.39	US	2.2	Large oscillation in heave.
0.225	9.70	0.474	20.40	43	1.39	US	5	Fairly large oscillation in heave.
0.208	8.80	0.439	18.50	42	1.32	US	5.5	Originally stable and built up slowly.
0.175	7.70	0.368	16. 20	44	1.23	S		Rabsed movement in pitch over 10.
0.240	8.70	0.509	18.30	36	1.32	US	3.5	Pairly large oscillation in heave Motion in general seems to start with oscillation in heave while pitching motion builds up slowly, starting from zero.
0.058	14.00	0.123	29.46	240	1.71	US	4.0	

TABLE XIII

WAVE TEST DATA FOR MODEL I
Point 3L. $\mathrm{C}_{\Delta_{\mathrm{O}}}=2.75, \mathrm{C}_{\mathrm{V}}=7.1+\eta=-12^{\circ}$.

$\begin{aligned} & \mathrm{h} \\ & \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { ft. } \end{aligned}$	h	I	I/h				Remarks
0.033	5.00	0.070	10.50	150	0.99	S		
0.058.	7.50	0.123	15.80	130	1.22	US	5	rot periodic.
0.050	7.50	0.105	15.80	150	1.22	US	3.5	Irregular.
0.042	6.25	0.087	13.15	150	1.10	US	5	Irregular.
0.071	5.00	0.149	10.51	70	0.99	B	2	Irregular.
0.113	5.85	0.237	12.30	52	1.07	US		Approaching periodic oscillation of 6°.
0.079	5.85	0.167	12.30	, 74	1.07	US		Approaching periodic motion of 4.5°.
0.087	4.80	0.184	10.10	55	0.97	US	5.5	Steady. Two step porpoising.
0.067	3.85	0.140	8.10	57.	0.86	US	4.5	Nearly steady.
0.058	4.10	0.123	8.63	70	0.89	US	2.5	Frratic.
0.050	5.00	0.105	10.51	100	0.99	B	0.4	Slight osczllation.
0.067	6.66	0.140	14.00	100	1.14	US	3.5	Irregular.
0.058	2.75	0.123	5.79	47	0.72	S		
0.071	3.75	0.149	7.90	53	0.85	B	1.5	Steady.
0.046	2.90	0.097	6.10	63	0.74	S		
0.042	5.00	0.087	10.51	120	0.98	S		
0.058	5.00	0.123	10.51	86	0.98	US		Fepeatedly built up to 2.5° then damped out.
0.050	3.80	0.105	8.00	76	0.85	S		
0.058	$4.45{ }^{\circ}$	0.123	9.36	76	0.92	US	2.5	Periodic.
0.117	4.65	0.246	9.79	40	0.95	US	9	Two step porpoising.
0.092	4.00	0.193	8.41	43	0.83	US	. 4	Fernodic.
0.083	3.35	0.175	7.05	40	0.80	US	4	
0.067	2.65	0.140	5.58	40	0.70	S		
0.083	2.50	0.175	5.26	30	0.69	B	1	Steady.
0.100	3.00	0.211	6.31	30	0.75	TIS	4	Steady.
0.033	6.65	0.070	14.00	200	1.14	B		Small. Periodic increase to 1.50.
0.033	8.35	0.070	17.57	250	1.28	US	3	Steady.
0.042	8.30 ,	0.087	17.47	230	2.28	US	2.5	Steady.
0.025	6.25	0.053	13.15	250	1.10	S		

WAVE TEST DATA FOR MODEL L

Point 4L. $C_{\Delta_{0}}=2.75, C_{V}=8.2, \eta=-40$.

$\begin{aligned} & \mathrm{h} \\ & \mathrm{ft} . \end{aligned}$	$\begin{aligned} & I_{1} . \\ & \text { ft. } \end{aligned}$	$\begin{aligned} & h \\ & b \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~b} \end{aligned}$	L/h					Remarks
0.033	8.00	0.070	16.83	240	1.25	US			Fairly steady with occasic al "flicks" $>2^{\circ}$.
0.167	6.25	0.351	13.15	38	2.10	US	7.9		Large heave. pitching motir gradually built up to abou 60 - divergent.
0.071	6.65	0.149	14.00	94	1.14	US	7.6	2.5	
0.108	6.00	0.228	12.62	55	1.08	S	7.3	0.8	Large oscillation in heave
0.046	6.65	0.096	14.00	145	1.14	S	6.4		
0.017	4.00	0.035	8.41	240	0.88	S	6.2		
0.050	6.25	0.105	13.15	125	1.10	S	7.3		
0.067	6.00	0.140	12.61	90	1.08	B	7.5	0.4	Steady.
0.058	8.15	0.123	17.15	140	1.27	US	7.0		Oscillation building up. 3° mplitude at end of run
0.117	6.50	0.246	13.68	56	1.13	US	7.5	4	Steady.
0.175	5.65	0.368	11.90	32	1.05	US	7.8	3.5	Steady.
0.142	5.65	0.298	11.90	40	1.05	S	5.8		

TABLE XV

WAVE TEST DATA FOR MODEL I
Point 5L. $C_{\Delta_{0}}=2.75, C_{V}=9.2,1=-2^{\circ}$.

$\begin{aligned} & \mathrm{h} \\ & \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{ft} . \end{aligned}$	h	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~b} \end{aligned}$	I/h	$\begin{array}{l\|l\|} \hline \text { 4 } \\ 0 & \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$				Remarks
0.033	8.00	0.070	16.83	240	1.25	S			
0.046	6.65	0.097	14.00	145	1. 14	5	5.5		
0.050	12.00	0.105	25.26	240	1.56	US	6.5	3	Steady
0.067	8.15	0.140	17.15	125	1.26	S	7.3		
0.083	10.40	0.176	21.90	125	1.44	B	6.5	1	Steady.
0.096	12.50	0.202	26.65	130	1.60	US	8.0		Erratic motion. Divergen oscillation with model leaving water with incres ing jumps until max. of 5 oscillation reached, then damped out. Motion repeat
0.100	9.00	0.211	18.94	90	1.34	US	7.4		Occasional kicks of 4° ampiitude.
0.083	7.50	0.176	15.80	90	1.22	S	7.1		Occasional rapid flick of
0.117	6.50	0.246	13.68	56	1.13	B	6.5	2	Intermittent, steady. Mon periodically leaving wate= and steady at 6.5° whilst. oin

TABLE XVI

WAVE TEST DATA FOR MODEL I
Point 6L. $C_{\Delta_{0}}=2.75 \cdot C_{V}=6.9, \quad n=-12^{\circ}$.

$\begin{aligned} & h \\ & f_{t} . \end{aligned}$	$\stackrel{L}{\text { ft. }}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~b} \end{aligned}$	L	I/h				Remarks
0.033	5.00	0.070	10.50	150	0.99	S		
0.058	7.50	0.123	15.80	130	1.22	US	4	Not periodic.
0.050	7.50	0.105	15.80	150	1.22	B	2	Irregular.
0.042	6.25	0.087	13.15	150	1.10	US	5	Irregular.
0.071	5.00	0.149	20.51	70	0.99	US		Nearer a periodic oscillation of 3° :
0.058	4.10	0.123	8.63	70	0.89	S		
0.113	5.85	0.237	12.30	52	1.07	us		Approaching periodic oscillation of 60 .
0.087	4.80	0.184	10. 10	55	0.97	US		Nearly steady oscillation of 5°.
0.067	3.85	0.140	8.10	57	0.86	B		Nearly steady osczllation of 1.5°.
0.050	5.00	0.105	10.51	100	0.99	B		Small irregular oscillations of about 0.8°.
0.067	6.66	0.140	14.00	100	1.14	US	6.5	Two step porpoising.
0.117	4.65	0.246	9.79.	40	0.95	us	5	Periodj.c.
0.092	4.00	0.193	$8.41{ }^{\text {- }}$	43	0.88	US	5.5	Periodic.
0.083	3.35	0.175	7.05	40	0.80	US	3	Occasional kzeks of 6^{0}.
0.067	2.65	0.140	5.58	40	0.70	S		
0.083	2.50	0.175	5.26	30	0.69	B	0.5	Steady.
0.100	3.00	0.211	6.31	30	0.75	US		Steady, diverining to 3° amplitude at end of run.
0.033	6.65	0.070	14.00	200	1. 14	S	0.2	Slight oscillation.
0.033	8.35	0.070	17.57	250	1.28	US		Periodic diverging oscillation of 4․ Damping out.
0.042	8.30	0.087	17.47	200	1.28	B	2	Steady.
0.046	10.00	0.097	21.05	217	1.42	US		Periodic. 6° and 3° alternating.
0.025	6.25	0.053	13.15	250	1.10	S		
0.025	25.00	0.053	52.60	1000	2.58	B	2.5	Slow.
0.033	33.30	0.070	70.00	1000	3.27	B	0.7	Slow.
0.042	41.60	0.087	87.50	1000	3.95	S		- \|
0.017	16.65	0.035	35.10	1000	2.92	-	1	
0.008	8.35	0.017	17.57	1000	1.28	S		
0.025	15.00	0.053	31.60	600	1.79	B	1.5	Periodic.
0.033	20.00	0.070	42.10	600	2.18	US	7	Steady.
0.025	20.00	0.053	42.10	800	2.18	US	2.75	Steady.
0.017	13.30	0.035	28.00	800	1.66	B	1	Steady.
0.050	40.00	0.105	84.20	800	3.82	B	1	Steady.
0.042	33.35	0.087	70.30	800	3.27	B	1	Stead.
0.042	26.65	0.087	56.10	640	2. 71	B	1.5	Steady. .
0.033	26.65	0.070	56.10	800	2.71	B	1	Occasional amplitude of 2°.
0.058	35.00	0.123	73.70	600	3.41	B	1	Low frequency oscillation.
0.050	20.00	0.105	42.10	400	2.18	US	8	Two step porpoising.
0.121	33.35	0.254	70.30	280	3.27	US	2	Occasional 2.50:
0.092	33.35	0.193	70.30	360	3.27	B	<2	Very low frequency. One sudden kick of 4° - danped out.
0.100	33.35	0.210	70.30	330	3.27	US	2	Occaszonal kick of $4{ }^{\circ}$.
0.062	33.35	0.132	70.30	530	3.27	B	1	
0.071	37.50	0.149	79.00	530	3.62	B	1	
0.058	28.00	0.123	59.00	480	2.83	B	2	Steady.
0.050	24.00	0.105	50.50	480	2.50	US	3	Steady.
0.067	32.00	0.140	67.30	480	3.16	B	1	Steady.
0.117	25.00	0.246	52.60	210	2.58	US	7	Irregular.
0.167	16.65	0.351	35.10	100	1.91	US	8	Irregular.
0.025	10.00	0.053	21.04	400	1.42	us	4	Irregular.
0.017	6.65	0.035	14.00	400	1. 14	S		
0.067	16.65	0.340	35.00	250	1.92	US	6	Steady.

TABLE XVIT

WAVE TEST DATA FOR MODEL L

Point 7L. $\mathrm{C}_{j_{0}}=2.75, \mathrm{CV}=9.2, \eta=-12^{\circ}$.

$\begin{aligned} & h \\ & \text { ft. } \end{aligned}$	L ft.	$\begin{aligned} & h \\ & b \end{aligned}$	L b	L/h					Remarks
0.033	8.00	0.070	16.83	240	1.25	US		4	Irrerular.
0.046	6.65	0.096	14.00	145	1.14	B	7.3		Alternate 1° and 2°.
0.017	4.00	0.035	8.41	240	0.88	B	8.7	1.9	
0.067	8.15	0.140	17.15	125	1.26	US	8.0	3	Steady.
0.050	6.25	0.105	13.15	125	1.10	B	7.8	1.5	Steady.
0.087	6.75	0.184	14.20	77	1.15	B	8.0	1	Steady.
0.300	9.00	0.211	18.94	90	1.34	US		6.5	Very erratic, with model leavang water occasionally.
0.083	7.50	0.176	15.80	90	1.22	B	8.0	1	Steady.
0.117	6.50	0.246	13.68	56	1.13	B	8.0	1	Steady.
0.142	8.00	0.298	16.82	56	1.26	US	7.5		Model thrown nose up olear of water.
0.125	7.50	0.263	15.80	60	1.22	US			Erratic. Model leaving watel occasionally.
0.175	5.65	0.368	11.90	32	1.05	US	8.0	5	Irregular.
0.142	5.65	0.298	11.90	40	2.05	S	8.2		

TABLE XVIII

WAVE TEST DATA FOR MODEL I
Point 8I. $C_{1}=2.75, C_{V}=8.2, \eta=-8^{\circ}$.

$\begin{aligned} & h \\ & \text { ft. } \end{aligned}$	L ft.	h	\underline{L}	I/ h					Remarks
0.033	8.00	0.070	16.83	240	1.25	US			Fairly steady with amplitude building up.
0.046	6.65	0.096	14.00	145	1.14	US	8.0	1	Occasional kicks down to 5.5
0.017	4.00	0.035	8.41	240	0.88	S	8.1		
0.050	6.25	0.105	13.15	125	1.10	US	7.4	2.2	Steady.
0.033	4.15	0.070	8.74	125	0.89	S	8.0		
0.087	6.75	0.184	14.20	77	1.15	B	7.5	2	Steady.
0.067	6.00	0.140	12.62	90	1.08	B	7.9	1.8	Steady.
0.100	9.00	0.211	18.94	90	1.34	US	9.0	7	Steady.
0.029	5.35	0.061	11.26	183	1.02	S	8.1		
0.117	6.50	0.246	13.68	56	1.13	US	8.0	3	Steady.
0.096	6.00	0.202	12.61	62	2.08	S	7.6		
0.175	5.65	0.368	11.90	32	1.05	S	8.0		
0.342	5.65	0.298	11.90	40	2.05	B	7.5	1	Steady. Occasional "kick" 2°.
0.158	6.35	0.333	13.36	40	1.12	US	8.0	9	Steady.
0.208	6.25	0.439	13.15	30	1.10	S	8.2		
0.225	6.75	0.474	14.20	30	1.15	US			Very erratic motion.

TABLE XIX

WAVE TEST DASA FOR MODEL L

Point 9L. $C_{\Delta_{O^{\prime}}}=2.75, C_{V}=9.2, \eta=-6^{\circ}$.

$\begin{aligned} & h \\ & f t . \end{aligned}$	$\begin{aligned} & L \\ & f t . \end{aligned}$	h	L	I/h					Remarks
0.046	6.65	0.097	14.00	145	1. 14	S	7.0		
0.033	8.00	0.070	16.82	240	1.25	S	7.3		Bouncing at constant attitude on cvery third or fourth wave crest.
0.050	12.00	0.105	25.26	240	1.56	US	7.0	3	Steady.
0.067	8.15	0.140	17.15	125	1.26	S	7.4		
0.083	10.40	0.176	21.90	125	1.44	US	7.5	7	Érratic. Nose of model thrown up by waves causing model to leave,water frequentiy.
0.100	9.00	0.211	18.94	90	1.34	US	7.0	3	Steady.
0.083	7.50	0.176	15.80	90	1.22	US	8.8	4.5	Steady.
0.096	6.00	0.202	12.61	62	1.08	B	7.5	1	Steady.
0.117	6.50	0.246	13.68	56	1.13	B	7.3	1.5	Steady ${ }^{\text {d }}$
0.067	6.00	0.140	12.61	90	1.08	B	8.1	1.2	Steady. ${ }^{\text {a }}$,
0.125	7.50	0.263	15.80	60	1.22	US			Erratic. Model leaving water occasionally:
0.175	5.65	0.368	11.90	32	1.05	US	7.0	3	Steady.
0.142	5.65	0.298	11.90	. 40	1.05	S	7.7		

TABLE XX

WAVE TEST DATA FOR MODEL L
Point 10L. $C_{\Delta_{O}}=2.75, C_{V}=6.9, \eta=-4^{\circ}$.

$\begin{aligned} & h \\ & f t . \end{aligned}$	${ }_{\text {L }} \mathrm{f}^{\text {t. }}$	h	L	I/h		$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			Remarks
0.033	8.00	0.070	16.83	240	1.25	B			Fairly steady. Occasional "flick" of, 2°.
0.046	6.65	0.096	14.00	145	1.14	B	8.0	1	
0.046	6.65	0.096	14.00	345	1.14	B	7.5	1	Steady.
0.033	8.00	0.070	16.83	240	1.25	S	8.0		
0.050	12.00	0.105	25.26	240	1.56	US	6.0	4	Spasmodic.
0.067	8.15	0.140	17.15	125	1.26	US	7.6	2.7	Erratic.
0.050	6.25	0.105	13.15	125	1.10	S	8.2		
0.087	6.75	0.184	14.20	77	1.15	US	7.8	4.5	Steady.
0.067	6.00	0.140	12.62	90	1.08	S	8.3		
0.117	6.50	0.246	13.68	56	1.13	US	8.3	6.5	Steady.
0.096	6.00	0.202	12.61	62	1.08	US	8.0	7	Steady.
0.083	5.00	0.176	10.52	60	0.99	B	7.0	1.5	Steady.
0.175	5.65	0.368	11.90	32	1.05	US	8.0	7	Steady.
0.142	5.65	0.298	11.90	40	1.05	US	9.0	10	Steady.
0.125	5.00	0.263	10.52	40	0.99	US	7.8	5.5	Steady.
0.108	4.35	0.228	9.16	40	0.92	US	8.5	8	Steady.
0.092	3.65	0.193	7.69	40	0.84	US	7.5	4	Steady.
0.079	3.35	0.167	7.05	42	0.80	S	8.0		
0.083	2.50	0.176	5.26	30	0.68	B	8.0	1	Steady.
0.100 0.117	3.00 3.50	0.210 0.246	6.31 7.36	30 30	0.75 0.82	S	8.3 7.5		Oscillation buzlding up; 60
									at end of run.

TABLE XXI

WAVE TEST DATA FOR MODEL L

Point 11I. $C_{\Delta_{0}}=2.75, C_{V}=9.2, \eta=-1{ }^{0}$.

$\begin{aligned} & \mathrm{h} \\ & \mathrm{ft} . \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{ft} . \end{aligned}$	h b	$\frac{L}{b}$	L/h				Remarks
0.033	5.00	0.070	10.50	150	0.99	S		
0.058	7.50	0.123	15.80	129	2.22	S		
0.071	11.25	0.149	23.70	159	1.51	S		
0.087	11.65	0.184	24.55	133	1.54	S		
0.096	13.00	0.202	27.40	125	1.64			Small erratic oscillations with occasjonal skips of 6°.
0.108	10.00	0.228	21.05	92	1.42	US		Ocoasional akip of 9° amplitude.
0.087	9.20	0.184	19.37	105	1.35	S		
0.150	9.95	0.316	20.90	66	1.41	US		Thrown well clear of water.
0.142	9.35	0.298	19.70	66	1.37	US		An ocoaszonal nose up "flick" of 4°.
0.129	7.50	0.272	15.80	58	1.22	S		
0.192	6.65	0.403	14.00	35	1.14	B	1.5	Steady.
0.208	7.30	0.439	15.37	35	1.20	US		Bouncing clear of mater.
0.092	16.50	0.193	34.70	180	1.90	US	5	Bouncing from wave orest to wave crest with erratic pitching movement.
0.063	13.50	0.132	28.40	216	1.68	B	2	Bouncing from wave crest to wave crest.
0.075	13.50	0.158	28.40	180	1.68	S		
0.067	16.50	0.140	34.70	248	1.90	US	5	Steady. Bouncing from wave orest to wave crest.
0.071	16.50	0.14.9	34.70	233	1.90	US	4	Bouncing. Irregular oscillation
0.050	11.00	0.105	23.18	220	1.49	B	0.8	Very low frequency oscillations.
0.050	12.50	0.105	26.30	250	1.60	S		

TABIE XXII

WAVE TEST DATA FOR MODEL L

Pount 12L. $C_{\Delta_{0}}=2.75, C_{V}=8.4911=0^{\circ}$.

$\begin{aligned} & \text { h } \\ & \text { ft. } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \text { ft. } \end{aligned}$	h	L	L/h				Remarks
0.033	5.00	0.070	10.50	150	0.99	S		
0.058	7.50	0.123	15.80	129	1.22	B	1.5	Irreguler.
0.071	11.25	0.149	23.70	159	1.51	US	8	Irregular. Tendency to leave water.
0.067	10.00	0.140	21.02	150	1.42	S		
0.108	10.00	0.228	21.05	92	1.42	US		Small skips of 4° anterspersed wath skips of 80 .
0.087	9.20	0.184	19.37	105	1.35	S		
0.150	9.95	0.316	20.90	66	1.41	US		Occasional bounces clear of water.
0.142	9.35	0.298	19.70	66	1.37	US	6	Erratic.
0.129	7.50	0.272	15.80	58	1.22	US		Model bouncing well clear of water.
0.117	7.00	0.246	14.72	60	1.17	US'		Divergent, 5° at end of run.
0.104	6.00	0.219	12.63	58	1.07	S		
0.133	6.00	0.281	12.63	45	1.07	S		
0.150	6.00	0.316	12.63	40	1.07	B	2	Perzodic.
0.192	6.65	0.403	14.00	35	1.14	US		Erratic motion. Model leaving water.
0.175	6.15	0.368	12.95	35	1.09	B	1.5	Osczllating.
0.242	6.25	0.509	13.15	26	1.10	US		Erratic bouncing. Vave system poor.
0.062	13.50	0.132	28.40	216	1.68	US		Erratic pitching moverent.
0.050	11.00	0.105	23.18	220	1.49	S		
0.050	12.50	0.105	26.30	250	1.60	US	6.5	Irregular.
0.042	10.40	0.087	21.90	250	1.44	S		

TABIE XXIII

WAVE TEST DATA FOR MODEL I

Point 13L. $C_{1_{0}}=2.75, C_{V}=9.5, \eta=0^{\circ}$.

$\begin{aligned} & \mathrm{h} \\ & \text { ft. } \end{aligned}$	L ft.	h	L	L/h				Remarks
0.033	5.00	0.070	10.50	150	0.99	S		
0.058	7.50	0.123	15.80	129	1.22	S		
0.071	11.25	0.149	23.70	159	1.51	S		
0.087	11.65	0.184	24.55	133	1.54	US	$2-3$	Occasional bounces. One of 70 leaving water.
0.108	10.00	0.228	21.05	92	2.42	US		Model bouncing well clear of water.
0.087	9.20	0.184	19.37	105	1.35	S		
0.150	9.95	0.316	20.90	66	1.41	US		Bouncing well clear of water.
0.142	9.35	0.298	19.70	66	1.37	US		Steady except for one "hop" of 7° amplitude.
0.129	7.50	0.272	15.80	58	1.22	S		
0.192	6.65	0.403	14.00 15.37	35	1.14	S		
0.208	7.30	0.439	15.37	35	1.2	US		Steady except for one skip of 60 amplitude.
0.062	13.50	0.132	28.40	216	1.68	S		
0.072 0.092	13.50 16.50	0.158 0.193	28.40 34.70	180 180	1.68	B	$\frac{1}{6}$	
0.092	16.50	0.193	34.70	180	1,90	US	6	Erratic. Bouncing from wave crest to wave crest.

Point 14L. $C_{\Delta_{0}}=2.75, C_{V}=6.9,11 \doteq+4^{\circ}$.

$\begin{aligned} & h \\ & \text { ft. } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{t}} . \end{aligned}$	$\begin{aligned} & h \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~b} \end{aligned}$	L/h					Remarks
0.033	8.00	0.070	16.82	240	1.25	B	6.5	1	
0.050	12.00	0.105	25.26	240	1.56	US	7.5	7.5	Alternating.
0.067	8.15	0.140	17.15	125	1.26	B	7.0	1.4	
0.083	10.40	0.176	21.90	125	2.44	US	7.0	8	Steady.
0.100	9.00	0.211	18.94	90	1.34	US	7.0	9	Steady.
0.083	7.50	0.176	15.80	90	1.22	US	7.0	3.5	Steady.
0.096	6.00	0.202	12.61	62	1.08	US	7.5	8	Steady.
0.067	6.00	0.140	12.61	90	2.08	B	6.8	1.4	Steady.
0.083	5.00	0.176	10.52	60	0.99	B	7.1	0.5	Steady.
0.175	5.65	0.368	11.90	32	1.05	US	7.5	8	Steady.
0.142	5.65	0.298	11.90	40	1.05	US	7.5	8	Steady. 6
0.125	5.00	0.263	10.52	40	0.99	US	8.5		Duvergent. Reached 6° amplitude at end of run.
0.208	4.35	0.228	9.16	40	0.92	US	7.5		Oscillating, possibly building up to 4° amplitude at end of run.
0.092	3.65	0.193	7.69	40	0.84	S	6.8		
0.100	3.00	0.210	6.31	30	0.75	s	7.3		
0.083	2.50	, 0.176	5.26	30	0.68	5	6.3		
0.117	3.50	0.246	7.36	30	0.82	S	6.8		
0.133	4.00	0.281	8.41	30	0.88	US	7.0		Oscillation building up. 5° amplitude at end of run.

FIG.I.

COMPARISON OF LONGITUDINAL STABILITY LIMITS FOR MODELS C AND N

FIG. 2.

FIG. 3.

FIG. 4.

RELATION BETWEEN POINTS INVESTIGATED
AND STABILITY LIMITS

FIG. 5.

WAVE LENGTH/HEIGHT RATIO 80 I

FIG. 6.

LI SE.C LHOIFH JO S3A甘M NI \forall ר3OOW JO NOILOW

FIG. 7

FIG. 8.

FIG. 9.

FIG. 12.

MODEL WAVE DIAGRAMS

FIG. 13.

FIG.I4.

3 L

4 L

5 L

FIG. 15.

7 L

9 L

FIG.I6.

FIG. 17.

FIG. 18.

POINT	SPEED	ELEVATOR ANGLE
-	C_{V}	7
7 L	$9 \cdot 2$	-12°
8 L	$8 \cdot 2$	-8°
10 L	$6 \cdot 9$	-4°
9 L	$9 \cdot 2$	-6°
4 L	$8 \cdot 2$	-4°
14 L	6.9	$+4^{\circ}$
2.	n	-0

A R.C. Technical Report

Crown copyright reserved
Printed and published by Hfr Majesty's Stationery Office
To be purchased from York House Kingsway, London w c 2 423 Oxtord Street, London w I
- " O Box 56, Londons E.I
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol 1
2 Edmund Street, Birmıngham 3 8o Chichester Street, Belfast or through any bookseller

