C.P. No. 221
$(16,063)$
A.R.C. Technical Report
C.P. No. 221
$(16,063)$
A.R.C. Technical Report

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Report of the First Year's Flying on the Development of Flight Testing Techniques for Finding and Measuring

Natural Icing Conditions

By

G. C Abel, B.Sc., D.I.C.

C.P. No. 221

Report No. A.A.E.E./ Es/272.
23th February, 1953

Report of the first year's flynny on the development of flicht testins technques for findin and neasuring natural icinf conditions
$3 y$
G. C. Abel, B.Sc., D.I.C.

Sumary
The results of the first yeart tlying in sarch of natural icane conditions usung a Viking aurcraft are given in thas report. Special meteorological forecasts of icang conditions have proved to be reasonably reliable. Good photographs of droplets thit have been sampled fron a clou can now be obtained at mall and they give direct measurement of droplet sizes although, when frozen paxticios and supercooled droplets are present together, the in'crpretation of the photograph is still subject to doubt. The rotating disc ice accrption meter, especially when coupled to a Fussenot recorder, has proved, withon certan lanitations, to be a valuallo instrument for measuriaz both the laquid water content of the cloud and the rate at whoch ice is buildine up. The best acing conditions in layer type cloud were found in Dechiner igst ind January, 1952. The immedate programne is outlined and the fuvuro prozrame discussed.

List of Cortents

1. Introduction 5
2. Description of test alroraft and ats indtrumentation 5
2.1 A.rccaft 5
2.2 Instrumentation 5
2.2.1 Rotatine cylinders 5
2.2.2 maxed cylinder 5
2.2.3 rieated cylinders 5
2.2.4 Olled slide sampler and micro caura 6
2.2.5 R.A.E. thermal ace detector 6
2.2.6 P.A.E.-Smiths leand andicator 6
2.2.7 Rotating disc ice accrution meter 6
2.2.8 Observation strut 6

* 2.2.9 Balance bridge thernometer 7
2.2.10 Vortex tube thomonoter 7
2.2.11 Fussenot A 20 rocorder 7
2.2.12 Automatic observer l

3. Kethod of test 7
3.1 Prelimunary tests 7
3.1.1 Boundary layer air flow lnvestigation 7
3.1.2 Air temperature themoneter calibration 7
3.2 Normal tests 7
3.3 Special tests s
4. Results 3
4.1 Success in finding ace 8
4.2 Type of ice formation 3
4.3 Instrument readincs 8
5. Discussion of results 8
5.1 Success in finding loc ©
5.2 Duration of zoing conditions 9
5.3 Scverity of zoing conditions 9
5.4 Ice formation 10
5.5 Readines from individual instruments 11
5.5.1 Rotating cylunders 11
5.5.2 Fixed cylindex 12
5.5.3 Heated cylinders 12
5.5.4 Olled slide sampler and micro camera 12
5.5.5 R.A. Thermal ice detector 12
5.5.6 R.A.E. - Smitns loang Indicator 12
5.5.7 Rotatans disc 12
5.5.8 Observation strut 13
5.5.9 Balance brudge thermometer 13
5.5.10 Vortex tube thermonetor 13
5.5.11 Iussenot A 20 recorder 13
5.5.12 Automatzc observer 13
5.6 Comparison of results irom diferent anstrumonts 13
5.6.1 Inquid water content 13
5.6.2 Droplet size 14
5.6.3 Outside alr temperature 14
pare
6. Conclusions $1 / 4$
7. Further developments 14
7.1 Inmcdiate programme 14
7.2 Future programme 15
8. References List of Tables
Comparison of meteorological forecasts and conditions $\frac{\text { Table }}{1}$ encouncered.
Sumary of measurements made in icune conditions 2
Weight of aco (ms) caught by three rotatint, cylanders 3 of the same size.
Valucs of Rg calculatod from the rotatine oylinder mousuremonts 4 compared with obsorved 1 onng severity.
Comparison of severity of acing forecast, with scverity of 5 iching observed.
Inst of Illustrations
Flmaig
Whe test amrcraft 1
Jotating cylinders extonded 2
Rotating cylinders retracted with $10 e$ on 3
Fixed cyinnier 4
Fuxed cylinder record 5
Heated cylindors 6
Olled slide sampling pole 7
Orlginal olled slide maco camera 8
Improved onled slide insoro cancra 9
Rotating disc 10
Ice formation on the obsurvation strut 11
findifled air thermometer bulb radiation shield 12
Vortex tube themometer 13
Tyoical record from Hussenct A 20 recorder 14
Areas where natuxal leing conditions have been found 15
during 1951-52.
Ice formation on tail plane 16
Ice formation on main plane 17
Fizure
Ice foruation on engine air intakc, aerrals, test 18 strut and propeller spinners.
Cloud droplet sample. Median diametur 8 morons 19
Clowd droplet samplc. Median dianoter 16 microns 呺
Cloud droplet sample. nedian dymetor 21 morons 21
Cloud Iroplet sample. Median dianetur 32 merons assuming 22no frozen poriacies present.
Cloud aroplot sample. Ifcdian diametor 20 microns excluding 23drops over 35 macrons assumed to have been frozen partacles.
Cloud droplet sample showing frozen particles most of which 2.4have melted.

1. Introduction

Startine in June, 1951, flaghts have bocn made in search of natural icine conditions with the object of measuring the paramcturs on which such conditions depend, and of developang surtable instruments for measuring these parametors. These flights formed the A.\& A. H. E. part of the combined programme whth the R.A.E. and the Meteorological office which, apart from work on the productıon of artificial icing, had three main atems in view. These were:-
(1) To contirue the study of the correlation of forecasts of icing and Its occurrence.
(II) To find out more about ace fomation on alrcraft.
(111) To levelop suitabie instrunents for moasuring the parametors on whach natural leang depends.

2. Description of test aircraft and its instrunentition

2.1 Aircraft. The alroraft used on the flights was a Viking, a twn engined passenger carrying alroraft with an 211 up weight on 34,000 17. The safe duration was cver five nours at a cruisine speed of 150 knots I.A.S., while the amreraft was equapped with oxygen to allow rlights up to 20,000 feet if nocessary. A photograph of the amrcraft is given in fagure 1.
2.2 Instrunentation. The instrumentation was provided almost enturely by the R.A. A. and was fitted as it became available. The instruments usod were as follons:-
2.2.1 Rotating cylunders. Those consist of several cylinders of different dianoters which are oxposed to icing conditions. The anount of lce that roms on tho cylinders durnn, the time they are exposed depends, anong other thines, on the dametor of the cylundir, the anount of supercoolcd lifuid water per unt volume of air prosent in the cloud and the size of the droplets fommen the cloud. After bringing the zoe coatod oylinderis orok into the ancraft cach one is renoved from the sampling pole and placed in a contanor which is tightly corked. On landing the cylunters, the containors and the now meltod ice are woighed, after which the rater is pourcd array and, arter drying, the cylnders and containers aro wemghed again. The difference between weighings giv s the welght of the water ploked up by each cylunler which in turn, after comparison with some standard curves, Elves an andication of the median droplet diameter and the Inquid water content of the cloud. A phocograph on the origanal set of rotating cylinders using threu cyinders only is givon in figure 2, while a later set using four cylinders is shown in figure 3 thas thine with ace on the cylindors.
2.2.2 Fixed Gylunder. This consists of a cylinder 2 y"t in diameter round the surface of which blue print paper could bo fastcned. The c,flindor Whth its bluc prant oaper covernge as exposed to the loung cloud for from $5-10$ seconds and then withdravn. The woter in the cloud chances the colour of the paper over the part of the cyland, ruhch at strikes and the wadth of this arca, which is a band along the leadine edge, is a measuro of the diamoter of the largest water aroplct present in aporeciable quantity. A photograph of the fixed cyinder equipment is given in figure 4 Thile a typical record as shown in figure 5.
2.2.3 Heated Cylundcrs. These consusted of four cyluricrs of different diameters which could bo heatod by mehrome rabbon heators round round each cylunder. On the leadng odgo of each cylinder wore thrmocouples, the readings from which could be taken insido the aircraft. The temporature of the leading edge of each cylindur was observed when flynne thrcugh lome conditions and from this the drop in tomporature due to the evaporation of the sater droplets could be ohtanned by comparison with the tomporature found when flyang through dry air under correspondine flacht conditions. This temperaturo arop
gave a measure of the amount of water strikine each cylinder and, from this, the droplet diameter and liquid water content coula bo calculated in a sunles manner to the rotating cylinder method of cilculation. A photocraph of the heated cylinders appears as figure 6.
2.2.4 Ozled slide sampler and micro cancra. These pieces of equipment cnabled a photograph of cloud droplets to be obtainod. A shall glass siado $2 \frac{1}{2}$ " by $\frac{1}{2}$ " was coated inth a film of oll and placed in a sampline pole. The sampling end of the pole was then hela out through a hole an the sade of the aurcraft and the slide exposed for a fraction of a second. The pole would then be brought in and the slide transferred to the nocro camera which would then take a photograph of the exposed sample unlarsed approxinately 50 times. The original micro camera, although it took good photor, raphs, was awhard to foms and had the slide nounted in a vertical plane so tirat the onl tended to flow to the bottom. An mproved camera was introduced in way, 1952, which overcane these problems and had several other advantages as well. The original sanpline pole, although effective in obtainng samples, was comparatively slow in operation, and, because of 2 ts size, may well have disturbed the droplet distribution around it so that it caught samples that contaneal fewer small drops than wore actually present. This was not senous as a large change in the numbur of small arops present makes little difference to the median dameter of most saraples. A modified pole 1s, nowever, being introduced to get over these difficulties. The onl used on the slide was Shell Spirax 250 and had been speczally chose. to catch the water dropiets without breaking them up, and to retard their cvaporation sufficientiy to allow adequate tine for a photograph to bo taken. Pnotographs of the original sampling pole, the original and the improved camera are given in ingures 7, 8 and 9.
2.2.5 R.A.E. thomal ice detector. Thas was a prototype instrument working on the principle descmbod in reference 1 where the liquad water content is measurod by recording the difference in tomporature between two heatod elements one of which is exposed to icing conditions while the other as shacided.
2.2.6 R.A.in.-Smiths icing ndicator. This instrument hos been used as a standard zee detector on several aircraft. The head consists of a suall tube mounted outside the alroraft mith holus in the front and the back. When no ice is present, the prossure in tho tube is greator than static as the area of the forward facing holes is greater than that of the rear holes. When ice starts to form the forward holes becone blocked and pressure in the tube becanes less than statio, due to the suction from the roar holes. This change of pressure operates a micro switch which switches on a heater olemont in the head to de-ice It and lights a varming lamp inside the arroraft. fifh the heater has du-1ced the front holes, pressure again bocomes groater than static and the hoater and lamp are swatched off. This cycle continues so long as the aircraft i.s in roing condıtions.
2.2.7 Rotating disc 20e $0.0 c r e t z o n$ meter. This Instrument was not fitted until the ond of Noveraber. It consists oi' a dasc $1 / 32$ nd of an inch thick at the edge, mounted outside the aurcraft with its edge facing forvard. The disc is rotated at about $2 \frac{1}{2}$ revolutions per ninute and ice can build up on the forward facing cdec. The thickness of $z c u$ is measured by a feeler that presses on the rear half of the disc and the 10 a 1 later removod by a scraper which gives a clcan surface for a further build up of ice. The movement of the foeler which is only a few thousandths of an inch is transmitted through a shaft to a transducur unit which gives an output of roughly 1 milliamp for a deflection of .015". A photograph of the di.sc is showia in figure 10.

2.2.8 Observation Strut. This was not oxignally intended as a

 quantatative ustrument but was merely a small strut placed outsıde one of the Windows to show when 1 ce was actually formine. Iatur a cinc camora was anstalled to photograph the ace as at built up, partly with the intontion of recording how solid ice partzcles bccome frozen on to the alrcraft surface alone with the $10 c$ formed from supercooled water droplets, and partly to rocord other simllar phenonena.It was then decaded to use the instrument to rrasun the rate of ace build up in addition to ats orlganal pursose. The strut can now do do-ıcud by an oloctrıcal heater of pyrotenax that has buan built into the loading ease. An illustration of the ice formed on the leading edgo is given in figure 11.
2.2.9 Balance Exzdge Themonetir, Outs dde aur temperature 10 measured by a standard metcorological office balance bridge air fonfometer wath a modified radiation shield. To prevent ice formung on the ouib of the themometer the forward end of the standard radiation shield has boan closed in. This is shown in fagure 12.
2.2.10 Vortex tube thomonetor. This consists of a therionoter bulb mounted in the centre of a specaal tube. The anr anlet faces formad and is mounted at one side of the tube causing the air to smarl round ansads the tabe until it reachus the outlet at one ond. It has bocn found that, iy aljusteng the ratio of the areas of tho air anlut and outlet, a themoncter bulb can be made to give a reading that is independent of ans speed. This themometer was fitted to see whether the results would be consistent shen workang an olouds and with loe building up on the arr anlet. A photocraph $2 s$ given in figure 13.
2.2.11 Fussenot A 20 rocorder. This recondor was fittod torards the ond of March, 1952. It records a time bose, tosethir wath air spect, holght, the reading from the rotatinc disc, the cyclos of the Smzths icing urdicator, aur temperature, tho operation of the autonitic observer and has a spare chanul reserved for the new R.A.E. Sangano weston thormal ace detector. The film speod used is 1 mm . per second and the duration at this speed is approximatcly $1 \frac{1}{2}$ hours. A typzoal record from the A 20 is shom in fagure 14.
2.2.12 Automatic obscrver. The milliameter which shows the output from the rotating disc 13 mounted on the panel of the autanatio obsurver together with an air speed indloator, an altimetur, the vortex tube air thermometcr ratiometer, a clock and a counter. Theso instruments ulay be observed or photographed rhen required and space as avalable for future anstrunombs to be mounted on the panol.

3. Method of tcst

3.1 Prelminary teste

3.1.1 Boundary goyur nur flop hiosthation. The thoknes3 of the boundary layer at various poaitions whu it was intonded to nount anstruncrits was investigated. A pitot static hoal was mecutud at the erd of 2 pole whoch slid through a hole in the side of the arreralt at the position to oc checked. The pitot head could thus be pointed into the aırstroan nt any distanco from the side of the aircraft. The aurcraft was flom at a constant spoed and the pitot head pushed out from the side of tho alreratit until the air spoed andicator on the inboard ond of the pole read the same as lad the aureraft ine speed system. Thus itas repeated for difforence specds and the distancu was obsurved for each position testcd. This distance was taleon into acoount when mounting tho instruments and whon operating the rotating cylunders or whon takin= ollod siade samples.
3.1.2 Air temperature thermonitur calibentions. Tho outsiac air tomperature themometors wore calibrated over a range of Bueds to dutumino the correction to be applied for the hent rise due to specd.
3.2 Normal tests. The local Moteorologicil Officer was consulted each mommg as to the prospcet of fandang iemg conditions. Then a suitible forccast whs forthoming the alrcraft was flom to the area and a search mado. The search was normally startcd at a height to gave a tomporature only a rov degrues below freezing as this should produce glaze ice which is nomally considured to be the more dangerous of tho two main types. If ice could not be found at thas roight the search was carmed to progrosiavily greatcr husghts and lower twipuraturis until cither satisfactory $10 i n g$ conditions wore fund, or the area was abontored as unproductive. when loing conditions wore found, measurenents wo. token on

$$
/ 211 \ldots . .
$$

all avalable lastruments and lator photo rephs rit taku or the to foriation on ecveral parts of the aurcriet structure. Occasiowlly photorranss an talen of the clouds flown taroush ezther bofore or cifter ilynn; throuch then, but this was nomally only possible for cumulus tym olouas. Records nd measuremonts were nomally takon for as long as satisractory lowl, conjations lasted but on one or two occasions tests ure abanionod aetur wish, wall the sets of rotating cyluders, or all the frames in a camera magaine or airost all the fllghts the alreraft was pased at Boscombe Down although flafhte 2 and 29 both started from raris.
3.3 Spconal tusts. Bccause of scatter of sus rizults fron the ruthtan? cylindor monsurcments, tosts ivco made in loung condıtzons us ne thre oylaruicrs of the same diameter to chock the consietoncy of jroulet distribution at thu normal sampling position ihich was that described in reforence 2.

4. Results

4.1 Success in findiag ioe. Tho riation botwoen the incteorolowiola forecasts and the conditions found has en dualt wth in reforwes 3 for tho first 26 flleghts, but for compluteness tho condutions for these tlaghti aro ancluded in table 1 , together whe the detalle for the rmalnine 11 flights. A map showng the aruas there icu mas found durang the whole ruriod as gaven in fizgure 15. As explained in referenco 3 no flights rero mido in suarch of ice during August to Noveriber. The aircraft was urrur inspection and being fitted whth a water spray systom durans August and Scptembor innlo no suitable forccast of acing conditions was roceivod duriny Octobor and Novenler r. The 37 flights made reprcsented almost ail the forveasts of reasonablc loung conditions durnge the year, apart Srom August and Scptonber. On throe ocoasiuns 1010 G condutions pere forecast when the woathor at base was extremuly bad and the, chance of finding ace was not thought to justafy the risk of takins ofe, ith the probability of not belas able to fet back on one occesion ace - is focceast when tie station whe closed for flyung but the forecust inas not suincontly good to justafy the trouble of ormansane, the nucussary facilatis. On four further occasions the alroraft or the anstrumuntation was unserviedeble when leing conditions ifere forccast. at luast four oconsions are rucordud inen other alreraft found ace whon loung conditions wore not forveast, but on only tio cif those occasions is at knom that a reasonable wulld up of ice weas sbtamed on the aircraft.
4.2 Type of ace fomation. A number on photormohs of the lot fommilon on various parts of the aircraft are given in figures 16-18. Ihwo an representative samples of the difforent tyros tomt have beon iond hurime the year. The vater droplet diametur, the liquad arater content and the alr tumporam ture are given in each sarple.
4.3 Instmument roadings. sor a varioty of reasons that aro dacuesse in the followng paragraphs a number of the rusults from some of the instranents are not regarded as reliable. For the sake of comfletencas some of these fesults are ancluded in taible 2 together vath the rosults that are believed to be more rcliable. Examples of the photograrks of cloud dionlots caught by tho ciled slides aro given in figuros 19 to 24 . Thuy covor the range of liqual intor drop sizes found, whilo some shov the prosence of witod ice pirticlus. The resules of the monsurements mare usin; thre rotating cylindurs of the samu saze are given in table 3.

The balanco braçe themometor proved to havo a co-efficzort giving aporowmatcly 0.6 of the nomal adiabatic host rusu whale the vortox tube themometer readings wore proctically unaffectod by 2 ar spow.

5. Drscussion of results

5.1 Success in finding zce. This has beun discussed in roforcnce 3 so
/rar.....
far as the first 26 flights are concomed. On all the romaining 11 flights some lee was found bringing the total number of successful flights up to 34. On these 11 flaghts the icang conditions were found approxamately where forccast, so alternative arcas vere not investigated. It is interostin, to note that 5 of these 34 encounters took place in December and δ wore in January, in spute of the aircraft being unserviceable for ovor a weck on inspection. The remaining filights were fairly evenly distributed eather 3 or 4 por inonch. Thas gaves an indication that winter is the bost period of the year for thas type of work.
5.2 Duration of zoing conditions. In tablo 1 both the time in moasurable lce and the number of successful rotating cylinder neasurements made are quoted for each flight. The time in measurable aco is the tame during which observations vere being taken of the zoe bualding up on the airoraft. In sone casos it is the summation of a numbor of short puriods that could only bo moasured on the unstantaneous reading instruments. The number of successful rotating cylinder measurements made Ls , for layer type clouds, a bettor guride to the continuaty of the leins; conditions. Samples were not normally taken on the rotating cylinders unloss ice was fomming fairiy stoadily, but if it obviously stopped formng the sample was discontinued, and, if insufficicnt loe to give a good readine had been colloctod, it was scrapped. A scrapped samulc would provent the taking of rotating cylander measurcinents an more contimuous conditions soon after the abortive attempt as sevoral minutcs are needed for roloading, but, though this is one of the reasons for apparont discrepancios betrocn timo in ice and the number of samples taken, it did not happen very often.

Over the whole 34 Plaghts only 2 or less than 2 satasfactory rotating cylinder moasuroments were taken on each of 18 flashts, while 3 or more than 3 measurements were taken on 12 ilights. On the remannene 4 Clughts the icing conaitions were sufficicntly good to allow 3 or more measurcinents to have becn taken but due to sone unayondable ruason this could not bo donc. These flights are fairly evenly divided betwon cumulus tyne cloud and layer tyou cloud. Tho lack of succoss in the 9 flights in ownalus type cloud is manly tue to the short time during which such conditions last. Thuse 9 are all amon the aariner flights and latur a satisfactory tichnquo to overcome this iafericulty mas worked out, whore the cylinders wexe exposed before entering cloud and tmod from the start of 100 forming until leavang the cloud. The 9 relatively unsuccessful typos in layer type cloud were mannly made in antemmetent conditions when periods of 5 munutes at a tine were rart. On the remannng ringhts two had to be ahandoned despitu good reing conditions as ice buzlt up on the spray mast used for producing artificial ice and caused serious vibration. In ons case the mast was themally de-1ced but tho system provod to ba analequato to deal with the severe loung that was encountered. On two further fli, lits no rotating cylinder measurements were taken due to lack of obscrvers.

Of the 12 more successful flights 5 wero made in layer trpe cloud, 6 in cumulus cleud and 1 partily in each type. Durirg 3 in layer type cloud over $1^{\prime \prime}$ of loe bullt up on the wings and tail plane, whllo on the romeinune filughts in this type of cloud the buila up was of the order of $\frac{211}{4}$ and $\frac{1}{2}$ " rospectively. The aircraft de-lcing system was purposely not used so as to allow the zoe to build up. Normally less than $1^{\prime \prime}$ of ice built up during tho fliehts through cumulus type clouds, but thas could usuaily havo boen incruased with ease by merely flyang more often turough the clouds. Whe duration in this typo of cloud is very short as wall be secn fron the tumos over whech the average liquad water content was measured in table 2. The shortest quoted is 11 seconds, while the longest is only $2 \frac{1}{2}$ minutes.
5.3 Scverity of icing conditions. The definitions in table 1 for tho icing conditions found on the flight wore based on the observers' opinions rather than on quantitative measurements, although in the last part of the table such quantitative measurments have bcen given. It wall bc seen from table 5 that meteorological forecasts of sovemty iere viry good in that 26 of the 34 made and investigated were correct, while, apart fron the two fallures to find any appreciable amount of ice, the main aisagreenents tere in the 6 cases where only light ice was found, although moderato or moderate to severe had been
/forccast.... ..
forcast. The fact that the sevemty rorecast "as not found dows not necessaxily mean that the forecast was mrong, as it nay have beon that the incraft failed to find the area which contanned tho more sivere condituons.

To try to lank up the severity of the acane conditions as judged by the aircrew with the droplet size and water content measured, tho value of Rg, the rate of zee accretion on a "standard" lee collector, has bocn calulated foa each of the rotating cylinder rusults. The "stardard" lee collector has veon taken as that used in reference 5, a 3 Inch diamotor cyindor fiying at 200 mph at a hoight of 3 kilometers (nenrly 10,000 foet) in the intemational standard atmosphore. Thesc values are ezven in tablo 4 togother irith the type of cloud and the loing severity encouniered.

It will be scen that, il though two viluus of Ris when tho sovelsty Is quoted as moderate are over 6 , all but two of the othors are betwoon 4 and 2. Similarly all but two of the values of Rg for light acing are 3 or less, while the values for light to moderate and moderate to severe iong como whin these limits with only one excoptron. from thas it may be argued that the values of RE ; calculated from rotatane cylindor messurements, that are above somerhore botween 4 and 6, represent suvere acing while the division between the light and moderate icing would appoar to ocme botween valucs of R_{E} of 2 and 3 . This is not in exact agrement with the valucs sureestod in roferences 5 end 6 where tho divislons between light and moderate and moderato and severe rore gaven as 1 and 4 in reference 5 and 1 and 6 in refirence 6 but the disacrocment is not scrious. In viow of the doubts of the accuracy of the rotating cylinlur measuruments talen from the old sampling position, it would be better to wait for confirmation or these values from more reliable results it is hopd to obtain in the future from the now sampline position before placing too much reliance on thuse valuos of Rg .
5.4 Ice formation. Tho photoraphs in figures $16-13$ iliustrate thres main pounts. The inest as the way in which the arca of the anronfit m whach ice forms is affected by the diamutur of the drons. All three figurus show clcarly the larger arca on which lee forms when larec drops are present. This 2s, of course, a well known and prerlctiblo occurrence but tho photograshs illustrate it very clearly. The suoond point in also well known ad 23 uructly related to the first. It is that the build u of 100 on snall objects such as acrials or the small tost strut is relatively gree ter than on largor objects suoh as the wings and tail plane. This can be scon by compring the correspondugg photographs in figures 17 and 18. The reason for the greater burld up on shall objocts is that their mfluence on the airflow ahuad of theri is not vory pruat. Only the smallost drops are doplectod alones a streamline and iniss tho joject. Large objects affect the anrflow well in adrance of thenselves nat the mean curvature of the streanlines is less so the larger crops arc accelurated sideways and pass the object without striking it. Thus a larecin proportion of the total number of drops per unt area aro caught by tho maller object than by the larger object. This is, of course, the prancaple upon which the rotating cylanders oporate. The third point is inore complicated and concurns the type of ace formation. The two main types of 100 , namely ilazo ice and rine ice, a re described in reference 4 togethor wath the main ruasons fur thoir differenco.

Briefly, glaze ico forms when the rater concentration is sufficiently hagh and the tomperature is sufficacntly close to freczing to allow the susercooled rater droplits to flor a li, tle after ampect beforc they frceze. This glves a well krit layer of ice which, deponding on its thalmoss and stage of dovolopunt, may be clear and mooth as on flaghts 20 and 21 in figure 16 , or rough and unevon as on flight 23 in tho same figure. It may also be milky in appcarance due to the anclusion of air bubbles, as at the edges of the ice frontion on sleghts 20 and 21 in figure 16.

Rime lee fons whon the vater convontration ank tomporature are sufficacntly low to allow oach droplet to froeze on mpact whout flowirs apprecably. This gaves a whate porous structure with a matt surfacs, ss ghom on fiadht 28 in figure 16, 17 and 18. With small drops and partucularly when frozon partiolos
aro prescnt in the cloud at the sanc time as supurcooled water droplets, the structure is locse and alnost powdury as in flight 32 in figure 17. This last sample was obtazned when Plyzey through a succession of small curnulus clouds. When the liquid water content in such clouds is highor and drop sizes are larger, hall stones may well be incluled in the lce formation as in ficturc 3. Thas phonomenon has been fourd scvoral timus but was not photorraphed successfully.

The way in which the ice has built up on the aerials in figure 18 is quite interesting. On flight 28 the droplct sizes were small and tuperatures low guving a comparativcly narrow band of sec. On flight 21 on the othur hand droplet sizes and wator concentrations were larger with a higher temperature, and the ice had built up with a very nuch wider area in front than on the acrial itself. Thas glaze type of ace is obviously gong to have a reater aerodynamic oficct than rime ice that does not spread itself quite so widoly. This 1s, of course, woll known but the fagure gives ? furthor jllustration of the point.

The gruatest anount of ice that has so far been colloctod on the azrerart durine these trials caused a considerablu reduction in speed due to the increased drag, but apart from thzs increase in drae which, of courie, reducod the range, no serious dafflcultaes hive beon found in flying the alreraft whth ice on it. A much lerger build up if ace might itell ancrease the drag and decronse tho lift boyond the point whore the aircraft could mantann height, oven with full power, but such a build up has not yet been experionocd.

5.5 Poadinus fron individual instruments

5.5.1 Rotating cylinders. The figuros in table 3 show that the distribation of liquid water droplets at the sampline position that has becn neci is not unifom. Some of this seatter ray be bucausc distribution throughout the cloud is uneven, but tne fact thet the mborrd cylinder collected the Iowest reaght of 100 on cach cccasion gives a clear undication that the anfflow rourd the fuselage is it least partly responsible for tho error. This is an s.jate of the fact that all the cylinders were outside the boundary layur as measured by the travelling pitot head. It is obvious that the prosence of the aurcraft disturbs the distribution of droplets, to the extent that such drops as do not strike the aurcraft are deflected siderays so that there is a regzon outside the fusclage where thore aro more water iroplets, partjculariy smail ones, than there would heve buen in the undisturbed alr. Thes regicn vill peusurably be order and further from the fusulage nur the tall than near the front or the fusclacc, so apart from any boundary layor oroblems, the acleal samplind position ofll bu as far forward as possible. The results of thas test will cast doubt on all rotatine cylinder rcadings taken from this position.

On scveral occasions there was less 100 on the 2" diametcr cylinder than on the 1" dianeter cylınder of the same length. Although this as theoretacaily possible if the cloxd consists of very small droplets, it is celicved that it is morc likely to have been duc to the uneven droplet distribution at the sampline position. The offuct of the reduced amount of ice on the larger cyizndor mould be to sive a droplet suze that is too small and a inquid water content that is too large.

Apart from any orrors due to the incorrect distribution, it is know that rotating cylindors suffor fron the phenomonons know as blow off. Undor certain conditions soan of the supercocled drops that strike the cylinder are blom off again dufore they have time to freeze, so the anount of ace that forms on each cylinaos undor these conditions is not a true reasure of the anount of water that should have beun collected.

Yct a further point that casts doubt on some rotaticig cylindur resuits is allustrated in figure 3. It wall be seen that, in adation to normal ice on the cylinders, a number of particles that werc already frozon before they reached the cylinders have buen frozen into the ice. As theso particles were
/not........
not round this is going to upsut the theory on whach the reduction for the rotatin's cylinder method is basod (rcferonce 7) in casos where iscled particles arc packed up on the cylinders. This appears to happen whon frozen porticles are present in the cloud in approciable quantitics as is part coularly the case In convective type clouds. Accorlins, to ruiercnce 3 the majority of acint clouds are a maxture of solid 1 ce particies and supercooled liquai water droplutu, so this trouble may 1011 bo frirly wadespread.
5.5.2 Fuxd cylinder. The fixed cylindor hos provod to be a reliable instrunent witizn its practical inaitations. When the timpcraturc rivs not too low, as was the case in the majoraty of flughts, wator rumne back frea the lcaling edge of the cylnder made the record ciour and unustakable as hay be seer. In figure 5. The valuc of the haxinur? droplet dameter could bu witumunod vury quackly. The true eqee of on overoxposul rocord was not, horevor, always easy to distinguish, as many, if not all of tho larus causua by watus rummes back had joned togothor. At lowse tomporatures all the water fruac on ingact and arain tho record ontrined no andivisuni lines cuused by watur runnine back. It tas usually difficult to distenguish bot, ocon thuse tivo types of reorrd so, when runback wae not prusunt, the rosults were citon less rulinde than usuri.
5.5.3 Heatud cylinders. No woxtrimile results are available fran the heated cylinders. Tho readicr-s took sone tume to ebtain and so roquired a consuderablo tans in conszstcat icın conditions. Thu cylindors were orirnally acunted underneoth the fusclage and thuy recenvod mochanical danage fron stoncs throm up by the wheels. This damoge was sufficiently sumous to ante than. unscrviceable and it was decided that the effort requared to ropair then was hardly justified.
5.5.4 Oiled slide samolur and mioro comura. Good photo,raphs of cloud broplcts as shom in fivurcs 19-24 can be obtancd rolativuly casily. Thesf inturprotation may nowever bo co, sisabrably more dirficult. Then it is known that only inqua water drows were present as in figures 19 and 20 the assossment of the median drop dianatcr presents no croat d_fficulty but when a maxture of frozen particles and Inquid droplets is present as in impures 23, 24. and possibly 22, the intururctition of thic rocord is tiar fro. simplo. Nomally by tric tine photographs are talen the sclad partacles have eledted and tho iupercooled Aroplets, which presumbly froze on inpact, we also liquad again. It is hopad that a technique may be woried out uszaz the now cemera whurcby solia particies cay be dirfurentiated from liquad dropluts. Untıl such a technque is avalablo oniy tho largur frozen pasticles can be cionriy identified by virtuc of their size, and so droplut counts rumain unrcliable, givang that is probnbly a much lurger answer than the truth, unluss it is known tilat no frozon particles vere present in the atroozphere.
5.5.5 R.A. T. Thmal ice detoctor. No reliable results have so frr buon obtrined froin this instrumut when mounted on the Viking. Expurience Ith it has shom up the rore obvious najor faults whech have buen rectip $1 e$ d. in lator dos cens, whech should bo avoliablo for tost in the near future.
5.5.6 RoA.T. Smaths icing irdicator. Tho results from this instruwent are not diructiy comperabic with exy of tro othu anstruents, although there is no doubt thet a deasure of the icing severity may be obteined from the rccords of thas instruaunt alone. It has proved to be ginto ruliable and wensitive and, only the rotiting disc givis a bettor andication of when 200 is actualily foraing on tho azroraft.
5.5.7 Rotatene disc. Apart fron matial touthing troublus the rotatine dusc has rover to bu the nost satisfactory instrunent so far nvalable for both andicatinis the prusence on 100 , and for lucasurine reasonably quantitios of 1t. Smail quantitices (if lec have bwen found to pass unroticed by the instruinnt, workne at its prescnt spud, but this could bu: ovorconic by roducing the rate of rotation when the incasurement of such suall quantitios is required. The rucords froa the anstruraunt onn be inturpreted into buth the measurcaicnt of the
rate of iec bunla up in anchis per minuto, and the liquad watur contunt of the $10 a \operatorname{coloud}$. At first tre valucs of liquil vatur contont nonsufca acre boinuved to be tou higil and the powition of the dise on the alreraft wis
 shoin 111 figure 1. Further rocords tekon $2 n$ thas position dia not confin the boliof thet the roajangs wore too hesh. Wany of the readines wure peas values that suldon lasted for more than a fow sconds, and it was not until tho a 20 rocorder was anstallea that a clearcr understanding of the disc readings was obtrincd. In tablo 2, poak values are quoted throuf, kout, but whore they are available, average values are aiso siven, together wh the time over which the avurage was takon. Very few of these average values cxoeed 1 gn. pur cubze neter and there is no reason to suppose that they arc greatly in error. Iniee the rotiting cylarders, the rotatine disc as subject to blow of wheh limits ltis accuracy, altnough the results are unlakoly to bo over statanents.
5.5.3. Obsurvation strut. Sone trowble has boun expericnced in cbtanine satisfactory photographs of whate particles striking the whate 100 on the strut, ag, inst a background of the white cioud in whoch thu 2arcraft whs flyane. Ficure 11 shors that ronsonable results can nom be obtannod. Sincc suitable photofrannce arranjencents have been made no conditions have been onc unterod when ice particlos hive boen observed striking the aurorift and stiokine for only a short tine, or olso buing frozen into the nonal zoc buidd up. It is antended to photo,raph thusc phenomona when they are agan encountored. It has, hurivur, been possibla to obtan measuruments of the rate of icu busld up partly from photographs of the stmut taken by a hand held camera, and partly by picturcs from the cine camcm record taken every 5 or 10 secondis. This lattur arrangenent is not adeal as tho cine camera is sot to photo raph the front face of the strut rathur than the side view.
5.5.5 balance bridge thumomuter. This themonet.r has operatud satisfactorily throughout the tesus and no roson has bocn suen to doubt its rizunes.
5.5.10 vortcx tub tnomometur. Scveral tocthang troubies wre oncounterod $w i$ th the theninatur buib, but after these had beon overcone, fanr agrouicnt was obtainod betwoun this instrument and the balance bridge therrionctor, as con bo scon 1 l the lost part of table 2. The agrocoment is not yot coupletely satisfactory and it is hoped that it may still bu urproved.
5.5.11 fussentt A 20 recorder. The rocords from the rotstang disc wor of far morc uso than the spot roadings that had buen all thet could be cutainca boforo, whise a usoful cunparason wath the bumths icinc indicator whs roadily avizlablo. The contiruous recorddof the readints also proved to de of considorable value when conpared to the provious results that hid been obtaned.
5.5.12 Autcratic observer. The autantic ubsurver was of considerable
 conditions as a photogroph could be taken at the tane of each observition. Jven aftor flacht 27 when the A 20 facordor was fitted, the automatic observer was stall vory uscful for synchronising rccords.

5.6 Gomparison of results from Infforent instrumonts

5.6.1 Liquid fater contont. Values of laquid vater content vace cbtano from two daffcront sources, the rotating cylinders, and aitur fleght Wo. 10 Irua tire rotatin dasc. The records of these instruments in the first part of trible 2 are not dircotly comparable as the rotatin disc roadings wore pook values and the rotatine cylinder rondins wore averacos. Jater in the lavie when avurages are elven for both instru ents, readings are are comparabie, lut there are insufficient to draw any reasonsble compirisons. BCttor synchronisation between the two records is now be ne ublaincd and future rusults should bo wore lircotly comparablu. In addition, records of liquia rater contont from the now sancano ifeston instrument should be quasiaide on future flichts.
5.6.2 Droplet size. There wre three rethols by which the aroplet suze wis obtanned. The rotating oflinluxs, tho onlut slides, and the fixod oflandor. The possible annocurncies in the valuss obtined from each nethod hove boun duscussed in proviuus paragraphs, so the discropanches botwoen rondines can moro easily be unzurstood. The larger sizes usunlly fiven by the ollon slincs are undoubtedly in meny cases due to the prosence of melted 100 purioles in tho sample. The indivadual disagroemuts betiven the rosuits from the fluxed cylander rucords are commented on in the table.
5.6.3 Cutside air temper fure. As mentioned in paragrapn 5.5.10 tho unly rucords from the vortex tubc thumonotur that aro bolloved to be ruliable are conimut to tho last fow flughts and thuse do not cinior madely from the reading from the standard balancc bridge thermorntor. Discropancies cf the order of 200 are stall comon, but it is hoped that thas wall be amproved. The vortex tuk type of themonetor should then bo of value in giving readurgs of outsile ear tomperature directly nt luast over the spocd rart, o covereat by the tuats on the Vaking.

6. Concluszuns

6.1 Cunszdorable advances have been mado an the twohnzque of measuring the paramuters on which natural seing condetions depend. Sevoral now instruments hove bow and are beiny devolupod, and the method of usine some of the older snus hos buen improved.
6.2 The rotiting disc aco accretion meter, especially when caibinud whth a Fussenot $A 20$ rocordur, has proved to bu a vory satisiactcry instrunent for indicating the presence of ace in rorthwhle quantities, and for moasuring the 1Iquid water content of the cloud. Its rccord nay de interproted to alve rato of build up of ace in adation to the value of the liquid wator content. The value of laquad water content may horever be in urror under certanin conditions, due to bluw off.
6.3 Photograths of liquad watur droplets sauplui froi an icane olout nay be obtaned at wil. From these photograpis direct ineasuremonts of drozlut slae miy be made. So far, duffoulty has berr exporienced in dififurentiating butween the frozen port.cles that lave boen oaught in the amolo and superoooled water aroplets, as buth icre liquad at the tanc the whotogrob ras taken. It is hopod to cveroome thes disfaculty in the futur.
6.4 Spuci il moteurclogical forucasts made by an expumenced forecastor can be rolicd upon to durect an aurcraft to the vicanity or condutions that wil produce at least scric 100 . Although protractod perials of severe or oven modurato ichns cennot bo guarantucd, therw is a bood chance of being able to find conditions that wlil enable a reasonable build us to bo cbtained on an aircrart. Such cond bions ere found five tines an layer type cloud durame one nonth in tho whiter. Thoy occur inch loss frequently during the rost of tho yeur, although rasonablo build up ary bo obtained by flying repuatidy through suatoble curnulus clouds. Thwse clouts nere found on the nveraric $2-3$ thas por month throughuat nost of the rost of the yoar.
6.5 A numbur of exrmpes of the types of ace that bunld un under various congitans who obtaned and have been relnted to the wiuns of the paraicters measured at thu time. Ther will be uscful in the atuly of the furmation of artbficial ice usir, the same arreraft.

7. Furthur devoloprents

7.1 Indedande promaname

7.1.1 No anstrunent yot testod on the Vakinj has civen an absolutciy reliable answor cf ulker droplet ananoter or liquid ratur content. The ollod siato samplans and photo moning technaqu must be developed to a stare whore, when mosurang liquad woter aroplot dianctur, it as possible to uxcluad from the
drops that are counted, drops that are fomed from particlos that wore not in the supercooled liquad state wanediatoly before ruachane the shide.
7.1.2 Although it is very satisfactory within its limitations, the rotiting disc ice accretion nutcr is subject to orrors due to blow of ${ }^{\text {a }}$, and ray also be unreliable under conditions when frozen particles wuid be trapyod in the soc thet forms on rotating cylinders. An instruicnt that is not suivect to thesc 1 anutations is needed to neasure liquid wator content. The now R.A.E. Sanearao Nuston themal icc detector may mect thesic requirencits, but this has to be tested.
7.1.3 Only a rolatively snall number of aczng conditions have so far been found diring the presont tests. Considerably nore must be found and the parmetors reasurcd to give a greater knoziedge of icine conditions from which amprovencrits may bo made in the present leang standards.
7.2 Prture proyrame. Teasurements nust be made and instruments must bo tosted a A hyher spods, grater heights and lowor temperatuacs then can be attanned by the Vikine. In addztion information of acinc conditions is required in othor parts of the worla besides Europe, which 1 s all that is wolne coverca by the armudante progranme.

The next problem the thas not yot beon seriously invcsticated is the build up of ace causcd by watcr running back from inadequately hiated leading olecs and freozano furtner back on the wine. Its effect on aircraft performence must be studiod. The rate of sublimstion of 100 from unprotected aircralt surfacus at var.ous spods and various tomperatures bolow frouzing is nother important problen that should be anvostigated.
8. Reforencus

1. R.A.E. Tech. Monu

Eng. 47
2. AAETR/Tech/56
3. AAEE/Res/266
4. R.A.E.

5宝. 3380
5. Metcorolocical office Frofessional Joto No106
6. N.A.C.A. Tech. Note 1393
7. MAF Tech.
R.cnort 5418, 1946
8. A papor of the Meteorological Research Consinttec (London)
S.R.P. No. 679

A copy is available in
the library of the
Metcorolcgical officc.

Note on thomal icc detector

F.J. BIBS

Fluad du-icing tests. A.R.C. 12,624. G.A. Rogers
Preliminary comparison of neteoro- G.C. Abel lagical forceasts of natural loung condıtaons with condations oncountored.

Protection of aircraft against J.K. Fardy 2Ce, A. R.C. 10,034

Occurrence of hign rates of
A.C. ECBAt
icc accretion on aircraft.

A flight investagation of the W. Lowls
metcorological conaztions conducive to the formation of lec or alrplanes. A.R.C. 11,014.

A mathematical ınvestigation of I. Langmur water droplet trajectories. K. B. Blodgett

The prosent position ropurding A.C. Best neteorological aspects ef ice accretion on aircraft. A.R.C. 14,644 .

Comparisin of Metcorological Forecasts and Conditions Encountered

		TET, FOTECAST					FOUC OR FLICHT			FLYIIG TIME		TIIE INMEASUVABLE ICEFilght Total		Wo. ofrotetingcyl. measure-ments made	Reamrks
$\begin{gathered} \text { Flight } \\ \text { No. } \end{gathered}$	Date	Type of claud	immoptic Condition	Icing Severity	$\left\lvert\, \begin{gathered} \text { Preezin } \\ \text { Level } \end{gathered}\right.$	Type of Cloud	Ioing severity	Height at wich ice wh S found	Air Tenp.	$\begin{gathered} \text { Individual } \\ \text { flight } \end{gathered}$	Total of successful lenge flights				
1	8.6 .51	Stratocumpus Stratocumpus	oclusion occlision	Podtrate lioderats	$\begin{aligned} & 8-9,000 \\ & 8-9,000 \end{aligned}$	$\left\|\begin{array}{\|l\|} \text { 1nI } \\ \text { Strato-curwalus } \end{array}\right\|$	Laght	11,500	-6	3.15	3.15	5 mans	$5 \mathrm{n}$	1	Front had petered out. Altornative point on occlusion.
2	19.6.51	Gumpus Curulonurbus.	$\begin{aligned} & \text { instablc } S \text {. }{ }^{2} \text { !ly } \\ & \text { cir stretm. } \end{aligned}$	Moderatesevere.	6,000	carmus	Lichtmoderate.	9,000	-6	1.15	4.30	5 m	1058.	2	
3	20.6.51	Cumulis	" ${ }^{\text {a }}$	Hodcrate	6-7,000	MiI	-	-	-	2.40	4.30		$10 \mathrm{ia} .$	-	Wo clouds abole freasing level. Cold pool had moved East.
4	22.5 .51	Cumis-nimbus Alto rumulus Castellatus.	Thundery low	$\begin{aligned} & \text { Moderate- } \\ & \text { severe. } \end{aligned}$	8,000	Curnulus, Cumalo nimbus	Modorateseverc.	12,000	-5	2.05	6.35	15 mm	25 m .	2	very short period of sever e icing.
5	26.6.51	17	Cols trough	Moderate	5,000	$\begin{aligned} & \text { Thin Alto } \\ & \text { cumulas } \end{aligned}$	Light	10,000	-5	4.05	10.40	15 nc	40 m	1	Long search for little sce.
6	2.7 .51	Alto stratus	Weak cold front	Moderate	11,000	$\begin{aligned} & \text { Thin nediun } \\ & -300 \text { thick } \end{aligned}$	Light	12,500	-4	4.10	14.50	20 nc	1.00	-	Very thin cloud.
7	4.7 .51	Alto stratus	Wave depression	Ligntroderate.	10,000	:1lto stratus	Light with small period of moderate.	$1110,500$	-3	3.35	18.25	15 m	1.15	2	Radio massade directed afrcraft to icing area.
8	11.7 .51	Alto stratus cululo-nı.bus	Cold trough	Moderate	9,000	Thick medium	Practicaliy $n 12$	-	\cdots	1.50	18.25	\cdots	1.15	-	clow mainly iced up. 011 pressure falled so returned on ore eneine.
9	23.7 .51	Cumulo-nifuius	occtusior	$\left\{\begin{array}{l} \text { Light }- \\ \text { moderte } \end{array}\right.$	9,000	Cumulus	$\left\lvert\, \begin{aligned} & \text { Light witn } \\ & \text { srali per: d of } \\ & \text { nodorate. } \end{aligned}\right.$	$12,900$	-5	4.20	22.45	15	1.30	2	Lerge proportion of clouds iced up.
10	31.7 .51	Curuloninbus	Thundery low	Nodarate	12,500	Aimost mil	Almost nil	\cdots	-	3.55	22.45	-	1.30	-	Lack on information. fet teleminter br eakdown.

Apble 1 continuted

		VIT, FORECAST					FODND OIT FLICHT			FLYMG THE		TIME IN MEATHRBLE TCE		$\left[\begin{array}{c}\text { No. of } \\ \text { rotating } \\ \text { cyl. measure- } \\ \text { ments iade }\end{array}\right.$	Eenarks (including nate of icedutit up(ins/in)
$\begin{gathered} \text { F11ght } \\ \text { No. } \end{gathered}$	Date	type of cluvd	Symoptic conation	$\begin{gathered} \text { Icing } \\ \text { Severity } \end{gathered}$	$\begin{gathered} \text { Freezing } \\ \text { Leve: } \end{gathered}$	Type of Cloud	Icing Severity	Hoieht at which lee wes round	$\left[\begin{array}{c} \text { Air Temp. } \\ { }_{\mathrm{C}} \end{array}\right.$	$\begin{gathered} \text { Individual } \\ \text { fliche } \end{gathered}$	Totel of successful acime fliehts	$\frac{\text { Mativhit }}{\text { FIicht }}$	$\frac{\mathrm{LET} \text { ICE }}{\operatorname{Tota}}$		
11	3.12.51	Strato-cumius Alto-stratus	Weak warm front	Lichtmoderate	3.500	Thick medium	Litht	12,000	-8	1.20	24.05	10 m	1.40	1	clond iced up belos $12,000 \mathrm{ft}$.
12	7.12.51	ivimbo stratus	Warm iront	noderatesevere	$-5,5-6000$	Alto stratus	Moderate severe	7.000	-5	4.20	28.25	10 m	1.50	-	Hed to disengage as spray mast iced up and vibrated seriousiy.
13	18.12 .51	hats sirstas	True on cold iront	Moderate severo.	$6,500$	Thn alto stratus. Thick altostratus.	$\begin{array}{\|l\|} \mathrm{Ll}_{\text {ght }} \\ \text { LiGht- } \\ \text { moderate } \end{array}$	$\begin{aligned} & 11,000 \\ & 12,000 \end{aligned}$	-6 -7	3.10	31.55)	20 m	2.10	2	Moderate conditions for short time in front.
14	28.12 .51	cumulo-minbus	Unst ${ }^{2}$ ble Wily atr stream.	Moderate	2,500	Curuius	Moderate	6,000	-3))			1	Duration of flight in cloud very short but moderate
15	\|20.12.51]	Cumulus	,	Moderatesevere		"	Moderate	6,500	-10)	4.30	36.05)	25 m	2.35	2	icing found.
16	2.1.52	Alco stratus	Wave on cold front.	Moderate	$2,500$	Thick alto stratus. starll cumalus.	Light	6,500	-6	2.15	38.20	15 m	2.50	-	Cloud manly iced up. Sriall cunulus gave good roadines on instantenoous instrunents, otherwise too small.
17	15.1.52	Camulominuas	```Tnstable l.W.1Iy air strear.```	Moteratesevere.	3,000	Cumulus	$\begin{gathered} \text { Moderate- } \\ \text { suvere. } \end{gathered}$	6,000	-0	2.05	40.25	25 m	3.15	-	Short duratim in Cu. ${ }^{3 \prime}$ bila up.
18	16.1 .52	Cuadslus	" n	"	"	"	Modorate	4,000	-5	1.15	41.40	10 F	3.25	-	Short curation in Cu. Rathor late in nay.
19	18.1.52	Cumulus	Jnstarie ivoworly	Maderate	1,5-2000	cumazus	Modorate	6,000	-10	3.05	44.45	30 n	3.55	6	Namerous large Cu. (0.1)
20	21.1 .52	Strats cunulus	dir strear. cold 1. E.'ly air strean	lightmoderate.	1,000	strato curulus	Continuous $i^{1 \text { light }}$	$4,000$	-6	2.40	47.25	45 ma	4.40	6	$\frac{1}{} \text { in. build up on wings. }(0.07)$
21	22.1 .52	Strato ctulus dito	Warm sector \& occlusion.	Moderate	2-3,000	Strato curnulus.	Moderate Light- noderate.	$\begin{aligned} & 8,000 \\ & 5,500 \end{aligned}$	-12 -	5.10	$\begin{array}{r} \text { ? } \\ 52.35 \text {) } \end{array}$	25 m	5.05	6	\| in. build up in depression f frning beynd neclusion. Smaller build up in focclusion.

Tanle 1 continued

$\left\lvert\, \begin{gathered} \text { Flight } \\ \text { no. } \end{gathered}\right.$	Date	--_-_- MET, FORECAST				FOMT OH PLIGFT			FLYIGG THE					M. orrotatingcyl measure-ments wade	Rate of ice bulld up uns/rin.	Fiemarns
		Type of Cloud	Sympur Condution	$\begin{aligned} & \text { Icinp } \\ & \text { Sev } V^{\wedge} \text { nity } \end{aligned}$	$\begin{gathered} \text { Fricring } \\ \text { Levol } \end{gathered}$	Type of Cloud	$\left\|\begin{array}{c} \text { Icing } \\ \text { fevurity } \end{array}\right\|$	Height at which ice wes pound	$\begin{gathered} \text { Air Tenp. } \\ \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { Indivi- } \\ & \text { nual } \\ & \text { fli, hit } \end{aligned}$	Total of successful icine					
22	28.1 .52	$\begin{aligned} & \text { strato } \\ & \text { curalus. } \end{aligned}$	occusion	Lirntmodurcte	2,5-3000	Strato curulus.	Lignt	6,000	-4	2.40	55.15	10 m	5.15	2		Short patches of ligit ice only.
23	31.1 .52	Strato cunulus.	cold frort.	Lizhtiodurate.	2,500	Strato curtilus.	Light	7,000	-7	3.45	59.00	20 n	5.35	3	0.05	Did not reac: front but foud ice behird it.
2.	11.2.52	Strato cunelus.	cold front	Moderatesevere	2,5-3000	strato cumulus.	Lignt	7,500	$\begin{array}{r} -13 \\ -7 \end{array}$	2.50	61.56	15	5.50	3		Front had noved more
25	14.2 .52	Strato cumbus	Weran front	Ligntmoderate.	2,000	Strato curnlus	Lieht	4,500	-6	2.55	64.45	10	6.00	2		Much of the cloud mas iced up.
26	14.2.52	cumulus	Jeclusion	Moderate	2,000	cumulus	Ifoderate	8,500	-13	0.45	65.30		6.15	-		$\left\lvert\, \begin{aligned} & \text { Sevarnl short period } \\ & \text { of maderate icine } z^{\prime} \text { built } \\ & \text { up on port of the aircreft. } \end{aligned}\right.$

* Tris forecast was made by a relicf forccastur when the regular forccaster was on leave.

Befcre March 1952 the rate of ice build up wes rbtained fron photocraphs of the test strut. Arter then the rate of ice brild up was obtaned from the record of the rotating disc.

Table 1 continued

$\begin{gathered} \text { Filcht } \\ \text { No. } \end{gathered}$	Dute	IETEORULCOICIL FOREASAST					FOUND ON FLIGHT		FLIING TIE			```Timg in Measurable Ice```		No. of notating Cylander Measurements rade	Rate of Ice Build Up Ins, per rinute		Remarks
		$\left\|\begin{array}{c} \text { Ty'se of } \\ \text { Cluus } \end{array}\right\|$	$\left\|\begin{array}{l} \text { Synovite } \\ \text { condition } \end{array}\right\|$	Icin:	Freezing Level	Type or Cloud	$\begin{aligned} & \text { Icing } \\ & \text { Severity } \end{aligned}$	Helght at whach ice was iound	$\begin{gathered} \text { Air Tenp. } \\ { }^{\circ} \mathrm{C} \end{gathered}$	IndividualFlisht	Tratal of Successiul Icing Flights						
												Fllaht	Total		Peak	Average	
27	25.3.52	Strato cumulus	occlusion	Light-	3,500-5,500	Thin strito curulus	Light	6,000	-4	2,00	67,30	0.10	6.25	Nil			Partiy transit flient to Paris as e ood leing conditions were expected near parls next day.
26	26.3 .52	Stratc ct fulus				Strato	N11	-						-			Forcast obtained from French Met office.
		Jumulus				cumulus	LiehtModerate	8,500	-14	3,30	71.00	0.25	5.50	4			Whip acrial broken by vibration ctue to ice build up.
29	27.3.52	No icine	Precost	given		very than strato cumulus	Leht	5,000	θ	1.25	72,23	0.05	6.55	1			Mainly return flicht from Paris.
30	1.4 .52	strato cumulus	jorrassion	Moderate	0-1,000	$\left\lvert\, \begin{aligned} & \text { strats } \\ & \text { curnulus } \end{aligned}\right.$	Licht	6,500	-10	5.20	77.45	1.00	7.55	5			
31	7.4 .52	strate	$\left\lvert\, \begin{aligned} & \text { waving } \\ & \text { coin ircont } \end{aligned}\right.$	Li¢ht- Mocerate	6,000-6,500	Strato cumbius	Light	7,500	-5								
		cuimlus				cunulus	Light- Moderate	7,000	-6	3.50	81.35	0.15	8.10	5	0.1	0.05	Several patches of short duration
32	22.4 .52	$\left\lvert\, \begin{aligned} & \text { rurulus } \\ & \text { cumulo- } \\ & \text { nimbus } \end{aligned}\right.$	$\|$Instable airstrean with ninor troughs.	roderate Locally severe in $\|$cu pb tops.	3,500	Cumulus	Moderate	7,500	-6	1.30	03.05	0.10	8.20	4	0.11	0.07	
33	30.4.52	$\begin{aligned} & \text { Altom } \\ & \text { cu ulus } \\ & \text { castell } \\ & \text { tis. } \end{aligned}$	$\begin{aligned} & \text { Unstable } \\ & \text { air mass } \end{aligned}$	Moderatem .severe	9,000	$\left\lvert\, \begin{aligned} & \text { slto } \\ & \text { curulus } \\ & \text { castella } \\ & \text { tus. } \end{aligned}\right.$	${ }^{\text {Sever } ¢}$	12,500	\cdots	2.35	85,40	0.10	5.30	3			
34	7.5.52	vurulus	$\left\{\begin{array}{l} \text { Unstable } \\ \text { airstrean } \\ \end{array}\right.$	Moderate iscvere	3,500-4,000	curnulus	Severe	7,000	-7	2.55	03.35	0.15	3.45	1	0.15	0.10	Ice built up on smay anst in spite of anti-icims. Flight was aband ned due to spray west vibration but was resurbed after rast had been removed. Althcurn it was only ncon G.l.t. the calulus were subsiditue sad val 11ttle ice ras fund.

$\begin{gathered} \text { Flicht } \\ \text { No. } \end{gathered}$	Jate	METEOROLOMSM FOMEC..ST				FOUN ON FLIGHT				FLYIIN TIMF		$\begin{aligned} & \text { Tane in } \\ & \text { neasurnble } \\ & \text { lce } \end{aligned}$		110. of Rutcting cylinter fleasurerents mate	Rato of IctBuidd upins. per ninute		Rerariss
			smontic	ins	Frcuzins	Type of		Herrht at		Individuet	Totis of						
		Cloud	Conciticn	Scverity	Level	Cl) ud	Severity	wach ice was found	${ }^{\circ} \mathrm{C}$	Fliont	Successful Icing Flithts	Flight	Total		Pcak	sverage	
35	9.5 .52	curulus	unstarle S. 3 Wly airstreant	Hoderatesevere.	6,000-6,500	cumulus	Sovere	9,000	-7	2.05	90.40	0.15	9.00	4	0.13	0.09	
36	19.5 .52	cunllis	Unstable bunic alr mass	Moderatesevere	10,00?	cunulus Cone estus	Severe	$\begin{aligned} & 13,000- \\ & 15,000 \end{aligned}$	-9	1.15	91.55	0.10	2.10	Not in usc		0.2	Aircraft caught in up current and forced up 2,000 ft .
37	6.6 .52	Cusul'ts	Corplex frontal trourh	Lient" Moderate	9,000	curnius	Incderate	12,000	-6	1.50	23.45	0.15	2.25	4			

SuFary of Measurcionts made in Icing Conditions

Flignt iso.	Date	Thns Cf yar L.M.T.	$\begin{gathered} \text { Haglt } \\ \text { fet } \end{gathered}$	$\begin{gathered} \text { Speed }(1, i, S .) \\ \text { knots } \end{gathered}$	static outsile air temperature balance brige ${ }^{\circ} \mathrm{C}$	Liquid water enntent GMS/Cubic Mctrc		$\begin{gathered} \text { The over which } \\ \text { averase was } \\ \text { taken (sces) } \\ \text { (Rotatine Cylinder) } \end{gathered}$	redian Drop Dlamaincrons		Maxinum Drop Disa.Microns		Renarks
						rotatine Cylinfer	Potating Disc		Rotating cylinder	Olled sline	Fixed	$\begin{aligned} & \text { onled } \\ & \text { silce } \end{aligned}$	
124	2.5.51	1430	11,300	157	-6	-	-	-	-	\sim	9^{4}	-	
	19.6.51	1537	9,300	127	\sim	0.72	-	99	9	-	20	25	
	22.6 .51	1205	12,100	148	-4	-	-	-	-	-	21	-	
			12,100	128	-5	1.01	-	61	9	\sim	-	-	
		1218	13,100	143	-5	-	-	-	-	-	22	-	
5	26.6.51	1:127	10,400	154	-5	-	-	-	-	35	19	50	The large drop size from the olled slide is probably due to relted ice particles.
6	2.7 .54	1425142	$\begin{aligned} & 12,300 \\ & 12,300 \end{aligned}$	138143	-4-4	-	-	-	-	-	$\begin{aligned} & 42 \\ & 2 I_{+} \end{aligned}$	-	Photographs in ifgs. 16 \&c 18 show that large drops wore present during some of tae flight.
7	4.7 .51	i210	10,500	153	-3-3	$\stackrel{0.22}{-}$	-	90	9	10	-	70	Photographs of lice fomation on aircraft show that large urops wero prosert.
		1226	10,750	153					-		50		
911	23.7.51	1442		150	-5	-	-	-	-	20	30	-	
		1442	12,100	160	-5			-	-	48	-	-	Large drop saze due to melted ice particles.
	3.12 .51	1528	12,150	150	-8	0.22	0.2	75	10	*	40^{7}	-	
11		1534	12,100	130	-8	0.39	0.65	60	13	-	20^{6}	-	
		1537	12,090	170	-8	-	0.65	-	-	-	-	-	
12	7.12.51	1245	7,000	156	-5	\cdots	0.52	\cdots	-	25.			
		1330	7,000	160	-5	-	-	-	-	55^{26}	-	80	One drop over 200 ricrons excludid.
	18.12.51			162	-6	-	-	-	-	-	23^{7}	-	
13		1128	111,150	1.6	-7	-	10	-	-	26		45	Frozen perticles are belfata
		$115 i$	10,950	158	-7	-	0.44	-	\cdots	-	-	-	to neve been cau, fit in all
		1,31	10,950	157	-7	-	0.72	-	-	-	${ }^{-}$	5	drod samples in this flicht.
		1132	10,950	158	-7	-	c. 4	-	-	36	35	55	
		1132	11,000	156	-7	-	0.80	-	+	22	-	35	
		$12^{n} 7$	12,500	15%	-8	$0.08{ }^{++}$	0.50	88	$10^{\text {4 }}$	24	22	35	
		1203	\|12,500	156	-8	-	0.10	-	-	30	-	40	
		1212	112,300	150	-8	-	0.40	-	-	32	18	16	

Table 2 continued

Flight No.	Date	$\begin{gathered} \text { Time of Dar } \\ \text { L.M.T. } \end{gathered}$	Height $f \in e t$	$\begin{gathered} \text { speed (I.4.5.) } \\ \text { knots } \end{gathered}$	Static outside air temperature belance bridge ${ }^{\circ} \mathrm{C}$	Liquid water content GMS/Cubic Metre		```Ttme over which average wes taken (secs) (rotating Cylinder)```	Medan Drop Dian.Microns		Maximum Drop Diam.Microns		Re warks
						Rotating Cylinder	Rotating Disc		Rotating Cylinder	$\begin{aligned} & \text { Oiled } \\ & \text { side } \end{aligned}$	$\begin{gathered} \text { Flyed } \\ \text { Cylinder } \end{gathered}$	$\begin{array}{\|l} \text { oiled } \\ \text { slide } \\ \hline \end{array}$	
1415	28.12 .51	1112	7,000	165	-8 .	0.49	0.80	120	12	28	-	40	:
	28.12 .51	1301	7,450	167	-11	-	0.70	-	-	23	25	35	x
		1311	6,600	150	-9	-	0.75	-	-	-	-	-	
		1712	6,700	150	-9	-	1.75	-	-	-	-	-	
		1012	6,700	152	-9	0.17	1.20	90	28	23	-	30	
16	2.1.5m	1146	5,850	148	-6	-	0.95	-	-	-	-	-	
		11.8	5,950	138	-6	-	0.50	-	-	-	-	-	
		1300	5,6c0	162	-7	-	0.80	-	-	-	-	-	
17	16.1.5?	1124	6,100	130	-10	0.9	-	35	8	\cdots	-	-	
		1136	5,000	120	-9	0.49	-	16	7	-	-	-	
18	16.1.5?	1525	4,100	125	-5	-	0.55	-	-	-	-	-	
		1526	4,100	125	-5	-	1.5	-	-	13	-	15	
		1314	4,500	120	-6	-	0.85	\cdots	-	-	-	-	
		1610	5,600	125	-9	-	1.25	-	-	-	-	-	
19	18.1 .52	125	6,700	150	-11	-	1.8	-	-	36	-	50	x
		1207	6,500	155	-11	0.19	2.0	220	9	27	-	50	
		1208	6,300	153	-11	-	0.2	-	-	29	-	40	
		1225	5.500	150	-9)	0.55	(0.95)	44	18	(34	-	45	
		12.2	5,700	145	-9)		(1.0)			(28	-	40	
		$12{ }^{2}$	5,650	155	-9	-	0.3	-	-	23	-	35	
		1227	5,800	140	-9	-	0.4	-	-	24	-	35	
		1828	5,900	147	-9	-	2.2	-	-	25	-	40	
		1251	6,200	140	-9	0.73	2.0	11	14	28	27°	40	
		1252	6,400	140	-10	-	1.1	-	-	24	-	40	
		1252	6,200	148	-10	-	1.3	-	-	28	-	45	
		1301	6,400	140	-10	0.33	2.2	32	17	29	-	45	
		1300	6,300	142	-10	-	0.5	-	-	34	-	50	
		1306	6,100	150	-10	0.13	0.5	32	21	37	-	45	
		1309	5,900	145	-9	0.06	1.1	-	-	-	-	-	
		1310	5,900	14.2	-9	0.06	1.9	22	22	-	-	-	
		1311	5,80n	135	-9		1.3						

Table 2 continued

Flight No.	Date	Time of Day L.M.T.	$\begin{gathered} \text { Height } \\ \text { feet } \end{gathered}$	Speed (I A.s.) knots	Static outside air temperature balance bridge ${ }^{\circ} \mathrm{C}$	Liqurd water content GMS/Cubic Metre		Time over wichaverage wastaken (secs)(Rotating cylinder)	Median Drop Dram.microns		Moximum Drop Diam.Microns			Remarks
						Rotating Cylinder	Rotating Disc		Rotating cylinder	$\begin{aligned} & \text { Oiled } \\ & \text { slide } \end{aligned}$	$\begin{array}{c\|} \text { Fixcd } \\ \text { CJilinder } \end{array}$	$\begin{aligned} & \text { Oilad } \\ & \text { slide } \end{aligned}$		
24	11.2 .52	1149	10,000	155	-11	-	0.48	-	-	26	-	40		
		1156	9,050	142	-13	0.14	0.11	68	12	29	30^{\varnothing}	40		
		1159	9,050	132	-12	-	0.25	-	-	37	-	60		
		1200	9,550	131	-13	-	1.25	-	-	-	-	-		
		1208	7,650	173	-8	0.32	0	167	12	30	-	50		
		1209	7,500	159	-7	-	1.05		-	-	30°	-		
		1210	7,450	136	-7	-	0.14	-	-	24	-	40		
		1211	7,550	127	-7	-	0	-	-	24	-	30		
	,	1303	6,000	170	-7	-	0.1 y	-	-	22	-	30		
25	14.2 .52	1050	3,100	158	-3	-	0	-	-	22	-	35	\%	
		1108	4,400	162	-6	0.19	0.8	159	9	31	15	40		
		1108	4,200	159	-6	-	0.5	-	-	24	-	35		
		1116	4,1,50	163	-6	-	1.5	-	-	20	-	40		
		1136	4,900	172	-6	0.07	0.3	304	7	-	8	35		
		1137	4,900	162	-6	-	0.4	-	-	28	-	40		
		1247	6,300	163	-8	-	1.5	-	-	-	-	-		
26	14.2 .52	1594	8,300	170	-12	-	1.6	-	-	36	-	50	*	
		1627	18,100	148	-13	-	0.9	-	-	-		-		
		1632	8,650	164	-13	-	1.1	\sim	-	31	18	40		
		1.045	8,350	151	-12	-	0.9	-	-	32	$-\infty$	50		
		1545	8,350	160	-12	*	1.2	-	-	30	15°	35		
		1649	8,300	167	-12	-	0.9	-	-	24	-	30		
27	25.3 .52	1201	5,900	163	-4	-	-	-	-	32	-	45		
		1812	6,800	155	-4	-	-	-	-	25	-	45		
28	26.3.52	1159	5,400 5,400	150 152	-9 -9	-	-	-	--	17 20	- 11	25 35	x	
		12 Cl	5,400	152	-9	-		\square	\cdots	20	11	35		

Table 2 continued

Flight	Date	Time of Dav	yefzht feet	$\begin{gathered} \text { Speed } \\ \text { knots } \\ \text { (I.A.S. } \end{gathered}$	Static outsidt air temperature ${ }^{\circ} \mathrm{C}$		Lagud watcr content Gus/Cubic Metre			Tume over which average wes taken (secs)		Median Drap Diam.Microns		Haximuan Drop Diam, ficrons		Remarks
					Balance	Vortex		Rotat	ine Disc			Rotatins	Oiled	Fixed	oiled	
					Bridse	tube	Rotating Cylinder	Peak	Averaçe	Rotatin* Cylinder	Rotating Disc	Cylinder	slide	zylinder	slide	
33	30.4.52	1223	12,350	137	-9	-13	0.05	-	-	63	-	8	-	-	-	*
		1232	12,900	137	-9	-12	0.23	-	-	54	-	9	40	40^{\square}	50	
		1243	12,650	14/k	-9	-12	-	-	-	-	-	-	31	26	45	
34	7.5.52	1321	7,000	132	-7	-9	-	0.31	0.21	-	16	-	-	-	-	
		1326	7,200	153	-7	-9	-	0.74	0.38	-	28	-	-	-	-	
		1312	6,8m	141	-6	-6	-	0.77	0.39	-	34	-	-	-	-	
		1346	6,550	142	-6	-8	-	0.65	C. 54	-	18	-	-	-	-	
		1313	6,500	147	-6	-8	-	0.37	0.16	-	16	-	-	-	-	
		1356	6,500	14.4	-6	-9	-	0.35	0.26	-	10	-	-	-	-	
		14.00	7,100	14.4	-7	-10	-	0.54	0.35	-	23	-	-	-	-	
		14.03	5,556	140	-6	-10	-	0.66	0.29	-	26	-	-	-	-	
		1107	6,750	144	-6	-10	-	0.34	0.30	-	11	-	-	-	-	
		11.99	7,300	143	-	-15	-	1.3	0.60	-	88	\sim	-	-	-	Balance bridge tharmoneter reading not taken.
35	9.5 .52	1418	9,803	135	-8	-6	-	1.03	0.38	-	30	-	-	-	-	
		1420	0,700	127	-3	-5	-	1.82	0.69	-	19	-	-	-	-	
		1421	9,750	131	-8	-5	-	1.88	0.71	-	23	-	44	-	60	
		1423	9,150	128	-8	-4	-	1.81	0.65	-	44	-	-	25	-	
		14×5	9,100	140	-7	-5	1.15	0.85	0.29	19	21	20	-	-	-	
		1431	9,000	150	-7	-5	-	1.0	0.41	-	33	-	-	-	-	
		14.30	3,65u	139	-6	-5	-	0.9	0.11	-	4	-	36	-	50	
		1433	4,100	131	-6	-	0.64	0	0	94	-	24	-	-	-	
		1452	9,050	138	-7	-10	0.17	0.60	0.29	60	16	18	4	-	60	
		1530	8,3u1	147	-7	-7	-	0.64	0.23	-	9	-	-	34	-	
36	19.5 .52	1540	13,450	114	-	-	-	-	-	-	-	-	-	18	\cdots	π
		1542	13,650	124	-9	-9	-	-	-	-	-	-	17	-	20	
		1604	12,700	120	-5	-8	-	-	-	-	-	-	28	14	35	
		1620	12,600	129	-5	-5	\square	-	-	-	-	-	23	-	30	
37	6.6.52	1506	12,350	119	-6	-	0.5^{+4}	-		80	-	12^{1-}	27	-	35	
		1503 1506	11,850 11,600	118 125	-5 -5	-	0.14	-	-	42	-	12	39 37	20 27	60 60	

[^0]0 These fixed cylinder records are not as clcar as usual noinly because there was no runtack. The answer may be a slight overestimate but it will not be an undcrestimate.
+* These rotating cylinder results are not very reliable. The experimental points did not fit vary well on to the theoretical curves.

* Both droplet samples on flizht No. 12 are from the sare olled slide. They included some very large drops that were caught as frozen particles and melted before bang photographed. The larger drop diameter is incorrect for the median drop diameter of the liquid water, as the lerge drops have been counted. The smaller diameter is more nearly correct as the obvious larger drops have betn txcluded from the court.

On tle other flif,hts marked x the large drops that could readily be idontified as probably coming fron frozen particles have, there possible, been discarded from the drop sarples. Many less outstanding large drops thet had probably been frozen particles have had to be included in the count. On several othor flights frozen particles are belifeved to bedve been prosent when the oilud silde cample was token but it he's not been possible to exclude them as they could not be irentified with absolute certainty.

Table 3
Weight of ace (gras) caug't on three rotating cylinders of the same size

Run ito. Cylinder Position	1	2	3	4	5	6
Inboard	1.96	6.64	7.25	0.11	0.14	5.71
Pidale	2.31	6.78	9.87	0.19	0.18	6.57
Ortboard	2.19	7.31	8.32	0.58	0.17	-
True anr speed (knots)	155	165	165	170	system frozen	145

Table 4
Values of Rg calculated fron the Rotating Gylunder Heasurements compared
With observed ionnc sevority

$\begin{gathered} \text { Masht } \\ \text { No. } \end{gathered}$	Laquad water content 3 gns/metre	ledzan droplet diameter ficrons	$\begin{aligned} & \mathrm{Rg} \\ & \mathrm{gms} / \mathrm{Cl}^{2} / \text { hours } \end{aligned}$	$\begin{aligned} & \text { Observed } \\ & \text { lolng } \\ & \text { severity } \end{aligned}$	Type of cloud
2	0.72	9	2.4	LIghtmoderate	Cumulus
4	1.01	9	3.3	1Ioderatesevere	Cumulus
7	0.22	9	0.75	Light with small amour of noderat	Alto-stratus
11	0.22	10	1	Inght	Thzek medium
"	0.39	13	3	"	\%
14	0.49	12	3.3	Moderate	Cumulus
15	0.17	28	3.4	Moderate	Cumulus
17	0.9	8	2	Moderatesevere	Cumulus
"	0.49	7	0.75	1	\ddagger
19	0.19	9	0.6	Mcderate	Cuaulus
:	0.55	18	7	"	"
"	0.73	14	6.5	11	"
11	0.33	17	4	"	"
11	0.13	21	2	"	\%
"	0.05	22	1	"	1
20	0.45	15	4.4	Light	Stratocumulus
1	0.55	8	1.3	"	"
*	0.64	10	2.8	"	"
\ddagger	0.43	13	3.5	"	"
"	0.16	12	1.0	"	"
21	0.14	24	2.5	inoderate	Stratocumulus
1	0.27	20	4	"	1
22	0.10	16	1	Light	Stratocumulus
23	0.9	8	2	Lnght	"
24	0.14	12	0.9	Light	11
${ }^{11}$	0.32	12	2.2	"	"

Table 4 continued

$\begin{gathered} \text { Flight } \\ \text { No. } \end{gathered}$	$\begin{gathered} \text { Laquid vater } \\ \text { content } \\ \text { gms/metre } \end{gathered}$	Median droplet diameter microns	$\begin{gathered} \mathrm{Rg} \\ \text { gns } / \mathrm{cm}^{2} / \text { hours } \end{gathered}$	Observed loing severity	Type of Cloud
25	0.19	9	0.6	Lught	Stratocumulus
1	0.07	7	0.1	\#	"
28	1.05	9	3.5	Lightmoderate	Cumulus
*	0.35	10	1.5	moderate	11
11	0.25	10	1	"	"
29	0.34	7	0.6	Light	Stratom cumulus
30	0.07	7	0.1	Light	"
32	0.2	8	0.5	Lughtmoderate	11
33	0.05	8	$0.1^{\text {\% }}$	Severe	Alto cumulus castellatus
"	0.23	9	0.75^{38}	"	\#
35	1.15	20	16	Severe	Cumulue
"	0.64	24	11	${ }^{1}$	"
"	0.17	18	2.1	"	"
37	0.48	12	3.3	Moderate	Cumulus

* These measurements were obviously not taken in the part of the cloud where the lolng severity corresponded to"severe."

Table 5
Comparison of severity of icing forecast, whth severnty of acing observed

Observed	Correct forecasts			$\begin{gathered} \text { Overestmated forecasts } \\ \text { (degree) } \end{gathered}$		
Forecast						2
	Inght	Moderate	Severe	NII	Iight	N21
Inght-ruoderate	6	4		-		
Soderate		5			5	2
Moderate-severe		4	7		1	-
Totals	6	13	7	-	6	2
	26			6		2

FIG I: THE TEST AIRCRAFT.

FIG 2. ROTATING CLINDERS EXTENDED.

FIG. 3. ROTATING CYINDERS RETRACTEO WITH ICE ON.

FIG. 4. FIXED CYLINDER.

FK.5. FIXEO CYLINBEA RECORD DROPLET DIAMETER 23 NACRONS

FIG 6. HEATED CYLIMDERS

FIG. 7. OLLED SLIDE SAMPLNG POLE.

FIG B. ORIGINAL OLED SLIDE MICRO CAMERA.

FIG: 9. MPROVED OLED SLIDE MICRO CAMERA.

FIGS. 10. ${ }^{\text {all }}$

Fig io rotating disc.

FIG. It. ICE FORMATION ON THE OBSERVATION STRUT.

FIGI2. MODFFIED AIR THEPMONETER BULE RADIATION SHIELO.

FIG I3. VORTEX TUEE THERMOMETER.

hicmi		Mooseratericm
\bigcirc	0	0

FIG. 15

AREAS WHERE NATURAL ICING CONDITIONS HAVE BEEN FOUND DURING 1951-52.

FIIGHT No 6.
MEDIAN DROP DIAMETER $\angle O$ MICRONS
OUTSIDE AR TEMPERATURE - $3^{\circ} \mathrm{C}$.

FLKGHT NO21.
MEDUM DROP DIAMETER. 20 MICRONS. LIOMD WATER CONTENT 0.7 GMS/CU. NETRE OUTSIDE AIR TEMPERATURE-120 C .

FLIGHT NO 23.
MEDLAK DROP DIAMETER 20 MICRONS LICUD WATER CONTENT O- O.OGMSICU. METRE OUTSIDE AR TEMPERATURE $-7^{\circ} \mathrm{C}$.

FLGHT NO 20.
MEDIAN DROP DIANETER. 10 MICRONS LIOMD WATER CONTENT 0.0 .5 GHS/CU NETRE OUTSIDE AIR TEMPERATURE - $66^{\circ} \mathrm{C}$.

FLIGHT NO 28 .
MEDIAN DROP DIAMETER ; 10 MICRONS LIOUID WATER CONTENT O.0.3 GMS/CU. METRE LICUID WATER CONTENT O O-3 GAS/CU.

FIG. 16. ICE FORMATION ON TAILPLANE.

FLGHT NO21.
MEDIAN DROP DIAMETER $2 O$ MCRONS LOUD WATER CONTENT O 7 GMSICU. METRE OUTSDE AIR TEMPERATURE $-12^{\circ} \mathrm{C}$.

FLIGHT NP 23
AEDIAN DROP DIAMETER : 20 AICRON LIOUI WAIER CONTENI 0. $0.9 \mathrm{GM} / \mathrm{CU}$. METRE OUTSIDE AIR TEMPERATURE $=7{ }^{\circ} \mathrm{C}$

FLGCHT NP 20.
MEDAAN DROP DIAMETER: 10 MICRONS MOUD WATER CONTENT O. 0.5 GMS/CU METRE OUTSIOE AIR TEMPERATURE - $6^{\circ} \mathrm{C}$.

FLIGHT NO 32
MEDIAN DROP DIAMETER. $10-15$ MICRONS LIQUID WATER CONTENT O. 0.2 GMS/CU. METRE OUTSIDE AIR TEMPERATURE - $6^{\circ} \mathrm{C}$

FLGGT NO 28 .
MEDIAN DROP DLAMETER. 10 MBCRONS LIOUIO WATER CONTENT O. 0.3 GAMS/CU. METRE OUTSDE AR TEMPERATURE -7 TO-15

FIG.17. ICE FORMATION ON MAIN PLANE.

FIGS. 18.

AR INTAKE: FLIGHT NOB MEDIAN DROP DIAMETER 40 MICRONS OUTSIDE AIR TEMPERATURE - $3^{\circ} \mathrm{C}$.
 MEDIAI DROP DLAMETER. 10 MICRONS
LIQUD WATER CONTENT 0.0 .5 GMS/CU. METRE LIQUD WATER CONTENT 0.0 .5 GM
OUTSDE AIR TEMPERATURE $-6^{\circ} \mathrm{C}$.

ICE

FLGHT NO2I.

FLIGHT NO 28.

REDECCA AERTAC STATT

ROPELLER SPNNER FLGGHT NO21.
MEDIAN DROP DIAMETER ZOMICRONS
IOUID WATER CONTENT $0.7 \mathrm{GMS} / \mathrm{CU}$. METRE
OUTSDE AIR TEMPERATURE - $12^{\circ} \mathrm{C}$.

PROPELIER SPINNER FLIGHT NO 26
MEDIAN DROP DIAMETER 10 MICRONS IOUD WATER CONTENT O. 0.3 GMS/CU. METRE OUTSIDE ARR TEMPERATUPE - 7 TO $-15^{\circ} \mathrm{C}$.

TEST STRUT SHOWING REDUCTION OF TCE BULLD UP WSDE THE BOUNDARY LAYER

FIG. 18. ICE FORMATION ON ENGINE AIR INTAKE, AERIALS, TEST STRUT AND PROPELLER SPINNERS.

FIG: I9 CLOUD DROPLET SAMPLE
MEDTM DIAMETER BMICRONS.

FIG 20. CLOUD DROPLET SAMPLE
MEDAAN DIAMETER 16 MACRONS

FIG: 21. CLOUD DROPLET SAMPLE
MEDIAN DIAMETER. 22 MICRONS

FIG:22: CLOUO DROPLET SAMPLE
MEDIAN OIAMETER 32 MICRONS:

FIG 23. CLOUO DROPLET SAMPLE
MEDIAN DIAMETER 20 MACRONS EXCLUDING DROPS
OUER 35 MICRONS ASSUMED TO HAVE BEEN FROZEN PARTTICLES.

FIG. 24 CLOUD DROPLET SAMPLE SHOWING FROZEN PARTICLES
MOST OF WHICH HAVE MELTED.

Crown copyrght reserved
Printed and published by Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c. 2
423 Oxford Street, London w.I
P.O. Box 569, London S.E.i
${ }_{13 \text { A }}$ Castle Street, Edınburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol i
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller

Prosted in Great Brtazn

[^0]: Q)
 -+1
 $\times 1$

