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SUMMARY 

This Report describes the basic principles on which theoretical 

flutter analyses are made, and illustrates them by some simple 

applications. The techniques employed are typical of those in current 

use inthis Country. Three Appendices give the two-dimensional aero- 

dynamic derivatives for a wing-aileron-tab system, computational details 

of typical forms of solution, and en illustration of the use of resonance 

test modes in flutter calculations. 
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1 Introduction 

In 19@+9 a series of flutter courses was held at the R.A.E. for 
the purpose of intro&zing to technicians in the Aircraft Industry the 
methods used in making flutter calculations. A memorandum" was written 
at the time describing these methods. Although the memorandum was 
necessarily limited in scope, it has proved to be of considerable value 
as an introduction for those new to the subJect and as a reference to the 
methods typically employed in flutter investigations. It has therefore 
been decided to re-Issue It as a formal Report for general use. A fern 
detailed improvements have been made, and parts of the original that 
related directly to the broader purpose of the flutter courses have been 
omitted. 

This Report, as it stands, 1s wholly concerned with the teckques 
used in calculations for predicting theoretically the flutter character- 
istics of an aircraft. The techniques described are typical of those 111 
current use in this Country. The Report, however, does no more than 
illustrate the basic principles involved. It does not give a realistic 
picture of the comprehensive nature of the flutter calculations normally 
required, nor does it describe all the detailed computational methods 
that may be employed. . 

The general basis of flutter oalculations is first described. This 
is followed by two typical analyses illustrating the application of the 
basic analytical approach to the predlction of wing-aileron flutter and 
wing flexure-torsion flutter. In Appendix I expressions are given for the 
aerodynamic derivatives of a vnng-aileron-tab system frrr two-dimensional 
incompressible flow. Appenduc II amplifies the description given of the 
forms of solution in the typical analyses. Appendix III describes the 
interpretation and use of ground resonance test results, and illustrates 
the use of resonance test modes in flutter oalculatlons by a typical cal- 
culation for fuselage-elevator flutter. 

No attempt is made to provide a bibliography of flutter literature, 
which is not required for the restricted purpose of this note. The few 
references quoted are given as footnotes to the text. 

Acknoviledgements are made to Mr. E. G. Broadbent and Mr. W. G. Molyneu~ 
for the calculations of Appendix III and for their assistance in writing 
this Appendix. 

2 The Basks of Flutter Calculaticns 

The physical and mechanical aspects of flutter have been well 
described by earlier writers on the subJect**, and it is not proposed to 
deal any further with these aspects here. Suffice it to say that the 
vibrating aeroplane is simply an elastic structure supporting certain 
masses (that is, having certain inertia propertles) and subjected to 
aerodynamic forces of an oscillatory nature. There are therefore two main 
aspects to be considered: the elastic-inertia characteristics of the 
structure and the nature of the aerodynamic forces. 

* R.A.E. Teohnicd Memo. Structures 8. "The Technique of Flutter 
Investigations." 

** W.J. Dun&n. "The Fundamentals of Flutter", R.A.E. Report No. 
Aero. 1920. 

P.B. Walker. "The MechanIcal Aspect of Flutter". Aircraft Engineer- 
ing, February, 1938. 
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On the elastic-inertia side the problem may be considered in relation 
to that of the natural oscillations of the structure in vecuo, where each 
principal oscillation has a frequency and mode associated with it, the 
mode being the shape of the deformed state of the structure relative to 
its equilibrium position. For all but the simplest structures it is 
generally impossible to obtain an exact solution of the mode, except by 
iteration, and it is oommon pactice tc prescribe sn arbitrary mode on 
the basis that if it is a reasonable approximation to the true mode then 
the frequency will not be ur&ly affected. Better still, a combination 
of several arbitrary modes may be prescribed, with amplitude ratios to be 
determined along with the frequency. The structure is then termed semi- 
rigid in the sense that it is allowed to deform only in a limited number 
of defined ways; or, in other words, it has a limited number of degrees 
of freedom, The term "degree of freedom" . is fairly self-explanatory but 
for the sake of clarity may be defined as a prescribed deformation or 
movement of the structure whose amplitude in relation to that of q 
other degree of freedom is not assumed but remains to be determined. 
The mode associatedwith a degree of Freedom may conveniently be termed 
the freedom mode, 

In flutter the structure is likewise treated as semi-rigid and the 
major problem on the elastic-inertia side is to know how many and what 
sort of degrees of freedom to consader in order to provide a satisfactory 
representation of the true mode in the critical flutter condition. J%r a 
complete flutter investigation on any particular aeroplane the number of 
degrees of freedom considered should be large enough to cover all possible 
deformations of the various components as well as control surface move- 
ments and bodily movements of the aeroplane as a whole. Assuming that 
such a process 6rere practicable, it would even so be found generally that 
in any critical condition a certain few of the degrees of freedom pre- 
dominated, their amplitudes being much greater than those of the remainder: 
the resulting flutter would then be designated as being of a particular 
"type" , involving those components associated with the major degrees of 
freedom. Wing flexere - aileron flutter for instance is the flutter which 
arises when the wing flexural mode and aileron rotation predominate: 
fuselage bending and elevator rotation would similarly result in fuselage - 
elevator flutter. It is therefore generally possible to investigate any 
particular type of flutter mith a relatively small number of degrees of 
freedom. For so-called "classical" flutter, with which this Report is 
concerned, at least two degrees of freedom must be present: although 
each degree of freedom would separately give a damped oscillation the 
various couplings that exist between the twc can result in an unstable 
oscillation when combined together under certain conditions. The labour 
involved in a flutter calculation increases greatly with the number of 
degrees of freedom, and for the average routine investigation the prac- 
tical limit is set at four. For most routine work, however, two to four 
degrees of freedom are generally adequate. 

On the aerodynamic side the forces are expressed in the form of 
derivatives, which define the amount of the,perticular force concerned 

' per unit displacement, velocity, or acceleration of the particular motion 
concerned, the motion being relative to the equilibrium position. The 
aerodynsmic derivatives used in flutter prediction sre mainly theoretical 
values based on the following assumptions:- 

(a) thin aerofoil theory 

(b) perfect fluidwith two-dimensional irrctational flow 

(c) simple harmonic motion of the surfaces. 
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A complete list of tw~-dlmcnsx~~.l incompressCde flow derivatives 
is given in Appendix I'* for a wing-aderon-tab combination: it 1s 
equally applicable of course to a tallplane-elevator-tab system. Motion 
of the system is represented by the displacement of some reference point 
on the wing chord together with rotations of wing, aileron, and tab about 
the reference point and hinge posxtlons respectively. In Appendix I the 
leading edge is used as reference point and the derivatives are termed 
"leading edge" derivatives. The form of the expressions for the aero- 
dynamic forces is explained in Section 3. It zs to be noted that the 
damping and stiffness derivatives (such as e; and &s) which relate to 
velocity and &s&cement are functions of the frequency. 

To use two-dimensional derivatives as they stand would be tantamount 
to assuming that the aerodynsmic forces on any chordwise strip of the 
w-ing are the same as of the strip were part of a uniform Wang of infinite 
span undergoing the same motion as the strip. For practical winga such 
sn assumption is of course not Just/fied, and It is usual to apply approxi- 
mate correction factors to the two-dimensional derivatives, based on the 
knann values of the static derivatives (a,, a2, b,, b2, etc.) for the 
complete three-dunensional wing. For wings of low aspect ratio more 
accurate values are required, and experimental and theoretical work is 
in hand to'this end. 

Elastic-inertxa and aerodynamic effects are combined in a flutter 
calculation by straightforward application of the Lagrangian equations of 
motion for a non-conservative system to the crItical flutter condition in 
which the motion is simple hsrmoruc, representing transition from a decay- 
ing to a growing oscillation. Typical ternary and binary analyses involv- 
ing three and two degrees of fhedom are gxven in detail in Sections 3 
and I+ respectively. Simple uncoupled freedom modes are used for the wing 
deformation in these analyses, one of pure flexure and one of pure torsion. 
Modes of this type are often termed "arbitrary" modes in contrast to the 
normal ma&s associatedwith the natural oscillations in vacua or m still 
air, which as discussed later-may dsq,be used for the fl-eeaom modes: in 
actual fact of course any freedom modes usea with semi-rigid structures 
are essentially arbitrary. The distinction has arisen because in many 
cases normal modes do provide a better approximation to the flutter mode 
than do the simple arbitrary modes, and also because they provide a stiff- 
ness representation that is more accurately related to the freedom mode. 

The ternary analysis is given first, from which the binary analysis 
in Section 4 follows very simply by making the omissions appropriate to 
the deleted degree of freedom. This procedure is aa0ptea purposely in 
preference to a detailed binary analysis followed by a rather complicated 
presentation of the effect of introducing a third degree of freedom. 

An unswept wing is assumed in the analyses, inmhich it will be noted 
that the flexural axis is taken as the referenoe axis for the wing motion, 
involving a transformation of the leading-edge derivatives. If the analysis 
is applied to an ad hoc calculation, which is primarily the intention, then 
the unknamns are the frequency of the oscillation ana the airspeed in the 
critical flutter condition. The solution of the equations, of motion is 
complicated by the dependency of the &ping and stiffness derivatives on 
fY~USnCY. General forms of solution described in Sections 3 ana 4 are 
given in greater detail in Appendix II. It should, inc~aentdly, be 
mentioned that the notation used for-the typical analyses and throughout 

* Values for a wider range of tab chord ratios are given by Minhinnick in 
R.A.E. Report No. Structures 86. Theoreticsl values of two-dimensional 
subsonic compressible flow derivatives are given by &diinnick in 
R.A.E. Report NO. Structures 87. 
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the report generally is by no means universal: various systems of notation 
ere used by dlfferent wonkers, so muoh so in fact that serious considera- 
tion is being given to the possible adoption of a universal system. At the 
moment, however, the notation used mttis repzrt will be found adequate for 
the immediate purpose. 

Finally, in Appendix III., an outline 1s given of the usefulness of 
resonance tests in flutter investigations. The e.nalysiS of resonance 
tests 1s by no means a cut-and-dried science, being still at the stage 
where tiowlecjge grows with experience. Resonance tests have, however, 
more than once indicated possxbly dangerous modes conducive to flutter and 
have thereby enabled preventive measures to be taken in time. They are 
partioulsrly useful, of course, in ca,ses where no specific theoretiesl 
flutter investigations have been made in the design stage and reliance has 
been placed on the standard stiffness s+ inertia criteria, which do not 
pretend to cover ell eventualities. Any flutter calculations made as a 
result of resonance tests will generally use the,sesonenoe modes, which 
will be t&e normal modes of vibration as tistinct from-"arbitrary" modes. 
This makes no difference to the farm of the apalysis:- a binary calculation 
similar to that presented in Section 4 rmght for instance be done either 
ss given there using two arbitrary modes, one of pure flexure and one of 
pure torsion; or it might be done using two normal modes, each of which 
would involve both flexure and torsion, There ere certain advantages in 
using normal modes, which may, resonance test? apart, be suffici@.in 
some cases to warrant a theoretical estimation of such modes for use in a 
flutter calculation, In view of the interest attache&to normal mode cal- 
culations, a typical investigation (3.n this case of fuselage - elevator 
flutter) is given at the end of Appendix III. 

3 Typical Ternary Anelysis. Wing Flexwe and Torsion'mith Free Aileron 

. ' The case envisaged is that of the wing oscillating in flexure.and in 
torsion, together with accompanying oscillation of the unconstrained 
aileron: The wing motion, like that of the aileron, is s+symmetric. 

.Fuselage immobility is assumed, or in other words there is no rolling 
motion of the aeroplane as a whole, so that the wing motion is due entirely 
to structural'distortion. Fuselage mobility could be included as an extra 
degree of freedom, making the calculation a quaternary one. 

The analysis is based on the application of the standed Lagrangian 
equations to the case of the wing and aileron in the crItical flutter 
condition, oscdlating with constant smplltude or simple harmonic motion. 

The Lagrangien equations are a statement of the energy relationships 
of a dynamical system whose configuration in space is determined or can be 
expressed by a number of so-called "generalised" co-ordinates q , 92, etc. 
In the simple case of a rigid body with a single translational degree nf 
free&m the equations redme to the well known Force = Mass x Acceleration. 

In general, the Lagranglan equation appropriate to the Co-ordinate 
s, is 

a aT +av, 
Z ’ T&I as, =F (1.f) 

where T and V, are the kinetio and petentlal energies of the system snd 
G is the "generalisea It force appromate to the co-ordinate q, (see 

later). 
aT 

Strictly speaking a further term - - should be included in 
aqr 
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equation (1.1) but as small displacements are assumed for which the 
kinetic ener‘m is a function only of the velocities & and not of the 
displacements qr the term is here omitted. 

To apply the equations to the crltux.1 flutter condition the wing- 
aileron motion is represented by conveniently chosen co-ordinates and the 
vsr~ous terms in the Lagrangian equations evaluated in order. 

Wing-tileron Motion (Arbitrary Modes) 

I 
Centre 

Reference 
Section 

I- hc j, (I-h)c 4 

L.E. 

Axis Hinge 

The flexural axis is chosen as the sxls of reference and the wing 
motion represented by a downward displacement z of thu axis and a 
nose-up rotation a abcut the axis, both relative to the equilxbrium 
position. Arbitrary mdes 

z = z c * f C-4 
(1.2) 

a = a 0 * F (4 

are chosen, so and ac being the values of z and a at the reference 
section, where rl and the displacement functions f and F are all unity. 
Co-ordinates q, and q2 are then chosen to represent the displacements 
20 and ao at the reference section as follws: 

(1.3) 

Combining (1.2) and (1.3) gives the wing motion in terms of the.genera.lised 
cc-ordinates as 

(1.4) 
a = LF.q2 

cm 
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For the aileron motion &he angle relative to the wing is likewise speci- 
fied by the angle at the reference section, &. If, as is quite common, 
the aileron is assumed rigid tors+onally, then the local aileron angle is 
given by 

5 = SO+a -a 
0 

If iZo is represented directly by a third 
(1.5) becomes 

co-ordinate q3 = $ , co, 

E; = ;.q3+ $ (1 -F) . s, (1.6) 

The aileron mode is thus a function of two of the three co-ordinates. 

In the critical flutter condition the displacements zo, Q,.Q, 
and therefore the corresponding co-ordinates 91, 92, q3, vary sinu- 

2 soidallywith time. If 2~ is the fkequenoy of the oscillation in cycles 

per seoond, then 

;;i 42 -=-= i2 = -‘2 V2 

s? 42 93 

p = - lam2 . - 

%I2 
(1.7) 

? 

w is the local frequency parameter 7, and o+,, the mean tiequenoy 

parameter corresponding to the mean chord cm. V is the airspeed. . 

( 
a aT 

Inertia Coefficients from term at. ail, 
> 

For an element of mass 6m situated in the wi 
T 

a distance x behind 
the reference axis, the downward velocity is (; + xa . For a similar mass 
in the aileran a distmoe x1 behind the hinge the velocity is 
( k+xk+x&). 

The total kinetic energy for the half-dng is then 

T = C$ (l+x&)'&n+ C$ (~txk+x,k.)2Sm (1.8) 

wing aileron 

Substituting for z, a, and C from (1.4) and (1.6) gives 

T = F$)26m 

2 
t 2$ xFtx,(l-F)]g+x &;1 6m 

> 
(ICO' ' 

aileron '%I3 

that is, a function of the three cc-ordinate vekdties 4, &, and $, 
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For the equation in q., the appropriate inertia term is 

a ar 
Z’-;- = 

9 
r, (ef;i,+x 

wing 

t c 
( er;;l +?+x,(l-F)] fif.bm 

aileron 

= - pe3v2 (a q + a 
12 1 ,z2+a dwm2 9 

13 3 
(1 .I01 

where, by using equation (1.7)) the non-dimensional inertia coefficients 
are obtained as 

1 
Y? = - 

P %I* i 
f2 m . aq 

1 
92 = - 

p %I3 [i’ fF m ;; . an + 
i 

f(1 - F) m i;, . drl 
I 

1 

a13 = - 
p %I3 i 

f m’z, . all 

m is the mass per unit span (including the aileron), m G the mass moment 
about the referenoe axis per unit span (including the aileron), and m x., 
the mass moment about the hinge per unit span (alleron only). 

Similarly, for the equations in q2 and q3 the appropriate inertia 
terms are 

a aT 
&‘;i, = 

- p 3 v2 (a 21q1 + a22% + “25~~3) w,’ 

a aT 
Z’G = 

- p e3 v2 (a 3191 + a32% + a33q3) @m2 

(1.11) 

with inertia ooeffioients 

a21 = al2 

1 
a22 = - 

?ml? 
4 

. ant2 F (1-P) %2. aq + (1 -P)* q2. av 

P %I I 1 
1 2 

a23 = 2 ' % (1 - F) mK * . d-q ' 
1 1 
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a31 = 93 

1 

i 

2 
a33 = pd,4 "K1 - a71 

us? is the mass moment of inertia about the reference axis per unit span 
(including the aileron), n&l2 the mass moment of inertia about the hinge 
per unit span (aileron only), end 1nK2~ the mass produot of inertia 
.E x xi &m about the reference axis and hinge per unit span (aileron only). 

Stiffness Coeffiaients ‘( from term av, 
a% > 

The potential energy stored in the wing during displaoements so and 
a0 is equal to the work that would b6 done by any system of staticelly 
applied loads which produced the same wing deformation. By the semi-rigid 
principle this is equated to the work done by oonoentrated loads which, 
applied at the reference section, produce the same displacements so and 
a0 at the referezoe seotion. 

In terms of the standard flexural and. torsional stiffnessea 84 and 
mg appropriate to the referenoe section, 'the~potentiel energy stored in 
the half-wing can then be expressed as 

2 

'e = +e 
0 
5 2 

4 e + & me a0 

or, substituting for so and a, from (1.3) 

‘e I $e$c42 + $ mg 452 
2 %!2 
% 

Since the aileron is uncondzxined there is no elastic stiffness associated 
with it and consequently no additional energy stored in respect of the 
aileron notion. Equation (1.13) therefore gives the whole of the potential 
energy stored in the wing-aileron system. 

For the equations in q, and q2 the appropriate stiffness terms 
are 

av 
2 = 4$ p1 = p e3 j! . e,,¶., 
a? 

av 2 e2 = m 
aq2 

e2'92 = 
%l 

P 4' g . e22% 

f'mm which the non-dimensional sti.fYnass coefficients QJW obtained as 
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% 
ell = 

p e3v2 

me e* 
e22 = 

71 

p t3v2 ' ",2 = -i- 

(1.16) 

(1.17) 

where R, the stiffness ratio = 

av 
For the equation in q3 the stiffness term -E 

aq3 
is zero. It should 

be noted that it is possible, as tith the inertia coefficients to have 
total of nine stiffness coefficients. Cross stiffness coefficients 

a 

e,s b * s) are however elaminated by the choice of flexural axis as the 
wing reference axis and by the absence of interaction between wing and 
aileron motions. The direct stiffness coefficient e33 associated with 
the aileron motion is zero in this case, but would not be'so, of course, 
if the aileron were constrained by holding the stick. 

Aerodynamic Force Coefficients (from term Qr) 

The l'generalised" for?e Qr represents the externally applied loads 
appropriate to the co-ordinate q, and is defined as follms. If due to 
a small displacement 6qr the work dc[ne by the applied loads is 

then the generalised force is Qr = k . 
Mr, 

@r 

The applied loads in this case are the aerodynamic loads which on an 
osoillatins aerofoil consist of contributions due to inertia, damping, and 

the reference axis, the lift stiffness. Using derivatives appropriate to 
force L, for instance, is per unit span, 

L 
- = (40%; + iudk + ~z)~+(-cu2 
,.a 

+ (-CL? 8 E + iu32 + $$ 5. 

The three maJor terms in z, a, and E represent the contributions due to 
these three constituent motions and the interpretation of the form of these 
terms can be illustrated by the first, the term in s. Since z is vsry- 

mng sinusoiddllywith time at a frequency of g cycles per second, or in 

exponential form is proportional to eipt L" 

are respectively equal to ipz and -p2z: 
then velocity and acceleration 
and therefore proportional to n -- 

iwe and -WCs, P" w being the frequency parameter y . The three terms 

in the bracket therefore represent in order the lift due to translational 
aoaeleration (inertia), velocity (damping), and displacement (st;ffness), 
with the appropriate derivatives @, 6% and AZ. There is in the present 
case a total of 27 derivatives, comprising inertia, damping, and stiffness 
derivatives for each of the three relevant forces in respect of each of the 
three displacements. 
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The three forces concerned, that is the lift L, moment about the 
reference axis M, end hinge moment H, may conveniently be written in 
the following shortened notation as 

L -2 - = Lz.,+La.atLE;.5 
p cv2 

M 

p &I2 
= Ms . 2 + Ma . a+M 5' E 

i' 

(1.18) 
c 

.H 
= Hs+H,. !liH E;' 5 

J 
p c2v2 

where the complex derivative L, - -w2 4; + ime; + es, andsimilarly 
for the other complex derivatives. 

The work done by the aerodynamic forces on a uut span strip during 
displacements 62, 6a, and SE 1s 

^ ' 

&7 = -L.&ztM.6atH.6C . 

and by substituting (1.4)) (1.6) this is obtained in terms of the 
co-ordinate increments as 

SW = - ef L . "91 ++d. 6s, + 
, I 

$H.6q 3 (1.19) 

where M' = M+v.H. (1.20) 

Integrating spsnwise over the wing gives the totsl work done during 
increments m 91, 92, and q3. The "generalised" forces appropriate to 
the three co-ordinates then follow automatically by definition as 

6-q 
i 

; Ql = - = - 
sql J h2fL. dV 

SW2 
Q2 = q- = 

e2 c, F M' . dv (1.21) 
2 

Q3 = “‘H.dq ,j J 
'm 

It remains only to substitute for L, M' and H snd by expan&an to 
obtain expressions for the three generalised forces‘in terms of the 
co-ordinates q1,-q2, and q3. 
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The first step is to obtain expressions for L, M', and H in terms 
of 91, 92, 93. , _ 

Substituting for z, a, and 5 from (I.&), (1.6) in equation (1.18) 
for L gives fInally 

where 

L - = Ls s fq, t L,' 
PCS, 

$Fq2 tLg . ;q3 

L, 
t = L, + y LC (1.23a) 

M and in the same way exactly similar expressions are obtained for - 
H and - with compound-complex derivatives 

p CA2 

p 02v2 

Ha ' = H, + yHt; 

(1.23b) 

. 
Substituting these new forms for M and H in equation (1.20) then gives 

M' - = Ms' . 
e 

PC29 
- fq, 8 Maw . ; F% + MC' . e . q3 (1.24) 0 

where M' z = Mz + y HZ 

(I .24b) 

Cl .%I 

The second and final step is to substitute the new expressions for L, M' 
and H in equations (1.21) to obtain the generalised forces. Since L, I? 
and H have been reducd to linear functions of the co-orhnates 
and y3. the generalised forces mill also $~e obtained in this form. q1;na 

coefflolents of qj, 92, and 43 in L, hl and H in every case include 
a complex derivative and the corresponding coefficients in the generalised 
forces will therefore consist of inertia, dsmping, and stiffness conixi- 
butions, This can be illustrated by consdering the coefficient of qj 
in the expressjon for the force &I. By substituting (1.22) in the first 
of equations (1.21) it is seen that the term in qj is 

replacing the complex derivative L, by its basic derivative form. The 
term in q, can then be written as / 
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- pd? (-y,,wm2 + b,, iurn + c,,) . 9, 

the mean frequency parameter u+,, replacing the local end variable para- 
meter 0. The Y, b, and c coefficients represent respeotively the 
inertia, &ping, and stiffness contributions to the generalised force in 
respect of the particular co-ordinate, in this case 91. The suffix 
notation employed for the coefficients is similar to that used for the 
strmtural inertia and elastic stiffness coefficients, the numbers 'rs' 
after a coefficient signifting the contribution to the force Qr in 
respect of the co-ordinate qs. 

The three generalised forces can therefore be written generally as 

Qr 
3 

- = - 

PG* ): 
(- Y,, wm2 + b,, i", + prs) q, (1.25) 

s=l 

with r having values 1, 2, and 3. The total number of aoefficients is 
thus 27 end their vslues are found by equating corresponding terms in 
equations (1.21) and (1.25). 

A pazlnt t* note here is that any compound complex derivative is con- 
veniently expressible in terms of inertia, damping, and stiffness contri- 
butions involving appropriate derivatives. For instance, (1.23a) can be 
written- 

ea’ 
1 -F = hat- 

F % 

. . 1 and similarly for the compound dexivatlves -8;' and ea In other 
words, the compound inertia, damping, and stiffness derivatives are 
obtained from expressions exactly similar in form to those for the oome8- 
pollding compound-complex dyrlvatives. To illustrate the point further, 
the wing derivative hh is, from (I.*%), 

h;' 1 -F = h&t- 
F hi 

and the inertia derivative rn;' ls, from (1,2&b), 

"E; " 
= $' 

1 -F I t -h" 
F a 

It is not necessary to write down the complete list bf 27 force coefficients 
since for any given order there is a simple relationship between the y, 
b, and c coefficients of that order. The nine c coefficients are as 
follows: 
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c2, = - J 

C31 = - %hs. a77 cm 

!che b and y coefficients for any given order are obtained from the 
c coefficient of the same order by Including additional factors 

c2 2 ma - 
%I* 

within the integral and using the appropriate damping and 
cm 

inertia derivatives. For example, for the order '12' the coefficients are: 

72 = 

2 

h12 = : f F 8;' . av 
2 Onl 

3 

32 = 
"fF6;'. an 
%I3 

To evaluate the force coefficients the basic derivatives are first 
0alcdated. -A complete list of these is given in Appendix I*, where it 

*The basic derivatives given in Appendix I are two-dimensional derivatives 
appropriate to the leading edge as reference axis. Transformation formulae 
are also given from which corresponding derivatives may be obtained for 
other reference axes. - 15 - 



will be seen that the dsmplng and stiffness derivatives are functions of 
the local frequency parameter w and can therefore only be odoulated for 
a given value of the mean frequency parameter w,, from which the looal 
value is obtained as w = mm 0 c 

cm' 
From the basic derivatives follow 

the oompouncl derivatives snd finally, by spsnwise integra%ion over 
the half-wing, the coefficients themselves. Since the b and c coeffi- 
cients are derived from damping and stiffness derivatives respeatively it 
follows that they also must depend upon the value of mm. 

Solution of the Equations of Motion 

The Lagrsngisn equations can now be written down directly from the 
general equation (1.1) with r successively equal to 1, 2, and 3. The 
first equs.tFon with r = 1 is for instance obtained by substituting (1.10) 
for the inertia term, (1.14) for the stiffness term, and (1.25) with r = I 
for the force term, and the resulting equation is 

c - %I + Y,,) wm2 + b,,imm + c,, + e,, 
3 

q, 

+ - (al2 + Y,2) urn2 t b12iii + c,~]$ 

+ - (y3 * Y,~) “‘,’ + b13iwm + c13 
3 93 = ’ 

By a similar proaess the two remaining equations are obtained. The oamplete 
set of equations may conveniently be written as 

91 + 4 91 + $2 92 + $3 93 = O 

$, ~1 + C622 + e22) % + b23 q3 = 0 (1-N 

where in general 

6 = i a rs ( re * 'rs) 'm2 + brs iwm + Ore 

or 6 E rs (ars + yr,) x2 + brs h + cre , 

the symbol h being used for the imaginary quantity iWm. 

Equations (1.26) are the equations of motion for the critical flutter 
condition, linear in q, q,, and q3, viith complex eoe~eients. 

E-t% q , 92, ma q3 gives the determin+ntal equation 
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6 + 
11 ell' 

6 
12' 

6 
13 

4 %p 6 22 + e22' 6 23 

&31 ' 6 32' 633 

= 0 (1.27) 

which is the relationship that must exist between the coefficients in the 
criticdl condition, Speed and frequency are the variables in (.1.27), whioh 
when real and imaginary parts are equated to sero provides two equations 
for the solution of thqse quantities; but the solution is complicated by 
the form in which the variables occur. Excluding compressibility effects, 
speed occurs only in the stiffness coefficients and e2p The 
frequency parameter y,, however occurs explicitlT?In the form of the 6 
ooefficients and Ynplicitly in the values of the force coefficients *b 
and c. There are two possible methods of solution. 

In the first, which might be termed the "direct iterative" method, 
(1.27) is expanded in the form of a palyn~mzKt in X to the sixth power 

PO A6 + PI 
A5 + p2 k + p 

3 
9 + p 

4 
A2 +p5hq'= 0 (1.28) 

where the coefficients 
inertia, stiffness, 

po to p6 are real functions of the original 
and force coefficients. 

rmaginary parts of (1.28), 
Equating to zero the real and 

involnng even and odd powers of A respectively, 
then gives the two real equations 

- PO urn6 t p2 
4 

wm - PJ+ urn2 + Pg 

4 2 
PI wm - P3 urn + p5 

(1.29) 

from which @m can be eliminated to give an equattin which, after substi- 
tuting ell = Re22 from (1.17), resolves itself into a sextio in e22, 
the coefficients of which are functions of the inertia and force ooeffi- 
cients (a + Y), b and c. Theoretically, for an assumed value of the 
frequency parameter q, the b and c coefficients, and hence the 
coefficients of the sextic, could be evaluated and the sextlc solved 
directly for e22 and hence for the speed from (1.17). The assumed vslue 
of !+a is then checked from (1.29) and if different the process repeated 
until reasonable agreement is obtained. In practice this method is 
unsuitable because of the sextic solution. 

The dare& solution of the sextic can of course be avoided by adopting 
an~indirect solution of equations (1.29). For a given speed, which with 
an asbmed value of wm determines the velues of the p caeffiaients, the 
secbnd of equations (1.29) can be solved as a quadratic for "m2 and its 
value substituted in the left-hand side of the first of equations (1.29). 
Repeating for a range of speeds, the speed for which the left-hand side of 
the first of equations (1.29) becomes zero can be found by interpolation. 

In the second method, which in contrast to the first might be termed 
the ~~indirect non-iterative", (1.27) is expanded as a function of the 
stiffness coefficients ejl and e22, giving 
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I61 + 31 ell + a22 e22 + 633 ell e22 = O (1.30) 

where 161 is the determinant of (1.27) with e.,l and e& omitted, and 
f& is the minor in (6) of 4-s. 

Equating real and lmaginsry parts of (1.30) to zero then gives the 
two real equations 

X, + R, e,, t R2 e2* + X3 e,, e2* = 0 

(1.31) 
S, t S, e,, t S2 e22 + S3 e,, e22, = 0 

where'the R and S coefflclents are functions of the original a, Y, 
b and c coefficients and the frequency parameter Wm. For a given 
value of wm the R and S coeffxlents can be evaluated and equations 
(1.31) solved for elq and y2, and hence for the stiffness ratio 

R=~. This process involves only the solution of a quadratic. The 

procedure is therefore to obtain values of e,,, 92, and R for a 
range of values of Wm and to plot either e11 or e22 against R. 
For the actual vslue of R the corresponding speed snd frequency are then 

I obtained directly from the cuTye. 

The above general forms of solution are s.mplG'ied in greater detail 
in Appendix II. 

Simplified Aileron Mode 

For the purpose of a typical calculation same simplification is 
effected if instead of assuming the aileron torsionally rigid the ailsron 
angle is assumed constant along the span and related directly to the 
co-ordinate q3 by 

(1.32) 5 = L13 
%I 

Comparing this with (1.6) for the torsionally rigid aileron, it-is seen 
that the simplification involves the deletion of all terms containing the 
factor (1 - F) in the evaluation of the coefficients. In particular, the 
compound derivatives in the integrals for the'aerodynsmic coefficients 
beoome the basic derivatives; for example, ea' becomes 8,. 

4 T.ypical Binary Analysis. Winu Flexure and Torsion 

T&e analysis for this case is obtaihed directly from that of Section 3 
by simply omitting all those effects appropriate to the aderon motion. 
This means the omission of the coefficients of order 'z-3' or '3s' and the 
deletio; of all terms containing the factor (1 - F) from the remaining 
ooeff.iciepts. 

The equations of motion are now two and may be wrItten down directly 
from (1.26) as 

- la - 



(2.1) 

the corresponding determinantal equation being 

6 
11 + ell' 612 

= 0 (2.2) 

%I ' 622 + e22 

In this case the "direct iterative" method of solution 1s comparatively 
simple and is the one usually adopted for an 'ad hoc' determination of 
critical speed. Expanding (2.2) gives 

P, AL + Pi ?2 + P2 x2 + "3 h + P4 = 0 

which in turn gives rise to the two subsidlsry equations 

P, wm& - P2 wm' + Pj+ = 0 

2 
- P, wm + P3 = 0 1 

Eliminating mm from (2.4) gives finally 

2 2 
P, P2 P3 - PO P3 - P, P& = 0 

(2.3) 

(2.4) 

which may be written alternatively as the ‘test determinant 

4 pi PO O 

P3 P2 P, = 0 (2.5) 

Coeffioients p. to p4 are as before functions of the inertia, stiffness, 
and force coefflaidnts. Substituting e,, = Re22, p2 and p3 become 
linear functions of e22, p4 a quadratlc in e22. pa ma are 
functions of inertia and force coefficients only. On expansion 7 2.5) then 
becomes a qudratlc in e22, Instead of a sextic as in the case of the 
ternary. 

For an assumed value of wm the coefficients of (2.5) are calculated 
snd the equation solved for e22. 

checked from mm2 = 9 
The assumed vslue of W, is then 

PI ' 
the second of equations (2J+), and the process 

repeated until reasonable agreement is obtained. 
obtained from (1.17) as 

Finally the speed is 
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v = 1 

J 

me (2.6) 
Cm P es22 

The caloulation is fairly‘insensitive to the value 'taken for Wm, so 
that iteration is quite often unnecessary. As an indication, if the 
initial value taken for w, is 1.0 the calculation need only be repeated 
if the check velue is less than 0.6. 
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APPENDIX1 

Aerdynamx Derivatives 

(Two-dlmenslonal, incompressible flow) 

The v&ng mot~on.snk forces are referred, in the first-instsde, to 
the leading-edge-as refesence point. In the accompanying sketch Forces 
and momerits are represented by double-headed arrows. 

Equilibrium position -- 
-T 

-_---- 

fL 
A i, 

! 
z’ 

H 
M a i------i-- Wing 

If w is the frequency parameter-the fames are expressed as 



M - = (-2 
pcv 

m; t iWmi + mz) $ + (-m* m; + iwilt, t m,)a 

+ (-co2 rni + iWr+ + mE)E + (-cd2 rni + imb + me) 8 

H -= 
pcv 

(-CO* h; + iwh; + hZ) 5 + (a* h; + iwh& + h,)a 

+ (-co* hi + iahi + hg)c + (-u2 ht; + iohb + h&P 

T 
-= 
p&v* 

(-3 t; + iwt, + tz) 5 + (43 t; + iwt; + t,)u 

+ (-z ti;’ + iwti + t$ + (-co* t; + icuti + t&l3 

The coefficients are then 
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9 
-mh’ = -x 

128 

-% = '/16 x(3 + 3A - 4B/m) 

-In, = l/16 x(4-A + PB) 

-m” = 
c ‘/& (Q4 + 97) - ‘/32 Ea (2*3 + e6ps, 

“k = '/16 (m3 t Q6 - 4 E~ es) + j/i6A(Q2 - 4 Ed a,) - $B m,/w 

-Dl 
E 

= $ a5 + $ A a, t j/16 UB (m2 - 4 E~ @,) 

-m" a 
P '/a ('k4 + '+' - l/32 Et (2 'h3 + '+6) 

-me 
8 = l/16 (‘b3 + $6 - 4 Et ‘$1 + '/16A (‘h2 - 4 Et t’,) - $B t’,/” 

-m 
P = 4 q5 t 3 A !J, + l/i6 WB (q2 - 4 ct $1 

-ha. = 
e '/16 e4 - 4 ca m3 

-h. zz 
z +A (as - 4 E, g3,) 

-h z = &oB (G8 - 4 ea g3,’ 

-hh’ = '/64 (a4 + “i’ - l/32 Ea (2*3 + '6) 

-h& = l/16 (e9 - 4 sa Qj2) + l/16 (3A - @/a) (es - 4 “a e3,, 

-ha = l/16 (4n + 3d (a8 - 4 ca *3,) 

-hi’ = 1 (m,2 
64~ 

- 8 ca G37 + I 6 E,’ a,+ 

-hE, = 1 [*,, - 4 Ea ($0 + m36, + 8 Ea2 @35 
167~ 

+A (a2 - 4 Ea *,)@ - 4 Ea a3,) - bB ‘+& - 4 Ea @@“I 
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-hP = &[Xg-2 y3+2-4(x(5-2 Eaxq) 

+ WB [ x7 - 2(&, X2 + et X6) + 4 Ea Et X,] 1 

-t; = 'A6 $4 - $ et $3 

-t; = $A(Jra-4 ct q3,, 

-t, = -$wB (‘b8 - 4 Et tj,’ 

-t; = ‘/a of4 + $1 - l/32 et (2$3 + ‘t6, 

-t& = ‘/26 (JI, - 4 et $32’ + '/I6 (3A - 4B/d (q, - 4 et ‘k3,) 

-t , = '/16 (U + 3wB) ($a - 4 ct e3,, 

-t;: = .& [ xi0 - 2(Ea X,8 + Et x5’ + 4 Ea et x,4l 

-ti; = &E$- 2ba xg + Et x4) + 4 Ea Et x3 

-0 (x6 - 2 E,x,,/wl 

-% = $Xg-2 E~X~+~A(X~-~ EtX1!tWBIXI-2(EtX;!tEaXg) 

+ 4 &a Et x, I 1 

-ta = & (@>2 - 8 et $37 t 16 et 2 J;7) 

-ti 2 T?Q;; [ %I - 4 % o,() + $36) + 8 ‘t2 $5 

+ Abk2 - 4 Et $,)(‘& - 4 Et $,I -4-B @,($a - 4 et q/w 1 

-% = $x ['4*,() - 8 Et G3s + 4.A “, ($8 - 4 Et q3,, 

+ .B(‘h2 - 4 et ‘h,,($ - 4 Et e3,, 1 

Transformation to alternative reference axis 

Derivatives for an alternative reference axis may be obtainea fram 
those for the leading rage as reference axis by simple transformation 
fO?CTlNl~. If the alternative reference axis is situated a distanae he 
behind the leading edge and its displaoem&nt is z, then the displaoement 
at the leading edge is given by 
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and the moment about the alternative reference axis 1s 

E(h) = M + hcL 

Making these substitutions, the forces referred to the referenne axis at 
hc may be written, using the complex derivative notation employed in 
Section 3, as 

L(h) -= 
PC? 

L,(h) f * L&da c L&h)C + L&h)@ 

with similar expressions for M(h), H(h) and T(h), where 

L&h) = Lz, L,(h) = La - m,, L&h) = Lc, L&h) = Lp 

\ 
M&h) = M, + hL,, Q(h) = Ma - ml, + hL, - h2L z 

' M&h) = ME it hLE, M&h) = MP + ham 

Hz(h) = HZ, H,(h) = Ha - hHz, H&h) = HE, H&h) = Hg 

Tech) =. Tz, T,(h) = T, - hTz, T&h) = T<, T&h) = TP 

Derivatives without the suffix (h) are those for the leading edge as 
reference axis. Relationships between the basic derivatives are the same 
as those above between the aomplex derivatives, e.g. 

4,&h) = 8, - he e 

m&(h) = rn; - hm; + hQa - h*&; 
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Table 1. 

Vnlues of A and B 

/ 
iw : x I I 0 oo:oooo 1.0000000 . 

C 
C 
i 
c 
C 
c 
( 
( 
( 
( 
( 
( 
I 

I 

I. 02 0.9824216 0.0456521 
1. 04 0.9637253 0.0752079 
I.06 0.9450111 0.0979135 
L 08 0.9267018 0.1160013 
1.10 0.9090087 0.1306~~3 
).I 2 0.8920397 0.1425966 
j.16 0.8604318 0.1604021 
I, 20 0.8319241 0.1723022 
L 24 0.8063273 0.1800727 
j.28 0.7833715 O.la48904 
I.32 0.7627719 0.1875659 
1.36 0.7442570 0.1886727 
I.40 0.7275799 0.1886242 
I.44 0.712521'1 0.1877232 
I.49 0.6980579 o.la61940 
I.52 0.6865125 0.1842043 
1.56 0.6752492 0.1818807 
0.60 0.6649711 0.1793191 
1.64 0.6555686 o. 1765929 
3.68 0.6469460 0.1737580 
0.72 0.6390200 0.1708575 
0.76 0.6317179 0.1679~ 
0.80 0.6~~9763 , 
D. 81, 0.6187392 , 

o. 1649840 
0.1620556 

0.88 0.6129575 1 0.1591543 
0.92 0.6075879 0.1562909 
0.96 0.6025921 0.153474c 
1.00 0.5979361 0.1507095 
I.04 0.5935896 0.1480019 
1.08 0.5895258 

1.12 0.5857205 

;W&I 

1.16 0.5821522 0:14oz+5: 
1.20 0.5788016 0.137785; 
1.24 0.5756512 0.1353885 

w x El 

1.28 0.5726853 0.1330545 
I.32 0.5698898 0.1307822 
1.36 0.5672518 0.1285708 
1.40 0.5647596 0.1264189 
1.44 0.5624026 0.1243252 
I.48 0.5601712 0.1222882 
I.52 0.5580567 0.1203065 
1.56 0.5560509 0.1183784 
1.60 0.5541466 0.1165024 
1.64 0.5523$9 0.1146768 
1.72 0.5489774 0.1111714 
1.80 Q. 5459286 0.1078496 
1.88 0.5431533 0.1046996 
1.96 0.5406197 0.1017105 
2.00 0.5394349 0.1002729 
2.20 0.5342148 0.0936062 
2.40 0.5299560 0.0077090 
2.60 0.5264367 0.0824643 
2.80 0.5234957 0.0777759 
3.00 0.5210132 0.0735641 
3.20 0.5108992 0.0697629 
3.40 0.5170845 0.0663173r 
3.60 0.5155155 0,0631816j 
3.80 0.5141501 0.060jl71r 
4.00 0.5129548 0.0576913. 
4.20 0.5119026 0.0552762 

t$: 
4180 

0.5lOlw+3 0.5109717 0.05304821 0.0509871' 
0.5094058 0.0490750 

5.00 0.5087440 0.0472969 
6.00 0.5062799 0.0400039 
a.00 0.5036709 0.0304961 

10.00 0.5023973 o.o2J+5986 
20.00 0.5006178 0,012u+67 

co 0.5000000 0.0000000 
I 
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Table 2. 

values of m 

cos ‘p $1 @3 

0.60 -0.2 2.75195 4.63657 1.96811 2.04138 0.78384 
0.55 -0.1 2.66595 4.09463 1.77046 1.66748 0.89549 
0.50 0.0 2.57080 3.57080 1.57080 1.33333 1,coooo 
0.45 0.1 2.46562 3.06698 1.37113 1.03916 1.09449 
0.40 0.2 2.34923 2.58530 1.17348 0.78475 1.17576 
0.35 0.3 2.22004 2.12814 0.97992 0.56949 1.24012 
0.30 0.4 2.07579 I. 69828 0.79267 0.39236 l-.28312 
0.25 0.5 1.91322 I.29904 0.61418 0.25184 1.29904 
0.20 0.6 1.72730 0.93454 0.44730 0.14591 1.28000 
0.15 0.7 I.50954 0.61023 0.29550 0.07192 I.21404 
0.10 0.8 I.24350 0.33390 0.16350 0.02640 1.08000 
0.05 0.9 0.88692 0.11866 0.05873 0.00472 0.82819 
0.00 1.0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.10 0.80 
0.09 0.82 
0.08 0.84 
0.07 0.86 
0.06 0.88 
0.05 0.90 
0.04 0.92 
0.03 0.94 
0.02 0.96 
0.0-l 0.98 
0.00 1.00 

, 
/ 

, 

/ 

, 

( 

( 

L 

I.24350 0.33390 0.16350 
1.18175 0.28538 0.14005 
1.11610 0.23941 0.11774 
I.04582 0.19616 0.09667 
2.96991 0.15582 0.07696 
3.88692 0.11866 0.05873 
3.79463 0.08499 0.04215 
3.68934 0.05526 0.02746 
3.56379 0.03011 0.01499 
'.39933 0.01066 0.00532 
1. ooG90 0.00000 0.00000 

0.02640 
0.02033 
0.01518 
0.01089 
0.00743 
0.00472 
3.00271 
3.00132 
3.0004+8 
0.00009 
3.00000 

1.08000 
1.04170 
0.99836 
0.94915 
0.89295 
o.e2m9 

:- Ek: 
0:54880 
0.39402 
0.00000 

5.19037 
4.85431 
4.47493 

';-iT% 
3:11729 
2.6llEU+ 
2.09440 
I.57726 
1.07661 
0.61500 
0.22788 
0.00000 

3.08815 0.70034 
2.58554 0.55371 
2.11873 0.42920 
1.69189 0.32472 
1.30878 0.23834 
0.97265 0.16829 
0.68605 0.11293 
0.45068 0.07067 
0.26716 0.03995 
0.13469 0.01923 
0.05055 0.00690 
0.00924 0.00121 
0.00000 0.00000 

0.61500 0.05055 0.00690 
0.53010 0.03910 0.00529 
0.44846 0.02932 0.00393 
0.37052 0.02114 0.00281 
0.29679 0.01&7 0.00191 
0.22788 0.0092h 0.00121 
0.16457 0.00532 0.00069 
0.10787 0.00261 0.00033 
0.05926 0.00095 o.ooOl2 
0.02114 0.00017 0.00002 
0.00000 0.00300 0.00000 
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Table 2 (Cont'd) 

Ea -00s 'p 99 @IO 
? 11 @I2 @I3 $14 *I5 '16 "17 

0.60 -0.2 3.38243 c.62108 9.12529 6.54742 0.81650 1.95959 -1.14310 5.39270 4.79507 
0.55 -0.1 2.70125 0.60533 7.24939 4.67963 0.90453 1.98997 -1.00544 5.30518 1.114.64 
0:50 0.0 2.23746 0.57080 5.60899 3.23370 l.OQOOO 2.00000 -1.00000 5.14159 3.46740 
0.45 0.1 1.75360 0.52058 4.20523 2.14543 1.10554 1.98997 -0.@4+3 4.90651 2.86010 
0.40 0.2 1.33116 0.45812 3.03379 1.35379 1.22474 1.95959 -0.73485 4.60354 2.29865 
0.35 0.3 0.97069 0.38712 2.08541 0.80178 1.36277 1.90788 -0.54511 
0.30 

4.23557 1.78835 
0.4 0.67178 0.31150 1.3&6~8 0.43709 1.52753 1.83303 -0.30551 3.80499 1.33393 

0.25 0.5 0.43301 0.23535 0.79755 0.21281 1.73205 1.73205 0.00000 3.31380 0.93972 
0.20 0.6 0.25187 0.16294 C.41802 0.08797 2.00000 1.60000 0.40000 2.76367 
0.15 0.7 0.12461 0.09365 

0.60967 
0.18032 0.~2309 2.38048 1.42829 0.95219 2.15606 0.34742 

0.10 0.8 0.04590 0.04698 0.05459 0.00560 3.00000 1.20000 1.80000 1.49220 0.15633 
0.05 0.9 0.00823 0.01254 0.00697 O.oco35 4.35890 0.87178 3.48712 0.77320 0.03955 
0.00 1.0 0.00000 o.ooQotJ o.oooM; 0.00000 m 0.00000 m 0. oooso 0.00000 

0.10 0.80 o.cq590 0.04698 0.05459 0.00560 3.00000 1.20000 1.80000 1.49220 0.15633 
0.09 0.82 0.03537 0.03857 0.03997 0.00368 3.17980 I.14473 2.03507 1.35278 0.12694 
0.08 ;; 0.02643 0.~3088 0.0281~9 0.~0230 3.39117 d.08517 2.30599 1.21116 0.10053 
0.07 

0: 89 
0.01898 0.02395 0.01896 0.00135 3.64496 1.02059 2.62437 

0.06 
1.06735 O.Oml5 

0.01295 0.01782 0.01199 0.00073 3.95811 0.94995 3.00817 0.92136 0.05682 
0.05 0.90 0.00823 0.01254 0.00697 0.00035 4.35890 0.87178 3.48712 0.77320 0.03955 
0.04 0.92 0.00473 0.00812 0.00358 0.00014 4.89898 0.78384 4.11514 0.62286 

0.00463 
0.02537 

3.03 0.94 0.00231 0.00152 0.00~105 5.68624 0.68235 5.00389 0.47037 0.01430 
1.02 0.96 o.ooo84 0.0020~ 0.00045 o.oooo~ 7.00000 0.56000 6.44000 0.00637 
I. 01 0.98 0.00006 

0.31573 
0.00015 0.00053 0.00000 9.94987 0.39800 9.55188 G-1 5093 O.OGl60 

I.00 l.co 0.00000 0.00000 0.00000 o.ooooo m 0.00000 00 0. ooooo 0.00000 





Table 2 (Cont'di 

Ea 

0.60 .0.2 1.86574 1.92835 1.17576 .0.31%36 
0.55 .o. 1 1.7237: i 1.76159 1.0~449 .0.17990 
0.50 0.0 1.5708C ) 1.57080 1.00000 0. ooooc 
0.45 0. I 1.41067 1.36426 0.89549 0.22010 
0.40 0.2 1.2463: i 1.14977 0.78384 0.48164 
0.35 0.3 1.08016 0.9y&79 0.66776 0.78862 
0.30 0.4 0.91417 0.72650 0.54991 1.14871 
0.25 0.5 0.75ooc / 0.53190 0.43301 1.57536 
0.20 0.6 0.58908 0.35784 0.32000 2.09257 
0.15 0.7 0.43263 ; 0.21103 0.21424 2.74669 
0.10 0.8 0.2817C 0.09810 0.12000 3.64330 
0.05 0.9 0.13722 0.02560 0.04359 5.12146 
0.00 1.0 0. OOOCK 0.00000 0.00000 w 

0.10 0.80 0.28170 0.09810 0.12000 
0.09 0.82 0.25226 0.08016 0.10303 
0.08 0.84 0.22308 0.06388 0.08681 
0.07 0.86 0.19418 0.04933 0.07144 
0.06 0.58 0.16556 0.03655 0.05700 
3.05 0.90 0.13722 0.02560 0.04359 
3.04 0.92 0.10917 0.01652 0.03135 
3.03 0.94 0.08142 0.00937 0.02047 
3.02 0.96 0.05397 o.oa!&2o 0.01120 
3.01 a.98 0.02683 O.OOlC6 0.00398 
3.00 1.00 0.00000 0.00000 0. ooc470 

3.64330 
3.87192 
4.12563 
4.41107 
4.73798 
5.12146 
5.58681 
6.18145 
7.01186 
8.41785 

ccx?, i -@I% / +I9 320 T 921 435 

1;92ooc 
1.9800C 
2.ooooc 
i.yaooi 
1.92000 
1.82OOi 
i.6800~ 
1.53003 
1.28000 
1.02GCIJ 
0.72000 
0.38000 
0.00000 

0.72000 
0.65520 
0.58280 
0.52080 
0.45120 
0.38000 
G.30720 
0.232do 
0.15580 
0.07920 
0.00000 

-i- 

, 
, 
I 
/ 

, 

/ 

, 

~236 937 

8.03059 5.2518; 
7.03248 4.11485 
6.03Y20 3.1415: 
5.~6803 2.3252: 
4.14007 1.65674 
3.27090 1.12516 
2.47543 0.71795 
1.76917 0.4i06: 
1.16241 0.21794 
0.67083 o.cy3oc 
0.30555 0.02786 
c 07321 0.00352 
c. ococo 0. OGOOC 

0.30555 0.02786 
0.24869 0.02035 
0.19743 0.01433 
0.15187 3.00962 
0.11210 '3.00607 
0.07821 3.oc35.2 
0.05028 3.00181 
0.02&l 3.00076 
0.01269 3.00023 
0.0031y ~.00003 
0. oooco 3.00000 

Note The values of tne functLons $I are the sa.ne as the corresponding functions 0 
except that th:y refer to the tab, and the valuz of Et should be substituted for E,. 





TabIe 3. Functmn X3 
- 

- 

-cos ‘p 

0.80 
0.82 
0.84 
0.86 
0.80 
0.90 
0.92 
0.94 
0.96 
0.98 
1.00 

-CCL? * -0.2 -0.' 0.0 
‘1 E 
Et ---QC 0.60 0.55 0.50 

0.10 0.05895 0.07373 0.09096 
0.09 0.04997 0.06247 0.07704 
0. ca 0.04158 0.05196 0.064~5 
0.07 0.03379 O.oG222 0.05201 
0.06 0.02663 0.03326 0.04095 
0.05 0.02012 0.02512 0.03092 
0.04 0.01430 0.01785 0.02196 
0.03 0.00923 0.01151 0.01416 
0.02 0.00499 0.00622 0.00765 
0.01 0.00175 0.00219 0.00269 
0.00 0. OOdOO 0.00000 0.00000 L ; 

I 

--co:> ‘p 
1 

0.80 0.10 
0.82 0.09 
0. ar, 0.08 
0.86 0.07 
0.88 0.06 
0. go 0.05 
0.92 0.04 
0.94 0.03 
0.96 0.02 
0.98 0.01 
1.00 0.00 

0.5 / 0.6 0.7 ! 0.8 I 
I I 

0.25 0.20 0.15 
I I 

0.10 

0.2 

0.40 

0.3 

0.35 

0.4 

0.30 

0.135* 0.16463 0.20123 
0.11445 0.13906 0.16971 
0.09501 0.11532 0.14053 
0.07705 0.09343 0.11369 
o. 06060 0.07340 0.08920 
0. ~4569 0.0553c 0.06711 
0.03241 0.03919 O.wc751 
0.02087 0.02522 C-03054 
0.01127 0.01360 0.01645 
0.00395 0.00477 0.00576 
0.00000 0.00000 0.00000 

0.1 

0.45 

0.11122 
0.09413 
0.07821 
0.06347 

:- :g; 
0:02675 
0.01724 
0.00931 
0.00327 
0.00000 

0.24906 0.31622 0.42466 
0.20951 0.26484 0.35199 
0.17309 0.21792 0.28712 

0.72000 
O-54535 
0.42762 
0.33246 
0.25274 
0.18522 
0.12820 
0.08080 
0.04279 
0.01475 
0.00000 

0.13973 0.17529 0.22922 
o. I 091,~ 0. I 3651 0. I 7774 
0.08217 0.10243 0.13231 
0.05806 0.07218 O-C9276 
0.03726 0.04620 0.05910 
0.02004 0.02479 0.03158 
0.0070~ 0.00865 0.01CY7 
0.00000 c. ocooo IO. 00000 

- - 

-- 

I 
t 
( 
, 
( 
( 

I’ - 

- 

Table 4. Function x3 

T 

I I - 

- 
0.4 

0.30 

0.5 ' 0.6 0.7 

0.25 0.20 0.15 

I. 99840 1.82941 1.60378 I.28929 
1.92861 1.77321 1.56673 1.28301 
I.84863 1.70649 1.51836 1.26282 
1.75708 1.62798 1.45766 I.22847 
1.65208 1.53594 1.38311 I.17936 
I.53089 1.42780 1.29242 1.11284 
1.38929 1.29958 1.18196 1.02678 
1.22023 1.14460 I.04556 0.91549 
1.01004 0.94990 0.87121 0.76826 
3.72378 ~68234 0.62815 0.55748 
3. OOOCO 0.00000 0.00000 0. oooco 

-0.2 ___ 

-t 

-0.1 

0.60 0.55 

0. a 

Cl@ 

0.0 0.1 

0.50 0.45 

2.30904 2.27675 
2.21242 2.18385 
2.10630 2.08126 
I.98917 1.96747 
1.85894 I.84042 
1.71264 1.69713 
1.54572 I.53306 
1.35054 I.34062 
1.11235 1.10507 
3.79330 0.78873 
3.00000 0.00000 

-I--- \ 

CL72030 
0.82832 
0.87459 
0.89224 
3.88720 
3.86092 
3.81240 
3.73802 
3.62921 
1.46285 
3.00000 

2.29256 2.31424 
2.19323 2.21550 
2.08492 2.10750 
I. 96674 I. 98373 
1.83488 I.85711 
1.68821 A.70970 
4.52170 1.54197 
1.32790 1.3635 
1.09238 1.108:6 
0.77815 0.78981 
0.00000 0.00000 1 





! 0.88 
j 0.90 

0.92 
' 0.94 

0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0. Cl 
0.00 

__--. 

0.60 0.55 

0.80503 
0.69088 
0.58193 
0.47869 
0.38175 
0.29184 
0.2098l& 
0.13695 

:- zi 
0: ooocc 
-___ 

0.78320 
0.67234 
0.56648 
0.46612 
0.37183 
0.28433 
0.20449 
0.13350 
0.07303 
0.02595 
0.00000 
--___ 

I 
IO.80 0.10 
j 0.82 

0.76110 
' 0.09 0.65277 

0.84 0.08 0.54950 
j 0.86 0.07 0.45175 

0.88 0.06 0.36006 
' 0.90 

i:;: / 

0.05 0.27510 

/ 
0.04 0.03 0.19769 0.12895 
0.02 I 0.96 j 0.07049 

0.98 / 0.01 0.02563 
/ 1.00 I 0.00 0. coooo 

-7 
4 

0.75809 
0.65104 
0.54874 
0.45169 
0.36045 
0.27572 
0.19837 
0.12954 
Q.G7OS9 
0.02520 
0. COOGO 

0.068!&! a.G65&+ 
0.024&i 0.02335 

0.06242 O.Qji372 

0. oooco i 0.00000 
0.02222 0.02092 
0.00000 0.00000 

- - 

0.25 

0.56~61 
0.48400 
0.41003 
0.33Y 3 
0.27193 
0.20896 
0.15099 
o.oy902 
0.05441 
0.01941 
0. @OOOO 

0.55 

0.746?6 
0.64070 
0.53953 
0.44370 
0.35377 
0.27038 
0.19436 
0.12682 
0.06934 
0.02463 
0.00000 

0:%787 0:33816 0132586 0:31074 0129241 
0.26598 0.25863 0.24943 0.2305 / 0.22426 
#.'I9127 0.18611 0.17957 0.17151 ' 0 16176 
0.12485 0.12154 0.11733 0.11216 0.10589 
0.06829 0.06651 0.06425 0.06146 0.05809 
0.02426 0.02364 0.02285 0.02187 0.02069 
O.GociOO 0.05002 O.OCUGO LOOCCG G.OOOGO 

0.50 0.45 1 0.40 

0.733'0 0.71112/ 0.68X1 0.64934 0.60796 
0.62925 0.61073i 0.58734 0.55859 0.52369 
0.53011 0.514781 0.49541 0.47159 0.44269 

0 3888Gi 0.36542 0 43614; 42374; 0 40807 

0.35 0.30 

0.6 I 0.7 I 0.8 
I 

4.1 ; 0.0 / 0.1 0.2 j 0.3 
I 

/ 0.4 0. 5 -r 0.6 i 0.7 i - 5.3 ! 

0.25 0.20 0.15 0.10 

0.55770 G-49590 0.41718 
0.48137 0.42947 0.36378 
0.40770 0.36489 0.31100 
0.33715 0.3026~ 0.25942 
0.27025 0.24327 0.20961 
0.20763 0.18738 0.16223 
0.14999 0.13570 0.11802 
0.09834 0.08918 0.07789 
0.05402 0.04910 O-04305 
0.01927 0.01755 0.01545 
0. (133)32U U. C'&!O'> O.O'Xcc 

0.30555 
0.27315 
0.23800 
0.20167 ) 
0.16515 
0.12932 ! 
0.09506 
0.6331 

- 





- /_ 

--cos ‘p 

0.80 
0.82 
0.84 
0.36 
0.38 
0.90 
0.92 
0.94 
0.96 
0.93 
1.00 

-T- T - i 
i 0.14377 / 

O-12954 / 
0.1106y j 
0.09235 1 
O.C747L / 
0.0579G 1 
0.04221 
0.02793 / 
0.01543 
0.00557 
0.00000 

0.7 
-~ 
-cm qJ 

Et \ 
Ea 

0.10 
0.09 
0.08 

-0.2 __ . 

0.60 

0.34977 
0.30208 
0.256~6 

i 0.6 -! 0.5 i 
1 

1 
- 

0.6 1 

0.10 ' 

0.01026 
0.00377 
O.GO717 
0.0055G j 
0.00332 i 
O.GL222 I 
o.oooaq / 
o.oooco j 

0.4 

0.30 

0.115G4 
0.10051 
O.Od618 
0.07214 
O.C5854 
0.04552 
0.03329 
0.02209 
0.01223 
0.004& 
0.00000 

0.55 

0.3cjY3 
0.26453 
0.22&!+5 
0. ?a593 
O.l494c, 
0.1150& 
0.0333, 
0. oji;76 
G.OJci7 
0.01079 
0.00000 0.00000 : 0. OOOQO ) 0.00000 

0.15 

0.03272 
0.02935 
0.02582 
0.02217 
0.01843 
0.01468 
0.~1099 
0.00745 
O.CC424 
O.OOly5 
0.00000 

0.25 0.20 

0.034?3 0.05648 
0.07387 o.c&993 
0.06364 0.04339 
0.05353 0.03677 
0.04364. 0.03019 
0.03409 0.02375 
0.02504 0.01756 
0.01669 0.61178 
0.00932 0. 3~662 
0.00338 G.OOzt2 
0. L)oocc! 0.00000 

0.07 0.21196 
0.06 2. 17Lill 
0.05 1 O.ljo36 
0.04 0.09463 
0.03 0.0621 a 
0.02 0.03$22 
0.01 0.04223 
0.00 0.00000 

Table 8. Functmn X5 

- 

T 
T 
i 

I L 

T 1 

I 

--ccm p 

0.80 
0.82 
0.84 
0.36 
0.88 
0.90 
0.92 
0.94 
0.96 
0.98 
1.00 

-0.2 j -0.1 1 0.0 0.1 

0.45 

0.03205 
0.02473 
0.01849 
0.01329 
0.00908 
0.00578 
0.00332 
0.00162 
O.OGO59 
0. aJo 0 
0. oa3oo 

0. a 

0.10 

0.01393 
0.01097 

E- ii27 II 

0:00424 
0.00274 
0.00159 
0.00079 
LGG029 
0.00005 
0.00000 

G.2 

0.40 

0.03041 
0.02347 
0.01756 
0.01263 
0.00863 
0.00549 
0.003l6 
0.001~4 
0.00056 
0.00010 ; 
0.00000 ; 

0.3 

0.35 

0.02853 
0.02207 
0.01652 
0.01189 
0.00313 
0.0051 a 
0.00298 
0.001ti 

o. 60 0.55 0.5c 0.15 

0.0181y 
0.01416 
0.01~68 
CL 03774 
0.00533 
0.00342 
0.00198 
0.00097 
0.0~036 
o. 00006 
0.00000 

0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00 

0.03606 0.03!+86 0.03353 
0.02779 0.02683 0.02566 
0.02077 0.02009 0.01933 
ii.01492 0.01443 0.01389 
0.01019 O.OC985 0.00948 
0.00647 0.00626 0.00603 
0.00371 0.00360 0.00346 
0.00181 0.00176 0.00169 
0.~3066 e.00064 0.00062 
0.00012 0.00011 0.00011 
0.00000 0.00000 1 0.00000 

0.01106' 0.01012 1 O.CG904 
0.00757 3.00693 0.00620 
0.0~32 0.00442 0.00396 
0.00278 0.00255 0.00229 
0.00136 0.00125 0.00112 

L'.ooc41 

2 





Table 9. Functmn s 

0.1 I 0.2 0.4 0.6 0.8 0.3 

0.35 0.30 

0.01279 0.01557 
0.00976 0.01187 
0. GC722 G.CO877 
G.GG513 0.00623 
0.00X7 0.00420 
0.00218 0.00264 
G.GG124 0.0015G 
o.OOc60 O.OOO73 
0. GC022 O.OGG26 
G.OOGC4 G.COGC5 
0. GC000 0.00000 

0.25 

1 

0.5 

/ 

- 

0.01915 
0.01457 
G.GlC75 
0.00763 
0.00514 
G.GC323 
0.00183 
o.oooR9 
0.00032 
0.00006 
G.00000 

-0.2 

0.60 

0. GO462 
0. GO353 
0.00262 
0.00187 
0.00126 
G.OOC8c 
G.OGG!t5 
0.00022 
0.00008 
0. GO001 
0. 00000 

0.20 0.10 0.40 

0.01055 
0.00805 
0.00596 
O.GW4 
0.00287 
G.OCl81 
0.00103 
O.OOO50 
0. GO01 8 
0. GOGC 3 
0. GO000 

O.008@ 
O.Gti3 
O.OC+Yl 
O.OJ350 
0.00236 
O.JG14V 
0. COG85 
G. oou41 
~.GOG15 
3.00003 
0.00000 

0.024~6 0.~3158 
0.01826 0.02383 
G.G134!+ 0.0?745 
G.OOj51 O.G1?30 
0.00640 0.00824 
0. OC!LOl 0.00515 
0.00227 o.cc291 
fJ. bCl$ '! c U"X14J 
0. GC039 O.OCG50 
0. GGGG7 0. CooGy 
0. omJu G. oI;cco 

Lb4698 
0.03453 
0.02485 
0.01728 
0.01145 
0.00709 
0.00397 
c.wl8y 
C.GCG67 
0. GO01 2 
0. oooco 

I 

.- 
I 

- - - 

- 

Table IO. &UlCtlOIl x8 

- 
-0.2 I -0.1 0.0 0.1 I 0.2 0.6 0.7 0.8 

Cl.20 0.15 0.10 

0.3 

0.35 0.45 0.40 

1.31056 1.08567 
1.28166 I.06580 
1.~93 I.03908 

t 

l.lYYGY I.00435 
1.14249 0.96024 
I.07277 0.90462 
0.98647 0.83449 
0.87788 0.74491 
0.7$21 0.62656 
0.53445 0.45615 
0.00000 0. GOCOG 

-i 
0.50 

I.54007 
1.50169 
1.45451 
I.39711 
1.32763 
1.24342 
1.14054 
1.01255 
0.84718 
0.61362 
0. GOOCO 

0.15222 0.04698 
0.16163 0.05360 
0.16952 0.06092 
0.17540 0.06806 
0.17867 0.07433 
0.17858 0.07907 
0.17409 0.08148 
0.16364 0.08045 
0.14447 0.07421 
0.11006 0.05880 
L00000 0.00000 

0.86834 0.66187 0.47008 
0.85687 0.65790 0.47244 
0.83952 0.64906 0.47098 
0.81533 0.63455 0.46500 
0.78305 0.61328 0.45361 
0.74092 0.58378 0.43560 
0.68634 0.54389 0.40924 
0.61513 0.49014 0.37173 
0.51940 0.41604 0.31791 
0.37955 0.30555 0.23515 
O.OOGW 0. OOOOG O.OOOOG 

0.29786 
0.3G494 
0.30929 
0.31032 
0.30730 
0.29929 
0.28490 
0.26200 
0.22668 
0.16950 
0.00030 

0.80 0.10 
0.82 0.09 
0.84 0.08 
0.86 0.07 
0.08 0.06 
0.90 0.05 
0.92 0.04 
0.94 0.03 
0.96 0.02 
0.98 0. Cl 
1.00 0. GO 

1.69837 1.51360 
I.58474 I.41669 
1.44839 1.29506 
1.28135 1.14751 
I.06843 0.95830 
0.77131 0.69284 
0. GOOGG 0.00000 





(2.80 
0.82 

I;:$ 

j 0190 
i 0.92 

0.94 
0.96 

i T-g 

‘ 

-cos ‘F 

0.80 
0.82 
0.84 
0186‘ 
0.88 
0.90 
0.92 
0.94 
0.96 
0.98 
1.00 

T 

- 

: 

I 

0.~6534' 0.06362 
0.05039 0.04907 
0.03767 
0.027071 

0.03669 
0.02637 

O.OlBL+B 0.01801 
0.01175, 
0.006751 

0.01146 
0.00658 

0.00120; 0.00330, 
0.00322 
0.00117 

0.00021 ' 0.00021 
0.00000 1 0. oocoo 

Tab2 11. Functmn x9 

0.0 0.1 / 0.2 i 0.3 

0.50 0.45 / 0.40 / 0.35 

0.06164 
0.0~756 
0.03557 
0.02558, 
0.03746 I 
G.01111 I 

0.05938 0.05678 
0.04583 0.04364 

0.05379 
0.04156 
0.03112 
0.02241 
0.0153% 
0.00976 
0.00562 
0.00275 
0.00100 
0. OCOI 8 
0.00000 

-cos 9, -0.2 j -0.1 

s 

I 

Et % I 

0.10 
0. c9 
0.08 
0.07 
0.06 
0.05 
0. WC 
0.03 
0.02 
0.01 
0.00 

0.05032 0.04624, 
0.03891 O-03580! 
0.02916 0.026871 
0.02101 0.01938! 
0.01438 0.01328 
0.00917 0.00848 
0.00528 0.0CV+881 
0.002591 
O.LOG94i 

0.002401 
0.00088: 

0.00017 ; o.o0016! 
0.00000, 0.00000' 

0.1 T 

0.45 
t 

0.42026 
0.36458 
0.31040 
0.25807 
0.20799 
0.16068 
0.11674 
0.07698 
0.04254 
0.01526 
3. GOOW 

o.o17l+L+ 0.01507 ! 0.01199 
0.01197 0.01038 ' 0.00832 
0.00765 
O.OCU2 

0.0666 / 0.00537 
0.00385 0.00313 

0.00217, O.CK190' 0.00155 
0.03~791 0.00072 o.ccc57 
0.00014j 0.00012 j o.oco1o 
O.OCOOO! O.COOOO O.CJOOO 

0.02730 
0.02150 

0.2 0.3 0.4 I 0.5 1 0.6 0.7 

0.40 0.35 0.30 0.25 0.20 0.15 

0.35048 0.28379 0.10970 0.06387 
0.30463 0..?1+729 0.19312 0.22086, 0.16.2491 O.II+Z~O 
0.25985 0.16571 

0.09716, 0.05736 
0.21147 0.12313 0.084421 0.05052 

0.174771 0.21645 0.14291 0.17657 0.13882 0.11273 
0.135261 0.11086 0.08773 

0.08456, 0.10365 0.07160/ 
0.06611i 

0.08088 0.06420 0.04859 
0.046321 0.058841 

O.wC341 0.03613 
0.02879 

0.03428' 0.02157 
0.05355 0.04263 0.03241 0.02302 0.01465 
0.02970 0.023721 0.01811 0.01295, 0.00833 
0.01070 0.00857 I 0.00657 0.00307 
ii. ooxc , c. CCGW G. OL!OJU 

0.00473; 
. . x!b00~ L. cuolx 

0.02730 
0.02521 
0.02284 
0.02019 
0.01727 
0.01413 
0.01085 
0.00755 
0.00439 
0.00166 
r, Ul'(JcJci C. _I 





Table 13. Functmn +&," 

I 0.80 i 0.10 
: 0.82 0.09 
: 0.84 0.08 
'0.86 / 0.07 

0.88 I 0.d 

ii. 66 0.55 3.53 0.45 042 . 6.35 0.30 G.25 
i 1 -20~ 'p / -0.2 ! -0.1 ) 0.C 1 L. 1 0.2 0.3 0.4 f I I I-".5 7 

7 

I 

0.02891 0.02536 0.02194 0.01866 0.01554 o-01259 0.00983 0.00729 
0.02239 0.01966 0.01702 0.01449 0.01208 0.00980 0.00767 0.00571 
0.01682 0.01477 0.01280 0.0109' 0.00911 0.00760 0.00581 O.O04Y+ 
0.01214 0.01067 0.00926 0.00790 0.0~660 0.00537 0.00422 0.00316 
0.00832 0.00732 0.00636 0.00543 0.00454 0.00370 0.00292 0.00219 
0.00532 0.00468 0.00407 0.00%8 0.00291 0.00238 0.00188 0.00142 
0.00307 0.00270 0.00235 0.00201 0.00169 0.00138 0.00109 0.000R3 
o.00151 0.00'33 o.ool16 0.00099 0.00083 O.oco68 0.00054 o.ooc41 
0.00055 0.000!+9 0.00042 0.00036 0.00031 0.00025' 0.00020 0.00015 

0.00000~ O.OOOIO 0.00000~ 0.00009 
o.00~o8 o.00006 o.00005 o.ocm4 0.00004 
o,ooooo 0.00000 0.00000 0.00000 , 0.00000, 0.00003 0.00000 --- 

T 
i 

Table 14. mnct1on x, 2 

d.6 - 

ii.2u 

0.00500 
0.00394 
0.00301 
0.00220 
0.00154 
0.00100 
0.0~~58 
0.X029 
0.00011 
0.00002 
0.00000 

0.7 

u.15 
-- 

0.00302 
0.00240 
0.00184 
0.00136 
0.00096 
0.00063 
0.00037 
0.00019 
0.00007 
0.00001 
0.00000 

i- 

- 

0.8 

d.10 

0.00140 
0.00113 
0.00089 
0.00067 
O.OOC&8 
0.00032 
0.00019 
0.0001i' 
0.00004 
0.00001 
0.00000 

-0.2 0.1 0.2 -0.1 [ 0.0 / 1 0.3 / 0.4 / 0.5 1 0.6 j 0.7 j 0.8 
I I I , I 

0.63 ' , o.55 / o.50 j o.45 1 o.40 i 0.~5 / 0.30 1 0.25 i 0.20 i 0.15 / 0.10 

/ / I 

-O.l1595'-0.13468 -0.13701 i-O.15928 -O.l5733/-0.18565 -O.l8629(-0.22016 -0.26434/-0.32488 0.41343 -0.46056 -0.55545 -0.66939 -0.81888h,1%59 l-0.15428 -3.z24 
-0.09633 -0.11180 

-0.10567 -O.l3045j-0.15371 -0.12433 
-0.37542 -0.53889 -0.90142 -2.33157 

-0.078181-0.0X65 
-0.06152'-0.07128 

-0.42492 -0.69317 -1.60309 
-0.08300 -0.G9753 -0.23165 -0.32565 -0.52013 -1.11555 

-o.GJ&+~ -0.05374 -0.06251 -0.07336 -0.17207 -0.23976 -0.37608 -0.76313 
-0.03294 -0.03811 -0.04429 -0.05192 0.C9.284 -0.12035 -0.l6636 -0.25688 -U.49932 
-0.02123 -0.02454 
-0.01146 I_ 0.01324 

-0.02849 -0.03336 0.05926 -0.07618 -0.10495 -0.15984 -0.30015 

-o.ood,d-0.00464 
-0.01536 -0.0?797 0.03172 -O.&O77 -0.05557 -0.0836l -0.15258 
-0.0C538 -0.01914 -0.02848 -0.05074 

0.00000 o.oclooo 0.00000 0.00000 0.00000 0.00000 0.00000 

i 

1 





- 

b- 

- L . 
I 

Table 15. Function X12 

-0.2 -0.1 0.0 0.1 i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 t 

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 

4.76197 4.72520 4.61371 4.42312 4.1&75 3.76343 3.25263 2.56224 I.;3112 /-0.03830 
5.18069 5.15759 5.05753 4.87652 4.60667 4.2yeo9' 3.73473 3.06429 2.12883' 0.66238 -3.;$66 
5.66293 5.65496 5.56670 5.39492 5.f3243 4.76647: 4.27509 3.61867 2.7'6621 1.35890 -1.51767 
6.23114 6.23957 6.16366 6.00074 5.74427 5.384 4.89502 3.3'15% 2.08339 -0.29091 
6.91914 6.94601 6.88328' 6.72881 6.47664 6.11575: 5.62734 

4,246231 
4.97865 4.:ij7,744 2.87186 0.78434 

7.783!,4 7.83181 7.78351 7.63695 7.38670 7.02237' 6.52622 5.86780 47y:'O32 3.77442 1.85221 
8.92706 9.00173 8.96983 a.83037 8.57835 8.20385, 7.68960 7.00729 I+ 87436 3.02794 

10.56435 lo.67373 lo.66164 10.52775 10.26745 9.87100i 9,32148 a.59051 4.47629 
l3.2&844 13.41004 13.42464 

6.lW4i; 7.6?8jGt 6.33742 
11.1136L 6.56742 

19.16871 19.43536 19.49637 
13.29275 13.01001i12.56635,1~.94&08 
19.350;771/19.00282,18.43183;~7.6194J+ 16.5302-I 

10.024L3, d.58132 
15.10467::3.23536 10.69512 

io'D3, s ' co ca 011 xl w 

I Table 16. Function 33 
-. 

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.B 

0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 

0.20315 0.23403 0.26833 0.3C9a3 0.35592 0.41225 0.48221 0.57346 0.70205 0.91144 I.49220 
0.17249 0.19862 0.22812 0.26193 0.30144 0.34875 0.40728 0.48315 0.58891 0.75685 
0.14376 0.16547 

1.13512 
0.18994 0.217961 0.25063 0.28965 0.33775 0.3Yy74 0.48532 0.61841 

0.11704 0.l34.65 
0.89235 

0.15448 0.17716 0.20355 0.23500 0.27363 0.32316 0.39094 0.49448 
0.09238 0.10624 

0.69520 
0.12le3 0.13963 0.16031 0.18489 0.21499 0.25340 0.30555, 

0.06991 0.08036 
0.38398 0.52943 

0.09211 0.10550 0.12104 0.13947 0.16197 0.19055 
0.06976 0.05718 0.06551 0.08598 0.09898 0.11481 

0.22907 0.28624 0.38861 
0.03216 0.03694 0.04230 0.04840, 0.074991 0.05545 0.06378 0.07389, 0.13483 0.16164 0.20094 0.26936 

0.01742 0.02000 0.02289 0,02617! 0.02997 O.OWd+ 0.03986 

0.08663i 

0.00613 0.00703 0.00805 0.00920 O.olO52 0.012Oij 0.01397 
0.04666; 

0~00000 O~ooOOO 0.00000 0~00000 0.00000 : 0.00000 0~00000 O~OOooO 0.01633, 0. 0.00000: OoOOO/ 0.00~0 





-ccs p 

0. a0 
0.82 
0.84 
0.86 
0.88 
0,90 
0.92 
0.94 
0.96 
0.98 
1. GO 

./- 

a--:- 

-clJs '; 

0.80 
0.82 
0. e4 
0.86 
0. a8 
0. yb 
0.92 
0.94 
0.96 
0.98 
1.00 

-cos q 

0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00 

-- 
I - 

-0.; --r.- 
0.60 0.55 

---- 

5.53595 
5.29349 
5.02968 
4.74095 
4.42245 
4.06710 
3.66448 
3.19646 
z.6%8 
7.87166 
0.00000 

5.43965 
5.20682 

:: z;:; 
4.35637 
4% 00870 
3.61379 

:* :;z; 
1: a!+866 
0.00000 

- 

-co9 y 

\ 
Ea 

% 
0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 

-aoc 

T 

\ 

: 

.=r..- . 

0.0 
_.- 

0.50 

j.30303 
LO7824 
c.83201 
L 56088 
k.2601~ 
3.92289 

3% z,':$ 
!I54435 
1.81378 
I. 00000 

-0.2 -0.1 0.0 

0.60 0.55 0.50 

0.44532 0.43011 0.41321 
0.38187 0.36894 0.35460 
0.32140 0.31062 0.29866 

-0.1 

0.45 

5.12427 
4.91218 
4.67867 
4.42038 
4.13267 
3.80891 
3.43895 
3.00579 
2.47651 
1.76677, 
0.00000 

- 

T 
0.2 -__ 
0.40 

- 

4.89992 
4.70354 
4.48579 

';- g?$z 
3166497 

:' 30;::: . 
2.39Q41 
1.70699 
0.00000 

! 
I 

Table 18. Function x,d.jb 

0.1 

0.45 

0.39445 
0.33867 
0.28539 
0.2%86 
0.19738 
0.14330 
0.10308 
0.06730 
0.03682 
o.m308 
Q.-WON 

i 

2.74117 2.46370 '2.11726 4.65890 
2.41283 2.17798 I.88643 1.50572 
2.00127 !I.81370 1.58202 1.28279 
1.43679 1.3C695 1.14729 0.94301 
0.00000 0. oocoo j 0.00000 0.00000 

.- 

0.4 
i 

0.30 

i 

._! : 

0.32382 
0.27884 
0.23564 
0.19445 
0.15554 
0.11926 
0.08599 
0.05628 
LO3086 
0.01099 
2 Cu‘~~~ -- 

0.17733 0.15747 0.13364 
0.14210 0.~2653 0.10793 
0.109~3 0.09743 c.08350 
0.07881 0.07054 0.06072 
0.05166 o.o46y+ 0.~~6 
LO2837 G.02551 LO2213 
0.01012 0.00912 0.00794 
z,, oc<x , c. ;~oc~z ,.c. OCCOG 

0.10294 1 
0.08425 ! 
0.06594 , 
0.04845 
0.03225 
ii.01797 
0.00649 
c. ?O"OC . 





--cos ‘F 

3.80 
0.82 
0.84 
0.86 
0.88 
0.90 
0.92 
6.94 
0.96 
0.98 
1.00 

-- 

0. a0 
0.82 
0.84 
0.86 
0.88 
0.90 
0.92 
0.94 
a.96 
0.98 
I.00 

i - 0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00 

Table 19. Functmn x,6 

-0.1 0.0 0.1 0.2 : -0.2 0.3 I 0.4 , 0.5 i 0.6 0.7 I 0.8 
I , 1 I I 

0.60 0.55 i 0.5c / 0.45 0.40 O.35 0.30 i : 0.25 0.20 0.15 0.10 
! I 

-0.01070 -0.01241 -0.01447 -0.01703 -O.O2033j-0.02481 -0.03122 -0.04121 -0.05882 
-0.00817 

-0.00701 -0.00816 -0.00958 -0.01142 i-0.01387 -0.01737 
-0.00947,-0.01103~-0.01297 -0.01547 I-O.01884 -0.02364 -0.03107 -0.0&398 

-0.00605 -0.02272 -0.03192 
-O.OCY+31 -0.00499'-0.00580 -0.00681 -O.O08lOI-0.00983 -0.01227 -0.01599 -0.02231 
-0.00291 -0.00337 -0.00392 -0.00'+59 -0.00546!-0.00661 -0.00824 -0.01069 -0.01463 
-0.00184 -0.00212 -0.00247 0.00289 -0.003&j /-0.00~15 -0.00515 -0.00667 -0.00919 
-o.Oolcu, -0.00121 -0.0014.C -0.00164 -0.00195 -0.00235 -0.00291 -0.00376 -0.K515 -0.00784 -0.01471 
-0.00051 -0.00058 -0.00068 -0.00079 -0.00094 -0.001 I 3 -0.00140 -0.001 a0 -0.00246 -0.00371 -0.00681 
-0.00018 -0.00021 -O.o002l+ -0.00029 -0.00034 -0.00041 -0.00050 -0.00065 -0.00080 -0.00131 -0.00236 
-o.oooo3 -o.oooci+ -o.00004 -o.00005 -0.ooo~6 -0.00007 -o.ooooy -O.OOOII -0.00015 -0.00023 -0.ooo40 

0.00000 0.00000 0.00000 0.00000 0.00000 / 0.00000 0.00000 i 0.00000 1 0. oooc@ 0.00000 0.00000 

Table 20. ~CtlOll 36 

- 

0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
o.c4 
0.03 
0.02 
0.01 
0.00 

2.66095 2.18598 
3.15794 2.64040 
3.72944 3.16288 
4.39888 3.77464 
5.20244 4.50844 
6.~9984 5.41826 
7.49897 6.60164 
9.32261 8.25968 

12.24069 10.90653 
18.48897 

cc 
16.55703 

3.15377, 2.54481 1.95674 
3.81622 3.134486 2.47371 
4.63669 3.86483 3.11275 
5.70217 4.81125 
7.1919~ 6.13141 
9.56358 I a.22648 
L.60875 12.66454 

00 I m 

6.91105 
0.74494 

1.39945 G.@%&2 
1.84312 I.25480 
2.39129 1.71266 
3.G9966 2.3~372 
4.08245 3.12145 
5.62983 I 
8. a71 30 j 

4.40272 
7.06660 

00, M 

-r - I 
0.5 ; 0.6 

0.25 / 0.20 
, 
I 

0.20426l-0.41464 
3.027621-0.29014 
0.17971 /-d.lj964 
0.42579 0.0428C 
0.72297 0.26641 
1.b9143j ~54632 
1.567291 ii.93955 
2.22418' 1.411Cl 
3.24793! 2.18857 
5.35661; 3.77172 

WI m 

- - 1 , - - 





Table 21. Functwn $7 - 

c 

0.80 
0.82 
0.84 
0.86 

i 

0.88 
0.90 
0.92 
0.94 
0.96 
0.98 
1.00 

T 
0.4 0.5 / 0.6 0.8 -0.2 I -0.1 0.3 

0.35 

0.03216 
0.02456 
O.Cl818 
0.01294 
0.00875 
0.00551 
0.00314 
0.00152 
0.00055 
0.00010 
0.00000 

0.0 -03s cp 

% 

\ Et 

0. IO 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00 

0.25 0.20 

--+ 
0.04428 I 0.0536L 
0.03372 ; 0.04074 
0.02490 0.03002 
0.01769 / 0.02127 
0.01193 / 0.01432 
0.00750 j 0.00899 
0.00426 , 0.00509 
0.002~6 : 0.0~246 
0.00074 ' 0.00088 
0.00013 : 0.00015 

0.60 0.55 0.50 0.15 

0.06808 
0.05143 
0.03770 
0.02660 
O,Ol703 
0"01115 
0.00630 
0.00303 
0.00109 
0.00019 
0.00000 

0.30 

0.03746 
0.02858 
0.02113 
0.01503 
0.010?5 
0.00639 

;-g$ 

0:00063 
0.00011 

0.10 

0.09 810 
0.07223 
0.05206 
0.03624 
0.02404 
0.01490 
0.00835 
LO0399 
0.00142 
0.00025 
0. ocooo 

0.02113 
0.01616 
0.01199 
0.00855 
0.00579 
0.00365 
0.00208 
0.00101 
o.oQo37 
o.ocno6, 

0.01600 0.01841 
0.01225 0.01409 
0.00909 o.o:OJ+5 
0.00649 0.00746 
0.00!+39 0.00505 
0.00278 0.00319 
0.00158 0.00182 
0.00077 0.00088 
0.00028 0.00032 
0.00005 0.00006 
0.00000 0.00000 o.ococo 0.00000 1 0.00000 

Table LL. rmctlon Xl7 

-  

i 

-0.2 I -0.1 I 0.0 0.6 0.7 0. a 

0.09810 
0.11114 
0.12559 
0.13963 
0.15194 
0.16115 
0.16566 
0.16326 
0.15035 
0.11e97 
0. oc'coo 

0.20 

0.6~968 0.31598 
0.63275 0.33426 
0.64025 0.34947 
0.64102 0.36062 
0.63358 0.36648 
0.61599 0.36554 
0.58546 0.35572 
0.53763 0.33384 
0.46454 0.29432 
0.3696 0.22395 
0.00000 CL clcooo 

-cos rp 

0.60 0.50 \ % 
Et \ 

0.10 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00 

0.45 1 0.40 ( 0.35 
I 

4.42426 3.87515 3.33767 
4.28874 3.76352 3.24904 
4.13042 3.63l22 3.14189 

2.81594 2.31433 1.83767 
2.74918 2.26802 1.81006 
2.66604 2.20747 1.77035 
2.56389 2.13038 1.71655 
2.43921 2.03369 l.b46@+ 
2.28709 1.91373 1.55519 
2.10020 1.76239 I.43864 
1.86654 1.57113 1.28768 
1.56335 1.31985 1.08593 
I.13352 0.95972 0.79259 
0.00000 0.00030 0. oaml 

3.94562 3.47943 3.01324 
3.72938 3.29019 2.85911 
3.47475 3.07073 2.67392 
3.17125 2.80714 2.44930 
2.80163 2.48394 2.17154 
2.33295 2.07164 I.81454 
1.68199 1.49588 1.31265 
0.00000 0. oooco 0.00000 I - i 





The remaining functions are given by 

x1 = 9 $31 

= &a?$ X2 31 

x6 = s a, $8 

"/ = $ G2 "a 

x11 = @I3 q31 

$rn 
X15 = 13 Ia 

'?8 = x5 





APPENDIX11 

Binary and Ternary Solutions and 
Appropriate Stability Tests 

General forms of solution for binary and ternary calculations are 
aesoribed in Sections 3 and 4 of this report. These are amplified here 
into a detailed form whioh will enable a ccmputor to obtain from the 
equations of motion solutions for critical speed and frequency. The 
process is taken from the stage where values of the basic a, y, b, and 
c coefficients have been obtained. 

In addition to the determination of critical speed it is sometimes 
necessary to decide upon which side of a critical boundary the stable and 
unstable regions lie. More explicitly, if the critical speed has been 
determined for a range nf values of scme variable parameter, say a struc- 
tural stiffness, then the curve obtained by plotting critical speed against 
the parameter is the critical boundary, representing steady sinusoidal 
oscillation with constant amplitude. Points lying off this boundary repre- 
sent either stable or unstable conditions with deoreasing or increasing 
amplitude respectively, and it may not always be obvious which side of the 
boundary represents the stable and which the unstable condition. In such 
asses stability tests are available to define these regions. Fach of the 
solutions given below is accompanied by an appropriate stability test. 

I. Birect Iterative Solution for Binary 

6 = a' 
l-S l-9 h2+b htc rs rs 

where 
a' = ars+y rs I-S’ and. h = iw,. 

Coefficients b and c are oalculated. for an assumed value of mm. 

The determinantal equation obtained directly from the equations Of 
motion is 

$1 + ellp 52 
= 0 (I) 

621' 622 + e22 

and is expanded in the form " 

(2) 

,. 
The notation (x, y 

determinants of type (1 1 
is adopted to represent the sum of the distin& 

, which can be made with all possible permutations 
of x and y taken together, each being associated with a row of the 
aete-t. In,the general ease x * y there are two permutations, 
XY al-d yx, snd4herefore 
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(x, Y) = 

In the specific case x = y = z there is only one permutation, zz, 
end therefore 

(2, 4 = z,, z,*! 

1% 522 I 

Using this notation, the values of the p coefficients are 

p. = (a’, a’) 

PI = (a’, b) 

p2 
= A + Be22 

p3 = 
C + De22 

2 
p4 

= E + Fe22 + Re22 

where 

A = (al, c) + (b, b) 

B = a;, +RG2 

C = (b, c) 

D = b,, + Rb22 

E = (c, c) 

F = o,, + Rc22 

and % %I2 R = stiffness ratio = - . 
mg 27 

The test function, obtained by equating the real and kmgimuy parts 
of (2) ta zero and eliminating urn, when expanded gives the fallowing 
quadratio in e22. 

I 

(p,BD - poD2 - P,%) eg2 f (P,AD + Bc - 2poCD - P,~F) e22 

+ (P, A0 - poC2 - p,2E) = 0 (3) 

- 42 - 



Equation (3) is solved for e22 and the frequency obtained from 
%I* = q/p,. If %I agrees reasonably well with the assumed value, the 
crltical speed 1s then obtaxxd dxrectly from 

Stabdity Test 

The orltical condition is re-supposed in the above solution by 
taking h = iy, m equation (2 . P The motion is then proportional to 
eipt that 1s sinusoidal with time. Equation (2) can however equally 
well'represent the general condltlon in which any h root has the form 
A=u+is. In the orltical con&tlon the speed and the value of the 
variable parameter considered make the p coefficients such that a solu- 
tion for h is obtained with II = 0. With slightly different values 
of either speed or parameter a solution would be obtained with u * 0, 
the resulting oscillation being stable or unstable according to whether 
u is negative or positive respectively. 

A second solution could therefore be performed using a slightly 
different value of speed or parameter. The stability would be indicated 
by the sign of the resulting yalue of u, and the region labelled 
accordingly. 

Standard. stability tests have however been devised which avoid the 
necessity for a complete solution. 

The full set of conditions for stability in this case are 

(a) all coeffloients p must be positive 

(b) the test determinant T3 must be positive, 

PI PO O 

T3 = p3 P2 PI 
0 

P4 p3 

The prooedure 1s therefore to examine these conditions for a slightly 
different value of speed or parameter. i?or moderate departures from the 
critical condition itwill generally be found that condition,(a) is still 
satisfied and the definition Qf stability therefore rests upon the sign of 
T3’ which is zero in the critical condition. 

2. Indirect Nen-Iterative Solution for Binary 

In this case the form 

6 z a 
rs rs + i Prs 

is tied, where 

a = 
z-9 - cars * Y,,,~~' + crs and Prs = ",b,, 
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Coefficients a and P are calcul.ated for a gmen value of Wm. 

The determinantal equation (1) is expanded in the form 

l&l + h22 e,, + $, e22 + e,, e22 = 0 

which, when real and im&ginsry parts are equated to zero, gives the two 
equations, 

Ro + R,e,, + R2e22 + Rje,,e22 = 0 

(5) 

sb + 5'jq + S2e22 + S3e~1e22 = 0 

where 

% = (54 - (P,P) 

R, = a22, R2 = a,,, 

S = (a,@) 0 

s, = 13.229 s2 = q,. 

R3 c 1 

s3 
= 0 

Eliminating 

Ro + %e22 so + S2e22 
-51 = = (6) 

3 + R3e22 . so + S3e22 

then gives the follotig quadratic in e22: 

(R2s3 - R393;2 + (R,,s3 - R3so + R2s, - R,S2)e22 

+ (RoS, - R& = 0' (7) 

For the given value of wm, equation (7) is solved for e22, e,j is 

obtained from equation (6), 91 and hence the stiffness ratio R = - . 
e22 

The whole process is then repeated for several values of mm and finally 
R is plotted against say e22. From the curve the vsllu: of 92 carres- 
pondhg to the actual value of R is obtained, and hence the critical 
speed from 

v = 2 
J- 

me \ 

P 8e22 

Stability Test 

The standard stability test given for the direct iterative solution 
oould be applied, but this would involve a separate determination of the 
p coefficients. It is more convenient to use a test which is consistent 
with the type of solution adopted,, and for the indirect non-iterative salu- 
tion the followxng test has been-suggested. 
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The principle of the test 1s to repeat the solution for a given value 
of wm but including an arbitrary small amount of structural damping. 
Values of q.2 and R obtained from the original solution ~111 be repre- 
sented b 

7 
some point on the curve of e22 plotted against R (the crltxal 

boundary. fi‘r3m the repeat solution with structural damping slightly 
different values of e22 and R will be obtained, giving a point close 
to but lying off the critical boundary. This new point represents the 
critical condition with structural dsmplng present, and intmtively it 
follows that the side of the boundary on which the new polnt lies must be 
the unstable region for the original condition tithout structural damping. 

Force due to structural stiffness is proportional to dxsplacement and 
force due to structural damping 1s proportional to velocity. For the 
co-ordinate qj, for mnstance, the stiffness force is proportional to 
ellql 9 and the damping force proportional to &, or to isql. 

The net force due to stiffness and damping is therefore proportional 
to (e1.1 + i%,$)qj, k. being an appropriate constant. For an arbitrary 
amount of structural damping this may be written a8 q (1 + idqj, P 
being an arbitrary quantity representing the damping. E hanging from the 
undamped to an arbitrarily damped condl'cion can therefore be represented 
by multiplying each stiffness coefflclent by (1 t ill). 

With structural dsmping equation (4) then becomes 

161 + Q,,(l + iv) + f~,,e~~(l t ip) + elle22(1 t ip)2 = 0 (8) 

and the coefficients in equations (5) are modified as follows:- 

RO 
and s are unaltered 

0 

Rl 
becomes R1 - 5 

R2 becomes R2 - pS2 

R3 
becomes R3(' - P2', - 2LG3 

sl 
becomes S, + PR, 

% becomes S2 + @R2 

s3 becomes S3(l - &I*) t 25 

Far a given W, and a small arbitrary value of p equations (6) and 
(7) are re-solved for ell, e22 and R using the modified coefficients 
above. 

The local&n of the resulting point (e22,R),relative to-&e origind 
critical%&W.r~ then determines the unstable region for the condition 
without structural damping. 

3. Direct Iterative Solution for Ternary (e33 = 0) 
. . 

The determin@zal equatxon obtained drrectly from the equations of 
motion is 
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&2,* 622 + e22' 623 =o (9) 

&31' 6329 53 

end is expanded in the form 

6 
11 + ells 

6 
12' 

6 
I3 

poh6 + p,a5 + p2i+ + p3a3 + p&a2 + p+t p6 = 0 (IO) 

Coefficients b and o are calculated for an assumed value of Wm. 

The notation adopted for the binary is extended, (x, y, z) repre- 
senting the sum of the distinct determinants of type (9) which ten be 
made with all possible permutations of x, y and z taken together, each 
being associated with a row of the determinant. In the general case 
x * y * z there are six permutations, xyz xsy ysx yxz pcy and zy%, 
so that 

6% Y, d = 

x1l 72 xl3 xll xl2 x13 

y21 y22 Y23 + =21 '22 z23 t etc. 

z31 z32 "33 y31 '32 '33 

When imo of the three elements are equal, as in (x, x, y), there EUV 
only three permutations, my xyx and. yxx, so that 

xll x12 x13 x11 xl2 *I3 Yli 912 913 

(x, x, Y) = X21 x22 x23 + y21 y22 y23 + x2l x22 x23 

Y31 '32 '33 x31 x32 *33 x3l x32 x33 

When all three elements are equal, as in (x, x, x), there is only 
one pernutatlon xxx, and therefore 

xll xl2 xl3 

(x, x, 4 = x2l x22 x23 

x3l *32 x33 

In addition, b, Y)II mei (x, ~)22 are used to represent similar 
permutations of x snd y with respect to the minors of 
respectively in 161. For instance 

611 and 622 

(x, y),, = x22 x23 + '22 '23 

'32 '33 x32 53 
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(x, 422 = 
51 93 

x31 x33 

Using this notation, the values of the p coefficients are 

p, = (al, a', al) 

P, = (a', a', b) 

P2 = (a', a', c) + (a', b, b) * e,,(a', a'),, + e22(a', a')22 

P3 = (a', b, c) + (b, b, b) + e,, (a', b),, + e22(a', bj2* 

P& = (a', C, C) + b, b, c) + e,, !(a', cl,, + b, h),, ] 

+ ez2 !(a', “I22 + (b, b)221 + ai e,, e22 

P5 = b, c, c) + e,,(b, cl,, + y&b, c)22 + b33 e,, e22 

P6 = cc, c9 cl + e,,(c, cl,, + e2*(c, c)22 + c33 e,, e22 

Equating real and imaginary parts of (10) to zero gives the two 
equations 

- p,o,: 
4 2 

+ P2"nl - Pqw, + P6 = ' (11) 

4 2 
P,Wm - P3Um + P5 

By eliminating Wm from these equations and substltutlng ell = Rep2 
a sextic in e22 can be formed. Direct solution of this is laborious and 
therefore rarely used. Instead, equations (11) and (12) can be solved 
mdirectly. For a given value of e22 
cients can be calculated and equation ~?*~Zo?ZeaZfa $AraK1 2 Zzy- 
whose value 1s then substituted in equation (11). Repeating the process 
over a range of values of e22, the value for -ahlch the left-hand side of 
equation (11) 1s zero can be found by interpolation. If the associated 
value of wm agrees reasonably well with the value originally assumed for 
the calculation of the b and c coefficients, then the critical speed 
is given &.rectly by 

Stability Test 

For the stsndard test the full set of conditions for stabdity of the 
sextic (10) are 

(4 coefficients pQY p1 and p6 must be positive 

(b) the test determinants Tp, T3, T4 and T5 must be positive. 
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T* = P, P, 

PJ p2 

T3 = P, Po 0 

p3 p2 PI 

P5 p4 P3 

T4 = Pi Po 0 0 

p3 p2 PI PC 

p5 p4 p3 p; 

0 P6 p5 p4 

T5 = 

I 

P, Po 0 0 0 

p3 p2 p-l PO O 

p5 p4 p3 p2 PI 

0 
"6 p5 p4 p3 

0 0 0 p6 p5 
I 

The procedure, as for the binary, is therefore to examine these 
conditions for a value of speed or parameter slightly different from the 
critical. The stability will generally be deterndned by the sign of '$, 
which is zero in the critical condition. 

4. Indirect Non-Iterative Solution for Tern- (e33 = 0) 

As for the binary, coefficients a end p are calculated for a 
given value of W,. 

The determinsntal equation (9) is expanded in the form 

161 + A,, ell + *22 e22 + 633 ell e22 = 0 (13) 

which, when real and imsgimry parts are equated ta zero, gives the two 
equations (5) but in this case with 

R = (a, a, a) - (a, p, P) 
0 

R, = (a, a),, - (P, PI,, 

, s = (a, a)22 - (6 P),, 

R3 = aj3 

So = (a, a, P) - (P, P, P) 

sl = (a, P),, 

S2 = (a, PI,, 

s3 = @33 

Using equations (61 and (7), the sol&ion then prmee& exa&lyas 
for the binary. 
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Stability Test 

Applying the structural damping test, the solution is repeated with 
?I and e22 in equation (13) each multiplied by (1 + ip). The same 
modifications are made to the coeffxients of equation (5) as in the 
binary case, but using of course the original values appropriate to the 
ternary as given above. 

For a given 0, and a small arbitrary value of p equations (6) 
and (7) are r-e-solved using the modified coefficients. The location of 
the resulting point (ezz, I?) relative to the original critical boundary. 
then determines the unstable region for the condition without structural 
damping. 
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tlPEENDIx III 

Interpretation and Use of Resonance Test Results 

The fact that a relationship frequently exists between the still air 
modes (1.e. normal modes) of vibratibn of an aircraft and its flutter 
characteristics has been ap$reciated for some time. In recent years this 
appreciation has been acknowledged by the requirement for resonance tests 
to be made before flight on each new prototype aircraft, as a safety pre- 
caution against flutter. 

The technique of the tests, as described in R & M 2155l, is-now 
fairly generally understood but there are still many widespread mis- 
conceptions as to the practical uses of the results. The resonance test 
results cannot, at the present stage, be interpreted so as to supply a 
complete picture of the flutter characteristics of an aircraft, nor does 
the fact that the interpreter obtains a negative result from the analysis 
necessarily imply that the aircraft will be free from flutter. In the 
light of past experience, from a careful consideration of the results it 
is often possible to assess the likelihood of the aircraft avoiding 
flutter trouble, and if a flutter incident or accident does ccc? the 
results may provide an ismediate indication as to the best cure. 

In what follows the salient points of the resonance test analysis and 
the application of the results are discussed; and, in particular, the 
application to theoretical investigations is described and exemplified by 
a sample normal mode calculation on a hypothetical aircraft. 

Analysis of Resonance Test Results 

In recent years experience has been to the effect that main and 
auxiliary control surfaces almost invariably play the predominant part 
in flutter troubles that occur in practice and as a result the usual 
practice in the analysis is to concentrate on phenomena which are ticwn 
to be relevant to the flutter of these items. However it is quite ccn- 
ceivable that with the radioalchsnges of design new taking place the 
emphasis in the future may be on the flutter of the main structure, and 
therefore for any particular analysis all aspects must be kept in mind. 

The two maJcr features indicative of possible control surface flutter 
that are looked for in rescnence tests may be classed broadly as 

(a) ineffective mass balance, and 

(b) a proximity of any two of the natural frequencies of the main 
and auxiliary controls and the aircraft structure. 

Since the purpose of mass balancing is to eliminate inertia couplings 
between the control surface and main surface motions it should be strictly 
related to the actual modes experienced in flight when a vibration occurs. 
If the mass balancing is effective the vibration is damped and flutter is 
avoided. Mass balancing criteria given in A.P.970 are related to assumed 
modes of a simple type and are to be regarded as first approximations only. 
Normal modes as obtained from rescnance tests represent on the whole a 
much closer approximation and provide a useful check on the mass balancing 
system adopted. For aircraft in which concentrated masses are used for 
mass balance the rescnance test results 'are analysed for.modes in which a 

. 
1 W.G. Molgneux and E.G. Broadbent. "Ground Resonance Testing of Aircraft". 
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balance weight is in close proximity to a nodal line. A balance weight 
on a nodal line serves no useful purpose in that particular mode and 
accordingly the greater the number of balance weights the less is the 
likelihood of trouble from this cause, for in any partioular mode in 
which there is a loss of the effectiveness of ahe weight there might 
quite possibly be an increase in the effectiveness of the others. The 
single mass is that most likely to give trouble, and the likelihood. of 
trouble is enhanced when the balance weight is remote from the surface 
such cases for it is possible for the weight to act in an anti-balance 
sense by virtue of a nodal line existing between the weight and the 
surface. 

in 

Certain of the phenomena leading to tab klutter may also be classi- 
fied under (a). Geared and trimmer tabs frequently carry no mass balar?ce 
on the assumption that no degree of freedom separate from that of the 
main control is possible and on such a system any resonance mode in whi& 
there is excessive rotation of the tab relative to the main control is at 
once suspected. Such rotation may be due to backlash or undue flexibility 
in the tab circuit. 

Modes under case (b) above have been definitely identified in a 
number of cases as being a contributory cause of flutter trouble and i? 
appears that frequency proximity may lead to flutter even on a fully mass 
balaed system. Phenomena of this type are apparent from the res0nezr.e 
test results for it is general practice to obtain "amplitude-frequen& 
curves for the control surfaces in addition to those of the main structure, 
and from these curves an estimate of the proximity of the relevant fre- 
quenoies msy be obtained. 

Spring tabs are in a special category since, because of their intrin- 
sic freedom relative to the main control, a degree of mass balms of the 
tab is normally required (spring tabs in fact need specisl treatment x 
this respect and the optimum vreight of mass balance may well be zero in 
certain cases). 
under (a) or (b). 

Troubles associated with spring tabs may therefore JCCUT 
The same is of course true of the main control when 

the stiffness of the control clroult 1s considered. In the case of the 
main control, measurements on the control column will distinguish a 
resonance of the control circuit from bodily movement but it is not so 
easy to distinguish between the two for a tab. In any case coupled 
rotation of any kind is suspected since whatever the cause the rotation 
is likely to influence the flutter characteristics. 

A&ion FollcrwLne; Analysis 

The mere fact that the resonance test analysis indicates a suscepti- 
bility of the aircraft to some particular type of flutter is not neces- 
sarily conclusive. It may be that flutter, if it occurs at all, is at a 
speed beyond the range of the aircraft, or the mass balance may still be 
sufficient to render the system Gmnune from flutter despite some loss in 
effectiveness; or whatever has been suspect may prove after all to be 
adequate. A possible approach to the problem would be inmediately +XJ 
modify the aircraft so as to remove the adverse resonance characteristics, 
but this vould certainly lead tr, many unnecessary modifiaations if applied 
universally. However, this approach has its applications in cases where 
+g is required urgently and the risk of flutter cannot be tolerated, 
and in partioular for cases of flutter that have occurred in which the 
general form ef the flutter is known. For the general case the most 
satisfactory prooedure is to examine partioular suspected cases en a 
theoretiad basis, as a result of which suitable -tins may Ff 
necessary be made. 
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As mentioned earlier it is quite possible that, despite all the pre- 
cautions taken prior to flight, flutter may still occur on the aircraft. 
The failure of resonance test results to forecast failure in such cases 
is a measure of the present undeveloped state of the analysis, but each 
case of flutter that occwx adds to the fund of knowledge and extends the 
range of the analysis. Developments in analysis result for Instance when 
flutter occurs in which the modes involved may be of a type for which no 
previous experience exists to demonstrate susceptibility to flutter. 
Such modes would not in the first instance appear siwficant. Proximity 
of the resonance frequencies of components is another feature about which 
there is much to be learned, for It 1s difficult at the moment to knrw 
what degree of proximity is to be regarded as serious. However, when 
flutter troubles occ~, the resonance test results will, in many cases, 
give an indication of the souroe of the trouble and will indicate the best 
line of attack for effecting a cure. When the flutter is of a form too 
complioated for the test results to give any direct indication of the best 
line of attack the normal modes s&e nevertheless of consic$era+le value in 
any theoretical investigations that Bre made. 

Application of the Results to Theoretical Investigations 

When theoretical investigations EWP undertaken, either prior to 
flight as a result of resonance test indxcations of flutter susceptibility 
or after an incident has occurred in flight, the normal modes obtained 
from the resonance tests are generally used for the calculations. 

As explained in Section 2 of this report, flutter investigations are 
normally made by restricting the calculation to a specified number of 
degrees of freedom of the aircraft, and to obtain reliable results these 
must be chosen such that when coupled together with the appropriate ampli- 
tude and phase relationships (to be determined implicitly in the calculation 
the final motion agrees closely with the true physical motion under flutter 
nonditions. If the modes are well chosen a good answer will be obtained in 
quite a sndl number of degrees of freedom, but if the modes are ill chosen 
that number may be greatly increased, and when it is realised that the 
computational labour increases roughly as the factorial of the number of 
degrees of freedom chosen it will be appreciated that a good choxe of 
modes becomes a matter of prime importance. 

It is still very much undecided as to whether normal modes will in 
general permit greater accuracy than the equivalpd approach &ing 
"arbitrary" modes, but for certain specified cases the resonance modes sre 
a virtual necessity. These cocur for instance when resonance tests give 
a mode in which the nodal line is suspiciously olose to n mass balance 
weight; for then the obvious flutter con&tion to investigate is one 
having a moae similar to the resonance mode, which is therefore taken as 
one of the degrees of freedom. In csses of this kind the flutter frequemY 
is often in close agreement with the frequency of the normal mode. If an 
arbitrary mode is chosen in such an instance there is a greater likelihood 
of a large error in nodal shape, and the associated stiffness is parti- 
culs.rQ unreliable as it depends on the second differential of the mode. 
When simple arbitrary modes of the fundamental type are used the associated 
stiffnesses are usually not even related to the mode itself but are reFe- 
sented by static stiffnesses appropriate to the application of a ooncep 
trated load at some "reference" station. With a normal mode the stiffness 
is given simply and accurately by the measured frequency and the inertia 
characteristics. 

Other respective advantages of the two methods are of small importance. 
On the one hand the normal mode app?xach eliminates the cross-inertias and 
cross-stiffnesses (except, of course, for the cpntrol surface degree of 
freedom) whereas the simple modes render th~.nerodynsmio treatment somewhat 
easier. 
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As an illustration of the type of investigation carried out with 
normal modes a sample calculation is given at the end of this Appendix. 
The investigation is applied to a hypothetical aircraft on the presw- 
tion of a suspected inefflciency of the elevator geared mass balance 
weight (which from Fig.1 is seen to be close to a node in the fuselage), 
and the calculation is based on only two degrees of freedom, namely, the 
particular normal mode and elevator rotation. But although the treatment 
tif the normal mode is typical of current practioe it must not be thought 
tHat the example 1s typical of a flutter calculation as a whole, The 
scope of the calculation (for simplicity) has been restricted far too 
much to be usea for direct application, and in practice at least three 
degrees of freedom would have to be used for a calculation of this s?rt. 
The degrees of freedom normally considered for syrmnetric elevator flutter 
are:- 

(1) First normal mode involving fuselage bending 

(2) Second U fl " I, " 

(3) Elevator rotation 

(4) Pitch of the whole aircraft 

(5) Vertical translation of the whole aircraft. 

Of these five the last can usually be neglected as its effect upon the 
flutter speed mill usually be small. In some cases a further simplifi- 
cation may be effected by making use of the fact &at for a conventio&l 
aircraft the wing motion associated with (1) and c2) will be almost pure 
flexure whioh will be heavily damped in flight. The flutter condition_ 
will therefore be that in which this damping is a minimum, i.e. modes 
(1) and (2) will combine to give as little net wing motion as possible. 
In the calculation below the full wing motion is assumed and the fact 
that the system still possesses a fairly low flutter speed may be 
explained by the fact that a very bad case has been chosen, with a heavy 
elevator and almost zero effectiveness from the mass balance weight. 

Sample Normal Mode Calculation 

The ensuing worked eXsn@e has beeti carried out on a hypothetical 
aircraft for which certain assumptions have been made to sim@fy the 
arfthmetic. The wing ana tailplane arc both assumed rectangular and in 
gene?& the modes are supljosed to be expressible as simple algebraic 
functidns. This will in faot be very nearly true for fundamental modes 
of vibration even in practice though the inertia data will often be 
available in suc'h form as to make analytical integrations for the inertia 
coefficients not very easy, Diagrams of the assumed (normal) modes of 
vibration are given in Fig.1. 

’ The complete normal mode of the aircraft may be expressed as 

z = Lfj(d') J = 3,2,3 

a = Fj (n) q., j = I,2 

91 is the generslised Co-ordinate of the degree of freedom correspandlng 
to the normal mode, so that eq, 
tion where f(V) is unity. 

is the amplitde at the reference sec- 
For convene&e the wing ti is chosen as the 

reference sectlon and 8 is put equal to one foot. 
f3(d 

fl 4, 7 f,(v) SJla 
represent the flexural modes of the wing, tailplane and fuselage 
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respectively (all corresponding to unity at the wing tip). Similarly 
FT ( 7) , F*(V) represent the torsional modes of the wing and tailplane 
respectively, corresponding to a unit value of f(T) at the wing tip. 

For a torsionally rigid elevator the local elevator angle 1s given by 

where 5, and a, are the angles of the elevator snd tailplane respectively 
as measured at the elevator lever section. 

t = q2 + (F2’ - F2) x, 

where a, = FZ1 9 ' %J = s,. 

The vertical displacement of the mass balance is 

z - rP = 4fj' 9 - r(q2 + F2' q.,) 

where z is the dis&cement of the mass balance hinge, P is the rotation 
of the mass balance szm relative to space, and r is the effective mass 
balance arm. The value for S depends on the gear ratio between the 
elevator and the mass balance, which has in this case been taken as unity. 

As in equation (1.7) of Section 3, if p/27t is the flutter frequency 
then 

2 v2 p2 = urn > 
cm 

where urn is the mean frequency parameter corresponding to the ting mean 
chord cm. cw For the wing the local frequency parameter ww = p - . For 

ct v 
the tailplane the local frequency parameter it = p 7. 

If h = iUm = ip? 

Inertia Coefficients 

using the same notation as in Section 3 the equation for the total 
kin&s energy my be constructed as 
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and on the tailplane by 

Re-writing in term of the mean frequency parameter h = iu, 

+ etc. 

Lt = pctv* p (zr e..’ + h (f$ .e;’ + ez] 2 

+ etc. 

where the dashed derivatives refer to the tailplane and the m&shed to 
the wing. 

The moment about the leading edge M and the elevator hinge moment 
H, may be similarly expressed. 

Proceeding as in Section 3 the aerodynamic coef'flcients may be 
obtained. The aerodynamic stiffness coefficients are as follows: 

** G and 3 are leading edge displacements of wkg and tailplane. 
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c11 = 
J 

%- (ef, - hvlowF,)* a' 
' 0,' 

wing 

+ -m,F,* z2 cln 
0 

vnng 

e’ 
% (ef, - htotF2)*drl 

% +- 
SW J % 

tailplane 

C21 = 
- z 1 @$ (ef, - htctF2) 6‘~ 

tailplmle 

St -- J ' 
s w 

t&plane 

=t 
022 = - ; ,I / 

tailplane 

w, h+ct are the distances from the r$'erence axis to the leading edge 
for the wing and-tailplane respectively. 
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As in Section 3, the b and. Y coefficients for any given order are 
obtained from the c coefficients of the same order by including the 

appropriate factors 2 , 2 
2 

cm 0 cm 
vnthin the integrals and using appro- 

priate damping and. virtual inertia derivatives. 

For the hypothetical mode of Fig.1 the main structural distortions 
are expressed as mathematical functions, 
mined exactly. 

and the integrals may be deter- 
In practise the integrals would be determined by some 

approximate method, and usually by a summation on Simpson's rule. 

The values of the various constants are as follows:- 

% = 20ft 

St = 7.5 ft 

sf = 20 ft 

'rn = CT{ = a ft 

Ot = 5n 

x2 = 1.05 ft 

% = 1.25 ft 

x3 
= 0.5 ft 

5 = 1.0 ft 

xh = 1.75 ft 

%%? = 2ft 

htCt = 1.25 ft 

r = 2ft 

The mass distributions nq, m2, m3, m4 are as shown in Mg.2. 

f,(V) = 1.5 3 - 0.5 F, (d =' 0 Fuselage slope 

f2(rl) = 0.72 v* + 0.78 
j at $ chord 

F2(n) = -0.128) Psiticns 

f,(d = (1.28 n2 
(2.0 712 1 ::; : 

VI= 1.0 to 7)= 0 
Tl= 0 to l-l= -0.625 

In the determination of the derivatives the elevator chord aft of 
the hinge is 2.0 ft and the elevator chord forward of the hinge is 0.5 ft. 
A value for the frequency parameter of 0.5 has been assumed. 

The absolute (theoretical) values of the derivatives have been 
factored as follows:- 

Absolute value of hi factored by 0.65 
0 tr I, R, factored. by 0:75 
et 11 11 all stiffness derivatives'factored by 0.j. 
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These factors should not be regarded too seriously as they are based 
on a single comparison' made with experimental values obtained by Fraser 
and Duncan many years ago. As mentloned in Sect&on 2, further work is 
required in this direction. 

The derivatives used in the investigation can now be obtained as: 

bi = 0.7054; 

8; = 1.6321; 

8, = 0.1455; 

4; = 0.78%; 

"k = 1.806; 

dz = 0.0918; 

-m; = 0.3927; 

-mi = 0.6021; 

-;n .z - 0.02296; 

-hi = 0.01969; 

-h; = 0.01581; 

m 

4; = 0.3927; -m; = 0.3927; 

.ia = 2.1266; -In* z = o.y+J+o; 

ta = 1.1972; -m = 0.03636; z 

Talplene 

6; = 0.3927; 

ea = 0.7112; 

6, = 1.273; 

-mE; = 0.2209; 
. 
-lll;l = 0.5705; 

-% = 0.3183; . 

-h; = 0.01412; 

-h; = 0.02939; 

-hZ = Cj.000603; -h, = 0.008357; 

-Ill; = 0.2209 

-IIlk = 0.7062 

-% = 0.2993 

et = O.Ql97 

ei = -0.7958 

eE = 0.9126 

-in$ = 0.0141 

-Ill* E, = -0.00369 

-mg = 0.3751 

-hi = 0.00197 

-hi; = 0.01278 

-hc = 0.00894 

The values of the varmus coeffYclents nay now be determined and are 
given below. 

Inertm coeffmlents 

91 = 0.1427 + 0.797 x 10-6M 

?2 = 0.0059214 - 15.94 x 10-6M 

a22 = 0.007971 + 318.8 x 10-6M 

where M 'is in lb. 

' H.A. Jahn. "Comparison of the Experimental Wing-Aileron Derivatives of 
R & M. 1155 with Two-Ihmensional Vortex Sheet Derivatives." 
R.A.E. Tech. Note No. S.M.E. 276. 
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1 
The tern in M in ad+ (and similarly for a,z)-is obtained from 

4 b2 f 'I2 (wiere "f; 
2Pcm SW 

3 
is the fuselage displacement at the balance 

weight) and not from 1 

2Wm4% 
("f3' '12 - r F2 as quoted earlier. 

This is a usual procedure as some simplification is effected in certain 
cases and the error involved is negligibly small, since it is a function 
of the fuselage curvature between the elevator and msss balance hinges. 

Stiffness coefficxent 

33.5534 x 1 d 
ell = VZ 

It should be noted that the value for ejl is that appropriate to 
zero mass balance weight, and is assumed to remain constant with variation 
in M. In pint of fact variation of M mould produce some change in 
mode ana frequency but since these are assumed to remain constant the sanw 
assumption is applied to ?I* 

Aerodynamic coefficients 

Y ,, = 0.005o41; bll = 0.013735; c11 = 0.00567 

y12 = 0.000295; b 12 
= -0.01264; 

cl2 = 0.02993 

% 
= 0.000295; b 2, = 0.000584; c21 

= o.ooo167 

Y22 = 0.000113; b 22 = 0.00117; c22 = 0.00131 

As in Section 4 the values of the functions po to p,+ are now 
obtained as follows:- 

PO = 0.0011556 t 46.908 x IO-% 

PI = 0.0003588 + 4.1875 x IO-%4 

p2 = 0.000068% + 2.2883 x 10% + 0.008084 e,, + 318.0 x 10-e e 
II 

P3 
= 0.000009261 + 0.00117 e,, 

P4 
= 0.000002429 + 0.00131 e,, 

The eliminant w p2 p3 - po p32 - pj2'qc = 0 reduces to the follcdng:- 

(1.5619 2 e,,2 + 109.2346 M e,,2 + 1811.82 e 11 
2, 

+ (00006035 18 ell’ - 2.2659 M e,,'- 138.163 e,,) 

+ (0.00~~+61 h? - 0.001072 M - O.OOOl852) = 0 
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For a given ve.lue of M this equation reduces to a quadratic in egj from 
which the value of Q may be determined. 

The oorresponding value of the frequency parameter is 
the equaticn 

derived from 

In Fig.3 a curve is shown of flu,:cr speed plotted against mass balance 
weight, from which it is apparent that the speed increases with increase 
of weight, Values of t!?e frequency paremei.er have been determined for 
various values of the balance weight, and 1% may be seen that the fre- 
quency parameter decreases as the vre~gh+ increases. The deviation of W, 
from the assumed value of 0.5 is qu;T;e large for values of M greater 
than 30 lb. However, a value for Ihe balance wezght of 25 lb would give 
static balance of the eleva;w end ::hls value is not likely to be greatly 
exceeded in any pactical case. TherePore the assumed and final values 
of w sxe in sufflclently good agreement wthin the practical range of M 
for + p to be unnecessary to revke the lnltiel assumed value of 0.5. 

It 1s a usual practice to allow a scfety margin of about 2@ on 
theoretical flutter speeds, 2-d on this basis, vrl:h the foregoing assm- 
tions, this particular aircrdt cwild be cleared to about 450 knots with 
a statzcdlly balanced elevator. This, of course, omits consideration of 
the effect of compressibility, and in fact for aircraft flying at speeds 
where compressibility effects are pronowced the permissible speed should 
be reduced. 
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APPENDIX III 

FIG. I. 
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