

NATIONAL AERONAUTICAL ESTABLISHMEN LIBRAR'Y

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

MAXIMUM IMPACT PRESSURES ON SEAPLANE HULL BOTTOMS

By

A. G. Smith, B.Sc., D.I.C., I. W. McCaig, B.Sc.,
W. M. Inverarity, M.A., B.Sc.

Crown Copyright Reserved

LONDON : HIS MAJESTY'S STATIONERY OFFICE
1950
Price 7s. 6d. net.

by

A. G. Smıth, B.Sc. D.I.C.
I. W. McCaíg, B.Sc.
W. M. Inverarıty, M.A., B.Sc.

SUMMARY

An investigation has been made to determine the effect of the various impact parameters on the maximum impact pressures on a hull bottom impinging on a water surface.

Pressure measurements were made, using D.V.L. mechanical pressure recorders, on three hulls, each of $3-f t$. beam, in the hull launching tank. The dead rise angles of these hulls were $10^{\circ}, 20^{\circ}, 30^{\circ}$ respectively. They were launched with controlled impact conditions of speed, attitude and acceleration at flight path angles of 8° to 10°, but with freedom in heave and pitch: further tests were made by vertical drops.

Parallel theoretical studies have been made to investigate the effect on the maximum pressure of (1) size of measuring surface, (2) beam loading, (3) freedom to pitch, (4) horizontal velocity, (5) initial vertical acceleration, (6) departure from the simple wedge shape.

Experımental results show that the maximum pressure measured on a diaphragm depends on the diaphragm size and position and that it is not the true maximum pressure at that point. The maximum measured pressures at any given part of the hull can however be expressed in terms of the first impact conditions as

$$
P_{\max }=\frac{o V n \text { oVv } \cot ^{2} \Theta}{\text { Const. (Area Factor) (Velocity Factor) }} \quad . \quad . \quad \text { (S.1.) }
$$

```
Where oVn = Resultant velocity normal to the keel at first impact.
    ovv = Vertical velocity at first impact.
        \theta = ~ D e a d ~ r i s e ~ a n g l e ~ a t ~ t h e ~ p o i n t ~ c o n c e r n e d , ~ m e a s u r e d ~ i n ~ t h e ~
                        section normal to the local keel.
    Area factor = correction factor to give measured maximum pressures over
                        the area of surface in terms of the true maximum.
Velocity Factor = correction factor to allow for the reduction in velocity
    slnce first impact.
and the Constant has a mean value of 54 when pmax is measured in lb./sq.in.
```

The area and the velocity factors have been evaluated and their applicability determined.

When the velocities V_{n}, V_{V}, are tnose at the time of the pressure occurence, and $p_{\max }$ is the true maximum pressure, the aoove formula becomes -

$$
\frac{v_{n} v_{v} \cot ^{2} \theta}{\text { Const. }}
$$

It reduces further to the Wagner theoretical form of $\frac{V_{v}^{2} \cot ^{2} \theta}{\operatorname{Const}}$ for vertical impacts at zero incidence. A theoretical justification for the form of equation (S.1.) above 1 s glven for 1 mpacts at flight path angles of the orders of those tested.

Further work both theoretical and experimental, is required to extend these results to include pressures at small flight path angles and in the planang condition.

1. Introduction.
2. Pressure Measurements with the Hull Launching Tank.

2.1 Description of tests.

2.2 Results.
3. Method of Reduction.
4. Relation between Measured Maximum Pressures and Impact. Parameters at Time of Pressure Measurements.
4.1 Velocity.
4.2 Area of Diaphragm.
5. Relation between Measured Maximum Pressures and Impact Parameters at Trme of First Impact.
5.1 Attitude and Position of Measurement.
5.2 Hull Weight.
5.3 Pitching Moment of Inertia.
5.4 Vertical Acceleration at first impact.
5.5 Damping in Pitch.
6. Comparison of Hull Launching Tank and Earlier Maximum Pressure Measurements.
7. Conclusions.
8. Further Developments.

List of References.
List of Symbols.
List of Tables.
Lust of Flgures.
Appendix I. A Survey of the Theoretical Work on Impact Pressure.
Appendix II. The Area Factor.
Appendix III. Effect of Beam Loading.
Appendix IV. Effect of Freedom in Pitch.
Appendix V. Effect of Initıal Acceleration at Impact.
Appendix VI. Velocity, Dead Rise and the Direction of Greatest Slope.
Tables.
Figures.

Previous experiments, model and full scilo, have shown that the most important parameters affecting the impact pressures on a hull alighting on water are (1) dead rise angle, (2) attitude, (3) velocity normal to the ktel. Further there has been deduced the empirical relationship -

$$
p_{\max }=\frac{o_{n}^{2} \cot \phi}{K}
$$

where $O_{n}=$ the resultant velocaty normal to the keel at farst ampact.
$;^{x}=$ the angle between the surface where the prussure $1 s$ measured and the surface of the water.
$K=a$ constant which increases forward and aft of the C.G. and increases from keel to chine.

This formula has been shown to be a good approximation for reqions in the vicinity of first impact both by model tests on \approx simple wedee ${ }^{3,4}$ and by full scale tests on the Southampton ${ }^{5}$, and Singapore ${ }^{6}$, The ranse of impact conditions covered in these tests was consioerable, viz.
(1) dead rise angle 5° to 40° (including fiared forms),
(2) keel attitude 0° to 23°,
(3) resultant speeds in the flight path up to 75 knots,
(4) static beam loading coefficients $C_{\Delta 0}\left(=\frac{M}{\rho_{b}^{3}}\right)=0.5$ (approx.),
(5) initıal downard accelerations 0 to 1 go,
(6) angular velocities at or subsequent to first impact of up to 15° per sec. (full scale only).

The above formula $1 s$ however deficient in several respectso
Firstiy, it is based only on measurements, in all positions ${ }^{4}$, rodel and full scale, of the mean maximum pressure on the surfaces of 2 inch liameter diaphragms. Therefore $2 t$ is not obvious that the true peak pressure which is of a transient nature and extends only over a very small width near the edpe of the wetted area 15 given by the above formula as it stands.

Secondly, for the important practical purpose of stressing it is desirable to know the mean maximum pressure over any required area. Fence ar investigation is made in this report of the 'area factor' which is def:ned as the ratio of the true peak pressure to the mean maximum pressure.

Lastiy the variation of the constant with position on the hull requires examination. To do this we define "velocity factor" as the ratio of the constant evaluated on the velocitres at first impact to that evaluated or the velocities at the time of maximum pressure on the diaphragm in question. This velocity factor will therefore be seen to depend only on the variation of velocity during the impact and not on the pressure measured on the diaphragm。

The objects of the report are therefore to examine -
(1) the relationship between the true peak pressures and the impact parameters.
(2) the area factor.
(3) the velocity factor.

The expermental results with their analysis form the body of the report, theoretical results and calculations are in the appendices.

The authors whs to acknowledge the considerable contributions to the experimental work and to the report of F. O'Hara M. A., P. E. Naylor, B. A. B.Sco, J. f. Burd bisco, and E. K. Greatrix BoSco
2. Pressure Measuremerts with the Huil Launching Tank.
2.1 Description of Testso

The experıments were made in the M. A. E.E. Hull Launching Tank; a description of this tank and the method of operating it is given in refo 1. Three hulls, each of 3 ft , bearr and of the same basic form, were tested. The dead rise angles at the step were $10^{\circ}, 20^{\circ}, 30^{\circ}$. This dead rise was constant from keel to chine and also forward for about half the forebody length。

The hull and link bars correspond to a flying boat of 1370 lbo while tne roment of inertia about a transverse axis through the $C_{0} G_{0}$ was $6550 \mathrm{lb} \mathrm{ofto}_{0}^{2}$ Hull lines and leading dimensions are glven in Figso 1 to 3o

The hulls were launched free to heave and to pitch about the C. G. position, at keel attitudes of $+9^{\circ}$ to -8°, at horizontal speeds of 0 to 35 ft. per seco and vertical speeds of 5 to 8 fto per seco Flight path angles available were 8° to 14°, corresponding to stalled landings; some vertical drops were also made. Detalls are glven in Tables 4, 5, 6.

For each drop time records of pressures, attitudes, and speeds were made for each of the $i 5$ diaphragms. Detials of the positions of these diaphragms are given in mables 1,2, 3. Different sizes of diaphragms were used to investigate the area factor.

The effect of vertical acceleration was studied by varying the balance of the parallel link bar motion; a range from 0 to $6.3 \mathrm{ft} / \mathrm{sec}^{2}$ was obtained.

Dampang in pitch was investigated on the 10° hull using the damper illustrated in Figo 40 This was of a slmple friction clutch type. A wire attached to the bow and stern of the huli was wound round a drum (A). This drum was constrained in rotation by the pressure from the spring (B); this could be adjusted by the lock nut (C) thus varying the damping.

2.2 Besults.

In this section only the maximum recorded pressures and the corresponding mitual and local lmpact conditions are glven and no attempt is made at this stage to express these quantıtıes in a generalised form.

Results on the 20° hull are given first as these included the greatest variation of speed and attitude. Also the dead rise of 20° is more representative of present day practice. A list of runs 15 given in table 4 and the dimensions and position of the diaphragms are given in T able 1 and Figo 10 The results are detalled in Figs. 5-23.

The table at the top of these figures gives the maximum pressures recorded on each of the 15 diaphragms and two sets of speeds and attitudes. The first set gives the conditions just before impact loe. at time t_{0}. The vertical and horizontal velocities are those of the pressure points at that time and the attitude that of the local keel. This set is of use for stressing purposes where these conditions are assumed known. The second set refer to conditions at time t_{1} of maximum pressure on the diaphragm and are primarily of use for checking against theory and establishing the law connecting pressures and impact velocities and geometry. The vertical acceleration due to gravity is shown at the top of the table. The diagram below the tables glves a time history of each drop, showing the variation of attitude and vertical velocity of the C.G. with time. A record of the times of maximum pressures on the daaphragms is also shown.

Figs. 24-36 gave the results on the 30° hull。 A list of runs is glven in Table 5 and particulars of the diaphragms in Table 2 and Flgo 20 fll runs on this hull were made with horizontal velocity.

A list of runs on the 10° dead rise null is Elven $2 n$ Table＇，and the results in \mathbb{F} gs． $37-$ E3．Particulars of the diaphragms are given in Tabla 3 and Fide 3．On this huil some dimping in pitch was applied as indicated or the flyure．The miximum pressares measured on this hull were consideratly Ereater than expected and a ligh rate of fiaphragm fallure occurred．It was not possible to repeat the tests with new diaphragms．

The time at which the maximum pressures are recorded is measured directiğ fror the record．This pressure is generally built up under one hundredth of a second，the smaller the dead rise angle the snorter the time．The time at which the first keel impact occurs was not measured directly tut estinated from the geometry of impact，knowing the variation with time of attituce， velocity and vertical alstance of the step above the water．

3．Method of Reductior

To use the above results to estimate the maximum pressures in any landing case it is necessary to express them as a function of irpact velocities and attitudes．A survey of the thecretical aspects of the problem is given ir Appendix I and further detalls in Appendices II to IV。

The results of Jones and others，using $21 n$ o diameter diaphragns，gave good agreement with the formula－

$$
p_{r_{1} a x_{0}}=\frac{0^{V_{n}^{2}} \cot q}{K}
$$

where $\circ V_{n}$ is the velocity normal to the keel at first impact and \varnothing is the angle between the plane of the side of the wedge and the water surfacco The Hull Launching Tank results were first reduced in terms of this formula， values of the constant K being estimated in terms of the velocity at the first impact（ K_{1} ）and furtner in terms of the velocity at the time of the maximum pressure measurements（ K_{3} ）On aralysing the Hull Launchine Tank results it was found that both K_{1} and K_{3} varied widely with attitude，increased with speed at positive attatudes and decreascd rapidly with decrease of deadrıse angle．The applicacility of the above formula is therefore questionable and further reduction was made in terms of the relation arrived at in Appendix I
viz：－$\quad p_{\text {max }}=\frac{V_{n} V_{v} \cot ^{2} \partial}{D(\text { Area Factor })}$
As in the first analysis two values of D were calculated，D_{1} in terms of ifitial impact velocities and D_{3} in terms of impact vejocities at time of maximum pressure．Thus the ratio $\frac{D_{1}}{D_{3}}$ was the experimental value of the velocity factor that is examined theoretically in Appendix I。

4．The Relations cetweer the Measured Maximum Fressures and tre Impact Parameters at the Irme of Pressure Measurement

4．1 The Velocity Parameter

The variation in $K\left(\ln p_{\text {max }}=\frac{0_{n}^{2} \cot \phi}{K}\right)$ was first investigatea for systematic error oy plotting log K_{1} against log O_{n} and log K_{3} against log V_{n} for several diaphragms near the main step on the 20° hull．These plots are shown in Figs。 54－57 for daprragms 9 and 10．The points plotted on these graphs represent all the runs made on the hull with $2.1 \mathrm{ft}_{0} / \mathrm{sec}^{\text {E }}$ vertical acceleration due to gravity。 The initalal vertical velocity during these runs varied between 4 and $6 \mathrm{ft} / \mathrm{sec}$ ．and were taken as sensibly constant，the horizontal velocity varied between 0 and $36.6 \mathrm{ft} . / \mathrm{sec}$ ． and the attitude between -6° and $+0^{\circ}$ ．A line with slope unity has been drawn through these points and it can be seen to be a fair mear．The slope of this mean line indicated that the maximum pressure varies according to the lawo

$$
p_{\max }=\frac{o V_{n}}{\operatorname{constant}} \cdot \cot \varnothing
$$

Where the constant has dimensions $\left[\begin{array}{ll}L & 2\end{array}\right]\left[\begin{array}{l}T\end{array}\right]\left[\begin{array}{ll}M & -1\end{array}\right]$ and is therefore of tne form f（ $\frac{1}{V} \theta$ ）where V is a velocity．As the vertical volocity in these tests was sensibly constant the velocity term would appear to be V_{V} ．A theoretical argument for $a V_{n} V_{v}$ form for impact is given in refo 15 where it 1 s also shown that there is no Justification for the use of cot ϕ rather than $\cot \theta$ 。 The reduction equation was therefore taken as

$$
p_{\max }=-\frac{v_{n} v_{v} \cot \theta}{c}
$$

Pressure was then reduced on this basis，which is the velocity basıs indicated theoretically in Appendix $I . \quad C_{1}$ is the value of the constant in terms of time of first impact and $C_{3} i n$ terms of time of $p_{\text {max }}$ measurement．

4． 2 Area of D1aphragm。

As the peak of the pressure wave on landing is very sharp the use of a diaphragm of practicable size to measure the peak \＆ives ar ircorrect result， since only the average pressure over the diaphragm is measurec．The Area Factor is established for vertical drops in Appendix II where a correction is glven for rectangular and circular diaphragns．The correction depends on the ratio $\frac{\text { width of } d \text { aphragm }}{d i s t a n c e}$ from keel $=\frac{d}{c}$ ，and angle of deadrise，and as Eiven in Fig． 58 － 59 for dead rise angles of $10^{\circ}, 20^{\circ}$ and 30° ．

This area factor，based on the theoretical pressure distribution in vertıcal drops ${ }^{11}$ ，has been cnecked for
（a）vertical drops，
（b）drops wath horizontal velocity。
The check for vertical drops could only ce made on the 20° hull on which such drops were made．Here values of C_{3} were compared for diaphragrs in the region of the step over a range of the ratio $\frac{d}{c}$ ．Observed values of C_{3} are given in Table 7 together with their corresponding values of $\frac{a}{c}$ ． These values of C_{3} ，then reduced to C_{3} at zero $\frac{d}{c}$ oy the correction $0=F_{1}$ ． 58 are glven in the last colum．It can be seen that the average value 0 ： this last column 2 s approximately 19 and although there is considerable scatter round this value it is purely of a random nature，and is not ir itself a furction of $\frac{d}{c}$ ．mable 8 gives the average values for the same daphragms on this hull for runs with horizontal velocity and here again the average value of C_{3} reduced to zero is approximately 19.

Comparison between daphragms of different $\frac{d}{c}$ values on the 30° null is given in Table 9 for runs with horizontal velocity．More scatter 15 obtained on this hull but no consistent different of tre reduced value of C_{3} with the ratio $\frac{a}{C}$ is apparent．

Mean values of C_{0} observed during nose up impacts on the 10° hull are Eiven in Table 10．Here C_{3} increases in value towards the bow so in Table 10 the hull is divided transversely and C_{3} compared at constant values of the ratio－

$$
\frac{L}{o}=\frac{\text { Distance forward of C.E. }}{\text { Beam at step. }}
$$

Values compared on this basis shows the theoretical correction to be slightly too great for righer values of $\frac{d}{c}$ 。

4．3 Deadrıse Angle，θ
Average values of the local impact constant C_{3} were obtaned for the 3 hulls，where

$$
P_{\text {max }}=\frac{V_{n} V_{v \cot \theta}}{c_{3}(\text { Area Factor })}
$$

(a) Over the constant deadrise section of the forebody.
(b) Over diaphragms of equal deadrise on the warped section of the forebody.
(c) Over the region behind the step.

Average values of C_{3} in section (a) reduced to zero are given in mable 11 for the 3 deadrise angles tested. It can be seen from thas table that C_{B} varies considerably with deadrise angle。 Wagner 11 indicated that pmax $i s$ nearly proportional to $\cot ^{2} \theta$ rather than cot θ so these values were multiplied by $\cot \theta$ and a constant D_{3} defined by $p_{\max }=\frac{V_{n} V_{v} \cot ^{2} \epsilon}{D_{3}(\text { Area Factor })}$.
Values of D_{B} are glven in Table 12 along with the theoretical value of Wagner for vertical dropso It can be seen that both theoretical and experimental values are in close agreement and that D_{3} is nearly constant with deadriseo

On the warped section of the forebody values of D_{3} reduced to zero $\frac{d}{c}$ are glven as averages over sections of equal deadrise in Table 1J̃o These values of D_{3} are hifher than the values on the unwarped part of the forebody on the 10° hull and lower on the 30° hull. On the 20° hull they are approximately the same.

Results for the region aft of the step are most complete on the 20° hull. On this hull it was found that results measured in vertical drops and rear step landings gave a higher value of D_{3} than these in which the main step touched first. The average value of L_{3} reduced to zero for the first group was 92 and for the second 45. On the 30° and 10° hulls the values of D_{3} for the afterbody were 47 and 42 respectively showing a slignt fall off with decrease in forebody deadrise. No variation of D_{3} fore and aft along the afterbody was found.

5. Relation between Maximum Local Pressures and Impact Parameters at Time of First Impact

It can be seen from the above that the maximum pressure measured on a glven arez can best be expressed in terms of

$$
p_{\max }=\frac{V_{n} V_{v}}{D_{3}} \quad \frac{\cot ^{2} \theta}{\text { (Area Factor) }}
$$

where the value of D_{S} is closely the same as the theoretical wagner value of 58 for vertical drops with small deadrise anglese In terms of the velocities
 ratio of these observed values as defined by $\frac{D_{1}}{D_{3}}$ as the observed value of the
velocity factor for the hulls tested. The value of the velocity factor as independent of the form of the maximum pressure relationship assum for for for same impact conditions and diaphragm position on a given hullo Its evaluation also obviated any inaccuracıes in reasuring the pressure itselfo

The value of this velocity factor will depend theoretically on the value of the ratio of the associated mass of water to the mass of the hull, (Appendix I).

5.1 Attitude and Position of Pressure Measurement

The attltude of the hull changes between the time of first keel impact and the maximum pressure measurement. It $1 s$ converient to determine what effect this has on the velocity factor. If we write

$$
\frac{D_{1}}{D_{3}}=\frac{D_{1}}{D_{2}} \cdot \frac{D_{2}}{D_{3}}
$$

$$
P_{\max }=\frac{2^{V_{n}} o^{V} \cot ^{2} \theta}{D_{2}} \text { (Area Factor) }
$$

and $\quad O_{V} V_{V}=v e r t i c a l$ speed at first 1 mpact
$2^{V} n=o^{V} v \cos \alpha_{1}+V_{H} \sin \alpha_{1}$
$\mathrm{V}_{\mathrm{H}}=$ horizontal velocity
$\alpha_{1}=$ hull attıtude at tıme of maximum pressure at the diaphragmo then $\frac{D_{1}}{D_{2}}$ explores the effect of change of attitude between the first and diaphragm impacts，and its variation with initial attitude and initial angular velocity．This variation of $\frac{D_{1}}{D_{2}}$ was investigated for 3 diaphragms on
the 20° hull，these were

> No. 5 near the bow
> No. 10 near the main step
> No. 15 near the rear step
and $\frac{D_{1}}{D_{2}}$ was plotted against initial attitude（ $\alpha 0$ ）in $F i g s$ ． $60-62$ for varying angular velocities，$\alpha 0$ ．Whilst $1 t 1 s$ evident from the figures that $\frac{D_{1}}{D_{2}}$ varles with do there appears to be little varaation of $\frac{D_{1}}{D_{2}}$ with change of attıtude after first impact or with inıtıal angular velocity．Thus，within the limits of experimental error，the effects of angular velocity on the velocity factor for any diaphragm may be neslected and the velocity factor nay be taken as a function of first impact attitude only．

There therefore remains only the investigation of the dependence of the rat $10 \frac{D_{1}}{D_{3}}$ on attitude and diaphragm position．A plot of $\frac{D_{1}}{D_{3}}$ against initial attitude was therefore made（for runs whth $2.1 \mathrm{fto} / \mathrm{sec}{ }^{2}$ initial acceleration） for all the diaphragms on each hull．Specimens of these are given in Figso 63－65 for diaphragms 5，10，and 15 on the 20° hulle These figures show considerable scatter due to experimental error but the general form and position of a mean line can be seen．Cross plotting these mean values of $\frac{D_{1}}{D_{3}}$ aganst $\frac{2_{c}}{b}=\frac{\text { local wetted beam }}{\text { beam at step }}$ for constant values of
 graphs shown in Figs．68－69 for the $20^{\circ} \mathrm{hull}$ ．On the afterbody where there was only one diaphragm on each cross section a constant value of $\frac{D_{1}}{D_{3}}$ was taken across its widtn。 Results on the 30° hull were analysed in a similar manner and identical mean values obtained．Sufficient results were not obtained at any one damping on the 10° hull to draw a similar figure．

From Fig． 66 － 69 the velocity factor $1 s$ known for this hull and hence the maximum pressure distribution for any landing．

5．2 Hull Weight

The velocity factors obtalned in paragraph 5.1 will be modified for other hulls of different welghts as shown theoretically in Appendix III。 No experimental evidence has yet been obtained from the hull launching tank experiments to confirm these estimated values，which are based on the vertical impact case of Wagner．Approximately the velocity factor is decreased and the maximum pressure increased at a given point by the multiply－ ing factor

$$
\left(1+\frac{2 \mu}{1+\mu}\right) \frac{\delta M}{M}
$$

where μ is the ratio of the associated mass of water to the mass of the hull and δ^{M} is the change in the mass of the hull M. Its value 15 therefore dependent on the unknown factor the It will be negligible for small
immersions, near the keel, but increase to the order of 10 per cent near the chanes near the C. 3 . or 20 per cent forward for a 20 per cent 1 ncruase of mass.

The effect is further increased with distance of impact from the $C \cdot G$. because of the \quad nertia effect increas $2 n \in$ the value of μ by the factor $\left(1+\frac{a^{2}}{k}\right)$. The loading per wetted bcam determines the value of μ for any given immersion, so that the effect of mass can be considered in terms of tae static beam loading coefficient

$$
C_{\Delta 0}=\frac{M}{\rho b 3}
$$

> Where ρ is mass density of water
> b is beam at the step.

This is not accurate unless the maximum beam is wettea but is a convenient criterion More accurately tre cear at the position considered must be used, but this also requires a knowledge of the effective mass of water displaced。

The beam loading of the hulls tested is of the same order as that of present day hulls.

5.3 Fitching Moment of Inertia

The pitching moment of inertia will also have some effect on the maximum pressure when impact takes place away from the C. G. so that momentum can be absorbed in both rotation and translation No experimental evidence was obtained but theoretical values for a range of values of μ and a_{k}^{2} are glven in Appendix IV. It is shown that pressures are increased or velocity factors decreased by the factor.

$$
\left[1+\left(\frac{\mu}{1+\mu}\right) \frac{a^{2}}{x^{2}}\right]^{2}
$$

where a is the distance of the resultant impact force from the C.C. and k ls the radius of gyration. The corrections to the velocity factors obtained on the experimental hulls are thus knowr only very approximately.

5.4 Vertical Acceleration at First Impact

The vertical acceleration due to gravity was varied between 0 and $6.5 \mathrm{ft} / \mathrm{sec}{ }^{2}$ during the tests by changing the welght of the counterbalance on the swinging arm. The variation had no effect on tne value of D_{3} as this was dependent only on local velocities. The effect of D_{\perp} can therefore be seen from the variation of $\frac{D_{1}}{D_{3}}$ with iritial vertical acceleration.
Figs. $70-72$ show this effect for diaprragms 5, 10 , and 15 the points with different inıtial acceleration being given different symcolso From these figures there appears to be little consistent variation with acceleration due to gravity; so over the range of accelerations tested the effect can be lonored. A theoretical treatment of the problem is Eiven ir Appendix III, which also shows the effect to se small.

5.5 Damping in Pitch

The effect of damping was only explored on the 10° full where runs were made with zero, $1 / 3,2 / 3$, and full damping. The effect of these on ratic $\frac{D_{1}}{D_{3}}$
15 shown 1 n Figs. 73 and 74 for diaphragms 5 and 10. From these 1 t can bt seen that at high attitudes on diaphragm 5 which is near the bow; danping appears to increase the pressure in that regiono It is however empnasised that this conclusion is based on 3 points and the mean curve for observations made on the 20° hull wh ich were undamped gives lower valum of $\frac{\bar{D}_{1}}{\bar{D}_{3}}$ tran any
of the poirts with damping. of the poirts with damping.

5.6 Water Resistance

The effect of water resistance is included in the velocity parameter; 3も is small

6. Comparison of Hull Launching Tank and Earlier Maximum Pressure Measurements

In this section previous work both model and full scale $1 s$ analysed and compared wath the results obtained from the Hull Launching Tank; first (e.1) glves the comparison with the Model Scale Work on Wedges, then (6.2) with the full scale dropping tests on a Singapore, and lastly (5.3) examines the full scale landing tests made on a Southampton.

6.1 Model Scale Measurements

An extensive series of Model Scale measurement was made by Jones on a wedge dropped into water ${ }^{4}$ 。 These drops were made to investigate a variety of impact conditions, and included a range of attitudes from 0° to 23° and angles of descent from 90° to 16°. Dead rise angles from 0° to 22° were examined but results are compared in this section for angles of 16° and 22° only as dead rise angles of less than this are not used in present day seaplanes.

These results were re-analysed on the basis of the reauction formula

$$
F_{\max }=\frac{0^{V_{n}} 0^{V}}{D_{1}} \cot ^{2} \theta \quad \cdots \quad \quad \cdots \quad \quad \cdots \quad 6 . \therefore
$$

and the average value of D_{1} corrected for area factor was 110 for 16° and 93 for 22° dead rise angle. Thas valde $1 s$ higher than that founc for a similar position in the Hull Launching Tank, possibly due to ar -ncreased value of paost's correction on the comparatively short wedges used.

Jones in his analysis obtaned the empirical law

$$
P_{\max }-\frac{O_{n}{ }^{2}}{K} \cot \phi \quad \quad . \quad .0 \quad . . \quad \text { E. 2. }
$$

where the average value of K was 55. A comparison of the curves of (6.1) and (6.2) and the expermental points is giver. in Figs. 82 and 83 for the two dead rise angles tested. Botn curves show reasonable agreement with the experimental points which are very scattered.

6. 2 Dropping Tests

These were done on a Singapore and pressure measurements were made on seven diaphragms positioned at the step. A comparison between these measurements and pressure estimates based on the formulae evolved in this report are given in Table 14. The values agree well for diaphragms near the keel but discrepancies appear near the chine when the Singapore has a marked flare not represented on the full Launching Tank models.

6.3 Full Scale Landing Tests

A comparıson $1 s$ given here between estimated and measured pressures on the Southampton for two landings. Pressures obtained during the landing shown in Fig. 28 of reference 5 are given in table 15 for four diaphragms near the keel. A comparison between these and the estamated pressures show them to be approximately twice the calculated values. This is due to the aircraft striking a swell (made evident by the rapidly recurring pressure peaks) on landing, thus increasing its effective rate of descent relative to the local water surface. Table 16 is a comparison between estimated pressures and pressures given in Fig. 35 of reference 5. The diaphragms for which pressures are given cover most of the forebody. Agreement between measured and calculated pressure is, in this case, fairly good and shows that the impact formulae given are reasonably accurate over the forebody.

7. Conclusions

Experiments in the Hull Launching Tank show that for the range of flight path angles tested the maximum pressures obtained at any one point of a hull for 1 mpact on a horizontal water surface can be expressed as

$$
\mathrm{P}_{\max }=\frac{\mathrm{V}_{n} \mathrm{~V}_{\mathrm{v}}}{\mathrm{D}_{3}} \cot ^{2} \theta
$$

where V_{n} and V_{V} are respectively the velocities normal to the keel and vertical reasured at the tame of the maximum pressure, θ is the dead rise angle at the point considered measured on a section normal to the local keel and D_{3} is
a constant. The experimental value of D_{3} is equal to 54 , and is of the same order as the theoretical value glven by Wagner for the vertical drop of a simple wedge at zero incidence.

When the maximum pressure is measured or required over a finite area than a correction factor, the area factor, will give the maximum value of distributed pressure over that area, as:-

$$
p_{\max }=\frac{V_{n} V_{v} \cot ^{2} \theta}{D_{3}(\text { Area Factor })}
$$

The value of this area factor can be taken as equal to the theoretical value given in Appendix $I I$ and is calculable from the theoretical pressure distribution given by Wagner for vertical drops.

The application of this result to stressing purposes requires that it be expressed in terms of the 1 mpact conditions at first $1 m p a c t$. A velocity factor has therefore been estimated from the experimental results which represents the effect of the change of velocity and attitude between the first and local 1 mpacts , then

$$
P_{\max }=\frac{o^{V_{n}} o^{V} \cot ^{2} \theta}{D_{3} \text { (Area factor)(Velocaty factor) }}
$$

where $O^{V_{n}}$ and $O_{V} V_{v}$ are the velocities at first impact measured respectively normal to the keel and vertically.

The velocity factor varies with the position of the diaphragm on the hull and with the attitude at first impact. Its value for the hulls tested can be obtained from position and impact condition from Figs. 66 to 69. It is unity for all keel positions at first impact, but increases with depth of immersion.

This factor is shown theoretically to be also dependent on the beam loading and pitching moment of inertia. The application of the velocity factor values to other hulls therefore needs correction for these termso The order of the corrections $1 s$ only known theoretically for vertical impacts and is difficult to apply, so that experiments to ascertain its value experimentally are required. The correction can be very important in regions near the chines.

Experiment shows that the effect of vertical acceleration at first impact and damping in pltch (change of attitude during immersion) are of negligible importance. The first result is supported by theory but the second needs further experimental verification.

Analysis of the results obtained in earlier Vee shape dropping tests and full scale shows that these are better satisfied by this new result than by the earlier emperical form, viz:-

$$
p_{\max }=\frac{V_{n} 2}{K} \cot \phi
$$

However some lack of agreement full scale is found when the flight path angle is small。

Further Developments

Due to limitations in the apparatus, and to the techniques both of measurement and reduction of the results, having to be developed in the course of this, the first major undertaking with the Hull Launching lank, the scope of the present survey is somewhat limited.

In particular the flight path angle has been restricted to the order of 8° and over - the stalled on case - so that the known range of validity of the $V n V_{v}$ law is very restricted. Hence it is desirable that both experimental and theoretical investigations should be extended to low flight path angles - the fly on case - in which the effect of horizontal plaring forces will become evident. This case is also of importance for the ditching of landplanes. Further systematic information is also required on the effects of beam loading, moment of inertia in fitch and damping in pitich.

As the tank length $1 s$ not great enough for more than first 1 mpact measurement the study of the effect of the horizontal planing forces at low flight angles would be facilitated by catapult launching on to the sea of models large enough to carry the requisite pressure recording apparatus．

Full scale tests covering the complete time history of 1 mpact are also desirable．

Both model and full scale tests require extension to the case of waves．
Lastly the application of this work to stressing requirements requires an investigation of the relative severity of the strains imposed by the peak pressure and the maximum pressure over a glven area．

REFERENCES

Ref．No．
1.
2.
3.

40 E．To Jones
F．W．Blundell

5．E．T．Jones
W．H．Davies
6．E．T．Jones
G．Douglas
C．E．Stafford
R．K．Cushing
7．The Vo Karman

8．H．Wagner．

9．Wo Pabst．
10．I．Sedov

11．R．L．Kreps。
12.

Author．
A．G．Smith
G．C．Abel
W．Morris
H．M．Garner

E．T．Jones．

I．W．McCalg．

Title。
The Hull Launching Tank （Descriptive）。

Recent Full Scale and Model Research on Seaplanes．

Some Measurements of Pressure over a V－shape when dropped into water

Force and Pressure Measure－ ments on V－shapes on lmpact with water compared with Theory and with Seaplane Alighting Results．

Measurements of Water Pressure B．\＆M． 1638. on Hull of a Boat Seapiane。

Measurement of Acceleration and $\quad R_{0}$ \＆M_{0} 1807。
Water Pressure on a Seaplane
when dropped into water．

The Impact on Seaplane Floats during Landıng。

Phenomena associated with impact and Gliding on a Liquid Surface。

Landing Impact of Seaplanes．
On the impact of a Solid Body on the Surface of an Incompress－ ible Liquid．

Experimental Investigation of Impact in Landing on Water．

Preliminary Note on the Impact of an Inclined Wedge on Water．

Report No．

F／Res／161。 A．R．C． 6804

Lecture to
Lilienthal
Gesellschaft 1938．

F／Res／78． A．R．C． 1714

R．\＆M．1932．

N．A．C．A．
T．N．321．
Z．A．M．M．
Vol． 12 1932．
A．R．C． 2575.
Z．F．M．1930，1931．
Cahi Report No．
187，1934．
A．R．C． 2246
N．A．C．A．T．M． 1046.

H／Res／190．
A．R．C．8747．

```
p = pressure.
M = mass of hull.
m = mass of associated quantity of water.
\mu=}\frac{m}{M
\mu= density of water.
b = beam at step.
2c = local wetted beam.
\ell = wetted length.
\lambda = 2c.
L = distance forward of C.G.
a = distance of resultant impact force on hull from G.G.
k = radius of gyration.
d = dıaphragm breadth.
\overline { \phi } = a ~ p o t e n t i a l ~ f u n c t i o n .
A = dead rise angle in section normal to local keel.
Q = angle between water surface and surface on which pressure is measured.
\psi = sweep in angle.
\gamma = angle of flight path to horizontal at first impact.
x = keel attitude.
\mp@subsup{\chi}{0}{\prime}}=\mathrm{ keel attıtude at first 1mpact.
\mp@subsup{x}{1}{}}=\mathrm{ attıtude at time of maximum pressure on diaphragm.
v
O}\mp@subsup{V}{n}{}=\mathrm{ velocity norral to the keel at first impact.
1 V = velocity along line of greatest slope.
2}\mp@subsup{V}{n}{}=0\mp@subsup{V}{v}{}\operatorname{cos}\mp@subsup{\overline{\alpha}}{1}{}+\mp@subsup{v}{H}{}\operatorname{sin}\mp@subsup{\alpha}{1}{}
v
    O}\mp@subsup{V}{v}{}=\mathrm{ vertical velocity at first impact.
    VT
    v
    S = area factor.
```

5_{1}	$=$	aspect ratio factor.
f_{2}	$=$	factor for finite dead rise angle.
δ	$=$	$\frac{2}{\pi^{2}} C_{D} \cdot \tan \theta$
${ }^{C} \Delta_{0}$		static beam loading $=\frac{\mathrm{M}}{\mathrm{Pb}^{3}}$
$\mathrm{K}, \mathrm{K}_{1}, \mathrm{~K}_{3}$		
$\begin{array}{ll} C_{1}, & C_{2}, \\ C_{3} \\ D_{1}, & D_{2}, \\ D_{3} \end{array}$		constants defined where they occur.

Other non-recurring symbols are defined where they are used.

1.	Position and Size of Pressure Recorders on 20° hull.
2.	Position and Size of Pressure Recorders on 30° hull.
3.	Position and Size of Pressure Recorders on 10° hull.
4.	Impacts of Hull with 20° Deadrise Angle.
5.	Impacts of Hull with 30° Deadrise Angle.
6.	Impacts of Hull with 10° Deadrise An ${ }^{\circ} \mathrm{le}$.
7.	Variation of C_{3} with $\frac{d}{c}$ in Vertical Drops on $20^{\circ} \mathrm{Hull}$.
8.	Variation of C_{3} with $\frac{\mathrm{d}}{\mathrm{c}}$ in Runs with $20^{\circ} \mathrm{Hull}$.
9.	Variation of C_{3} with $\frac{d}{c}$ for $30^{\circ} \mathrm{Hull}$.
10.	Variation of C_{3} with $\frac{d}{c}$ and Distance forward of the Step for $10^{\circ} \mathrm{Hull}$.
11.	Variation of C_{3} with Deadrise.
12.	Variation of I_{3} with Deadrise.
13.	Values of D_{3} at $\frac{d}{c}=0$ near the Bows.
14.	Comparison of Results from H.L.T. Formulae with Pressure Measurements in Dropping Tests on a Singapore.
15.	Comparison of Results from H. L.T. Formula with Keel Pressures measured during a Landing in a Southampton.
16.	Comparison of Results from H.L.T. Formula with Pressure Measurements during a Landing in a Southampton.

1

Hull Series and Fositions of fitted Pressure Recorders on 20° Deadrise Hull.

Hull series and positions of fitted Pressure Recorders on 30° Deadrise Hull.

Hull Series and Positions of fitted Pressure Recorders on 10° Deadrise Hull.

General Arrangement of Damper.
Runs on 20° Hull.
Runs on 30° Hull.
Runs on 10^{C} Huld.
Variation of K_{3} with V_{n} for Rate of Descent of 4 to $6 \mathrm{ft} / \mathrm{sec}$. (Position 9).

Variation of K_{3} with V_{n} for Rate of Descent of 4 to $6 \mathrm{ft} . / \mathrm{sec}$. (Position 10).

Variation of K_{1} with ${ }_{o} V_{n}$ for Rate of Descent of 4 to $6 \mathrm{ft} . / \mathrm{sec}$. (Position 9).

Variation of K_{1} with ${ }_{o} V_{n}$ for Rate of Descent of 4 to $6 \mathrm{ft} . / \mathrm{sec}$. (Position 10).

Varlation of Area Factor with Dead Rise and Ratio $\frac{d}{c}$ for circular Diaphragms.

Variation of Area Factor with Dead Rise and Ratio $\frac{d}{c}$ for Fectangular
Diaphragms. Dlaphragms.

Variation of $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}$ with initial Keel Attitude and Angular Velocity for Diaphragm 5.

Variation of $\frac{C_{1}}{C_{2}}$ with initial Keel Attitude and Angular Velocity for Dlaphragm 10.

Variation of $\frac{C_{1}}{\mathrm{C}_{2}}$ with initial Keel Attitude and Angular Velocity for Diaphragm 15.

Variation of $\frac{C_{1}}{C_{3}}$ with Keel Attitude and Angular Velocity at First Impact Diaphragm 5.

Variation of $\frac{C_{1}}{C_{3}}$ with Keel Attitude and angular velocity at first Impact Diaphragm 10.

Varlation of $\frac{C_{1}}{C_{3}}$ with Keel Attitude and Angular Velocity at first Impact Diaphragm 15.

FIGURE
NUMBER

```
Variation of }\frac{\mp@subsup{C}{1}{}}{\mp@subsup{C}{3}{}}\mathrm{ with Ratlo }\frac{\mathrm{ Wetted Beam}}{\mathrm{ Beam at Step}}\mathrm{ and Distance Forward of C.G.G
    for }\gamma=\mp@subsup{5}{}{\circ
Variation of }\frac{\mp@subsup{C}{2}{}}{\mp@subsup{C}{3}{\prime}}\mathrm{ with Ratio }\frac{\mathrm{ Wetted Beam}}{\mathrm{ Beam at Step}}\mathrm{ and Distance Forward of C.G.
    for }\gamma=\mp@subsup{0}{}{\circ
Variation of \frac{C1}{\mp@subsup{C}{3}{}}}\mathrm{ with Ratio Wetted Beam
    for }\gamma=\mp@subsup{\varepsilon}{}{\circ
```



```
    for }\gamma=1\mp@subsup{0}{}{\circ
Variation of }\frac{\mp@subsup{`}{1}{}}{\mp@subsup{C}{3}{}}\mathrm{ with Keel Attitude and Vertical Acceleration due to
    Gravity (Diaphragm 5).
Variation of }\frac{\mp@subsup{C}{1}{}}{\mp@subsup{C}{3}{}}\mathrm{ wath Keel Attitude and Vertical Acceleration due to
    Gravity (Dlaphragm 10).
Variation of \frac{C1}{\mp@subsup{C}{3}{}}}\mathrm{ with Keel Attitude and Vertical Acceleration due to
    Gravity (Dlaphragm 15).
Variation of }\frac{\mp@subsup{C}{1}{}}{\mp@subsup{C}{3}{}}\mathrm{ with Initial Attitude and Damping (Diaphragm 5).
Variation of }\frac{\mp@subsup{C}{1}{}}{\mp@subsup{C}{3}{\prime}}\mathrm{ with Initial Attitude and Damping (Diaphragm 10).
Immersion Factor (Appendix I).
Pabst Correction Factor (Appendax I).
Area Factor Diagram (Appendix II).
Effect of Beam Loading (Appendix III).
Effect of Freedom in Pltch (Appendix IV).
Increase in P}\mp@subsup{P}{\operatorname{max}}{}\mathrm{ due to Gravity (Appendix V).
Velocity and Deadrise in Direction of Greatest Slope (Appendix VI).
Peak Pressures and Forward Speed (Appendix VII).
Peak Pressures and Forward Speed (Appendix VII).
```


Introduction

In this appendix an outline is glven of how the orıgnal theory on the dropping of stralght wedges at zero attıtude into water has been extended to give the formulae used in this report in which account is taken of attitude, freedom in pitch, horizontal and vertical velocity, varying deadrise argle etc. Detalls of some proofs are referred to later appendrces.

2. 1 Maximum pressure at the keel

In the origanal theory of Von Karman' a wedge of great length, small deadrıse angle, and dropped at zero attıtude into water was considered. Assumang that the associated mass of water was that of a half cylinder, of radıus equal to trat of the wetted width, the mean pressure over the wetted surface defined by the 1 ritersection of the wedge and the undisturbed water surface was shown to be

$$
\begin{aligned}
& p_{\text {mean }}=\frac{1}{2} \pi \rho o_{\mathrm{V}}^{2} \cot \theta \frac{1}{(1+\mu) 3} \\
& \text { where } \mathrm{V}_{\mathrm{V}}=\text { vertioal velocity at first } 2 m p a c t o \\
& \theta=\text { dead rise angle } \\
& \rho=\text { density of water } \\
& \mu=\frac{\text { mass of the associated water }}{\text { mass of wedge }}=\frac{1}{2} \pi \rho \frac{c^{2} \ell}{M} \\
& \text { where } 2 c=\text { wetted beam, } \ell=\text { wetted length } \\
& M=\text { mass of wedge }
\end{aligned}
$$

From tnis tne maximum pressure at the keel becomes

$$
p_{\max }=\frac{1}{2} \pi \rho_{o} V_{v}^{2} \cot \theta
$$

$$
\text { or } \quad P_{\max }=\frac{o^{V_{v}^{2}} \cot \theta}{46}
$$

$$
\ln 1 \mathrm{~b} \cdot / \mathrm{sq} \cdot 1 \mathrm{n} .
$$

2. 2 Effect $0=\mathrm{Splash}$ and Fimite Immersion

Wagner ${ }^{8}$ showed that, where $x 2$ the beam at the point considered, a velocity potential $\bar{\Phi}=V_{c} \sqrt{c^{2}-x^{2}}$ satısfied the conditions of 1 mpact , also that the wetted beam, $2 c$, for a straight wedge at zero incidence was $\frac{\pi}{2}$ that given by the intersection of the wedge sides and the still water surface. His consequent formula for the pressure at ary 1 mmersion defined by $\frac{3}{4}$ was -
$p=\frac{1}{2} \pi \rho o_{0} v^{2} \cot \theta \frac{1}{(1+\mu)^{2}}\left[\sqrt{1-\frac{1}{c^{2}}}-\frac{2 \mu}{1+\mu} \sqrt{1-\frac{x^{2}}{c^{2}}}-\frac{\frac{2}{\pi} \tan \theta}{\left.\frac{2\left(c^{2}-1\right\}}{x^{2}}\right]}\right]$
For $P_{m a x}$, which occurs very close to the wetted leading edge this gives

$$
\begin{equation*}
P_{\max }=\frac{1}{v} \pi^{2} 00^{V_{v}^{2}} \cot ^{2} \theta \frac{1}{(1+\mu)^{2}}\left[1+\frac{1-3 \mu}{1+\mu} \frac{4}{\pi^{2} \cot ^{2} \theta}\right] \tag{1,4}
\end{equation*}
$$

From Fig. 75 a graph of the second term in the bracket $-1 t$ is seen that equation (104) can be written approximately as

$$
\begin{equation*}
p_{\max }=\frac{1}{8} \pi^{2} \rho \circ V_{v}^{V^{2}} \cot ^{2} \theta \frac{1}{(1+\mu)^{2}} \tag{1,5}
\end{equation*}
$$

The minimum pressure at first immersion 1 s given by $\mathrm{x}=0$, 1 .e. at the keel and is

$$
\begin{equation*}
p_{m 1 n}=\frac{1}{2} \pi \rho \circ{ }^{V_{v}}{ }^{2} \cot \theta \cdot \frac{1-\mu}{(1+\mu)^{3}} \tag{1,6}
\end{equation*}
$$

which reduces to von Karman's result at the keel when $\mu=0$

The mean pressure for finate $1 m m e r s i o n ~ 2 s ~ g i v e n ~ b y ~-~$

$$
\begin{equation*}
p_{\text {mean }}=\frac{1}{4} \pi^{2} \rho o V_{v}^{2} \cot \theta \frac{1}{(1+\mu)^{3}} \tag{1.7}
\end{equation*}
$$

and the maximum pressure at the keel is

$$
\begin{equation*}
p_{\max }=\frac{1}{4} \pi^{2} \rho o^{V_{v}^{2}} \cot \theta \tag{1,8}
\end{equation*}
$$

Wagner's results therefore compared with von Karman, increase the mean and the keel maximum pressures by $\frac{\pi}{2}$ and, more important, make the peak pressures proportional to $\cot ^{2} \theta$.
2. 3 Corrections for Finite Length

Pabst ${ }^{9}$ from experımental evidence, provides a correction for a finıte aspect ratio equivalent to a correction of the wetted length to

$$
n=\frac{\lambda}{1+\lambda^{2}}\left[1-\frac{0.425 \lambda}{1+\lambda^{2}}\right]
$$

where $\lambda=\frac{2 \mathrm{c}}{l}$

This leads to the following correction factor to the Wagner expressions above viz:-

$$
\frac{1}{\sqrt{1+\lambda^{2}}}\left[1+\frac{\lambda(1.27+\lambda)}{2\left(1+\lambda^{2}\right)}+\frac{0.635 \lambda^{3}}{\left(1+\lambda^{2}\right)^{3}}\right]
$$

The correction factor of (109) is graphed in Fig. 76; this factor approximates to 1 for $\lambda>\frac{2}{3}$.

2. 4 Correction for Finite Dead Rise Angle.

The correction for this to the assoclated mass was glven by Sedovi0, on theoretical grounds, as the factor -

$$
\frac{2 \tan \theta}{\pi} \frac{\rho\left(\frac{3}{2}-\frac{\theta}{\pi}\right) \cdot \rho\left(\frac{\theta}{\pi}\right)}{\rho\left(\frac{1}{2}+\frac{\theta}{\pi}\right) \cdot \rho\left(1-\frac{\theta}{\pi}\right)}
$$

where $\rho_{\theta}(\theta)$ ls the Euler function; for small dead rise angles this reduces
to $1-{ }^{-}$. to $1-\frac{\theta}{\pi}$
2. 5 Correction for the frictional resisting force of the water

Kreps ${ }^{11}$ in an analysis of this for vertical drops at zero incidence, relates the velocity at any instant to the indtial velocity by

$$
\begin{equation*}
v_{v}=\frac{o^{V_{V}}}{(1+\mu)^{1}+\delta} \tag{1.10}
\end{equation*}
$$

where the correction for resistance

$$
\delta=\frac{2}{\pi^{2}} C_{D} \tan \theta
$$

and C_{D} is the resistance of a flat piate.
From this it follows that equations (1.5), (1.6), (1.7), (1.8) become

$$
\begin{aligned}
& \mathrm{p}_{\text {max }}=\frac{1}{8} \pi^{2} \rho \circ_{\mathrm{V}^{2}} \cot ^{2} \theta \frac{1}{(1+\mu)^{2}+2^{\delta}} \quad \cdots \quad .0 \quad(1011) \\
& \mathrm{P}_{\mathrm{m1} \mathrm{\pi}}=\frac{1}{2} \pi \rho \circ \mathrm{~V}_{\mathrm{v}} 2 \cot \theta \frac{1-\mu}{(1+\mu)^{3}+2 \delta}\left[1-\frac{4 \mu C_{D}}{\pi 2 \cot \theta(1-\mu)}\right] \ldots(1012) \\
& F_{\text {rean }}=\frac{1}{4} \pi_{\rho}^{2} \quad o_{v^{2}} \cot \theta \frac{1}{(1+\mu)^{3}+2 \delta}\left[1-\frac{2 C_{D}}{\pi^{2}} \cdot \frac{\mu}{\cot \theta}\right] \cdots \quad .0 \quad(1,13) \\
& p_{\max _{\mathrm{keel}}}=\frac{1}{4} \pi^{2} \rho_{0} V_{v^{2}} \cot \theta \quad \text {. } \quad \text {.e } \quad \cdots \quad \text {.. } \quad(1014)
\end{aligned}
$$

2.6 Impacts with Finite Incidence

In a perfect fluld the pressures act normal to tne wetted surface of the hull. Neglecting gravity the resultant forees must (for symmetrical impacts) be perpendicular to the directicns on the hull bottom whic. make the freatest slope. In Appendix VII the direction of these lanes (for hulls whose dead rise is constant or only varies in a fore and aft direction) is shown to be normal to the local keel at the position considered. The associated mass must be considered in this direction. The effective dead rise, for this purpose is shown in Appendix VII to be defined by -

$$
\begin{equation*}
\sin \boldsymbol{\xi}=\frac{1}{1+\tan ^{2} \psi+\cot ^{2} \theta} \quad \cdots \quad \quad \infty \tag{1,15}
\end{equation*}
$$

where $A=$ dead rise angle in a plane normal to the keel at the step

```
\psi = sweep in angle ..e. equivalent dead rise angle measured in a
            horizontal plane parallel to the keel at the step.
2.7 Freedom to Fitch
```

Freedom to pitch permits the absorption of some of the momentum of impact in angular motion; a relief of 1 mpact acceleration normal to the keel is obtained. In Appendix IV it is shown that this relief is equivalent to multiplying the associated mass term by

$$
1+\frac{a^{2}}{k^{2}} \cos ^{2} \alpha \doteqdot 1+\frac{a^{2}}{k^{2}}
$$

where $a=$ distance of resultant 1 mpact force from the $C . G$.
$\mathrm{k}=$ the radius of gyration
$\alpha=$ the angle of incidence.
2.8 Impacts with Horizontal and Vertical Velocities

From the results of ref. 12, in which horizontal and vertical velocities are taken into account, the mean pressure at finite immersion is given by

$$
\begin{aligned}
p_{\text {mean }} & =\frac{1}{4} \pi^{2} \rho V^{2} \cot \theta \frac{1}{(1+\mu)^{3}} \cdot \sin (\alpha+\gamma)(\sin \gamma-\mu \sin \alpha) \\
\text { or } \quad p_{\text {mean }} & =\frac{1}{4} \pi^{2} \rho o_{n} V_{\mathrm{V}} V_{\mathrm{V}} \cot \theta \frac{1}{(1+\mu)^{3}}\left(1-\frac{\mu \sin \alpha}{\sin \gamma}\right) \quad \text { (1.17) }
\end{aligned}
$$

where $V=$ resultant velocity in flight path at first impact,
$\gamma=$ angle of flight path to horizontal at first impact,
$\alpha=$ attıtude of keel at farst impact,
$\mathrm{o}_{\mathrm{n}}=$ resultant velocity normal to keel,
${ }_{0} V_{v}=$ resultant vertical velocity,
The maximum pressure at the keel at first 1 mpact becomes

$$
P_{\max }=\frac{1}{4} \pi^{2} \rho \circ V_{n} \circ^{V} \cot \theta \quad . . \quad . \quad(1,18)
$$

When $u \sin \alpha \mathbb{K} \sin X_{1 .}$. when u, α, γ, are all small quantities of the same order eq (1.17) becomes

$$
p_{\text {mean }}=\frac{1}{4} \pi^{2} \rho \circ V_{n} \circ V_{v} \cot \theta \frac{1}{(1+\mu)^{3}} \quad \ldots \quad(1.19)
$$

When $\gamma=90^{\circ}(1.18),(1.19)$ become of the same form as (1.8) and (1.7) derıved by Wagner.

The importance of these results is the replacement of $o^{V_{n}}{ }^{2}$ used in all previous work, by o $V_{n} o_{V}$. The simple $\circ V_{n} \circ V_{V}$ form (1.19) is only applicable for
(1) impacts where the change in horizontal velocity can be
neglected; this is usually so,
(2) impacts of finite immersion when either the flight path angle is of the order of stalled on landings or first impacts when u is small. For these same conditions, the value for $p_{\text {max }}$ by the analogy of equation (1.18) (1, 19) with $(1,8)(1,7)(1,6)$ gives

$$
p_{\max }=\frac{1}{8} \pi^{2} \rho \circ v_{n} o_{v} \cot ^{2} \theta \frac{1}{(1+u)^{2}} \quad . . \quad(1020)
$$

This relationship for peak pressures has been used in the analysis of the Hull Iaunching Tank results.

2.9 Maximum Pressures measured on Finite Areas

The mean maximum pressure over an area will be less than the peak pressures and more than the mean pressure discussed above. The value of this area factor 15 discussed in Appendix II and $1 s$ denoted by S in the result.

$$
p_{\max }=\frac{1}{8} \pi^{2} \rho \circ V_{n} \circ_{V} \cot ^{2} \theta \frac{1}{S(1+\mu)^{2}} \quad . . \quad(1021)
$$

It $1 s$ assumed to be generally applicable.
3. Conclusions

Incorporating all results arrived at above we get

$$
p_{\max }=\frac{1}{8} \pi^{2} \rho \circ v_{n} \circ v_{v} \cot ^{2} \theta \frac{1}{\left[1+\mu\left(1+\frac{a^{2}}{k^{2}}\right]\right.}\left[2+2 \delta \frac{f_{1} f_{2}}{S}\right. \text { (1.22) }
$$

where $\theta=$ dead rise angle taken in the direction of greatest slope relative to the plane of symmetry,

```
o V 
    O}\mp@subsup{V}{V}{}= resultant vertical velocity normal to the keel at first 1mpact
        \delta = the. correction factor for resistance (Kreps),
    f}1=\mathrm{ the correction factor for aspect ratio (Pabst),
    f}2=\mathrm{ the correction factor for finlte dead rise angle (Sedov),
    S = area factor,
    a = distance of the resultant 1mpact force from the C.G.,
    k = the radius of gyration,
```

It follows that the theoretacal value of the velocity factor is -

$$
\left.\frac{\left[1+\mu\left(1+\frac{\mathrm{a}^{2}}{\mathrm{k}^{2}}\right)\right.}{\mathrm{f}_{1} \mathrm{f}_{2}}\right] 2+2 \delta
$$

and it independent of constant dead rise angle and velocity of impact.

APPENDIX II

The Area Factor
When a pressure wave has a sharply-defined peak, a diaphragm of finite Width will not in general measure the peak pressure but some lower value dependent on the average pressure over the diaphragm. Thus, if AB denotes the diaphragm in Flg. 77 the pressure indicated will not be the peak pressure DN out an average pressure given by the area ABCDE divided by AB. This average pressure depends on
(1) the sharpness of the peak.
(11) the width of the diaphragm $A B$.
(111) the position of the diaphragm.

To relate the maximum value of the average pressure to the true pressure peak DN, it is first necessary to calculate the position of the diaphragm $A B$ to make the average pressure a maximum.

In Fig. 77 let $A B=d$ and let B be specified by the co-ordinate z, then it is required to choose z so that $f(d)$ is a maximum where

$$
F(d)=\int_{z-d}^{z} p(y) d y \quad \text { and } y=\frac{x}{c}
$$

On differentiating $F(d)$ with respect to z, the value of z for a maximum average pressure $1 s$ glven by the equation -

$$
\begin{equation*}
p(z)-p(z-d)=0 \tag{II.1}
\end{equation*}
$$

For the vertical impact of a V-shape at zero incidence on water, Wagner's theory glves the pressure p, as

$$
\begin{gathered}
\mathrm{p}(\mathrm{y})=\frac{1}{2} \pi \rho \circ \mathrm{~V}_{\mathrm{v}} \frac{1}{(1+\mu\rangle^{2}} \cot \theta\left[\sqrt{\left.\sqrt{1-y^{2}}-\frac{1}{1+\mu} \sqrt{1-\mathrm{y}^{2}}-\frac{\frac{1}{2} \mu \mathrm{y}^{2}}{1-y^{2}}\right]}\right. \\
\text { where } \mu=\frac{2}{\pi} \tan \theta .
\end{gathered}
$$

Thus neglecting variation of μ over the time taken for one diaphragm to to be wetted we may choose a unit of pressure in such a way that

$$
p=\cot A\left[\frac{1}{1-y^{2}}-\frac{2 \mu}{1+\mu} \sqrt{1-y^{2}}-\frac{\frac{1}{2} \mu y^{2}}{1-y^{2}}\right]
$$

As a first approximation the term $\frac{2 \mu}{1+\mu} \sqrt{1-y^{2}}$ may be neglected as it is small near $y=10 \quad$ Hence we obtain -

$$
\begin{equation*}
p(y)=\cot \theta\left[\frac{1}{\sqrt{1-y^{2}}}-\frac{1}{2} \frac{\mu y^{2}}{1-y^{2}}\right] \tag{II,2}
\end{equation*}
$$

Substituting (11, Q) in (11, 1) glves

$$
\begin{equation*}
\frac{1}{\sqrt{1-z^{2}}}-\frac{1}{\sqrt{1-(z-d)^{2}}}-\frac{1}{2} \frac{\mu z^{2}}{1-z^{2}}+\frac{1}{2} \frac{\mu(z-d)^{2}}{1-(z-d)^{2}}=0 \tag{II.3}
\end{equation*}
$$

as the condition of maximum average pressure on the diaphragm.
From equations II. 2 the maxımum average pressure measured by a diaphragm of width "d", is

$$
\begin{aligned}
\frac{F(d)}{d} & =\frac{1}{d} \int_{z-a}^{z} \cot \theta\left[\frac{1}{\sqrt{1-y^{2}}}-\frac{1}{2} \frac{\mu y^{2}}{1-y^{2}}\right] d y \\
& =\frac{\cot \theta}{d}\left[\sin ^{-1} y+\frac{\mu y}{2}-\frac{\mu}{4} \log \frac{1+y}{1-y}\right]_{z-a}^{z}
\end{aligned}
$$

where $z i s$ chosen to satisfy equation II. З.'
If we define the area factor of the diaphragm to be the ratio of the true Feak to the maximum average pressure measured by the diaphragm then

$$
\begin{gathered}
\text { area factor } S=\frac{d p_{m a x}}{F(d)} \\
\text { but } p_{m a x} \doteq \cot \theta\left[\frac{1}{2 \mu}+\frac{\mu}{2}\right] \\
\text { and thus } S=\frac{d\left[\frac{1}{2 \mu}+\frac{\mu}{2}\right]}{\sin ^{-1} z-\sin ^{-1}(z-d)+\frac{\mu d}{2}-\frac{\mu}{4} \log \frac{1+z}{1-z} D+\frac{\mu}{4} \log \frac{1+z-d}{1-z+d}}
\end{gathered}
$$

In any particular case the values of d and θ are known and the value of z to give a maxımum average pressure can be determined from equation II. 3. Hence the area factor may be determined by means of equation II. 4 for square or rectangular diaphragms. For circular diaphragms as commonly used the values are slightly less. The area factors in this case are obtalned by integrating the values obtained for rectangular diaphragms over a circle. Results for the two forms of measuring surfaces are given in Figs. 58 and 59.

The variation of maximum pressures with beam loading for a given Veebottom may be derived from the theoretacal work of Wagner who gives the peak pressures as

$$
\mathrm{p}_{\max }=1 / 8 \pi 2 \frac{\rho \mathrm{o}_{\mathrm{v}^{2}}}{(1+\mu)^{2}} \cot ^{2} \theta=\frac{\mathrm{O}^{V^{2}}}{\mathrm{~K}} \cot ^{2} \theta
$$

where $k=\frac{8}{\rho \pi^{2}}(1+\mu)^{2}$
By differentiation $\frac{\delta K}{K}=\frac{2 \delta \mu}{(1+\mu)}$
but

$$
\mu=\frac{m}{M}
$$

therefore

$$
\begin{equation*}
\frac{\delta K}{K}=\frac{-2 \mu}{1+\mu} \quad \frac{\delta_{m}}{M} \quad \cdots \quad . \tag{III.1}
\end{equation*}
$$

Figures 78 is a plot of $\frac{\delta K}{K}$ against $\frac{\delta m}{M}$, the increase in beam loadinge Thus for a hull of known geometry, for which μ is calculated the increase of maximum pressure with increase in the beam loading may be estimated.

APPENDIX IV

The Effect of Freedom in Pitch

In this appendix the general case of a wedge, free to pitch, dropping at a finite attirude into water is considered. The effect of initial angular velocity is also examined.

Consıder a wedge of Mass M, (Fig. 79) dropping vertically into the water so that at first impact it has attitude α_{0}, and angular velocity $\dot{\alpha} o_{0}$ Let its point of first imfact be P and let point P be distance "a" from the centre of gravity, ther the momentum equations will be

$$
\begin{gathered}
M\left(o^{v}-V_{v}\right)=m\left(V_{v}-a \dot{\alpha} \cos \dot{\alpha}\right) \\
M k^{2}\left(\dot{\alpha}-\dot{\alpha}_{0}\right)=m\left(V_{v}-a \dot{\alpha} \cos \dot{\alpha}\right) a \cos \dot{\alpha}
\end{gathered}
$$

```
where m = associated mass of water,
    k = radius of Gyration of wedge,
    v
Putting }\mu=\frac{m}{M}\mathrm{ and z = vv
```

this becomes

$$
\begin{array}{ccc}
o_{v}-v_{v}=\mu z & \cdots & \cdots \\
k^{2}\left(\&-\dot{\alpha}_{0}\right)=a \mu z \cos \dot{\alpha} & \cdots & \ldots \tag{IV.2}
\end{array}
$$

Multıplyıng equation (IV.I) oy k^{2} and (IV, 2 ; $b y \dot{\alpha}$ sos $\dot{\alpha}$ and aading we get

$$
\begin{aligned}
& \mathrm{k}^{2}\left(0^{V_{v}}-a \dot{\alpha}_{0} \cos \dot{\alpha}\right)=k^{2} z\left[i+\mu\left(1+\frac{a^{2}}{k^{2}} \cos ^{2} \dot{\alpha}\right)\right] \\
& \text { 1.e. } V_{v}-a^{\alpha} \alpha \cos x=\frac{o^{V} V_{v}-a \alpha \alpha \cos \dot{\alpha}}{1+\mu\left(1+\frac{a^{2}}{k^{2}} \cos ^{2} \dot{\alpha}\right)} .
\end{aligned}
$$

That is, the effect of freedom to pitch is to increase the associated mass term by the factor $\left(1+\frac{2^{2}}{k^{2}} \cos 2 \dot{\alpha}\right)$. On applying this result to the formula for maximum pressures in the region near point of first impact.

$$
p_{\max }=\frac{1}{8} \pi^{2} \rho \frac{0^{2} v \cot ^{2} \theta}{(1+\mu)^{2}}
$$

bocomes $\quad F_{\max }=\frac{1}{8} \quad \pi^{2} \rho \frac{\left(0^{V_{v}}-a \dot{\theta}_{0} \cos \alpha\right)^{2} \cot ^{2} A}{\left.1+\left(1+\frac{a^{2}}{k^{2}} \cos \alpha \alpha\right) \mu^{2}\right]}$
but as $O_{V} V_{V}$ - ado cos $\dot{\alpha}_{\alpha}$ is the initial local vertical velocity, this means that for similar local impact velocities the peak pressure is reduced by the factor -

$$
\frac{1}{\left(1+\frac{\mu}{1+\mu} \frac{a^{2}}{k^{2}} \cos ^{2} \dot{u}\right)^{2}}
$$

APPENDIX V

The Effect of Acceleration due to Gravity
The formula given by Wagner for maximum pressures was

$$
\mathrm{p}_{\max }=\frac{1}{8} \pi^{2} \rho \mathrm{v}_{\mathrm{v}}^{2} \cot ^{2} \theta \quad \cdots \quad \cdots \quad \text { (V. 1) }
$$

If gravity is neglected this can be written in terms of first impact conditions as

$$
\mathrm{p}_{\max }=\frac{1}{8} \pi^{2} \rho \frac{0^{V_{v}^{2}}}{(1+\mu)^{2}} \cot ^{2} \theta \quad \ldots \quad \quad \text { (V.2) }
$$

In this Appendix the effect of the acceleration due to gravity on V_{V} is examined and a correction to equation (V. 2) obtained.

The equation of motion during the impact of a wedge on the water is

$$
\frac{d}{d t}(M+m) v_{v}=M \xi
$$

On dividing through by M

$$
\begin{equation*}
\frac{d}{d t}\left[(1+\mu) v_{V}\right]=\varepsilon \quad \ldots \tag{V.3}
\end{equation*}
$$

for a wedge dropped whth 1 ts neel at angle α to the water.

Bdt

$$
\mu=\frac{1}{3 M} \rho c^{3} \frac{\tan \theta}{\tan \alpha}
$$

therefore we can write $\mu=n c^{3}$ and equation (V. 3) becomes

$$
\begin{array}{r}
\frac{d}{d t}\left[\left(1+n c^{3}\right) V_{v}\right]=g \\
\therefore \quad\left(1+n c^{3}\right) \frac{d V_{v}}{d t}+3 n c^{2} d V_{v}=g
\end{array}
$$

but $\frac{d V_{v}}{d t}=\frac{d V_{V}}{d c} \cdot \varepsilon \quad$ and $\quad \therefore=\frac{1}{2} \pi \cot \theta V_{v}$

$$
\therefore\left(1+n c^{3}\right)=\frac{1}{2} \pi \cot \theta V_{v} \frac{d V_{v}}{d c}+3 n c^{2} V_{v}^{2} \cot \theta=\theta
$$

or, dividing throughout by $\frac{1}{2} \pi \cot \theta$,

$$
\begin{gathered}
\left(1+n c^{3}\right) V_{v} \frac{d V_{v}}{d c}+3 n c^{2} V_{v}^{2}=\frac{2 g}{\pi} \tan 9 \\
\quad \text { Let } v_{v}^{2}=u, 1 . e .2 V_{v} d V_{v}=d u \\
\text { Sinbtituting this in the above equation }\left(V_{0} 4\right) \text { gives } \\
\left(1+n c^{3}\right) \frac{d u}{d c}+6 n c^{2} h=\frac{4 g}{\pi} \tan \theta \\
\text { or } \frac{d}{d c}\left[\left(1+n c^{3}\right)^{2} u\right]=\frac{4 g}{\pi} \tan \theta\left(1+n c^{3}\right)
\end{gathered}
$$

On antegrating this becomes -

$$
\begin{gathered}
\left(1+n c^{3}\right)^{2} v_{v}^{2}=\frac{4 g c \tan \theta}{r}\left(1+\frac{1}{4} n c^{3}\right)+\text { constant of integration. } \\
\text { At } c=0, V_{v}={ }_{0} V_{v} \\
\therefore \text { constant of integration }=o_{0} V_{v}^{2} .
\end{gathered}
$$

Sabstituting this value and putting $\mu=\mathrm{nc}^{3}$ gives

$$
V_{v}^{2}=\frac{D_{V}^{2}}{(1+\mu)^{2}}+\frac{4 \delta c \tan \theta}{\pi}\left[\frac{1+\frac{1}{4} \mu}{(1+\mu)^{2}}\right] \quad \ldots \quad(\mathrm{V}, 5)
$$

absiltuting (V.5) in (V.1) glves the maximum pressure as

$$
P_{\max }=\frac{1}{8} \pi 20 \frac{0^{V_{V}^{2}}}{(1+\mu)^{2}} \cot ^{2} \theta+\frac{1}{2} \pi \rho_{E} c \cot \theta\left[\frac{1+\frac{1}{4} \mu}{(1+\mu)^{2}}\right]
$$

クat is a further term

$$
\Delta p=\frac{1}{2} \pi \rho \& c \cot \theta\left[\frac{1+\frac{1}{4} \mu}{(1+\mu)^{2}}\right]
$$

is to be added to the pressure obtained from equation (V. 2) to allow for ح, eftect of sravity.

If the wedge on impact is however partially balanced such that the force due to gravity $1 s$ represented by $F(g)$, then the term g in equation (V. 3) $1 s$ replaced by $\frac{F(\rho)}{M}$ and Δp becomes -

$$
\Delta p=\frac{1}{2} \pi \rho \text { c } \frac{F(g)}{M} \cot \theta\left[\frac{1+\frac{1}{4} \mu}{(1+\mu)^{2}}\right]
$$

Agraph of Δp is given in $F i g$. 80 for a range of values of μ and $F(g)$. It can be seen from these graphs that the correction for gravity is small.

APPENDIX VI

Velocity and Dead Rise Angle in Direction of Greatest Slope.
In Appendix I it is shown that peak pressures vary approximately for a stralght wedge as

$$
P_{\max }=\frac{V_{n} v_{v}}{c} \cot ^{2} \theta
$$

$$
\text { where } \begin{aligned}
\mathrm{V}_{\mathrm{n}} & =\text { velocity normal to keel. } \\
\mathrm{V}_{\mathrm{v}} & =\text { vertical velocity. } \\
C & =\text { a constant. } \\
\theta & =\text { dead rise angle. }
\end{aligned}
$$

As θ, the dead rise angle, is taken in the direction of greatest slope on the wedge, and V_{n} is also taken in this direction it follows that if the wedge is warped so as to have a sweep in angle ψ, θ, the dead rise angle, will be replaced by ζ, the angle of the greatest slope. Similarly, the value of V_{n} will be that for a direction given by the line of intersection of the plane of symmetry and the plane contanning this angle.

Consider (Fig. 81) a circular diaphragm $O A B$ on the side of a vee-bottom. Let its centre O be the origin of rectangular co-ordinates with $O x$ and $O z$ normal, and Oy parallel to datum. Let the Line $O D$, be the intersection of the pl ane of the diaphragm with a plane inclined at an angle β to the plane xOz. Then $O D$ is itselfincinned at an angle ξ to $O z$ and it is required to find the value of β for which ξ is a maximum and slope 1 s a maximum.

Let the $F l a n e s$ ZOx, $Z 0 y$ intersect the diaphragm perimeter at the points A, B. Then A is the point $(r \sin \theta, 0, r \cos \theta)$ and $B(0, r \cos \psi,-r \sin \psi)$ and thus the plane containing the diaphragm has the equation

$$
-x \cot \theta+y \tan \psi+z=0
$$

The plane makıng an angle with plane $X O A$ has equation -

$$
x \tan \beta+y=0
$$

and so the line $O D$, intersection of these two planes, has direction ratios

$$
1 ;-\tan \beta ;(\tan \beta \tan \psi+\cot \theta),
$$

and therefore the angle \mathcal{G}, between $O D$ and $O Z$ is given by -

$$
\cos \xi=\sqrt{\left[1+\tan ^{2} B+(\tan B \tan \psi+\cot \theta\right.}
$$

Differentiating this with respect to B we find ξ a maxımum when

The velocity along the line of greatest slope, $1 V_{n}$ is given by -

$$
{ }_{1} V_{n}=V_{n} \cos B+V_{T} \sin B \text {, where } \tan B=\frac{\tan \psi}{\cot \theta}
$$

and

$$
\mathrm{v}_{\mathrm{n}}=\text { velocity normal to keel }
$$

$$
V_{T}=\text { velocity parallel to keel }
$$

hence $1_{n}=\frac{V_{n} \cot \theta+V_{T} \tan \psi}{\sqrt{\left[\cot ^{2} \theta+\tan ^{2} \psi\right]}}$

$$
\begin{aligned}
& \tan B=\frac{\tan \psi}{\cot \theta} \\
& \text { givang } \cos \quad \xi \quad \max =\sqrt{\left[\frac{\tan ^{2} \psi+\cot ^{2} A}{1+\tan ^{2} \psi+\cot ^{2} \theta}\right]} \\
& \text { i.e. } \\
& \sin \underset{\max }{\xi}=\frac{1}{\sqrt{1+\tan ^{2} \psi+\cot ^{2} \theta}}
\end{aligned}
$$

Position and Size of Pressure Recorders on 20° Hull

No. of Diaphragm	Diameter (ins)	$=\frac{\frac{d}{c}}{\text { Distance from Keel }}$	$\begin{gathered} \theta \\ \text { (Degrees) } \end{gathered}$	$\begin{gathered} \psi \\ \text { (Degrees) } \end{gathered}$	Angle Between Local Keel and Keel at Step $=\alpha^{1}-\alpha$
1	1.00	0.200	32.7	9.3	10.3
2	1.00	0.100	24.2	7.8	4.2
3	1.00	0.143	24.2	8.75	4.2
4	1.00	0.077	24.2	8.3	4.2
5	1. 36	0.195	20.0	0	0
6	1.36	0.100	20.0	0	0
7	1.00	0.182	20.0	0	0
8	1.00	0.096	20.0	0	0
9	1.36	0.088	20.0	0	0
10	1.00	0.159	20.0	0	0
11	1.00	0.070	20.0	0	0
12	5.00	0.834	20.0	0	0
13	1.00	Q. 134	29.3	0	-6.6
14	1.00	0.154	28.8	0	-6.6
15	1.00	0.800	27.9	0	-6.6

Position and Size of Pressure Recorders on $30^{\circ} \mathrm{Hull}$

No, of Diaphrasm	Diameter (ins.)	$=\frac{\frac{d}{c}}{\text { Distanceter from Keel }}$	$\begin{gathered} \theta \\ \text { (Degrees) } \end{gathered}$	$\left\lvert\, \begin{gathered} \psi \\ \text { (Degrees) } \end{gathered}\right.$	Angle between Local Keel and Keel at Step $=\alpha^{1}-\alpha$
1	1.00	0. 200	39000	$4^{\circ} 45^{\prime}$	$8030 \cdot$
13	1.00	0.200	$48^{\circ} 15^{\prime}$	$5^{\circ} 00^{\prime}$	$14^{\circ} 30^{\prime}$
1 b	1.00	0.071	$39^{\circ} 00^{\prime}$	$9^{\circ} 15^{\prime}$	80°
2	1.00	0.178	$33^{\circ} 30^{\prime}$	$0^{\circ} 50^{\prime}$	$4^{\circ} 30^{\prime}$
3	1.00	0.095	$33^{\circ} 301$	1000	40301
4	1.00	0.066	$33^{\circ} 901$	00 45'	40301
5	1.00	0.143	$30^{\circ} 15^{\prime}$	$0^{\circ} 30^{\prime}$	$1^{\circ} 45^{\prime}$
6	1.00	0.091	30015	0	10451
7	1.00	0.178	$3000{ }^{\prime}$	0	0
8	1.00	0.095	$30^{\circ} 00^{\prime}$	0	0
9	1.00	0.065	$30^{\circ} 00^{\prime}$	0	\bigcirc
10	1.00	0.187	$30^{\circ} 00^{\prime}$	0	0
11	1.00	0.089	$30^{\circ} 00^{\prime}$	0	0
12	5.00	0.835	$30^{\circ} 00^{\prime}$	0	0
13	1.00	0.132	$29^{\circ} 15^{\prime}$	0	$-8^{\circ} 38^{1}$
$\begin{gathered} 14 \\ \text { (Not } \\ \text { corrected) } \end{gathered}$	1.00	-	$29^{\circ} 001$	0	$-6^{\circ} 38^{\prime}$
15	1.00	0.200	$28^{\circ} 00^{\prime}$	0	$-6^{\circ} 361$

Position and Size of Pressure Recorders on 100 Hull

No. of Diaphragm	Diameter (1ns.)	$=\frac{\frac{d}{c}}{\text { Distance from Keel }}$	$\begin{gathered} \theta \\ (\text { Degrees }) \end{gathered}$	$\begin{gathered} \Psi \\ (\text { Degrees }) \end{gathered}$	Angle tetween Local Keel and Keel at Step $=\alpha^{1}-\alpha$
1	1.00	0.250	$21^{\circ} 50^{\prime}$	1025^{\prime}	$10^{\circ} 12$.
1 a	1.00	0.222	$3000{ }^{\prime}$	$6^{\circ} 00^{\prime}$	$10^{\circ} 45^{\prime}$
1b	1.00	0.131	$23^{\circ} 00^{\prime}$	$8^{\circ} 40^{\prime}$	$16^{\circ} 35^{\prime}$
2	1.00	0.250	13040 '	20201	5025^{\prime}
3	1.00	0.114	$14^{\circ} 00^{\prime}$	$12^{\circ} 36{ }^{\prime}$	5025^{\prime}
4	1.00	0.074	$14^{\circ} 20^{\prime}$	$17^{\circ} 10^{\prime}$	$5^{\circ} 25^{\prime}$
5	1.00	0.182	10°	$10^{\circ} 00^{\prime}$	0°
6	1.00	0.083	10°	$8^{\circ} 30^{\prime}$	0°
7	1.00	0.200	10°	00	00
8	1.00	0.105	10°	0°	0°
9	1.00	0.071	10°	0°	0°
10	1.00	0.200	10°	09	00
11	1.00	0.077	10°	0°	0°
12	5.00	0.862	10°	0°	0°
13	1.00	0.132	29°	0°	$-6^{\circ} 36^{\prime}$
$\begin{gathered} 14 \\ \text { (Not } \\ \text { corrected) } \end{gathered}$	1.00	-	29°	0°	$-6^{\circ} 36^{\prime}$
15	1.00	0.200	28°	00	$-6^{\circ} 36^{\prime}$

Impacts of Hull with 20° Dead Rise

Figure Number	```Vertical Acceleration Due to Gravity (ft./sec?)```	Horizontal Velocity of Carriage at First Impact (ft./sec.)	Vertical Velocity at First Impact (ft./sec.)	Attitude At First Impact (degrees)
5	2.1	38.6	5.2	5.62
6	2.1	36.5	4.2	2.65
7	2.1	38.14	6.4	0.25
8	2.1	38.1	5.3	8.28
9	2.1	35.8	5.0	11.95
10	2.1	31.3	5.8	-2.05
11	2.1	25.3	6.0	9.25
12	2.1	25.2	5.7	-0.70
13	2.1	25.2	4.9	-6.00
14	2.1	25.2	5.0	+4.85
15	2.1	0	6.4	1.85
16	2.1	0	5.22	6.64
17	2.1	0	6.0	9.15
18	2.1	0	6.1	-3.42
19	0	0	6.8	6.50
20	4.2	0	7.7	6.47
21	4.2	26.5	6.4	1.07
22	5.2	0	7.75	6.57
23	6.3	25.8	6.25	1.2

Impacts of Hull with 30° Dead Rise

Figure Number	Vertical Acceleration Due to Gravity (ft./sec?)	Horizontal Velocity of Carriage at First Impact (ft./sec.)	Vertical Velocity at First Impact (ft./sec.)	Attıtude at First Impact (degrees)
24	2.1	33.1	6.2	0.35
25	2.1	39.8	5.1	5.50
28	2.1	40.0	6.5	9.10
27	2.1	37.7	6.5	2.35
28	2.1	37.6	5.0	4.82
29	2.1	35.8	3.4	-5.92
30	2.1	36.0	7.6	2.34
31	0	37.4	6.7	5.18
32	0	37.9	8.2	10.45
33	4.2	40.0	6.9	1.55
34	4.2	40.6	6.0	0.80
35	6.3	40.1	6.2	4.40
36	6.3	37.6	6.6	2.22

TABLE VI

Impact of Hull with 10° Dead Rise

Figure Number	```Vertical Acceleration Due to Gravity (ft./sec?)```	Horizontal Velocity of Carriage at First Impact (ft./sec.)	Vertical Velocity at First Impact (ft./sec.)	Attitude at First Impact (degrees)
37	2.1	32.5	6.1	1.95
38	2.1	32.0	6.0	6.75
39	2.1	33.5	5.9	0.8
40	2.1	33.8	6.1	6.7
41	2.1	34.0	5.6	7.6
42	2.1	33.1	5.5	-3.2
43	2.1	34.0	6.9	-2.9
44	2.1	32.1	5.4	-7.4
45	2.1	32.4	4.9	-6.0
46	2.1	32.2	6.7	-8.0
47	2.1	30.8	6.2	-2.1
48	2.1	35.4	6.1	-2.7
49	0	33.0	5.9	-3.0
50	4.2	32.4	6.2	2.1
51	4.2	36.4	5.8	-2.4
52	6.3	34.4	6.6	-2.7
53	6.3	36.4	5.6	2.3

Variation of Observed Values of C_{3} with Ratio $\frac{d}{c}$ during Vertical Drops on 20° Dead Rise Hull

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Diaphragm } \end{gathered}$	$\begin{aligned} & \frac{\text { Diameter }}{\text { Distance from Keel }} \\ & =\frac{d}{c} \end{aligned}$	Average Value of C_{3} (observed)	Average Value of C_{3} (corrected to zero $\frac{d}{c}$)
11	0.070	20.1	18.6
9	0.088	26.1	23.3
8	0.096	22.4	19.7
10	0.159	22.1	18.9
7	0.182	21.6	18.0
12	0.834	39.8	22.1

TABLE VIII

Variation of Observed Values of C_{3} with Ratio $\frac{d}{c}$ during Runs with Horizontal Velocity on 20° Dead Rise Hull

Number of Diaphragm	$\frac{\text { Diameter }}{\text { Distance from Keel }}$ $=\frac{d}{c}$	Average Value of (observed)	Average Value of C_{3} (corrected to zero $\frac{d}{c}$)
11	0.070	24.7	22.6
9	0.088	17.2	15.7
8	0.096	21.9	19.6
10	0.159	21.1	17.9
7	0.834	37.0	20.2
12			20.6

Variation of Observed Values of C_{3}
with Ratio $\frac{\mathrm{d}}{\mathrm{c}}$ for 30° Dead Rise Hull

Number of Diaphragm	$\begin{aligned} & \frac{\text { Diameter }}{\text { D1stance from Keel }} \\ & =\frac{d}{c} \end{aligned}$	Average Value of C_{3} (observed)	Average Value of C_{3} (corrected to zero $\frac{d}{c}$)
9	0.065	20.8	20.0
11	0.069	21.1	20.3
8	0.095	27.7	26.0
10	0.167	20.4	18.8
7	0.179	30.0	27.3
12	0.835	34.6	26.0

TABLE X
Variation of Observed Value of C_{3} with Ratio $\frac{d}{c}$ and Distance Forward of the Step for $10^{\circ} \mathrm{Hull}$

$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Dıaphragm } \end{gathered}$	$\begin{aligned} & \frac{\text { Diameter }}{\text { Distance from Keel }} \\ & =\frac{d}{c} \end{aligned}$	Average Value of C_{3} (observed)	Average Value of C_{3} (corrected to zero $\frac{d}{c}$)	Distance Forward of C.G. Beam
5	0.182	21.8	11.5	
8	0.083	22.6	15.6	
8	0.105	16.1	10.2	
9	0.071	26.5	18.9	
10	0.200	10.2	5.3	
11	0.077	8.8	6.1	

TABLE XI
Variation of C_{3} with Dead Rise angle, θ

Dead Rise	
Angle θ	C_{3}
10°	10
20°	19
30°	24

TABLE XII
Variation of D_{3} with Dead Rise Angle, θ

Dead Rise	Experımental	Theoretical	
Angle θ	Value of D_{3}	Value of D_{3}	
100	56	57	
20°	54	56	
30°	48	51	

TABLE XIII
Values of D_{3} at $\frac{d}{c}=0$ near the Bows

$10^{\circ} \mathrm{Hull}$		$20^{\circ} \mathrm{Hull}$		$30^{\circ} \mathrm{Hull}$	
θ	D_{3} (corrected)	θ	D_{3} (corrected)	θ	D_{3} 30°
29.3	-	-	46°	38.7	
22°	79.2	33°	39.9	39°	36.1
14°	82.1	24°	63.3	33°	36.0

TABLE XIV

Station	$p_{\text {max }}=\frac{v_{n} v_{v} \cot ^{2} \theta}{54}$	$\frac{2 \mathrm{z}}{6}$	Velocity Factor	$\frac{d}{c}$	Area Factor	$\stackrel{\mu}{(\text { full } \stackrel{\text { scale }}{ })}$	$\begin{gathered} \mu \\ \text { (model scale) } \end{gathered}$	Beam Loading Correction	$\begin{gathered} \text { Pmax } \\ \text { corrected } \end{gathered}$	$P_{\text {max }}$ observed
1	31.1	0.71	1.30	0.04	1.15	0.155	0.062	1.18	17.6	$7: 5$
2	18.2	0.55	1.20	0.06	1.08	0.087	0.035	I. 10	10.7	8.6
3	10.3	0.30	1.10	0.11	1.10	0.014	0.008	1.02	8.4	8.6
4	8.2	0.15	1.05	0.18	1.12	0.002	0.001	1.00	6.9	6.0
5	8.6	0.10	1.02	0.30	1.20	0.001	0.000	1.00	0.5	7.0
6	11.3	0.33	1.10	0.09	1. 10	0.019	0.008	1. 02	9.3	7.7
7	42.0	0.84	1.37	0.04	1.20	0.301	0.121	1.35	18.9	12.3

Comparison between Results of H. W. To Formula with Keel Pressures measured during a Landing in a soutnampton

$$
\text { at } 0 V=3.0 \mathrm{ft} . / \mathrm{sec} \mathrm{~V}=\mathrm{V}=135 \mathrm{ft} / \mathrm{sec}, \alpha=-0.5
$$

Dlaphragm	$\mathrm{p}_{\max }=\frac{\mathrm{V}_{\mathrm{n}} \mathrm{V}_{\mathrm{V} \cot ^{2} \theta}}{54}$	$\frac{\mathrm{d}}{\mathrm{c}}$	Area Factor	Velccıty Factor	μ	$\begin{gathered} P_{\max } \\ \text { corrected } \end{gathered}$	$P_{\text {max }}$ ooserved
5	2.6	0.16	1.08	1.02	negligible	2.4	7.5
7	2,7	0.45	1.35	1.01	11	1.9	4.0
10	2.5	0.13	1. 15	1.01	"	2.1	4.8
± 2	negligible	-	-	-	-	-	0.5

TABLE XVI
Comparison of Results of HoI.T. Formula and Pressure Measurements

Diaphragm	(Corrected for Bank)	$0 \mathrm{~V}_{\mathrm{n}}$	$\circ^{\mathrm{V}} \mathrm{V}$	$\frac{o^{V} E o^{V_{V}} \cot ^{2} \theta}{54}$	$\frac{\mathrm{d}}{\mathrm{c}}$	Area Factor	$\frac{\mathrm{L}}{\mathrm{b}}$	c	Velocity Factor	Full Scale	Beam Loading Correction	$P_{\max }$ Corrected	$\mathrm{P}_{\text {max }}$ Observed
5	24.0	24.7	9.5	22.0	C. 18	1.13	1.25	0.26	2.00	0.45	1.24	7.9	13.0
6	24.0	24.7	9.5	22.0	0.07	1.06	1.25	0.63	2.75	0 68	1. 32	5.7	4.5
7	20.4	22.2	9.5	28.2	0.45	1.45	0.81	0.12	1.50	0.15	1. 10	11.8	19.0
8	20.4	22.2	9.5	28.2	0.08	1.10	0.81	0.48	1.80	0.32	1.17	12.2	21.0
10	16.5	19.7	9.5	39.5	0.13	1.35	0.38	0.32	1.30	0.03	1. 02	22.1	29.0
11	16.5	19.7	9.5	39.5	0.06	1.20	0.38	0.86	1.50	0.22	1.12	19.8	26.5
12	13.2	16.0	9.5	51.0	0.29	1.70	0.13	0.14	1.03	0.00	1.00	29.1	27.5
13	13.2	16.0	9.5	51.0	0.13	1.50	0.13	0.32	1.10	0.03	1.02	30.2	27.5
14	13.2	16.0	6.5	51.0	0.04	1.20	0.12	0.89	1.40.	0.22	1.12	27.1	20.0

DEADRISE ANGLE AT STEP 20°

Hull Lines and Pozitions of Fitted
Pressure Recorders

FIG. 4

FIG. 5

ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{FH}^{\text {/ }}$ /EC ${ }^{2}$							
DIAPHRAGM	$P_{\text {max }}$	Initial conditions			LOCAL IMPACT CONDITIONS		
		V_{H}	v	∞	V_{H}	V_{V}	α
1							
2							
3							
4							
5	3.43	370	4.40	5.62	36.3	3.08	6.00
6	1.72	36.9	4.38	5.62	36.0	0.37	6.86
7	5.07	37.0	4.83	5.62	36.9	4.50	5.56
8	4.27	37.0	4.82	5.62	37.0	3.73	5.00
\bigcirc	406	37.0	4.82	$5 \cdot 62$	36.2	3.32	6.09
10	4.33	37.0	4.87	5.62	36.8	3.89	6.02
11	4.60	37.0	4.90	5.62	36.5	5.00	5.44
12	2.86	37.0	4.83	5.62	$36 \cdot 9$	4.50	5.53
13	1.13	37.0	5.96	-0.38	$36 \cdot 2$	2.46	0.20
14	0.98	37.0	0.46	-0.38	36.1	3.65	-0.46
15	1.58	37.0	6.93	-0.38	$36 \cdot 2$	$4 \cdot 30$	0.02

FIG. 6

acceleration			DUE TO	ORAVITY $=2.17 \mathrm{Trsc}{ }^{2}$			
DIAPHRAGM	$P_{\text {max }}$	InItiAL CONDITIONS			LOCAL Impact conditions		
		V_{H}	W	α	V_{H}	Vv	α
1							
2							
3							
4							
5							
6							
7	2.81	38.8	2.35	2.65	35.8	4.78	3.65
8	2.56	38.6	2.29	2.65	37.3	3.09	4.32
\bigcirc	2.80	38.5	2.28	2.65	$36 \cdot 3$	2.59	4.54
10	3.62	38.1	2.23	2.65	36.5	3.33	4.41
11	3.47	38.7	2.72	2.65	35.7	4.78	3.44
12	1.90	38.8	2.35	2.65	35.7	4.92	3.45
13	$1 \cdot 10$	38.4	8.35	-3.95	37.1	4.7	-1.74
14	0.99	38.3	10.96	-3.95	37.2	$6 \cdot 31$	-1.47
15	2.06	38.2	13.47	- 3.95	37.8	$5 \cdot 92$	-1.85

FIG. 7

ACCELERATION			DUE TO	GRAVITY $=2.1 \mathrm{TT} / \mathrm{SEC}^{2}$			
DIAPHRAGM	Pmax.	IMITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{n}	W	\propto	V_{M}	Vv	α
1							
2							
3							
4							
8	3.8	$35 \cdot 2$	8.1	$2 \cdot 25$	35.5	7.01	1.53
6	3.86	35-3	8.14	2.25	36.0	3.63	1.46
7							
8	4.44	35.2	$7 \cdot 18$	2.25	35.3	5.85	1.50
9	3.36	$35 \cdot 3$	$7 \cdot 18$	2.25	35.7	5.10	1.46
10	$4 \cdot 34$	$35 \cdot 2$	6.93	2.25	35.6	6.25	1.46
11	$3 \cdot 53$	$35 \cdot 2$	7.00	2.25	35.7	6.93	1.95
12	2.70	$35 \cdot 2$	$7 \cdot 16$	2.26	35.6	7.05	2.04
13	1.82	35.4	5.69	-4.35	36.0	3.73	0.05
14	$1 \cdot 60$	35.4	$3 \cdot 62$	-4.35	35.8	4.54	0.25
18	2.0	35.5	2.59	$-4 \cdot 35$	$35 \cdot 8$	5.96	0.36

FIG. 8

ACCELERATION DUE TO GRAVITY $=2$.							
DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITION		
		V_{H}	V_{v}	α	V_{H}	V_{V}	α
1							
2							
3							
4							
5	4.06	35.793	5.988	8.26	$35 \cdot 57$	2.65	7.30
6	0.44	35.859	5.995	8.26	35.59	0.08	7.48
7	5.56	35.759	5.627	$8 \cdot 26$	$35 \cdot 26$	4.56	7.86
8	6.14	35.790	5.634	8.26	35.11	4.47	7.48
9	$5 \cdot 80$	35.912	5.632	8.26	$35 \cdot 12$	4.11	7.20
10	$5 \cdot 14$	35.78	5538	8.26	35.38	4.13	7.52
11	6.14	35.770	5.567	8.26	35.55	4.62	8.03
12	3.72	35.759	5.627	826	35.20	4.47	7.77
13	0.48	35.735	4.680	1.66	35.06	2.83	7.47
14	1.03	35.707	$4 \cdot 268$	1.66	35.49	3.53	8.20
15	1.96	35.684	3.870	1.66	$26 \cdot 20$	5.69	8.63

FIG. 9

ACCELERATION			DUE TO	GRAVITY $=2.15 / \mathrm{sEC}^{2}$			
	$P_{\text {max }}$.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{v}	α	V_{H}	V	α
1							
2							
3							
4							
5							
6	$2 \cdot 2$	35.8	$5 \cdot 37$	11.95	$35 \cdot 3$	1.23	7.23
7	$6 \cdot 0$	35.7	$5 \cdot 18$	11.95	$35 \cdot 1$	6.55	10.85
8	4.83	35.7	5.18	11.95	34.8	4.27	7.58
9	4.61	35.8	5.18	11.95	34.9	4.27	7.43
10	4.65	35.7	5.14	11.95	34.8	4.08	7.53
11	6.5	$35 \cdot 7$	5.15	11.95	34.4	4.38	7.71
12	3.95	$35 \cdot 7$	5.18	11.95	35.0	4.39	7.86
13	0.40	35.7	4.69	$5 \cdot 35$	34.7	$2 \cdot 24$	0.75
14	0.50	35-7	4.48	$5 \cdot 35$	35.1	3.07	3.43
15	$1 \cdot 10$	35.6	$4 \cdot 27$	$5 \cdot 35$	$35 \cdot 5$	3.86	$5 \cdot 15$

ACCELERATION D			DUE	GRAVITY $=2.1{ }^{\circ} / \mathrm{sec}^{2}$			
DIAPHRAGM	$\mathbf{R}_{\text {max }}$.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		$V_{\text {H }}$	V	α	V_{H}	V_{V}	α
1	2.05	31.692	4.08	8.25	30.829	1.94	8.00
2	1.40	31.754	4.44	$2 \cdot 15$	28.775	6.795	$2 \cdot 14$
3							
4	1.36	31.744	4.44	2.15	31.106	$3 \cdot 284$	2.35
5	1.70	31.830	5.01	-2.05	30.69	4.643	-2.23
6	1.30	31.746	4.786	- 2.05	$30 \cdot 88$	3.200	-2.60
7	1.50	31.789	5.496	- 2.05	30.754	4.673	-2.55
8	$1 \cdot 26$	31.751	5.470	-2.05	30.917	4.230	- 2.45
9	$1 \cdot 30$	31.722	5.467	- 2.05	32.026	2.335	0.20
10							
11							
12							
13	1.86	31.585	6.720	-6.65	31.296	5.504	-3.00
14	1.85	31.536	7.260	-6.65	31.745	10.06	-4.50
15	1.66	31.542	7.780	-6.65	31.227	$8 \cdot 93$	$-2 \cdot 70$

FIG.II

ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{mT} / \mathrm{sec}^{2}$							
DIADHRAGM	$P_{\text {max }}$	INITIAL CONDITONS			LOCAL IMPACT CONDITION		
		V_{H}	V	ه	V_{H}	V_{v}	α
1							
2							
3							
4	0.74	$25 \cdot 40$	5.10	13.45	24.2	0.12	11.65
5	3.41	25.50	5.43	9-25	24.0	2.74	7.35
6	$2 \cdot 10$	25.50	5.41	9.25	23.7	1.40	7.25
7	4.66	25.60	5.73	9-25	24.3	4.94	8.40
8	4.51	85.50	5.72	9.25	24.10	4.47	$8 \cdot 17$
9	3.60	25.50	5.73	9. 25	23.90	$3 \cdot 37$	7.53
10	3.85	25.60	$5 \cdot 80$	9.25	24.10	4.26	8.10
11	4.74	25.60	5.77	9.25	24.30	4.98	8.48
12	3.14	25.60	5.72	9.25	24.00	4.55	$8 \cdot 22$
13							
14	0.75	25.60	6.84	2.65	24.80	3.20	2.74
15	1.34	25.70	7.16	$2 \cdot 65$	$25 \cdot 30$	6.03	2.82

ACCELERATION			DUE TO	GRANTY $=2.1 / S_{\text {SEC }}{ }^{2}$			
DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V	O	V_{H}	V	χ
1							
2							
3	1.82	25.21	5667	3.50	25.51	3.51	7.94
4	0.84	25.21	5.667	$3 \cdot 50$	26.08	0.00	$5 \cdot 12$
5	1.70	25.21	5.667	-0.70	25.60	$3 \cdot 604$	0.36
6	1.26	$25 \cdot 21$	5.667	-0.70	$26 \cdot 22$	0.43	2.46
7	$2 \cdot 10$	25.21	5.667	-0.70	25.41	5.051	-0.34
8	1.93	$25 \cdot 21$	$5 \cdot 667$	-0.70	25.64	$4 \cdot 25$	-0.14
9	1.92	25.21	5.667	-0.70	2590	3.840	0.42
10	2.06	25.21	5.667	-0.70	25.75	$4 \cdot 363$	$0 \cdot 19$
11	2.00	25.21	5.667	-0.70	$25 \cdot 30$	$5 \cdot 170$	-0.37
12	$1 \cdot 23$	25.21	5.667	-0.70	25.54	4.615	-0.25
13	1.84	$25 \cdot 21$	5.667	$-7 \cdot 30$	25.75	5.554	-1.90
14	1.42	$25 \cdot 21$	5.667	-7.30	$26 \cdot 20$	8.900	-3.10
15	1.68	$25 \cdot 21$	5.667	$-7 \cdot 30$	25.92	9.940	-2.22

FIG. 13

ACCELERATION O			DUE TO	GRAVITY $=2.1 \mathrm{rT} / \mathrm{sec}^{2}$			
DIAPHRAGM	$\mathrm{P}_{\text {max. }}$	initial conditions			LOCAL IMPACT CONDITIONS		
		V_{n}	V_{v}	α	V_{N}	v	α
1							
2							
3							
4	0.80	25.270	4.717	0.048	24.37	-0.35	10.73
5	2.50	25.30	4.826	4.845	25.24	2.52	5.80
6	2.06	25.283	$4 \cdot 823$	4.845	25.06	2.20	6.26
7	3.30	25.304	4.92	4.845	25.21	4.04	5.23
8	3.80	25.296	4.919	4.845	25.12	3.60	5.29
-	3.12	25.290	4-918	4.845	25.18	2.80	5.88
10	3.25	25.297	4.943	4.845	25-20	$4 \cdot 10$	5.26
11	3.85	25.300	4.925	4.845	25.41	4.76	5.11
12	2.18	25.304	4.920	4.845	25.21	4.04	5.21
13							
14	0.88	25.296	5.274	-1.755	25.26	5.03	-0.80
15	1.20	25.236	5.377	-1.755	25.27	5.61	-0.76

FIG. 16

ACCELERATION D			DUE TO	CRAVITY $=2.1 \mathrm{FT} / \operatorname{snc}^{2}$			
DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{v}	α	V_{H}	V	α
1							
2							
3	1.5	1.55	5.365	10.84	1.018	$3 \cdot 382$	9.97
4	0.92	1.554	5.365	10.84	0.713	2.457	$9 \cdot 87$
6	2.55	1.537	5.310	6.64	1.179	5.350	6.30
6	1.80	1.546	5.309	6.64	1.038	$4 \cdot 896$	6.08
7	3.20	1.534	5.261	6.64	1.227	5.210	6.45
8	3.50	1.538	5.262	6.64	1.292	$5 \cdot 202$	6.43
9	2.75	1.541	5.262	6.64	1.205	5.063	6.25
10	3.50	1.538	5.251	6.64	1.190	4.879	6.37
11	3.45	1.536	5.253	6.64	1.415	5.413	$6 \cdot 50$
12	3.66	1.534	5.261	6.64	1.467	5.397	6.55
13	0.96	1.535	5.138	0.04	$1 \cdot 179$	4.279	-0.22
14	0.90	1.533	$5 \cdot 085$	0.04	$1 \cdot 158$	3.945	-0.32
15	0.87	1.531	5.032	0.04	1.695	4.341	-0.35

FIG. 17

ACCELERATION			DUE TO	GRAVITY $=2.1 \mathrm{Fr} / \mathrm{SEC}^{2}$			
	$P_{\text {max }}$.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V	α	V_{H}	V_{V}	α
1	0.30	1.81	6.00	19.45	0.50	2.99	16.30
2	1.05	1.81	6.00	13.35	0.52	3.64	10.65
3	1.59	1.81	6.00	13.35	0.53	$4 \cdot 18$	10.90
4	1.02	1.81	6.00	13.35	0.61	4.19	10.85
5	2.55	$1 \cdot 81$	6.00	9.15	0.64	4.19	7.37
6	1.90	1.81	6.00	$9 \cdot 15$	0.64	4.04	7.25
7	3.20	1.81	6.00	9.15	0.35	4.96	8.45
8	$3 \cdot 10$	1.81	6.00	9.15	044	4.97	8.10
θ	2.50	1.81	6.00	$9 \cdot 15$	0.29	4.69	7.60
10	2.90	1.81	6.00	9.15	0.51	4.54	8.60
11	3.25	1.81	6.00	9.15	0.64	4.55	8.60
12	1.70	$1 \cdot 81$	6.00	$9 \cdot 15$	0.65	4.69	8.80
13	0.96	1.81	6.00	2.55	0.39	5.71	1.90
14	$1 \cdot 10$	1.81	6.00	2.55	0.47	6.76	2.80
15	2.06	1.81	6.00	2.55	0.17	7.87	1.60

FIG. 18

FIG. 19

ACCELERATION DUE TO GRAVITY = ZERO							
DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V	α	$V_{\text {H }}$	Vv	α
1	0.30	2.072	6.544	16.8	0.64	$3 \cdot 17$	15.89
2	0.80	2.091	6595	$10 \cdot 70$	0.743	4.019	9.99
3	1.06	2.094	0.595	10.70	$1 \cdot 124$	3.989	10.11
4	0.77	2.089	6.588	10.70	0.787	3.252	9.86
5	2.43	2.112	6.673	6.50	1.488	6.536	6.29
6	1.60	2.099	6.671	6.50	1.221	4.425	5.93
7	2.91	2.116	6.740	6.50	1.711	5.991	638
8							
9	2.67	2106	6.739	6.50	0917	5648	6.31
10	2.48	2.112	6.757	6.50	1.717	5.971	638
11	3.72	2.114	6.752	6.50	1.691	6.090	6.42
12	1.63	2.116	6.740	6.50	$1 \cdot 705$	6.095	6.41
13	1.07	$2 \cdot 115$	6.718	-0.10	1.710	5.780	- 0.25
14							
15							

FIG. 20

ACCELERATION D			DUE TO	GRAVITY $=4.2 \mathrm{FT} / \mathrm{SEC}^{2}$			
	$P_{\text {max. }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	α	V_{H}	Vv	α
1	0.54	2.314	7.885	16.77	0.47	2.75	15.83
2	$1 \cdot 15$	2.301	7.848	10.67	1.06	4.47	9.93
3	1.67	2.298	7.848	10.67	$1 \cdot 16$	4.81	9.96
4	1.02	2.303	7.848	10.67	1.00	4.15	9.90
5	3.26	2286	7.792	6.47	1.11	$5 \cdot 28$	6.07
6	4.45	2.294	7793	6.47	1.09	4.81	5.95
7							
8	$4 \cdot 13$	2.287	7.744	6.47	1.78	7-11	6.32
9	3.85	2.290	7.743	6.47	1.45	$6 \cdot 39$	6.30
10	3.82	2.285	7.731	6.47	$1 \cdot 16$	5.54	6.25
11	4.08	2.284	7.735	6.47	2.27	7.91	6.45
12	2.15	2.282	7.748	6.47	2.24	7.95	6.42
13	1.32	2.283	7.614	-0.13	$1 \cdot 19$	4.50	-0.36
14	1.08	2.281	7.558	-0.13	1.40	4.74	-0.35
15	0.85	2.279	7.505	-0.13	1.18	3.66	-0.35

ACCELERATION			DUE TO	GRAVITY $=5.2 \mathrm{FY} / \mathrm{SEC}^{2}$			
	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		$V_{\text {H }}$	V	ه	V_{H}	V_{V}	\propto
1	0.43	2.33	7.75	16.87	0.84	2.61	16.03
2	1.00	2.33	7.75	10.77	1.08	$4 \cdot 26$	1011
3	1.49	2.33	7.75	10.77	1.01	4.07	10.06
4							
5	$3 \cdot 20$	$2 \cdot 33$	7.75	6.57	1.12	4.67	6.33
6							
7	$3 \cdot 25$	2.33	7.75	6.57	1.46	5.18	6.42
8	3.74	2.33	7.75	6.57	1.38	4.97	6.38
9	$3 \cdot 14$	2.33	7.75	6.57	1.42	499	$6 \cdot 39$
10	3.41	2.33	7.75	0.57	1.20	4.51	$6 \cdot 37$
11	3.72	2.33	7.75	6.57	1.55	5.48	6.42
12	1.96	2.33	7.75	6.57	1.57	5.58	6.43
13	1.62	2-33	$7 \cdot 75$	-0.03	1.11	$3 \cdot 94$	-0.27
14	090	$2 \cdot 33$	$7 \cdot 75$	-0.03	1.42	471	-0.22
15	0.93	2.33	7.75	-003	1.43	4.68	-0.21

FIG. 23

ACCELERATION							
DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1	2.35	25.631	0.96	9.10	26.90	0.566	9.10
2	$2 \cdot 20$	25.598	$6 \cdot 81$	3.00	26.015	5.04	$2 \cdot 35$
3							
4	1.95	25.607	6.81	3.00	27.075	1.686	2.90
5	2.70	25.570	6.58	- 1.20	25.800	6.25	-1.95
6	2.50	26.603	6.69	-1.20	$28 \cdot 320$	0.560	-0.55
7	2.30	25.583	6.39	-1.20	26.686	5295	-1.62
8	$2 \cdot 20$	25.598	$6 \cdot 40$	-1.20	26.785	5.024	-1.50
9	2.17	25.610	$6 \cdot 40$	-1.20	26.740	5.054	-1.50
10							
11	3.0	25594	$6 \cdot 36$	-1.20	26.350	$5 \cdot 585$	-1.75
12	1.50	25.583	6.39	-1.20	25.820	6.33	-1.95
13	2.05	25.688	5.89	-7.80	27.610	8.818	$-1 \cdot 30$
14	1.60	25.674	5.68	-7.80	27.008	9.433	0.10
15	$1 \cdot 80$	25606	5.47	-7.80	2852	17.02	$-3 \cdot 10$

FIG. 24

FIG. 25

ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{FT} \mathrm{sec}^{2}$							
DIAPHRAGM	$P_{\text {max }}$.	INITIAL CONDITIONS			LOCAL IMPACT CONOITIONS		
		V_{H}	V	α	$V_{\text {H }}$	V_{V}	α
1							
2							
3							
4							
5	3.80	$40 \cdot 39$	3.74	7.25	39.47	4.43	$7 \cdot 80$
6	1.85	40.29	3.71	7.25	$40 \cdot 15$	3.81	7.55
7							
8	2.00	40.41	4.47	5.50	3959	4.56	610
9	2.65	40.33	4.47	5.50	$39 \cdot 26$	4.06	6.05
10	2.55	40.51	4.67	5.50	3936	4.49	6.10
11	3.90	$40 \cdot 38$	4.67	5.50	39.97	4.45	5.97
12	2.85	$40 \cdot 28$	$4 \cdot 30$	5.50	39.13	$4 \cdot 27$	6.05
13							
14							
15	1.70	$40 \cdot 48$	7.90	-1.50	40.09	$6 \cdot 25$	-0.93

FIG 26.

acceleration due to gravity $=2.1 \mathrm{ft} / \mathrm{sec}^{2}$

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{V}	α	V_{H}	V_{V}	α	
1							
2							
3							
4							
5							
6	1.30	40.4	5.01	10.85	38.5	1.62	8.55
7	4.40	40.6	5.86	9.10	38.7	4.69	9.45
8	2.80	40.6	5.81	9.10	38.7	3.74	7.98
9	3.20	40.5	5.82	9.10	38.1	4.19	7.47
10	3.30	40.7	6.02	9.10	38.0	4.48	8.30
11	4.00	40.6	6.04	9.10	37.8	5.10	9.00
12	3.50	40.4	5.62	9.10	38.5	6.01	8.20
13	1.80	40.7	7.95	2.10	40.6	7.21	3.05
14							
15	4.95	40.9	9.64	2.10	38.6	1.97	1.05

FIG 27
ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{ft} / \mathrm{sec}^{2}$

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS		LOCAL IMPACT CONOITIONS			
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1							
2	2.65	37.05	8.81	7.75	36.29	7.78	6.10
3	2.75	37.13	8.81	7.75	27.61	1.68	6.40
4							
5							
6	1.40	37.07	7.96	4.10	37.73	3.28	3.15
7	1.90	36.91	7.14	2.35	37.57	5.85	2.30
8	2.20	36.98	7.13	2.35	37.50	4.31	1.32
9	1.80	37.07	7.14	2.35	37.63	3.91	1.55
10	2.50	36.89	6.91	2.35	37.90	4.28	1.44
11							
12	2.30	37.12	7.34	2.35	37.63	5.97	2.28
13							
14							
15							

ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{FT} / \mathrm{sEc}^{2}$

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS			LOAL IMPACT CONDITIONS.		
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1							
2	1.55	37.2	6.89	9.32	37.4	1.25	7.45
3	1.58	37.2	6.89	932	37.2	1.05	7.86
4							
5	2.25	37.1	6.20	6.57	37.0	5.73	4.23
6	1.88	37.2	6.19	6.57	37.1	5.78	4.25
7							
8	1.80	37.1	5.53	4.82	36.9	5.33	2.70
9	1.40	37.1	5.48	4.82	36.7	4.75	1.70
10	2.40	37.0	5.35	4.82	36.9	4.96	2.50
11	2.70	37.1	5.34	4.82	36.8	5.52	2.95
12	1.88	37.2	5.69	4.82	36.8	6.32	3.55
13							
14							
15							

FIG 29
acceleration due to gravity $=2.1 \mathrm{Ft} / \mathrm{SEC}^{2}$

DIAPHRAGM	$\boldsymbol{P}_{\text {Max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONITIONS			
		V_{V}	α	V_{H}	V_{V}	α		
1	1.6	35.8	6.14	2.58	36.6	5.96	2.10	
$1 a$	1.85	35.8	6.17	8.58	36.6	5.84	8.10	
16	2.70	35.8	6.14	2.58	36.8	4.08	2.55	
2	0.65	35.8	6.11	-1.42	36.9	7.00	-1.80	
3	1.08	35.8	6.11	-1.42	36.6	5.84	-1.80	
4								
5	0.70	35.8	6.07	-4.17	36.9	2.62	0.25	
6	1.00	35.8	6.07	-4.17	37.0	1.91	1.00	
7								
8	1.80	35.8	6.03	-5.92	36.9	5.53	-1.50	
9	0.55	35.8	6.03	-5.92	36.9	4.71	-4.40	
10	2.40	35.8	6.01	-5.92	37.2	3.38	1.20	
11	1.40	35.8	6.02	-5.92	36.6	2.88	3.15	
12	1.90	35.8	6.04	-5.92	36.8	2.51	1.95	
15	3.90	35.8	5.83	-12.92	35.8	3.89	-1.05	

FIG. 30.
ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{FT} / \mathrm{sEC}^{2}$

DIAPHRAGM	P. MAX	NITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1	1.9	36.13	7.22	10.84	35.74	4.02	11.0
2							
3	3.67	36.10	7.30	6.84	35.55	378	7.15
4	1.70	36.09	7.30	6.84	33.60	10.05	5.65
5							
6	1.10	36.13	7.41	4.09	33.34	7.83	3.02
7	1.70	36.13	7.52	2.34	35.45	5.99	2.30
8	1.20	36.14	7.52	2.34	33.92	4.34	0.72
9	3.25	36.13	7.52	2.34	34.55	0.29	-0.90
10	1.70	36.15	7.55	2.34	32.73	5.09	1.60
11	2.30	36.14	7.55	2.34	35.65	4.96	2.60
12	1.60	36.12	7.50	2.34	35.74	4.93	2.57
13							
14							
15							

ACCELERATION DUE TO GRAVITY = ZERO

DIAPHRAGM	$p_{\text {MAX }}$	INITIAL CONDITIONS		LOCAL IMPACT CONDIIONS			
		V_{V}	α	V_{H}	V_{V}	α	
1	$/$	$/$	$/$	$/$	$/$	$/$	$/$
2	$/$	$/$	$/$	$/$	$/$	$/$	$/$
3	295	38.1	3.30	9.68	35.7	4.73	10.07
4	$/$	$/$	$/$	$/$	$/$	$/$	$/$
5	$/$	$/$	$/$	$/$	$/$	$/$	$/$
6	1.57	38.2	4.55	6.93	36.5	4.08	6.90
7	3.08	38.5	5.74	5.18	37.9	5.18	6.15
8	2.65	38.3	5.74	5.18	37.4	4.67	6.60
9	4.60	38.3	5.75	5.18	35.4	2.83	5.10
10	2.90	38.5	6.07	5.18	37.3	4.46	6.70
11	3.90	38.4	6.08	5.18	37.3	4.82	6.65
12	2.85	38.2	5.48	5.18	37.3	4.56	6.50
13	1.45	38.5	8.91	-1.82	36.1	2.12	-0.2
14	$/$	$/$	$/$	$/$	$/$	$/$	$/$
15	$/$	$/$	$/$	$/$	$/$	$/$	$/$

DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDIIINS		
		V_{V}	α	V_{H}	V_{V}	α	
1	$/$	$/$	$/$	$/$	$/$	$/$	$/$
2	$/$	$/$	$/$	$/$	$/$	$/$	$/$
3	$/$	$/$	$/$	$/$	$/$	$/$	$/$
4	$/$	$/$	$/$	$/$	$/$	$/$	$/$
5	$/$	$/$	$/$	$/$	$/$	$/$	$/$
6	1.25	37.65	9.04	12.20	36.21	5.11	6.97
7	3.60	37.50	8.60	10.45	36.43	6.42	6.90
8	3.75	37.54	8.59	10.45	36.65	6.24	695
9	4.00	37.59	8.59	10.45	35.99	5.98	6.15
10	3.30	37.47	8.48	10.45	36.09	5.61	6.40
11	4.15	37.56	8.47	10.45	36.47	6.49	7.15
12	330	37.63	8.69	10.45	3656	7.20	7.30
13	0.90	37.41	7.41	3.45	36.68	5.40	1.50
14	$/$	$/$	$/$	$/$	$/$	$/$	$/$
15	1.25	37.32	647	3.45	36.15	233	218

FIG. 33.
acceleration due to gravity $=4.2 \mathrm{kT} / \mathrm{SE} \mathrm{S}^{2}$

DIAPMRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL IMPACT COMOITIONS		
		V_{H}	Vv	\propto	$V_{\text {H }}$	V_{V}	\propto
1	/	/	$/$	1	1	7	/
2	$/$	1	1	/	1	1	l
3	1	/	1	$/$	$/$	1	$/$
4	/	1	1	$/$	$/$	1	$/$
5	$/$	1	1	1	/	1	1
6	1.05	$40 \cdot 4$	5.91	3.30	38.9	$1 \cdot 70$	7.10
7	1.98	40.5	6.45	1.35	39.9	5.26	1.75
8	1.75	$40 \cdot 5$	6.45	155	399	$4 \cdot 99$	1.90
9	2.80	40.4	6.45	1.55	39.7	225	4.60
10	$3 \cdot 10$	$40 \cdot 2$	6.60	1.55	38.8	$4 \cdot 30$	2.35
11	3.35	$40 \cdot 2$	6.60	1.55	39.8	$4 \cdot 38$	2.24
12	2.20	$40 \cdot 3$	6.31	1.55	39.8	4.98	1.80
13	1	1	1	1	1	$/$	1
14	1	1	1	1	1	$/$	1
15	1	1	1	$/$	1	$/$	1

FIG. 34
acceleration due to gravity $=4.2 \mathrm{Ft} / \mathrm{SEC}^{2}$

DIAPHRAGM	$P_{\text {max }}$	INITIAL	Conditions		LOCAL impact conditions		
		V_{H}	V_{V}	\propto	V_{H}	V_{Y}	\bigcirc
1	057	39.66	10.27	9.30	40.01	$7 \cdot 24$	7.37
2	1	1	1	$/$	1	$/$	\checkmark
3	320	39.68	9.34	530	40.45	5.50	3.35
4	1.25	39.83	9.32	5.30	41.14	-2.04	$5 \cdot 60$
5	1	1	1	1	1	1	1
6	0.88	39.68	8.08	2.55	40.83	4.66	0.62
7	1.70	39.48	6.88	0.80	38.76	6.13	0.37
8	1.10	39.58	6.88	0.80	39.12	6.43	-0.68
9	1.36	39.71	6.89	0.80	40.89	4.62	-0.96
10	220	3946	655	0.80	41.13	4.88	-1.04
11	230	39.66	655	0.80	39.75	6.t3	0.08
12	1.95	39.77	7.18	0.80	39.70	6.75	-0.20
13	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1
15	2.90	39.94	1.21	-6.20	40.43	7.62	-4.20

FIG. 35.
acceleration due to gravity $=63 \mathrm{Ft} / \mathrm{SEC}^{2}$

OIAPHRAGM	$\rho_{\text {MAX }}$	INITIAL CONDITIONS		LOCAL IMPACT CONDITIONS			
		V_{V}	α	V_{H}	V_{V}	α	
1	$/$	$/$	$/$	$/$	$/$	$/$	$/$
2	$/$	$/$	$/$	$/$	$/$	$/$	$/$
3	$/$	$/$	$/$	$/$	$/$	$/$	$/$
4	$/$	$/$	$/$	$/$	$/$	$/$	$/$
5	$/$	$/$	$/$	$/$	$/$	$/$	$/$
6	1.30	40.4	5.23	6.15	38.5	2.69	817
7	3.80	40.6	5.76	4.40	41.0	4.35	4.96
8	3.62	40.5	576	4.40	39.6	4.67	6.50
9	2.30	40.5	5.76	4.40	40.5	5.04	4.73
10	3.40	40.6	580	4.40	39.2	4.93	6.45
11	3.60	40.5	581	4.40	41.0	4.04	5.70
12	3.00	40.4	5.74	4.40	40.4	3.66	6.14
13	2.40	40.5	7.17	-2.6	40.7	7.10	-0.86
14	$/$	$/$	$/$	$/$	$/$	$/$	$/$
15	3.10	40.5	8.28	-2.6	39.1	2.57	-0.55

FIG. 36.
ACGELERATION DUE TO GRAVITY $=6.3 \mathrm{fT} / \mathrm{SEC}^{2}$

DIAPHRAGM	$P_{\text {MaX }}$	INITIAL CONDITIONS		DCAL IMPACT CONDITIONS			
		V_{V}	α	V_{H}	V_{V}	α	
1	$/$	$/$	$/$	$/$	$/$	$/$	$/$
2	$/$	$/$	$/$	$/$	$/$	$/$	$/$
3	$/$	$/$	$/$	$/$	$/$	$/$	$/$
4	$/$	$/$	$/$	$/$	$/$	$/$	$/$
5	3.25	38.46	4.87	3.97	37.32	3.18	7.30
6	1.92	38.32	4.87	3.97	37.62	4.48	5.55
7	$/$	$/$	$/$	$/$	$/$	$/$	$/$
8	266	38.43	5.86	2.22	38.01	3.92	475
9	3.60	38.31	5.84	2.22	36.79	2.77	5.75
10	3.66	38.53	6.11	2.22	39.10	4.15	4.90
11	3.80	38.38	6.13	2.22	37.71	5.21	385
12	270	3827	5.62	222	3779	4.42	4.15
13	2.40	38.34	8.46	-4.78	38.61	9.98	-3.92
14	$/$	$/$	$/$	$/$	$/$	$/$	$/$
15	$/$	$/$	$/$	$/$	$/$	$/$	\nearrow

FIG. 37.

ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{FT} / \mathrm{SEC}^{2}$. DAMPER $\frac{2}{3}$.							
DIAPHRAGM	P MAX.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	v	α	$\mathbf{V}_{\mathbf{H}}$	V_{v}	∞
1	-	-	-	-	-	-	-
2	-	-		-	-	-	-
3	-	-			-	-	-
4	-	-	-	-	-	-	-
5	4.7	32.29	6.38	1.95	31.83	$4 \cdot 10$	190
6	3.0	32.30	$6 \cdot 38$	1.95	3267	0.76	245
7	-	-	-	-	-	-	-
8	12.0	32.20	6.23	1.95	33.07	1.255	3.03
9	$6 \cdot 5$	32.30	6.23	1.95	31.95	450	1.88
10	12.7	32.28	6.17	195	32.34	3.206	2.08
11	14.0	32.29	6.17	1.95	32.30	3.206	2.08
12	-	-	-	-	-	-	-
13	2.7	32.33	5.80	-4.65	32.91	6.60	-3.70
14	-	-	-	-	-	-	-
15	-	-	-	-	-	-	-

angular velocity (rad./sec)

FIG. 38.

ACCELERATION DUE TO GRAVITY : $21 \mathrm{FT} / \mathrm{SEC}$? DAMPER $\frac{2}{3}$							
DIAPHRAGM	P MAX.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	∞	V_{H}	V	α
1	-	-	-	—	-	\square	\square
2	-			-	-	-	
3	-	—	——	-	-	——	
4	-	-	-	-	-	-	
5	90	$32 \cdot 2$	$5 \cdot 69$	6.75	31.0	2.32	708
6	3.7	322	5.70	6.75	31.4	-1.04	7.42
7	-		-	--	-	——	-
8	10.4	$32 \cdot 2$	5.85	6.75	31.2	3.23	7.02
9	65	322	5.86	6.75	31.8	5.00	6.72
10	17.0	32.2	591	6.75	31.7	4.68	6.92
11	195	32.2	5.91	6.75	31.2	3.13	7.03
12				-	-	-	
13	-	-		-		-	-
14	-	——	——	——	-	-	-
15	-	\square	-	-	-	-	\square

ANGULAR VELOCITY (RAD/SEC)

FIG. 39.

ACCELERATION DUE TO GRAVITY = 2.1FT / SEC? DAMPER $\frac{1}{3}$.							
DIAPHRAGM	PMAX	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	α	V_{H}	V_{V}	∞
1	-	———	———	-	———	-	-
2			-	\square	\longrightarrow	\square	-
3	-	\square	-	-	-	\square	\cdots
4	-	\square	-	-	-	$\underline{\square}$	-
5	4.8	$33 \cdot 5$	5.85	0.8	$33 \cdot 2$	5.02	0.8
6	-		-	-	-	\square	-
7	-	-	-		——	-	-
8	$5 \cdot 8$	33.5	5.85	0.8	342	2.45	195
9	-	-	-	-	-	\square	
10	9.65	33.5	$5 \cdot 85$	0.8	34.2	285	210
11	120	335	$5 \cdot 85$	0.8	$34 \cdot 6$	3.01	1.60
12	-	-	- -	-	-	-	-
13	29	335	585	-5.8	34.3	7.55	-2.05
14	-		-		-	-	-
15	-	-	-	-	-	-	\square

ANGULAR VELOCITY (RAD/sec)

FIG. 40.

acceleration due to gravity = 2.1ft $/ \mathrm{sec}^{2}$. DAMPER $\frac{1}{3}$.							
DIAPHRAGM	P. MAX.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	$\checkmark{ }^{\prime}$	\propto	V_{H}	Vv	\propto
1						-1	
2			-		-		\square
3				-	-	-	-
4	-	-	-	-		-	
5	9.7	33.75	6.1	$6 \cdot 7$	3306	2.09	6.83
6			——		-	-	-
7					-	-	-
8	11.0	33.75	6.1	6.7	3377	5.78	6.73
9				-		\square	-
10	18.5	33.75	6.1	6.7	33-13	4.05	6.80
11	9.7	33.75	6.1	6.7	32.91	3.76	6.77
12	-				-	-	
13	$1 \cdot 3$	3375	6.1	0.1	33.28	3.72	0.43
14	-	-	-	-	\longrightarrow	\square	-
15	\longrightarrow	-	-	-	-	-	-

FIG. 41.

ACCELERATION DUE TO GRAVITY $=21 \mathrm{ft} / \mathrm{sec}^{2}$ DAMPER $\frac{3}{3}$.							
DIAPHRAGM	P. MAX.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	Vv	\propto	V_{H}	V_{V}	\mathcal{L}
1		-	———	-	-	-	-
2					\longrightarrow	-	
3	-	-	-	-	——	-	
4	-	-	-	-	-	-	$\underline{\square}$
5	8.6	34.0	5.60	7.6	33.0	$2 \cdot 35$	7.8
6	3.9	34.0	5.60	7.6	33.0	0.67	8.02
7	-		——	-	—	-	
8			\longrightarrow		-	-	
9					-	-	
10	17.5	34.0	5.60	7.6	33.5	3.86	785
11	19.0	34.0	5.60	7.6	34.3	6.36	7.64
12	-	-	-	-	-	-	-
13	1.90	34.0	5.60	1.0	34.0	5.08	1.15
14	-	-		-		-	
15	4.60	34.0	5.60	1.0	33.5	3.86	1.25

Fi6. 42.

ACCELERATION DUE TO GRAVITY $=2.1 \mathrm{ft} / \mathrm{sec}^{2}$? DAMPER $\frac{1}{3}$							
DIAPHRAGM	P. MAX.	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{v}	\propto	V_{H}	V_{v}	\propto
1	2.1	33.11	5.5	7.0	32.92	50	7.0
2	6.8	33.11	5.5	2.2	33.93	2.34	$2 \cdot 5$
3	$5 \cdot 8$	33.11	5.5	$2 \cdot 2$	3294	$5 \cdot 1$	$2 \cdot 2$
4	60	33.11	5.5	2.2	3384	2.29	27
5	18	3311	5.5	-32	3293	5.05	-3.2
6	11	33.11	$5 \cdot 5$	-3.2	33.55	392	-3.1
7			-	-	-	-	-
8	3.6	33.11	5.5	-3.2	33.95	4.05	-2.6
9	$2 \cdot 3$	33.11	$5 \cdot 5$	-3.2	34.02	378	-195
10	4.0	3311	5.5	-3.2	3386	4.52	-28
11	$4 \cdot 15$	3311	5.5	-3.2	3399	413	-1.8
12	-	-	-	-	-	-	-
13	2.3	33.11	5.5	-9.2	33.90	$5 \cdot 98$	-1.0
14		-	-	-	-	-	
15	-	-	-	-	-	-	

ACCELERATION DVE TO GRAVITY $=2.1 \mathrm{FT} / \mathrm{sec}$.
FIG. 43.
DAMPER $2 / 3$.

DIAPHRACM *	$P_{\text {MAX }}$	INITIAL CONOITIONS			LOCAL IMPACT CONOTIONS		
	V_{H}	V_{V}	α	V_{H}	V_{V}	α	
1	5.0	33.6	8.13	7.3	34.0	6.9	7.5
2	7.5	33.5	7.83	2.5	33.5	7.99	2.8
3	5.5	33.6	7.84	2.5	34.0	6.8	2.7
4	5.1	33.6	7.84	2.5	33.8	4.97	2.77
5	3.1	33.5	7.46	-2.9	34.0	6.8	2.7
6	4.7	33.6	7.46	-2.9	33.7	6.0	-2.7
7							
8	1.2	33.6	7.11	-2.9	33.7	6.0	-2.7
9							
10	2.3	33.6	6.98	-2.9	35.9	5.37	-2.6
11	5.7	33.6	6.98	-2.9	33.7	6.0	-2.7
12							
13							
14							
15							

acceleration due to gravity 2.1 ft/sec ${ }^{2}$
FIG.44.
DAMPER 0

DIAPHRAGM	P MAX	INTIALS CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{V}	α	V_{H}	V_{V}	α	
1	2.35	32.13	5.4	2.8	3299	3.44	3.1
12	0.95	32.13	5.4	3.36	32.08	6.22	4.16
16	130	32.13	5.4	9.2	33.0	2.56	10.02
2	2.70	38.13	5.4	-2.0	3290	4.06	-1.4
3	3.60	32.13	5.4	-20	32.79	4.21	-1.3
4	2.10	32.13	5.4	-2.0	32.13	5.40	-1.2
5							
6							
7							
8							
9							
10							
11							
12							
13							

FIG 45.

acceleration due to gravity : 21 FT/ssc \quad F|G 46 DAMPER $\quad 2 / 3$

	Pmax	initial velocity			LOCAL IMPACT COMDITIONS		
DIAPRAG		V_{H}	v_{v}	\propto	$V_{\text {H }}$	v_{v}	α
1							
la	6.1	33.22	6.7	2.75	33.39	4.56	3.3
Ib	1.35	33.22	6.7	8.60	33.61	349	$8 \cdot 2$
2	5.0	33.22	6.7	-2.60	33.54	619	-2.6
3	80	35-22	6.7	-2.60	33.63	5.57	-2.4
4	228	33.22	6.7	-2.60	33.56	5.41	-2.25
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							

TIME FROM FIRST IMPACT (SEC'S)
acceleration due to gravity $=21 \mathrm{Ft} / \mathrm{sec}^{2} \quad$ FiG. 47.
DAMPER $3 / 3$

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS		LOCAL IMPACT CONDITION5			
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1	3.5	30.8	6.15	8.1	31.2	3.72	8.15
2	9.0	308	6.15	3.8	31.2	4.15	3.35
3	8.0	30.8	615	3.3	31.2	4.23	3.20
4	24	308	6.15	3.3	322	-0.43	4.40
5	2.9	30.8	6.15	-2.1	30.7	5.84	-2.25
6	2.2	30.8	6.15	-2.1	30.9	-0.08	4.5
7							
8	2.3	30.8	6.15	-2.1	30.7	5.92	-2.2
9							
10	2.45	30.8	6.15	-2.1	31.2	5.47	-2.2
11	7.0	30.8	6.15	-2.1	30.7	5.92	-2.2
12							
13							
14							
15							

acceleration due to gravity $=2.1 \mathrm{FT} / \mathrm{sec}^{2} \quad$ FiG 48
DAMPER ${ }^{3 / 3}$

DIAPHRAGH	PMAX	IMITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{V}	α	V_{H}	V_{V}	α	
1	3.4	35.38	6.05	75	36.28	2.14	8.15
2	80	35.38	6.05	2.7	35.43	6.2	2.7
3	6.7	3538	6.05	27	35.78	486	2.9
4							
5	33	3538	6.05	-2.7	3562	5.61	-2.6
6	2.04	3538	605	-27	35.93	489	-2.37
7							
8							
9							
10	3.0	3538	605	-27	36.16	5.40	-2.2
11	6.2	35.38	6.05	-2.7	36.47	4.92	-17
12							
13							
14							
15							

acceleration due to gravity - zero DAMPER 2/3

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1	4.9	33.0	5.9	7.2	33.2	4.37	7.3
2	7.0	33.0	5.9	2.4	33.0	5.85	2.4
3	3.35	33.0	5.9	2.4	34.0	1.44	3.3
4	3.7	33.0	5.9	2.4	33.9	1.42	3.3
5	3.4	33.0	5.9	-3.0	32.9	5.75	-3.0
6	1.1	33.0	5.9	-3.0	34.0	2.91	-2.2
7							
8							
9							
10	3.1	33.0	5.9	-3.0	34.0	4.52	-2.3
11	3.6	33.0	5.9	-3.0	34.0	4.07	-1.7
12							
13							
14							
15							

ACCELERATION DUE TO GRAVITY $4.2 \mathrm{FT} / \mathrm{sec}^{2}$ DAMPER $2 / 3$

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIOUS		
			V_{H}	V_{V}	α	V_{H}	V_{V}
1							
2							
3							
4							
5	4.6	32.4	6.2	2.2	32.3	5.82	2.12
6	3.1	32.4	6.2	2.2	32.3	6.00	2.1
7	5.4	32.4	6.2	2.2			
8	9.6	32.4	6.2	2.2	33.1	.52	5.7
9							
10	10.5	32.4	6.2	2.2	32.9	4.87	2.28
11	15.0	32.4	6.2	2.2	33.4	3.62	2.8
12							
13	2.55	32.4	6.2	-4.4	33.4	7.98	-3.15
14							
15							

FIG. 51
ACCELERATION DUE TO GRAVITY $4.2 \mathrm{Fr} / \mathrm{sEc}^{2}$ DAMPER 2/3.

DIAPHRAGM	$P_{\text {max }}$	INITIAL CONDITIONS			LOCAL ImPACT CONDITIONS		
		V_{H}	v	α	V_{H}	v	α
1	2.5	36.4	5.8	7.8	36.9	3.91	8.0
2	>5	3604	5.8	3.0	37.3	2.27	3.85
3	8.3	36.4	5.8	$3 \cdot 0$	37.3	4.34	3.2
4	4.5	36.4	$5 \cdot 8$	3.0	36.5	4.15	4.05
5	$3 \cdot 4$	3604	$5 \cdot 8$	-2.4	36.7	$5 \cdot 60$	-2.3
6	1.35	36.4	$5 \cdot 8$	-2.4	37.4	4.14	-2.0
7							
8	2.6	$36 \cdot 4$	5.8	-2.4	37.4	5.09	-1.95
9							
10°	$2 \cdot 3$	36.4	5.8	-2.4	37.4	5-44	-1.90
11							
12							
13							
14							
15							

ACCELERATION DUE TO GRAVITY $6.3 \mathrm{Fr} / \mathrm{sec}^{2}$ DAMPER 2/3

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS		LOCAL IMPACT CONDITIONS			
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1	3.35	34.4	6.6	7.5	34.25	4.06	7.64
2	8.0	34.4	6.6	2.7	34.26	5.06	2.82
3	5.0	34.4	6.6	2.7	34.30	5.24	2.77
4	4.5	34.4	6.6	2.7	34.69	5.01	3.15
5	3.1	34.4	6.6	-2.7	34.31	5.42	-2.61
6	3.7	34.4	6.6	-2.7	34.29	5.37	-2.60
7							
8	3.6	34.4	6.6	-2.7	34.23	5.33	-2.55
9							
10	2.7	34.4	6.6	-2.7	34.23	5.40	-2.55
11							
12							
13							
14							
15							

FIG. 53
acceleration due to gravity $6.3 \mathrm{pr} / \mathrm{sec}^{2}$ DAMPER $2 / 3$.

DIAPHRAGM	$P_{\text {MAX }}$	INITIAL CONDITIONS			LOCAL IMPACT CONDITIONS		
		V_{H}	V_{V}	α	V_{H}	V_{V}	α
1							
2							
3							
4							
5	5.1	36.4	5.55	2.3	36.5	3.96	2.35
6	1.9	36.4	5.55	2.3	37.1	0.77	3.5
7							
8	4.3	36.4	5.55	2.3	36.2	5.15	2.26
9							
11	9.0	36.4	5.55	2.3	36.8	4.15	2.6
12							
13	1.65	36.4	5.55	-4.3	37.0	6.09	-4.55
14							
15	5.8	36.4	5.55	-4.3	36.98	9.21	-0.85

VARIATION OF K3 WITH V_{N} FOR RATES OF DESCENT OF 4 TO $6 \mathrm{FT} / \mathrm{sec}$ (POINTS FROM POSITION 9)

FIG. 55

VARIATION OF K_{3} WITH V_{N} FOR RATES OF DESCENT OF 4 TO $6 \mathrm{FT} / \mathrm{sec}$.
(POINTS FROM(POSMON 10)

FIG. 56

VARIATION of K_{1} with alm for a Rate of descent of 4 TO $6 \mathrm{Ft} / \mathrm{sEC}$ (PONTS FROM POSITION 9)

FIG 57.

Variation of K, with oven for rates of descent of 4 to $6 \mathrm{Ft} / \mathrm{sec}$. (points from position io)

FIG 58

Variation of Area factor with Dead Rise $-\theta$ and Ratio $\frac{d}{c}$ For Circular Diaphragms.

FIG. 59.

$$
\frac{d}{c}=\frac{\text { Breadth of Rectangle }}{\text { Distance of Outer Edge from Keel }}
$$

Variation of Area factor with dead rise and ratio $\frac{d}{c}$ for rectangular diaphragms

FIG 61
\& FIG 60

Keel Attitude
Variation of $\frac{D_{2}}{D_{k}}$ with initial keel attitude and angular velocity FOR DIAPHRAGM 10 .

FIG 60.

Variation of $\frac{D_{2}}{D_{2}}$ with initial Keel Attitude and Angular Velocity For Diaphragm 5.

FIG. 62.

Keel Attitude.
Variation of $\frac{D_{1}}{D_{2}}$ with Initial Keel Attitude and Angular Velocity For Diaphragm 15.

FIG. 63.
\& FIG. 64

Variation of $\frac{D_{1}}{D_{3}}$ with Kef. Attitude and Angular Velocity at first impact (Diaphragm 5) ($\frac{26}{6}=0.36$)

FIG 64.

Variation of $\frac{p_{1}}{D_{3}}$ with Keel Attitude and angular Velocity at first Impact (Diaphragm io) ($\frac{25}{6}=0.33$)

FIG 65
variation of $\frac{D_{1}}{D_{3}}$ with keel attitude and angular velocity at first impact (DIAPHRAGM 15) $\left(\frac{2 c}{b}=0.27\right)$

[^0]

FIG. 67.

VARIATION OF $\frac{D_{i}}{D_{3}}$ WITH RATIOS WETTED BEAM
DISTANCE FORD OF C.G. BEAM AT STEP

FOR $\alpha=0^{\circ}$

FIG.68.

VARIATION OF $\frac{D_{1}}{D_{3}}$ WITH RATIOS

variation or D_{1} With keel attitude and vertical acceleration due TO GRAVITY (DIAPHRAGM 5) $\left(\frac{2 c}{b}=0.36\right)$

FiG 71
hull attitude
Variation of $\frac{D_{1}}{D 3}$ With keel attitude and vertical acceleration due TO GRAVITY (DIAPHRAGM 10) $\left(\frac{2 C}{6}=0.33\right)$

Fig 72
variation of $\frac{D_{1}}{D_{3}}$ With keel attmide and vertical acceleration due to gravity (DIAPHRAGM 15) $\left(\frac{2 c}{b}=0.27\right)$ - vertical acceleration oft/ sec ${ }^{2}$

x	$"$	$"$	$2.1 \mathrm{FT} / \mathrm{SEC}^{2}$
0	$"$	$"$	$4.2 \mathrm{FT} / \mathrm{SEC}^{2}$
Δ	$"$	$"$	$5.2 \mathrm{FT} / \mathrm{SEC}^{2}$
0	$"$	$"$	$6.3 \mathrm{FT} / \mathrm{SEC}^{2}$

FIG 73

VARIATION OF $\frac{D_{1}}{D_{3}}$ wITH inITIAL attitude and damping (DIAPHRAGM 5 an 10° HULL)

FIG 74

VARIATION of $\frac{D_{1}}{D_{3}}$ WITH InITIAL ATtitude and damping (DIAPHRAGM 10 ON 10° HULL)

FIG. 75

FIG 76

correction factor nil to give effect of $l / 2 c$

FIG 79.

DIAGRAM SHOWING IMPACT OF WEDGE AT FINITE ATTITUDE.

FIG. 80.

INCREASE IN $P_{\text {max }}$ DUE TO GRAVITY AT $C=1.00 \mathrm{FT}$. (note :- if C is other than unity multiply above values of Δp by c)

FIG. 82

PEAK PRESSURE ON V-SHAPE AGAINST FORWARD SPEED FOR A CONSTANT VERTICAL VELOCITY OF 9.0 FT/SEc AND A CONSTANT DEAD RISE ANGLE OF 16°

FIG. 83

[^1]C.P. No. 4
(10057)
A.RC. Technical Report

PRINTED AND PUBLISHED BY his MAJESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, london, w c. 2429 Oxford Street, LONDON, w 1
P O Box 569, LONDON, SE 1
13a Castle Street, eminburgh, 2 I St Andrew's Crescent, Cardiff
39 King Street, Manchestrer, 21 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast
or from any Bookseller
1950
Price 7s 6d. net
rantizd in obiat meitain

[^0]: Variation of $\frac{D_{2}}{D_{3}}$ WITH RATIOS $\frac{\text { WETTED BEAM }}{\text { BEAM AT STEp }}$ AND DISTANCE FOR ${ }^{\circ}$ of C.G
 BEAM AT STEP FOR $\alpha \mathbf{a}^{-} 5^{\circ}$

[^1]: Peak pressure on V- Shape against forward speed for a constant

