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ADDEIDUM

Since the above paper had been written further work has been done by the
writer en the various methods developed a1n the main body of the paper, It is hoped
that a detailed report on this furihe~ work will be published in the near future
(Ref. AD.1); meanwhils the following swamarises those results of the work that
affect applacability of tho mothods prosented here.

1. The Qgive of Curvature Method

(1) Couparison of results of this mothod with experiment and with pressure
distributions calculated by the method of characteristics on a number of head shapes,
with large nose angles and at Mach number s such that the loss of stognation pressure
across the nose shock wave was up to 30% of the free stromn stagnation prossure, has
led to the conclusion that the basic assurpticn of the ogive of curvoture method
(para. 2. 3, p.7) should bo modificd to read:

"The ratro of the local static presowre to the free-stream static pressure
at a point P on an arbitrary convex head at a free stream Mach number M is the same
as at P on the ogive of curvature at P at the same frec stream Mach number M."

The ocuparigons with ven Dyke's mothod, shown in fags, 9 and 10 are not
gignificantly affected hty this meodafication of tho bagic assumption, since in all
cages considered therse the stognotion pressurc loss across the nosc shock was
sufficicntly low for the two forms of tho assumptaon to be efrectively equavalent.

(11) To deal with the cases wherc the nese ongle of the ogive oicwv tm buco g
go agnall that )\ cannot be obtained frowm fag, 1, the A - x chart has been extended
down to K = 04t It can be shown that M = 0 as x = 0, lhence in fig. 1 tho local
trend near K = 0,4 would lecad to serious orrors if used for oxirapoloting the
variation of N wath x to lower values of K. The extonded M = x chart (ot present in
a provision form) will be found in Ref, Ad.1.

Some experduental results verifying the nodified ogive of curvaturce method
and tho extended A - X chart aro published in rof, AD.2,

2e The Log p~0 low

The theoretical and cggpermental results mentioned above indicate that if
over a regaon of a head 2M tan 5 < 0.4, approx, the log p~ @ law wall be in crror
cvor and downstrema of such a region, If this occurs iowards the rear of the head,

vhere the slope is =nnll, the resulfong crrer in the wave drog cocfficiont noy not
be scrious, but othorwise the leg p ~ 6 law should not be used unless

2M lan -;- > 0.4 cverywhore on the head,
%, The Dorivative Forrmls

In vigw of the assuplions and pprexizntions involved In its doraivation
this formula can be expectod to pive reascnable accuracy only if

0.4 ¢ 2M tan g & 1.0, approx,

Le A Step-by-Step Method.

Effocts of large sbagnation pressurc losses across the nose shock, on tho
accuracy of' the atep-by-step nothod have not yet beon invostigated, nov has the
extinded A ~ x chart becn usoed with this rothod.

Addstional Relerences

No. Author( s} Title, cte.
Ad.1 Zacnkiowicz, H. K. “ther dovelopment of sone approxirmte

ncthods of prodicting pressurces on non-
liitang ogival heads ¢f arbitrory convox
shape, ot supersonic speeds. To be
published as en English Electric Co.,
LA.t. Roport.

Ad.2 Marson, Keates An experimentul investigation of the pressure
and Socha distribution on five bodies of rovolution at

Mach nmumbers of 2,45 and 3.19.
Collere of Aeronautics Report No.79, 1954.
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Swmary

Five mothods are developed for determining the pressure disiribution
on an arbitrary, pointed, convex axi-symmctric hoad shape, of which the
ordincte and ats farst three dorivatives are everywhere continuous.
When the geometric details are specilfied, the tamo reoquired to prossuro
plot o head shape by these wethods 1s from approxamately 20 minutcs to
3 hours. The methods were checkod in five trial cases agoainst accurate
pressurs distributions, obtuaned by using van Iyke's second order theory,
and geonerally gave very good agrecment. The best method to use of the
Tive dopends on head shape and on the speed and accuracy roquired, and
recommended mothods are given.

These recommonded methods aro greatly superior in accuracy to
linearzsed theory, and an rapidaty of computation to both the method
of* charncteristica and van Dyke's second order theory. CP 18 predicted
to within ¥2% of the value of Cp at the nose, provided the effsctsy of
rotation produced by the curved shock arc neglagihl. and preoviaded the
radaus of curvature i1s not infamte at the point of zero slope.

Two of these methods can bo readily applied to determine minimun

drag head shapes, This opplication will be described in o subsoquent
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report, The methods arc also of use when obtaining accuratc valucs of
1lift, ete. of bodies at incidencc by the hybrid thcory proposcd by wvan Dyke,
It may be possible teo adapt the wethods of this report to apply to

ducted bodics of rcvolution., A possiblc cporoach is suggestcd.
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F (V) ratio of static tc stagnation pressure aftcr Prandtl<Meyer
cxpansion through snglc % froa scnic velocity

G(v A) function of ¥y defined by equation (iia), Appendix I

k = _g log, 10

K = (§)

L length of a body

n =" EEEE%%QEQ. for circular arc ogivcs

M free strcan Mach mumber of flow past arbitrary body

M frce strean Mach nunbecr of flow post ogive of curvaturc

M, local Mach MNuibcr

My surfacc Mach mnber just downstreen of nose shock

P surfacc statie pressurc

Po frce stroan static pressure

;%tag surfacc stagnaticn prossurc

Pstag, frce strecon stagnaticn mressurc

P per cent head longth of 2 point on o circular ere tangent ogive

R saxditmu radius of body

X abscissa of point cn arbitrary body, .icasurcd fron nosc, parallel
to body axis, and cxpresecd as a fraction of L

¥y erdinate of point on arbitrary bedy, nccsurcd as perpencicular
distance frou bedy axis, and cxpressed as & froction of L

T2 T gf‘W’zr
dx

Y ratio of specific hcats of gas flowing past body

AN = )1..7\2

e anglc betwcen body axis and tangesnt to body profile

OS nosc gerd-angle of body

T

parancter occuring in cquatien (1) of§2
valuc of A given by cquation (iii), Appendix T
valuc of A dcrived from Fig.b

anglc betwcen flow dircetion and scnic flow direction, in

Prandtl Meyer cxpansior
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; radiug of curvaturc of bedy prefile
g = E.SEE%HQEE in ad—syrmetric flow
de
§ = Xpop
X nose seri-angle of ogive of curvaturc or of cirewlar arc ogive
w angle defincd by: F(w) = (25;;ag)p

Suffices.

i conditions at nose 4 of ogive of curvaturc at peint P

A =5 conditicna
N copditlions

in axi-symoetric flow past a profile

at surfacs just downstresn of nosc {or leading“edge) shock

P conditiong at currcnt point P on surface.

Q conditions at point @ on surfsce, 2djaccent to P

2 =D eonditions

in two dincnsionel flow past o profile

El, Introdugtio
There are at present three nmethods of pressure plotting a

non=lifting body of revolution of arbltrary shape at supersonic

gpeeds:

(1)

(11)

(111)

kN

van Dyke's Second Order theory (refs. 1 and 2) which

gives accurate results over a wide renge of Mach nunbera
and nosc angles, after a ninimun of about 20 hours
conputing tine per body per Moch nuubcr,

The Method of Characteristics which gives accurate results
after about one week's coupating, unless sutouatic
prograriied eomputing nachines (such as Eniac) are uscd,
When such machines are uscd the time of initial preparation
is of thc order of several weeks,

The First Order thcory cf von Kermon end Moore (ref.3).
When the body erossw-gecticnal arca is o simple polynemial
function of the distance fron thc nose, the pressure distribution
can be calculated in an hour or less. The accuracy cf this
nothod deereascs rapidly with docrease of finenegs ratio,
A% M & 2 the theory undcrestimates the Cp of 10° ond 20°
seni-engle coues by 15% and 34% respectively (see Fig.2,

ref,2). Thc error inereascs with Mach rurber,
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For the purpose of dvternining thg projectile shape of minirmn wave
drag or sinply for pressurc plotting an cxisting projectile shapc nethods
(1) and (ii) arc very lcngthy and (iii) 4s toc inaccuratc, In this report
several metheds of pressurc plotting an erblivragy heod shape arc given
which are free fron these dcfeets and which give exeslleont agreerent in
Cp with accurate sclutions obtained by van Dyke's Sccond Order theory, for
a nunber of profiles covering o wide rangc of different distributions of
slopc along the heead,
€2, The Five Mothods of Predictine Prossurc.

2.1, The Fundanertal sggunpticn

In rcf, & it is shown that in nonelifting supcrsenic flow past
circular arc cgival hoads thcrc is a sinple properticnslity beiwecn
the deercosc in pregsure fron the nose to o point P on the profile
and the deereasc in pressurc fron the leading edge of an acrofoil
scction of the sarc prefile to the eauc point P, when the local
Mach muibers and pressurcs just downstrean of the leading edge ond
of the nosc are the sone, If Pp is the stotic pressure at point P,

Py the surface static pressure just downstrean of the ncse,
- =M -
(I)N pP)}lﬁ (pN pP)z__D . - L L ] ] L] (l)
wherc suffices A-S and 2-D rcfeor to axi-symetric and two-dirtensional
flows past thc sane profile, with the sanc surfoce pressure ard

Mach nuriber, py and M, just behind the shock. M depcnds solely cn

N
the frcc stream Mach muber and the particular cireular arc profilc
concerncd, and is plotted in Fig,l of this report. (This figure
supersedos Fig, 3 of rcf. 4, It cxtends the latter to K = 0.4).
This sinple rclation (1) holds, as shown in ref. 4, to withir about

+ 2% accuracy fcr a very wide range of circular arc profilcs and frec

glreanr Mach muibers,

The question ariscs whether the law of expansion (1) would hold for
non~cireular profiles, For tsngent circular arc ogives, M dcpernds on the
radius of curvature of the profile expressed non-dincnsionally in units of
the calibre (or length) of the tangent ogive, It would thercforc be

expected tHat on a profile of contimously verying radius of curvature, M
would also contimcusly vary,
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It is assuned, as the basis of a ncthed for predicting pressurcs on an
arbitrary hecad shope, that the flow in cxpanding along the prefile from a
pointPto the adjacent point Q (sce Fig.2) cxpands as if the body werc
rcplaced by the ogive of curvature ot P (i.e. the ogive generated by the
rcvolution chout the axls of an are of the circle of eurvature at P.) Thus
the value of M to usc at P in cquation (1) is that corrcspending to the
ogivo of curvature at P, This assurption is an arbiirary one, but it gives
the pressure exactly in three particular ccses:

(1) Flow Past Cones

In this case the profilec is o streight line so thet
(py - pP)z-D is cverywhcre zoro and equation (i) gives:
(pP)A-S = (pN)A-S' {The voluc of (PN)A-S is deterained fronm the nesc
anglc and Mach munber, using thc Tobles of ref. 5).

(1i) Flow Pasgt Circular Lpe Ocivcs.

The assunption here is exaetly true, sinece the ogive of
curvature coincides with the bedy 1tself,

(1i1) TFlow Just Downsircan of the Nosc of Anv Oeive.

The pressure gradient at thce nosc of a bedy ot 2 gaven

Mach munbcr is determined solcly by the slepe and radius of
eurvature at the nose, The body and the ogive of curvaturc
have the gsme slope and redius of ecurveturc ot their comon
pcint, so the fundancntal sssunption will give the corrcct
prcesurc gradicnt at the nose for any bedy shapc, The niethod

- alsc correctly gives the noge pressurc o8 the pressure ch a
conc cf the sarc noss angle,

Since the fundanental assunption gives the corrcet pressurc ond
pressure gradient ot the nose of any head and gives the corrcet pressurce
along the entirc head when the profilc slope varics effcctively: uniformly
along the hcad {circular arc ogives) cr is constant {cones), it is
reasonable to hopu that the fundamental asswiption will give fairly
accurate pressure distributicns along any head.

The besis of the first nethod of pressure prediction is to find the
moessure just behind the wose shock by the Tables of ref,5 and with this

gtarting value to procecd a short distance along the hcad and obtain
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the next valuc of mressurc by ecquation (1) -and the fundaniental assunption,
The pressurc distributicn is thus cstablishced, step-by-step, along the head,
The detolls of this procedurc arc given in the following secticn 2.2 amd
in Appendix I.

2.2, The M Step<by-Step Method for arbitrary Profilcs.

Suppoge the flow has becn traccd up to the point P in Fig.2, by
gone nmcand, Then the static pressure pp ond stognation pressurc Pstagp
ot P are known, The value of ® ot P for the cxpansion from P to the
next point @, close to P, is that corrcsponding to the ogive of
curvature at P and to somc hypothctical frec-sirean Mach nucber M, which
1s such that when the ogive of curvature is placed in a unifornm flow at

Mach nurber M the retio of stotic tc gtognotion pressurce at P is

?Egggég . Therc is only onc Mach munber M satisfying this condition
and thercthod of detcrnining A and M is exptained in Appendix I, (It
wag discovered enpirically that N was olways the seic (within the
rcading error of thc graphs uscd, i.e, about 0,005) as the free strean
Mach nunber M of the flow past thc body, and this discovery ferns the
basis of a second, nore repid ncthod of pressurce predicticn deseribed
in 2.3.)
Having obtained M by the procedurc of Appendix I, the charge in

P over the short finite interval PQ is salculatcd, knouing(p/psmg)

p stag
at the begining of the interval, froma:

P\ D
o =
© A8

o) ;
atag
!2-D

The details of this caleulation are slso given in Appendix I. Thus
st;g and hence Cp can be found by this stcp-~by-step mrocess at a munber
of points spaced along the heed. If required, a sccond approximation can
be obtaincd as explained in Appendix I. In proctice, a secomd
approxination is unnccessary unless the head shope hag very rapid curva-
turc at soue point., Eech Cp requires about 30 simates calculaiion,

2.3. The Ogive of Curvature Mothod.

4is stated in the preceding section, it was discovered eupirieally,

when applying the M step=by-stcp nethod, that the rotic of statio to

gtagpation pressure at a point P on an arbitrary body gt frec strean
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Magh mpunber M is the gane os at P on the cedve of curvature i
P at the sone free strean Mach nuober M,

Since the pressures on the ogive of curvature can be deternined

by the nethods cf ecither ref.4 or ref.6 (p.9), the pressures on eny
ogival head can be ealculated., The only infornetion that is required
about the gecmetry of the arbitrary head is the distributions along
the head 6f the heac surface inclination 0 to the axis end of the
nose senleangle Y of thc oglve of ourvaturc, In tecrms of rectangular
cartcgion co-ordinotes x and y of the head profilc {sece Fig. 2),

the derivatives Y1 and Yy and the rodius cf eurvature p, it will be

rcadily verified that thesc anglcs are given by:

sl
€ = tan 7y

X = oosﬁl ?ccs O—% }
= gos - ‘{ccs 0 (1+yy, pos” O)j{

(Sincc ® decrcasce along thc head, which is assuned convex, yo is =w
axp= y {14707 R

Once these anglcs have been deterained the ncthed deseribed
iIn ref. 4 can be applicd to deteraine _63_1335 axl henee Gp at any
point cn the arbitrary profile, (In ref. 4, the notation differs
slightly in that 8g reploces ¥ .} The time required to pressure
plot an arbitrary head shape by this proecedurc, after © and y have
been caleulated, is approxiimtely 90 iimutes, s worked exonple of
this procedure is given in Appendix II,

Alternatively in fig, 6 of‘ ref, 6, generelised curves are given
of the distribution of {Eg over tangent circular arc oglves
a8 a functlon of the por oont head lengbh ond the sinilerity
parancter X (the ratic of Mach nunber to the fineness ratio of the
tangont eireular arc cgive.) These curves arc repreduced in
Figs. 3a (0.3€k<1.0) and 25 (1.0<€ k< 2.0), for the convenience
of the reader, (A van Dyke seeond order sclution for the flow
mst a circular arc ogive was calculated at K = 0,4 and thcse values
of {/p’ 1‘ have hcen used to extend the curves to K = 0,4, They

b g
are extrapolated to K = 0,3, beering in nind that for a needle-like

( )
bedy, 1.6 K = 0,(5—1 = 0,) The per cont head leng®h and
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ginilarity parancter of the ogive of curvaturc-arc given by:
gin @
por cent head length = 100 (1 = )

gin ¥

K

M ‘oan)-(l
2

For values of ¥ up to 200, the following simplified, approxinate
formla can be uscd, involving less than 2% error:

£
per cent head length = 100 ( 1 --;(')

After the distributions of © and ¥ along the arbitrary

bedy have been determined, thc above quantities are calculated and
P =Pl
the corresponding valucs of & o]are rcad fron Fig. 3, Hence

P

Po

" and henco C.. Tho tiue required to pressure plot a head

P stag P

shaps by this procedurc, after & and y have been calculated, is

o' out 40 nmimates, This procedure, although quicker than using the
umethod of ref, 4; is not quite as aczurate., The reason for this is
that the curves of Fig. 3 are derived fron mean curves through a
large nuuber of points, obtained by the iicthod of characterlstics
for various eircular are ogvies at various Mach nuibers, which

arc acattered slightly about the mean curves. The accuracy of
both procedures im conpared with that of van Dyke's Second Order
Theory in &5, An illustrative exanple of the application of

both proccdures is given in Appendix II.

2.4. The Derivative Formmla Methed.

By neans of the results of ref, 6, it is possible to deduce
an analytic formmla in terms of X and 6, and hence in terng of
Ty ¥q and Yo for the pressure distribution on an arbitrory head
shape, This formula and ite derivation is given in Appendix IIIL.
It involves some further approximations, but neverthcless gives
¢ite accurate values of Cp. The prine purpose of its derivation
was the.galculation of the projectile shape of ninimun wave
resistance, By the Coloulus of Variations. This work will bo
reported in a later repcrt.
205, Thke Linear log p-~v 0O Iaw,

It socn becane apparent that the shape of the pressure

distritution curves closcly resembled the shape of the slopo
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distribution curves. Convexitios-and-concavities and points of
inflexion in one were always reproduced in the other. It therefore,
appearcd that slope and pressurc were closely related. In ref, 6,

it is shown that the pressure decays exponentially with distance along
cireular arc ogival heads. Sinece slope varies effectively linearly
with distence along a cireular arc ogival hcod (when the nose angle
iy less than 20°), thercfore the pressure decays exponentially with
slope. A check showed in all coses considered that the pressure
decayed exponentially with slope on non-circular, cgival heads also.ﬁ
Thus o plot of logl0 p va. © would be a straight line, of gradient ¢,
say., The gradient, at the nose, of & loglo p vs. © plot lé derivable
fron the differcntial forn of equation (1): '

a = Adp
p!‘;-S 2D

afd fron the Prandtl«Meyesr relaticn, Tre details of tﬁg ﬁgg}vation arc
: )

given in Appendix IV and & so derived, viz, 0,0106 / MN2 -1,

is plotted as a function of &4 and M in Fig. 4. The pressurc at any

point is then given by the formula:

loglo (/zg): U(QS -e) I T B (2)

where es is the nose seni-angle cf the hoead and py the surface
gtatic pressurc just downstrean of the shock, obtained fron ref.5.
(In this formla © and Oy arc neasured in degrees when mltiplied
by the values of O given in Fig. 4). This nethod requires about
20 nimites to pressure plot a head shape, once the distribution of ©
has becn deternined,

Equation (2) nay also be recast in approxinate, derivative

forn for ninirun dreg shepe calculations, thus:

ky
p = Ae J
where: kX = 2,302 (onow neesured in rad "l)
N
and A = PNG: N

2,6, The Effects of Rotation.

The five methods developed in the previous section are all bgsed
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on pressurc distributions on circular arc ogives calculatcd by the
ncthed of characteristics in ref. 6. Thesc caleclations were carricd
out cn the agsunption of irrotatiocnal flow and neglect changes of
ontropy along the nosc sheek weve., Thus none of the ncthods of the
present report is applicable at high K, l.e. eithcr to thick bodics
or to very high Mach munbcrs, for then the effcets of rotation

causct by the curvature of the nosc shock wave, are appreciable,

The nagnitude of these effcets can Le ascertained froa ref, 10 in which
the pressurc distributlomsof ref, 6 on circular are ton,cnt ogives arc
rccalculated toking account of the rotation of flow, It is found that
at K = 1 the neglcet of rotation results in undcrcstinunting Cp over
post of the head length by about 2% of SpN; é%gg » the corresponding
error in the wave drap ccefficient, is about 6%, The cffect of

rotation is zero at K = 0 and at first incrcascs very slowly with K,

as shown in the following tables

K 005 ""0-6 007 0|8 ‘I 009 1-0 2.0
ek
AC
D < 0,010 0,010 0,020 0.0351 0.,060] 0.280
Cp
\

Thus, for K € 0,8 the effect of rotation on EE and on Cp will
Cp
N
not cxcecd one or two per cent, and at X = 1 retation will
rrobebly inercasc C_ by about 2% of Cpn and Cp by abcut 6% above
3
their predieted velues., above K = 1, it is expected that the ncthods
of this report, by neglecting rototion, would introduec crrors in

Cn that uoy be as large as, say, 30%. For all the hcad shapes

D
pressurc plotted in Figs. 8 - 13, ¥ lics between 0.4 amd 0.7,

Bedics ot Incidcnec,

For supcrsonic bedics of rcvelution at ineidencc, van Dyke

sugsests in ref,l. that to obtoin ascuratc velucs of 1ift, pressure, ete,

it is ncecssary to calculatc the surface velocity couponcnts in nen-1liftinge

flew to the occuracy of ven Dyke's scecond order theoory and to superposc

on these the cross flow surface vcloeity conponents cbteincd fron first

order theory. The theory of this rcport is therefore of dircet applieation
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in determining the non-difting; flow surface pressures and hence these non-
1ifting flow surface velocilty cénponents, rcquircd for cuch & "hybrid" theory.

£4. Lpplication of the Theory to External Flow Past Ducted Bodies of

Revolution,

Consider the external flow past a ducted conical frustrun of seni-anglc
fgs when the external shock is attached tc the nouth, The nouth pressure is
that corresponding to a two-dinensional plane shock for a wedge anglce es. This
pressurc is eonsiderably higher than that on a cone of scrni-anglc 84, Far
downstrean of the nouth, the pressure on the frustru. beccnes independent of
local conditions at the nouth, Thus the pressurc on the frustrum falls
agynptotically fron the two-dinengional wedge prcgsurc occuring at the nouth
to the pressurc on a cone of seni-anglc 8.,

Sinilarly the external pressure on an arbitrary ducted body with
attached external shock will fall agyuptotically fron the two-dincnsicnal
wedge pressure occuring at the nouth to the pressure that would occcur if
the profile werc cxtended upstreen from the niouth ﬁp a sharp point, The
pressure distributicn by the ncthods of this rcport when applicd to the bedy
extended to a sharp point, will thcrefere approach asynptotically the correct
pressure distribution, The ncuth pressurc can be cxactly calculated fron
plane shock relaticas, but the pressures predicted by éhe nctheds of this
report will cnly bocornic accurate at sone finitc rclaxation distance fron he
mouth, where the lecal effect of the nouth has sufficiently dceayed. In the
only casc the suthers have seo far investigated, in which the pressures by
the ncthods of this report werce conparcd with pressurcs by van Dyke's sccomd
order thcory on a convex ducted body at M = 2,0,this rclaxation distonce was
2 nouth diancters and consequently a large and inpeortant part of the nressure
distribution curve could not be accurately predieted.,

Beforc the mcthods of this rcport can be nodificd to apply over the
rclaxation distance, infornation 1mst be obtaincd sbout cxtornal pressure
distributions on ducted conieal frust~a, It rey then be possible to predict
accurately the pressure cverywherc on a ducted body, of nouth seni-angle
Og at Mach nuaber M, as the sun of the pressure by the uethols of this report
and a pressurc, sufficient to give thc corrcet value at the mouth, which

decays to zero in the sanc way as for a ducted conical frustrun,
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JeCe CP=Cp1+k(c _cp)r

C. = (C
where: k = _Bé__i___lﬂ (1n practice k is nearly 1)

O, = Opy

C. = mressure cecfficient at M mredicted by the methods of this

report when the body is cittended to a sharp point

C = vyalue of C,, at the nouth
(Cpy) = P

C = prcssure cocfficient at M on conical frustrun,tangential
to the ducted body at thoir couron nouth

C, = opressure coefficicnt at M on cone with seni-engle es

Cp4 = pressure coefficicnt at M corrcsponding to plane shock

with wedge angle GS

This formla fer Cp would give the correct nouth pressurc, Cp = C

Q4’
and the eorrect esynptotic pressurc distribution, Gp = Gpl s & long

way back along the head., Also the relaxation distencc 1s thc sane as

for the conical frustrun assoclated with sz, which is & reascnable
assunption, The formla would give the cxact pressure distribution on a
conical frustrum,.

However tha authors have no. yet developed this approach and until
this has been donc, the ncthods of this report are of 1ittlc help in
predicting the extornal pressurc distributions on o ducted body with
attached extcrnal shock,

5. Appraigal of the Five Different Mcthods and Conparjson with Solutions
by van thc?s&Socond Order Theory.

P e

The five -different nethods described in §2 were used to calculate

pressure distributions on the following heads:

l (L 1.5
1. vy=¢ tr - (1=x) at M = 2 0,,_‘ I/D = 3, XK = 0,667;
2, ¥y = ;Lé {L_W._(l-o 6x)5 ap M = 2.0, /D =3, K =0,667;
3. y=0089 X  -0.563% x4 + 07560 x 3= 0,4870,x°- 0.02504 x

+ 0,3963 (1-(1-::) 1atM—20UD=3
571

This profile was derived by ncdifying the slope distributicn of
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Lighthill's "mindoun drag" ogive (ref, 9) over the first 15% of the head
length to obtain a pointed nose, and then following the slope distributicn
very closely along the rest of the head,
Le ¥ =0,03568 (Hx + sinllx), at M = 1,6 end 2,8, ;% = 4y K = 0,400
. and 0,700

| T
5, y:-s- 1-(1-x)}atM=2,0, L = 4, K = 0,500

For comparison, sclutions were also obtained for heads 1, 2, 3, and 4
at Mach munbers as stated above, by the second ordecr theory of van Dyke, As
is ghown in ref, 1 (p.p. 167-170), this thoory gives excellcnt agrecment
with the exact inviscld solutions for ogives (the nethod of characteristics)
and cones (Taylor-Maccoll). This is further borne out in the present
investigetion, by the agreenent in CpN betareen the second order and the
exact values, which is within 1% in all the cascs investigated except for
head 4 at M = 2,8, where CPN is overestinated by 2%. Consequently, the second
order solutiuns are here considered to give the inviscid pressurc
distributiors exactly, and are uscd as a standard for asscssing thc accuracy
of the five nethods, )

Fig. 7 shows the profiles and the slope distributi&ns of thcse five
heads. The head profiles were chosen sc that a wide variety of types of
slope distributions would be represcnted-ng is scen fron Fig. 7, the curves of
tan O( =:%§) vs. X are concave, convex and inflexional (changing both fron
concave to convex and vice versa)., It is to be noted that the slopes
becone zero at x = 1 in all cases with the excepticn of head 2, which is a
secant ogive. TFurther, ot x = 1 the rodii cof curvature of heads 1 and 3
are zero, those of heads 4 and 5 are infinite, whilst hecad 2 terminates
with a finite radius of curvature. The significance of this becerios

apparent in section 5,6,

5.1s The A Stcp.by-Step Methcod.

The pressurce distributions om heads 1 = /4 cbtained by this nethod
are shown in Fig. 8 conpared with those calculated by van Dyke's
second order theory.

It is seen that for heads 1, 2 and 3 the agrcenent between the
two nethods 18 excellent, Tﬁe step-by-stcp necthed reprcduccs very

closely the shapes of the second order nrcssure distributions.
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There are slight discrepancies in the magnitudes of Cp, but these anount
to no nore than 2% of the corresponding Gp values at the noso (CpN) and
nay be attributed partly to the inaccuracies of the van Dyke sclutions at
the nose, as compared with the exact Taylor-Maccoll values which wers
uged in the step-by=-step nethod,

In the case of head 4 et M = 2.8, the gtep=by=step nethod gives
accurats results over the first 70% of the head length., Beyound x = 0.7, the
rnethod overestinates expansion and takes noc acecourt of the slight
recolpressicn which appears to ocour over the last 15% of the head length.
At sbout x = 0,94, the nethod ceases to give results since the values of
X fall outside the range of fig., 6., On the sanc head at M = 1.6, the
agreenent is excellent over the first 40% of the head length, The
divergence betwcen the tuwo nethods begins at x = 0.4 approxinately, the
step-by-step nethod in this case overestimating Cp by amounts of up to
7% of CPN. These dlscrepancies nay partly be due to the fact thot the velues
of M as a function of X deternined in rcf. 4. are less reliable for M = 1.6
than they sre for higher Mach mumbers (2 and over), At M = 1,6,
calculations by the step-by-step nmethod cannct he carrisd beycrd about
x = 0,8 on this head,

5.2, The Ogive of Curvature Method Using T.A.t5.024 (Ref.i)

Fige 9 shows pressure distributicns on heads 1 = 4 predicted by the
ogive of curvature ncthod, using L.A.%.024,

Conparison of figs. 9 and 8 rcveals that the pressurc distributions
calculated for heads 1, 2 and 3 and head 4 at M = 1,6 by this nethod are
mractically idontieal with those obtained by thégstcp—by-etep nethod,
and hence give equally gocd agrecnent with the second o;der solutions,

On head 4 at M = 2.§ the two mctﬁﬁds gErCe cloqely ng far ag x = 0.4 and
then begin to diﬁerge, the differcnce betwecn_them increaéing along the
head., Thus, 1t appears that the hypothesis whlch fomzs the basis of the
oeive of curvature ncthod, (v1z. that the ratlo of statlc pressure to
stagnaticn prcss;;e at a p01nt P on an arbiffarfhbody at a free stresn

Maeh rupber M is the sane as at P on the ogive of curvature at P at the sane
free streanm Mach nurber M - scc sections 2,1., 2.2 and 2.3), is borne out

in the case of heads 1, 2 ard 3 and hoad 4 at M = 1,6, but does not hold
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with the sane accuracy for head 4 at M = 2,8. Now, the distribution
of X on head 4 is such that at M = 2.3 the naximn diffcronce
betwecn the stagnation pressurc losses acrcss thc conicel shocks cf
the body and of the ogive of curvature is, approximately, 2% of the
frec streau stagnetion pressure, On the other hcads and on head 4
at M = 1,6, stagnation pressure losses did not excced 3%, This
suggcsts that the hypothesis on which the ogive of curvature ncthed
is based beccnecs less accurate as the difference incrcases between
the stagnation pressure loss for the ogive of curvature and the
corresponding loss for the body.
5.3. The Ogive of Curvature Mcthod usine NiChA TN,2250 (Ref, 6)
The pressure distributions precdieted by the ogive of curvature
ucthod using NACA TN,2250 instead of L.i,t.024 are shown in Fig.lo,
Although the two procedures arc basically equivalent, the usc of
curves of ref, 6 results in a slight loss of accuracy for reasons
expleined in Section 2.3. Neverthecless, the agrcenent with the

gecond order golutions is still gocd., In the casc of heads 1, 2

P
by morc than about * 3% of Opp the discrepancies being greatest

- and 3, the prcdicted Cn's do not differ from the sccond order C..'s
'

noar thc rose., On head 4 av M = 2.8, Gp appears to be undercstinated
by ebout 3% of CpN over nost of thc head; at M = 1.6, Cp near the
nosc is again underestinated by some 3%, whilst for x> 0,5 the
crrer 18 roughly one and a half tincs that of the nore accurate
nethods discussed in eections 5,1 and 5.2,
5¢4e The Derivgtivc Tormla.

Fig.1l shows the pressure distributions calculated by the
derivative forimla given in appendix III,

Apart from the singular hchaviour beyond about x = 0,98 on
heads 1 and 3, this fortmls predicis the pressure distributions cn
heads 1, 2 and 3 with errors not greater than + 4% of Cpye The
obvious failure of the method when it predicts perfcef vacuun at

x =1 on heads 1 and 3 can be traced back to the apprexinations

involved in the derivation of the foriwla, In particular, X is

approxinated by
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. 2 -r
Y=/ v, = 2 ¥7x [%én. (iz) App. IIEJ

which involves the assunption thaty/~ is srnll. Now on heads 1 and 3
N7 oy, = =) as x~ 1, whilst y reicing finitc end so the
above asswipticn is not satisfied, According to the thcory of the
derivative foriula, X * e as x = 1, {in fact,X cannot be dcter-
mined therc, being an anglc whosc cosine exceeds unity), and E% - 0,
go that a porfect vacuun is cbtained, ’

On head 4 at M = 2.8 a very geed agrecrient (within ebout + 2%
of CPN) with van Dyke's solution is obtained, cxccpt neor the end of the
hcad, where at x = 1 the derivstive forrala prodicts a small positive
Cp. On the sa:ic head at M = 1,6 the formula undercstinatcs Cp near the
nogc by about 4%, overcstiiates it cver the rear wart of the hcad and
cxagreratcs the roccnpression near the end. The wide ¢lsagrcoacnt over
the last 10 cr 20% of the head length and the prediction of o snall
posgitive Cp at x = 1 is duc to the fact that the representation of n
and log (EE'%qas lincar functicns of K (see Appendix III) holds only
for K betwcgn 0.5 and 1 and 1is not¥ a good approxinaticn for K« 0.4,

which is thc casc on hesd 4 ag the crd of the heoad is approached.

5.5, The Lincar Log o ~“/@law,

The pressure distributicns calculatéd by this law ere shown in
fig. 12.

It can be sczn that the agrecrnient with the second order pelution
1s cxccllent on heade 2 and 3 and on the front half of head 1; Cp
appears to be overcstimetcd on the recar half of head 1 by ancunts
varying fron abeut 1f of CpN at x = 0.6 to 3% at x = 0.9 and 9% at
x =1,

On hcad 4, the agrecnent is cxcellent as far as x = 0.7 at M = 1.6
and gocd ag far es x = 0.5 at M = 2,8, Towards the end of the head the
law fails to take account of the slipht reconpression and for M = 1,6
a large crror results at x = 1,

5464 Morits ond Linitations of the Fiye Methods,

On the basls of the results presented in section 5,1 fto 5,5, it
appcars that the nctheds which give the best agreenent with van Dyke's
second order theory are the step=by=-step method and the ogive of

curvature nethod, using L.A.$.024, Therc is 1ittlc to choose between
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the accuracy of these two metheds. Since the latter nethod is the
sinpler and nore rapid of the two, its usc will be prefereble in
nost cascs, Once the Qistributions of 0 and X along the head have
been ceteriined, the tinc rcquircd to computc one pressure distribution
by the ogive of curvaturc .acthod, using L.A.t,024, is ebout 1% hours,
as conparcd with about 3 hours by the stcp-bye-step uethod,
The ogive of curvaturc nethod, using WACA TN,2250, allows a further
gaving in conputing timc (one pressurc cistribution can be computcd in
about 40 uimutes) hut, gencrally, results in slight loss of accuracy
(sce secetion 5.3).

The log p v 0law is the most rapid of the five nethods, as it
requircs only about 20 ninutcs to pressurc plet a head shepe. It gave
very goed agroeicnt with van Dyke's thecry in all the cases investigated,
execpt near the end of head 4, It is suitable, as is slso the somo-
what less accurate derivative forrmle, for investigations in which Gp
is required as an explicit funetion of head gecuctry and Mach nunber,

The chcice of the mest suitable nethod to use in a particular
case does not depend solely on the accuracy which ihe nethods can be
oxpected to give end on the conputing labour involved tut alsc, to
a certain extcnt, on the geouetry of the head, If the radius of
curvaturc beeomes zero at sone peint (as, for cxanple, on heads 1 and 3),
the cgive of curvature ncthod, using NiACA TN 2250, ccases to give
results when the radius of curvaturc beconcs sufficicntly smell, as then
K falls cutsidc the range of fig 3, whilst the derivative formila
inecrrectly predicts perfect vacuun wherce the radius of curvature is
zero. No serious diffaiculty is cxperienced in this case with the
step-by-step ncthed and the ogive of curvature method using L.A.t.024,
since the pressure distribution can be calewlated right up tq‘the
point of zero rodius of curvature by assuning thet A = 1 as p™ 0,

This assumptioﬁ is justificd by thc fact that for flow round a shorp
corncr the changes of pressurc areo two-dinensional, i.c. M= 1 when

P = o. In practicc, it is sufficient to assune in this case that

along the usually small portion of the head where M cannct be found from

figs. 1 or 6, M is constant and equal to the arithoetic mean of 1 and
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the last veluc of A that can be determincd., With the opive of
curvaturc ncthod using, L..L,.t.024, the step-by-step ncthod is uscd in
the small region of larcc curvaturc where Fig. 1 cannot be used,

This proecdurc was adopled in calculating the pressurc distributions for
0,9 €x %1 on heads 1 and 3 and, as can be sccn fron figs 8a and 9a,
resulted in very good agrecnent with the seecond order soluticns,
Alnest cqually gocd agrcencnt was obtained there with the log p~ 8
law (fig 12a). This law has thc additional advantage that it requires
no spceiel treatnent as p - oo Thus, when the radius of curvaturc
tends to zere at sone point on the head, the suitable nethods te use
arc the spivo of curvature nethod (using L.4.t.024), the step-by-step
nethod and the log pay 5 law,

On heads whose radius of curvature becones infinite at the point
of zero slope (as, for exanple, on heads 4 and 5), the step-by-step
nethod and the ogive of curvaturc nethods commot predict pressure
distributions over thc last 5 = 20% of the head length, deponding
on Mach wnber and head geoctry. The derivative formula and the leg
p—~ 0law give values of Cp over thc entire head lcngth but, os the
coleulated distributions on head 4 scen to indiente (figs 1Ib and 12b),

thoy becone unreliable os the end of the head is approached. On this
hcad the best overall accuracy was obtaincd with the two ogive of
curvaturc acthods., Ower the rcar end of the head, the ogive of
curvature ncthed using NaCA TN.2250 is able to prcdict, with reascnable
acecuracy, the snell rccoiyrcasion that takes place there (sec fig, 10b);
the sane ncthod using L.h.t.024 is not so satisfactory in this respect,
but is norc accurate over the ferward &0% of the hcad, With these two

ncthols, the crrors in € along the rcar of the head anmount to abeout

P
7% of CpN and are grcator than in the casc of heads terminating with
a finite or zcro radius of curvaturc,

Fig. 13 shows pressure distributicons ealculated feor head 5 ot
M = 2,0 by the five ncthods, On this hcad, too, p becones infinite
at the point of zero slope and here agein it is covident thot over the

first 40% of the hecad length the agrecnont betwecn the different

nethods is very geoed, Dut as the end of the head is apprcachcd, the
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nethods begin to diverec, at x = 0.6, the diffcrence betwecn the
cxtreue values of G is only ohcut 3% of Opy, increasing to abeut

73% ot x = 0,8, It thus appcars throt the inaccuracies in the
pressurc Cistributions mredictcd over the rcar end of heads 4 end

5 arc asscciated with the radius of curvature becoming infinite at the
peint of zero slope, It should be eaphasized that in this caesc,
though the predicted pressurcs ore not very accurate near the end of
the hcad, this is of littlc conscquence in calculating the wave drags
for between x = 0,8 and 1 the slope is very suall (c.f. fig, 7

neads 4 snd §) an? the contribution of this port of the hesd to the
weve drog of the head i8 aleo very soall, se thot even relatively

large crrors in G have negligible effcet on drag,

On the :ngiz of the rcsults obizined in enly threc cases, viz,
head 4 at M = 1.6 and 2,8 an? heod 5 ot ¢ = 2,0, the best working
rule for heads with infinitc radius cof curvaturc ot the point of
zcre slopc, x = 1, is probably as follows: Dotermine the pressurc
distribution by the ogive of curvature wthed using L.A,1.024 up to
x = 0.7, then froax = 0,7 to 0.9 (or as elose to 0.9 as possiblc)
by thc ogive of curvaturc nicthod using HaCA TN,.2250, arnd fron x = 0.9
to 1.C take thc pressure to remain constant at its value at x = 0.9,
sroun¢ x = 0,7, fair in by eyc the two ares of curve,

Another point thet ariscs in conncetion with head 4 is the apparent
disercpaney betwecen all the pregsurc distributions caleculated by
the nethods cof this rcport on head 4 at M = 1,6, and the corrceponding
gceond orticr pressurce distributions cver the rcar half cf the hend,
As was secn froa figs % to 12b, this discrcnancy begins at about
x = 0,4y but up te x = G.7 the five wuctheds agree well with cach other,
It scens unlikely bthat this is purcly the cffect of the head shenc,
ginec resulis for head 4 at M = 2.6 and head 5 indicate that when the
geonctry of the heads couscs inaccuracics in ihe wesent nctheds, there
arc disercpancics not only betwcen the predicted snd the second order
mressure distributions, but alsc bLetwcen the pressure distributions
predicted by the fave .icthods. It is Lelieved that these diserepsncics

on head 4 ot M = 1,6 can be accounted for, at least partly, by the
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possible slight inaccuracy of thc sccond order scluticn, In this
soluticn, the boundary condition is satisficd ot a muuber of control
points along the body and for the sanc accuracy the nunber of points

shouldlbo increascd with decrcasing Mach nunber {rcughly, in proportion

———

to J?ﬁfffﬁf')_ To save tinc and conputing labour the nunber of
contrel points on head 4 at M = 1.6 was kept thc sanc as on other hcads
at M = 2,0 and head 4 2t M = 2.8 and, oonscqucntly, this soluticn is
likely to be less accurate than the others.

The recoriiended methods tc use in any particular casc aregiven

in the following tobles )

Methed Giving Best

Type of Hcad Shapc Coubinaticn of Method Giving

Accuraecy and Spced, Grentest Accurocy.

Radiues of curvaturc Either Log p~Blaw; Step-by-Step Mcthed.

everywherc finlic or ogive of curvaturc

and nowhcrc zero, ucthod using L.4,.1.024,

Radius of curvature Ogivc of Curvaturc Mcthod, Step-by-Step Mcthod,

zero at sonc point using L.A.t.024 (rcf 4);

on the profilc, Stcp-by-step icthed 1s uscd

in the snall region of
lorge curvaturc where fig.
1. camnot be uscd,

x =1,

Radius cof curvature
infinitc at the
point of zcro slopc
on the prefile,

0 xg 0.7; Ogive of curvaeturc ncthod, using L.A.1.024,

0.7¢ x< 0.9 (or as closc to 0,9 as possible); Ogive
of curvaturc ncthod, using NiLCA TN, 2250,

fi 0.9 <x<1.0; take pressurc as rcnaining constant
at its x = 0.9 value,

Arourd x = 0.7 fair in the two curves by CYCe

TABIE I
Fren Figs. 8 - 13 the accuracy which the recomnended netheds can
be coxpected to give is as follows: =
for heads with:~
(1) radius of curvature nowhere infinitc (but con be zero at some
point on the profile) = all thc cases investigated here indicate
that accuracy bettcr than + 2% of GPN can be obtaincd over the
wholc of the head lengih;

(i1) radius of curvaturc infinite at the point of zero slope on the
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profile - accuracy of Cp within 4% of Cpy should be obtainable

within the range of figs 1 and 3. This conclusion is arrived at

disregarding the results for head 4 at M = 1,6, since the sccuracy
of the corresponding second order solution is believed to be
inferior to that of the other second order solutions.,

On 21l the hend shapes which were pressure plotted, y and pll iis
derivatives with respect to x are cverywhere continuous, However it 1s
only necessory that y and i1ts first three derivatives be continuous,

For congider o head along which one of the higher derivatives of y,

scy y&, is discontimious at somc point D, Then gince p depends on © snd
X (by thc bosic assumption of the ogiveof curvature method) i.c. depends
on ¥sy; ond yoy p and gg arc continuous at D. Now ot some peoint E on
the hcod, at a sufficient distancc downstream of the discontinuity at D
the pressurc distribution is uninfluenced by corditions at D, which is
fer upstream, and the method of this report will give the pressures
correctly, So the methods of this report give corrcetly both p and

g; at D ond E. i,c. give corrcctly both ordinate ond tangent of the
(p~x) curve ot D and E. Moreover the curve of p ve x derived from
these mcthods is quite "smooth" between D and E (sincc p and gg arc
contimious), as also is the curve of cxact, inviscid p vs x {since p
and EE arc contimous). Hence between D and E the cxect curve of p
and the curve of p by the mcthods of this report connot depart from each
other to any appreciable extent, Henee the methads of this report nay
be teken to apply accurately provided y and its first three derivatives

with respoct to x are contimous,

£6. Conclugions.

1. Five diffcrent mcthods of pregsure plotting on arbitrery peinted,
convex, axiesyuauctric heod shape have been developed. All the methods
give very geod or goed agreencnt with acecurate pressurc distributicn, at
M=1,6, 2.0 and 2,8 obtained by applying van Dy:e's sccond order theory
of re¢fe, 1 and 2, on four hend shapes with convex, conceve, convex-concave

and cencave~cchvex clope distributions. Werked exonplces cf the application
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of three of the five wethods are given in Appendices I snd II,

2, The five nethods are also known to give with good accuracy the
pressure distributions on circular arc ogives and to give cone pressures
cither cxactly or with geod accuracy; i.e, the nmcthods apply too to
heads with lincarly varying and constant slope distributions. The
nethods can thus be applisd for predicting pressures on pointcd convex
hecad shopes with any slope distribution likely to occur in practicc,
providcd thc ordinatc and its first threc derivatives are coatinucus
along the hea@.

3. The quickest and slcwecst of thesc motheds take about 20 minutes
and 3 hours respectively tc pressurc plot an arbitrary head shape
with givcn geomctrle details. When these methods are used, there is

a yery ldarge saving of tinc without loss of accuracy compared with the
tine rcquired when using the nethod of characteristics or van Dykc's
geeond order theory, which both laboricusly tracc the flow step-by-step
fron the nosc and rcguire scveral days for the computations.

4+ The best nethod cut of the five to use for any particular head
shape depends on the behaviour of the radius of curvature along the
profile ard on the accuracy and specd rcquired, Recommended 1ethods
are listed in Table I of 5.6,

5, When the recomnended nethoeds arc used, for the cases for which
mressurc distributicns are given in this report Cp is predicted

to within + 2% cf Gpy if the radius of curvature nowhere terds to
infinity, and to within * 4% of Cpy if ard near where the radiue of
curvature tends to infinity at the point of zero slope., It is
congidered that the sane accuracy will be cbtained, ueing the
reconmended - netheds, on any pointed convex head shape for which the

three
ordinate-anditsiinsﬁ%derivatiﬁes arc continucus, sc long as the effcets

of rotaticniﬁroduccd by tﬁe curved shock wave arc ncgligible. (Sec 2,6),
6o Two of thesetucthods ‘givciCp as a-function of the radius y,

%% and %;%, and may be uscd to deteriine nminimun drag heed shapes
by applying the calculus of variations, Tho application of these two
nethoeds to this problen will be described in a later report.

7. The results of thls repert indicate that the pressurc on a
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pointed body of revolution at a point P depends solely on the local

geonetry at P and is independent of conditions upstream of

P.

8, The methods of this report are of direct application in obtaining

accurate valucs of lift, pressurc, nonent, etce of a body 2t incidence

by the hybrid procedure proposed by ven Dyke in ref. 1.

9., It may be possible to adapt the mothods of this report to give

the external pressures on ducted bodice of revolution with

external shock, A possible approach is suggested,
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Appendix T

The Nuperdeal Application of the M Step-by-Step Mcthod
to_a NonoUircular Profilc,

In fig 5, Q is a point on the profilc a short distancc from P. Knowing
the static pressure at P, it is required to find it at Q.

SAP is the cirecle of curvatuie at P to the profile and A is its
intersoction with the axis of the body. S is thc sonic point of the Prantle-
Meyer expansion introduced when applying the nethed of ref. 4 te expansion
round the circular arc ogive AP. We shall first determine the position of S,
by deternining Vv, 80 lthat it gives the correct static pressure at P on the
cireular arc ogive S4LP,

Let F (v) dencte the ratio of static to stagnation pressure after
Prandtl-Meyer expension through an angle ¥ fron sonic velocity. F (v) is given
in Table I of ref, 7, Then by the theory of ref. 4y

/P
\pStag) = r vy R
and P = A v ]
e R EAAREL L)
utag P stag -
F(v)-ﬁ/ = {F(v)-F(v)|
stag -

]
F(v)"/gl = A F(v )"‘F(v +¢)10 . . . . (ii)
whecre ¢ is the angle, (xp - ep), between the tangents at A and P to the

cirele of curvgture ap Ps S r

In equatlonp(iia, vh

“and: M gre thc unkndwns, ¢ and - are known,
Pstag
- :t‘na‘“: ’:,?;.;—F‘ 3:'...5 : P .u-i.g . B A P

Now A is a function.off circular dre.ogive geouectry and free strean Mach

T

- _ i p

munber M; thus M is a function afx and of p . | 'y-for these second two

R T 1
= gl h

quantities unlquely dejernlno the first two quantities, Therefore, by

virtuc of equation (1), M s a function of xljand. VA. In Fig. 6, M is

plotted against)(P and ¥, and this chart connecting M and VA together with

A
» L4 & p
equation (ii) wniquely determines M and vA for givcn(-——‘”" ’ ? and XI” Lines

gta
&/ p
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of constant M arc also shown in Fig.é,

To solve for M and vf, let:

L

b
(—w‘) = F (w), Then 3 ig known
P

pstag
P
since{ =1 is knoun,
pstag P

Equation (ii) beconmes:
F (VA) -F ()
F (VA) --F(\I‘;x + [?) . . . . . . (iii)

|

L4Be A

G (v A) sinece ¢ and ¢ arc known,

Now G (0 =¢) =2 and G (W) = 0, Therefore, sincc M is gencrally
between 1,0 and 0,75, and usunlly closer to 0,75 than to 1.0 we can take

VA = (W - @) and '\IA = (W -3 ¢)) as first and second approxinations to Vf.

Y

1
fron equation (iii) and ?\2 fron Fig. 6, At the correct veluc of vA, h'l and

These values of VA will give correspording pairs of values of N, viz., A

?\2 ore cqual, By calculating the differenccsB M = (M = M) ye con

interpoiate linearly %o obtain the valuc of Vv, corresponding tolh =0,

A
In nearly oall cases it is sufficicntly accurate to tokes the first inter-
polated value of ‘VA as the corrcct VA. Mand M (if required) are then read
fron Fig.6 at this value of vy and the particular value of}(p. When this
procedure is systcrotiscd on o proforma only a few ninutes are required to
find V., M and M,

With these three quantities known, the pressurc at Q is readily
deteriined, By the fundenental assunption, the flow expands from P to Q
(Fig. 5) as if the body werc replaced between P end Q by the cgive of

curvoture at P. Therefore the pressure at Q is given by:
P P .
— -1 = A IF ( \;P) - F (vQ

P D
t
stag P gtag Q

P P -
ioeo / = /\ - A lF ( VA+X‘P "'SP)-F ( vA +xp- eQ)-) * . . (iV)
Petag Q P stag) p -

(Wit |

p
411 the quantities on the right hand side are known; hence | —

p
gta
and hence Cp at Q. YA
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Song Practical, Rointa.

The best way to space the points at which the pressures are determined
is so that @ varies by roughly equal amcunts betwcen successive points, unlcss
and except where X varies very rapidly and here finer intervals should be
taken, (For M will vary very rapidly, tooc).

is the solution proceeds M should be plotted against x and by
extrapolating this curve the nean value of M over the next interval can be
quite accurately mredicted, This rnean value, and not the value of M at the
start of the interval, should be used in cquation (iv) to eliminatec the
spall error introduced by taking finite steps instead of infinitesimal ones.

If required, a sccond opproximation can be obtained, using the curve
of M obtained in the first approxiontion as a guide when extrapolating to
find the neen Ms, In practice, a second approximation is unncessary unless
the head shape has very rapid curvature at sone point,

It will be found a considerable help to plot on a gemerous scale (i)
F (V) ve, v, as given in Table I of ref. 7, and (ii) cons Cp vs 85 for
various convenient values cf M, as given in ref.5.
Munorical Exannle of the A Step~hv-Step Method.

Profiles 3 |1420.6 ) J 0 x <1.0

3.205; Oy = tan 0.3 = 16.70°

= O g
H

= 2.0
Divide the head into 5 intervals so thot © changes by roughly the sane
amcunt in each interval, with finer intervals only if and whereX varies

very rapidly.

@ = tan ‘-1y =Y1
- (1*«%2 Y. ¥2) 2 .
X= cos ‘“’*'H‘“ L. ? = \/S’i Ry,
2
) j\(l + Yl) ) L

‘ LR
A R P 1‘-;

L quick che‘ck on the values of |/ yi -2y y2 and ¥y shows that X varies

slowly over the enél;g head andcthat for apprcx1mately equal increments of
6 the linits of tﬁ:’intervals shouTa. be as followss

x=0,00,0 :.3, G5, 0.7 and 1,0.

Xy 6 and ¢ (=X =&) are required at these points, ¥, y; and y, orc given
by

(
% {1- (10.&)°
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yl = 0,3 (1 - 006 x)z
yz = "0936 (1'0:‘1‘()

Hence, using the exact forimlae for © and X :

X 0 l 0.1 0§3 005 0.7 1.0

8 (DEG) [16.70 F3.4.85 1401 8,371 5,77] 2,15

X (DEG) |16,70(16.6716.33 (15,77 [14.67112.42

@ (DEG) | 0 | 1.82] 4.93! 7.40] 8.90] 9.67

TuBLE I

First Intervgl. 0< x < 0,1
For the first intecrval, M is teken as the value corresponding to the

nose semi-angle of the head, 16.70, and the free stream Mach mmber 2.0.
A= Oa793, fron Figgln

The stoarting point of the solution is Cp = 0.241 just behind the nose

shock (Fron ref.5).
Fstag

Froi Tgble I, refs 7, T_E = 7.82 at M
Q

2.0

Frou ref, 8 fig 3-2,

stagnation pressurc ratic across nose shock, at nose = 0,996,

l+0, 2.8
At the first point (x = o)y —= 21 x = 0,2

pstag 0.996 X 7082

For the first interval, A coincides with N {see Fig.5).

Fron cquation (i), F { »A) = 0,214, so ¥, = 16,72° (Table I, ref. 7)

&
Fron Table II,

X =8 =167° «16,7° =05 X_ -8, =167 =14.8 =1,8°
P P p 9

0 _ o o _ o
v, +Xp -6, = 16,727, v, +Xp =8 = 16,727 + 1485 = 18,57
- F (v *Xp = 8p) = 0.2140 and F (v, *Xp -eQ) = 0,1948
p
NOW(‘—-‘*-' = 0,214 ard M = 0,793,

pstag

P

A3 = 0,21, - 0,793 {O. 0 - 0.1948} by equation (iv)

stag Q

= 0,1988, at x = 0.1
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2_;[1__( g ;}1}2&&;‘ ' 001 é\’x{\‘ 003

P p
firse fid Ay F () =(5_Stag“;!x = 8.%988;- w= 18,18° (Tablc I, refer. 7).
\ = -
; From Table II, at X = Cel, ¢ = 1.82° and Xp = 16,67 w- ‘b= 16436%, 4y = 2 Lf) = 16,81°, (Thosc arc the first and seccond

approximations to)ﬂ )

T 3 S ]
@] @ ] e %) (5) (©) @ | ® (©)
Assuncd Bk, F(VA)zF t(]_) 'Vi + 0 F(l’l,\l + b) F(UA)-F(N) F (#) - (5) 7\2 fron Fig, /_\7\:)\1- 7\2
(bEG.) - | (Tablo T, |= (@) + | =r{(3) =)~ |[F@ o= |6 =(7)-(8)
T ref. 7). {1,808 (Tablc I, | 0,1988 = (2)=-(4 (¢6) | at (1) and
(DEG) refe 7). o 16,67°
les--0=1636f —" s 1.0 0.790 0.210
-3 bezs 0.2130 18,63 0,190 | 0.0142 0,0190 0747 0479 - 0.047
1681
By inter-
polation,
16.73' {1 .0.2140 18.55 0,1950 0.0152 0,190 0,800 0,793 0.007
The agreement in colums (7) and (8) is sufficiontly good at this stage. (4 further interpolation only gives V¥, = 16474°
and A = 0;793 ). Hence from columns (1) and (8), ¥y = 16,73°, M = 0,793, Also, from Figeb at V, = 16,73° and ip = 16,67°,

M“_‘z.O.
From Table II =~ 0 = 16.67° = 14.85° = 1.8°% Y -9 = - °=
om Table II, XP e, 16467° = 14.85° = 1,.82°%; Xp 6, = 16e67° ~ 11,40° = 5,27°
— e} —_
Y, *X, - 8, = 16,73 + 1.82° = 18.55% 3 +Yo = 8 = 16.73° + 5.2 = 22,07

= - .{ P - -
F (‘VA*'KP_‘“ ep) 0,1950, F(yA +x) - eq) = U,1625; ( = Stag)P = 0,1988; M = 0,793

A

3
3 (pp ) = 041988 = 0,793 (0.1950 ~ 0,1625) = 0e1730, atx= 0,3
steg i Q

6‘3 *ON qoeug
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3rd_Intorvel.

[N

0.3 X £0.5

F @) = 0.1730%0 = 20,8°% 0= 4.93° (- &) = 15.87%; (W=~ 2 §) = 17,15 j(p = 16433%

1) @ | () (4) (5) (6) (7) (s 9
Tﬁh F((l) } 1)+ 4.93° ] FAB)) | (2) 0070 (2-(4) N ) 1, ai); 1) j& 7~=((')7f)-(8)
i (6) | and XI‘ =
16,33
15.87 —_— — — _— P 1,0 0.780 04220
17.10 0,2100 22403 0,1620 0.0370 0.0480 C.770 0,788 ~£,018
17,00 O 128

Purther approximebion is umnocceossary and VY, = 17.01°, A = 0,788, M = 2,0,

Extropolating A to % = 0.5 gives mean M = 0,784 for 3.3¢x € 0.5.

= c -— = O. - = 0 - = o
Xp -8 = 4.9, )(p 8 = 7.%%V +XP 8, = L%y, +Xp = & = 297"

Fly +X,-8) =0.1629;  F(y N, - %) = L

7
H

_ \_..p__ )z 0.1730 - 0,784 (0.1629 = 0,1382) = 0.1536, atX = 0.5
pstag/Q

0¢ *ON je°ug
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4th_Interval. 0.5 30.7.

F W) = 0.1536300 = 23,04 8= T40° (- ) = 15.64% (- £ §) = 17.49°. \)(\ p = 15,7,

(1 (?) (3) (4) (5) (6) (7)(5) (&) (9)
A P @) | @+74F 7 (6)) |(@)-0.1536 | (@) - (4) | M = | 2 st @) [AR=(1)-(8)
(6) a‘bxp =
15.77°
s o
15.64 _— " — — _— 1.0 0,769 0e231
17,49 | 0.2058 24,489 0,1389 0,0522 040669 0,781 0.782 ~0,001

Henee 'I{& = 17.490, A= 0,782, M= 2.0, BExtrapolating M to ¥ = 0,7, gives neon M = 0,777 for 0.5¢ X £ 0.7,
O (o] (o) _ (o]
- = - - = - - = - . - —_ 2 - -
8 = 7.43°; Xp 6, = 10.0% U, +Xp 9, = 2.89%Y, + Xp 8y = 27-49

F (v, + \}\p - &, ) =0.1389 F (¥, +Xp - Q) = 0,120

i
P i
/) = 0.1536 = 0777 (0,1389 - 0.1200) = 0,1389, at X = 0,7.

Cof qentlg

A

1
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Cp is found thus:

28C,+1= B = P x Potag =x P stag

P
B stag P stag, P,

pstag
— = 0,996 (from Fig. 3-2, ref. 8)

P
stago

p
stag
O~ 7.82 (from Table I, ref. 7)
p0
P
7;79 p -l
C = St‘%’_
P 2.8

Hence the following values of Cp:

X s C
pstag P

0 0.214 0.241
0.1 0,1988 0.196
0.3 0,1730 0.124
0.5 0,1536 0.073
0.7 .1389 0.029
1.0 0,1240 | -0.012

These values of Cp are plotted in Fig. 8 (a).

Sheet No.:

33.

A specimen proforma, for use with,the A step-by-step nethod, is given

on the n&gﬁipageo



SPECIMEN TROFCRMA.

W= 9) = 2= 3@ - 49) Yo

@ l o6 © o o &

% ME) (D +d= | F(3)) @ -F= Q@ - @ | M =%7 | ctQonapr =@ -6
o 0- Y-
. from fig.
YT T o

Hence ﬂA = h = M=

Xo b = ;-6 5V +Xp -6 - ;VAOQ_QQ

¥, 090,

il

non

o« Bxtrapolating M to x = gives mean M = fop

F(“)A +XP "'613 = : F(“\)A +’)(_-P —qu) =

FW) = G‘“[‘i *Xp - G) - T+ % "@QD

M

H
in

N 295UG

-&--C—' .O
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APPENDIX TT
Egonple of the Anpliecaticon of the Ogive of Curysture Mcthed.
iy -
Profiles y = 8 {1—(1-:{) s 0€ x<£1.0
1 -1 3
¥ =405 Og=dan" F = 20,55
M = 2,0
Wo shall find the prescures at the points x = 0, 0.2, 0.4, 0.6, 0.8
and 1,0, The valucs of:
6 = tan
= n yl 2
X = COS-l l+yy +y¥
N
(1+y7) >

(- o
o)

are rcquircd, They are given in the table below:
8
o o (DEG) | X (DEG) (X=-9©)] 1=~-%
(DEG)
Tr-' 5

o 20,55 20.55 0 0
0.2 13,50 20,15 6.65 0,330
Ol 7,68 18.53 10.C 0.585
0.6 343 15.67 12444 0,785
0,8 0.85 11,10 10.25 0:923

1.0 0 0 0 0

TABIE TIT

We can ealeulate mressures on the bedy using the iethods of atither
rof.4 or ref,éélsIn both cases we nake the assunption that the ratio of
static to staggé@ion;prossq?chat P on a body ot frec strcai Mach nunber M
is equal to this-ratio at-P on~the ogifé of curvaturc 2t P ot the saue
frce strean Maéﬁ nuuber M, We prozced as follows:

(a) By.the Method of Laf.t.024 (raf.l)

P
After deternining ﬁg;ré‘ at the nose of the ogive of curvaturc, the
a

decrcase in fron this valuc to its valuc at the peint concerned is

guag
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P
ps’oag

.

deternined as a fraction, N, of the two-dimcnsional decrcase in
over the sane profile,
Having deternined 'sz-;é along the heed; Cp ies found thus:

pstag b,
ata
—_—2 = 7,82 (Table I, ref, 7); ..,_____‘(_5_ = 0.999 (fig, 3-2, ref.8)

j2 Pg,
o} 5ag

o
3

; ioeo Cp = 2976 ———— 0-357

b .
2;8 Cp+l= p "--70?‘-’&
<o S'trag s’c:g

1Y
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(1) x 0 0.2 0o/, 0.6 0.8 1.0
(2) ), from Tablo IIT | 20,55 | 20,15 | 18.53 | 1597 | 1.2 0
(3) Cp at (2) and 5 0.23 0.12
Mo 2 (Rt 5). 0340 ; 063295 236 | 0,2215 01237
* -
2.0 f”
(4) é‘;ﬁ“ x () 1,022 1601 | 1.620 | 1346
Q
(5) Pstoge at M = 2 7482 02 | e 7,02
from POmblc IRofe7s -
(6) Eotog at aM=2
o ot Q@ 0,990 0,92 | 099 | 1.0
(£ip 5-3,”0 Ref ,3) .
= Pa
(1) 5) = (6) = 474 7,76 | 7480 7,02
(8) (4)+(7)= pia - 0.2402 0.2320]  0.2078 0,1720
V, ot (8), f
RN 1379 | 1532 | 1m0 | 2002
¥ 3
(%?%g\ ;I? fron 6,65 10,85 | 12444 10,25
(1) (9) + (10) 2044l 25,97 | 29474 31,17
(12) B at (11)
from I/'gé%ggl, Rcfe7s 0,1765 0,1206|  0,1053 00966
13) (3)~(12) = -
(13) (@%mg 22D 0.0717 0.1014| 0.,1025 0.0754
1) M at (2) end ME2
i(-rffr)n F-l;_lf ) on 0,635 016 | 0,763 0,44
= 8
(15 if_\m ) x \(4) = 0,0599 0,0027 | 0,C803|{  0,0560
-%S'ba fim3
(16) (8)~(15) = P __ a
e 0.1803 0.1493 | 0,1275| 0,110
(17) 2,76 x (16) 0,520 00422 | 0.352 0320
2 G -
(13) (17)=04357 = C_ 0e340 0,16 0.0 “ 0,00 = 040 ~0,0 .
(17)=0s o 34 3 55 5 37 | 5805 )

Lsy ot M= 2, A is unaweilable for valucs of X loss than 11° (Sce Figel), tho

curvo of O vsxis cxtrapolated (without difficulty) the short distance from X = 0,5

'tO x = 1.0.

The valuos of Gy iz column (18) are plotted in Figdl3s




Sreat No.: 138,

(b) By the Method of NACA TN 2250 {(Raf,.6)

At M = 2 the stagnation pressurc loss ig less than 1% across conieal
shccks produced by nose semi-angles of up to 2(}%0, Hence we czn asswisy
with geed accuracy, that if the surlace stegnaticn pressvrcs of the tlows
at M = 2 past the body and past the cgive of curvaturc are the saue, then
the corresponding free sirean static rrecsures will be the seue, (This will
be exaetly lruc at the nosc of the body), Henec, since T)-—S%q; is essuned
the 8ane for both body and ogive of curvaturc, the valucs cof -I—)E-—-will be the

o
P
82:1¢, too. By on circular arc tangent ogives ic shown in ref, 6 Lo depend

golcly on similacity paranmster, K; and the per cent head length, P, For the

ogive c¢f owrvaturc, these guaabitics ave given bys

- S
K = 2M tan 3
8
P =100 (1 ~ = )
N
e
When K and P have been caleulated ,{Hﬁt—%- 1} is read fron Fig. 3.
(o)

Hence follcas Gp. The caleculations are given in the following profoma:
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APFENDIX TITT

Develomient of the Derivative Formmils for Pressure on an

nrbitrar Y Hepd .

In ref, 6, it is shown that on tangont circular are oglves, the prcssure

ig given by:
}: P\ - )
b 10 P € )
po pOiN

where x is distance along thc head, x = 1 corresponding to the end of the
tangent ogive. From Fig.l0 of ref, 6, "Wariation of the Logarithn of the
Pressurc Ratio along Ogives for Various Valucs of the Similarity Porameters
the following rcsults werc obtaincd:

(a) For valucs of sirdlerity paraicter K between 0.5 and 1,0, n is

given by:
n = 0,61 K - 0,068 P € £ 9
(b) For 0,4 <K<K l.O,L.f)B) is given very closcly by

p o/ N
1oglo(§g)ﬂ=o.48sx.o.062 e e e e e (4i1)

Conbining cquations (i), (ii) and (iii) gives:
P
10g10(‘13';’)= 0.485K-0,062 = (0, 61K-0,068)x. o o« o+ o (iv)

Now x and K are given bys

B sin 8
x=1= GaX
K:QM tan é—

where 6 and) arc the surface slope and nose scnl-angle of the circular are
rrofile concerned,
o
For values of Xup to 20, the following approxinate forrmulae involve

not nore than 1% error in the valucs of x and K:
AY

X=1 - %
K = MY
(In (v) ® and X are in radians).

* . [ ] L] L] L] (v)

i

Substitution of (v) in (iv) leads to:

P 0,006 + 2,616 «0,125MX - 0,068 -,
., = 10 8 A
o] —

0.6]M8-0.125P~’9< - 0,068 X
= 1,004 x 10

B 1.405M6 = 0,28 = 0.15'7g
13 b4

1,640 = 1,014 e o s e e o (vi)
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~8 shown in wopendix II, provided thc stagnation pressure losscs of
a boty and the ogive of curvature at their nose shocks are both very small

thcn% will be effectively the samc for both body and ogive of curvature,
e

For M €2, 83< 20° the loss 18<1% and for 2< MK 3, 65 € 15° the loss is
< 2%, Hcnee for these ranges of M and Og equation (vi) gives the pressure
on an arbitrary body, if © andX are taken as the surface slope of thc body

and nosc angle of the ogive of curvaturc, © and ¥ are then given by:

\6\ = tan™ v, e e s e e e {vii)

X

1

cos™ cos © (1+y y, cos 2 S)J

where y = y (x) is the profile of thc body.
For © Ql’?o, tan @ differs fronm © by not more than 3% so a gocd
approxination to (vii) is:
8 = . . . . . « {viii
¥y (viii)
Now cosX=cos @ (1 + y Vs 0082 0)

2
sin X=1 - cos® X = 1 - cos? © (li-yy2 00329)2

=1 - (l-sin® 8) (1 + 2 Y ¥, c0526 + y2 yg‘ cos 4B)

2
i.ce 5in X =|:sin2 6 -2y y;;l+ cos2 e y‘yz( 2 sin2 O -y Yo cos4 e)

L
Derote by D the fineness ratio of the opive of curvaturc under

consideration,
2
22
y ¥.=0 (L )
2 2
2 D 2
sin” 0 = ('I':?),cos =0 (1)
D
x=0(T
2 (D‘*} b2 (DA}
x +0 L4 = A -2yy2+o L‘!‘
2 2 o -
X = v, Ryy +0 “LA}, by equation {viii)
! 2 -
2 2 R
1o X =(y ~ 2yy)(1+0£‘-‘2))
1 ‘ 2 L 2
. D
So with a relative error of pxder only -L-%, we have the approxinate
foroulas
2
Xs yl-?«‘ym N €9
4

Substituting equations (viii) and (ix) in oquation (vi) gives the
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derivative formula for pressure on an arbitrary head, y = yix):

I

P

1Y
0

2
1.408M y, = 0,288M yi - 2yy,-0157 [¥; 27y,
= 1.0L4e




SR 144

Sheet No.: 43
APFENDIX IV

The Slope of the lop p~~8 Curve at the Nogse of a Body

For the purpose of determining pressure gradient at the nose,
the profile of a body may be replaced by its circle of curvature at the
nose, ag pointed out in 2.1.

Therefore in Fig.2, at the nose, the decrease in pressure along

an elementery length of profile is given by:
dp A-S = AN dp 2D by the A - law for
circular arc ogives of ref.4. (LN is the value of M at the nose,

corresponding to M and the nose angle G of the profile),

. (dp) = ?. (dp_) (1)

LI ( dQ )A-S (d‘g )2D LN se [N

Now in two-dimensional flow,

(dp) ‘YMLap (i)
( d@) _ = Se——— “oe con e 11
2-D J'Mi__l

is local Mach number).

(where My
Combining equations (1) and (ii), and remembering that the
gtarting conditions, MN and Py of the axi-symmetric and two-dimensional

flows along the profile are the same, we obtain

2
(). Y
{ a8 )A-S J_;{Z_“:r— N
1.6 d(lOge p) = xN MN s &t the nose
@  yg M - 1
da(log, o p)
But 10 = o
dae
- A=S
, 2
004343‘}" ’NN MN
g =

2
J M N "~ 1
In this formula, @ is measured in radians, If & i3 measured

in degrees and Y taken as 1.4, the formula becomes:

2
M My

a = 0,006
JMN"’l
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HN and )\N depend solely on the nose semi-angle 8 of the body and
s

free=stream Mach mmber . In Fig. 4 o , as given by this formula, is plotted

against Gs for various values of il.
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