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llJ.mmDuM -- 

Since the above paper had been wrltton ftither ~or'lc has been done by the 
writer en the various methods devcloped zm tho mm bo@ of the paper. It is hoped 
that a dct3-lled raport on thm furLhe-,, work ~~511 be publmhod in the near future 
(Ref. AD.1); meanwhile the follomn& surmarisos those results of the wcrk that 
affect appllcc.bility of the methods prosentod here. 

I. The Ogivo of Curvntwa Mahod -- 

(z) Comparison of results of this nothod with experinont and with prcssuro 
distributions ulculntod by the method of charnoteristx?s on a number of head shapes, 
yath lar&e nose =a.ngles and at Mach nuabels such that the loss of stq,nation pressure 
across the nose shook wave urns up to x{ of the frco strom stagnation prossuro, ha.s 
led to the conclusion that the basic assampticn of the ogive of ourvnturo method 
(para. 2. 3, p.7) should bo modil'aod to read: 

"The ratao of the local stntlc proscwe to the free-stream statis pressure 
at a potit P on an arbltraxy convex hoad at 3 free streLm Maoh number M is the s‘me 
3s at P on the ogive of curvature at P at tho same free stream Mach number M." 

7310 ~ou~parisons Tath van Dyke 's r.lothod, shown in f-s. 9 and 10 arc noL 
si.gnlficnni;ly affected by tlvs nodlficatmn of the basic wsumptzon, since in all 
casca considered khere the sta&nntlon prossuro loss across the ncso shock was 
suffloiontly low for the tifo forms of the nswrptlon to be ef'lcotlvoly eqwvalent. 

(11) To do?1 with the oases where tho nose angle of tho q,ivo cimmtm bbcc (S 
so small that ?, cannot bc obtained from fig;, 1, the h - x chart has been oxtcndcd 
down to K = 0.1. It can be shown that h -> 0 as x -> 0, honcc in f'u. 1 the 100d. 

trend near K = 0.4 would load to serious crrcre if used for cxtrapol"tmi, the 
varlatlon of h with x to lower values of K. !Iho extondod h - x chart (at prcsont in 
a provlsmn fcnn) will be found in Ref. Ad.1. 

Some experlrlontnl results venf'ying the rlodiflcd o&jive of curvatura method 
and the oxtondod h - X chart wo published In ref. AD.2. 

2. The LO4 p" 0 Lzll 

The thooretlcal and c;xger~iiental results mentioned zbcva indicate that if 
over a rcK:lon of r\ head 2M tan - < 0.4, approx, 

2 
the log p- 0 1~ v.%ll bc in error 

over and downstrum of such a ro(+on. If this occurs towards the roar of the had, 
xrhcre the slope is nail, the rcsailt~q crrcr 1.11 the wave drq cocfficiont n?.y not 
bc serious, but othorwiso the leg p - f3 law should not bo used unless 
2hI tan G > 0.4 cvcrywhore on the he&. 

3. !I??0 Dor',v;rtlvc F0r1mla 

In view of the nssuqtions Lwd appruxli.c‘.tlons involved in ite dcrlvcitlon 
thus fonmla can be expootod to g&vu roascnablc accuracy only if 

x 0 .L, .$ ?lbI tan ; 6 1.0, approx, 

4. h,Step-by-Step Method. 

Efi'octs of lnr:;e stngmtmn pressure lc;sos across the nom shock, on tho 
nccurnqy of the step-by-step method have not yet bccn invosti&ntoJ., no-' has tho 
extuxlod h - x chart becn used with tlus method. 

Ad&.tzonal. Refcroncos -_ ---- 
& Author(s1 _TILt10, ctc, 

Ad.1 Zxnkiowicz, II. K. Fwthor dcvclcp~mmt of so110 approxirmte 
I.lcthoils of prodxtmb prcssuros on non- 
lli'tmi: oii;iv:il heads cf arbitrq ccnvox 
chapo, zt supersonic speeds. To bo 
published as cn En@& Electric Co., 
LA.t. Koport. 

Ivl.2 Marson, Kcatos 
and Socha 

h axperincntcil mvostqptlon of the pressure 
distribution on f'lvo bodies of revolution at 
hfaoh numbers of 2.45 and 3.19. 
Collckc of Aeromutxs Report No.79, 1954. 
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Five methods irre dovelopod for determining t!lc prcssur" dx,trlbution 

on M arbltraxy, pointed, convox am.-synmnctnc hond shape, of whxh the 

ordxxte and Its first three dorlvatlves wc ovorywhere contxnuous. 

When the geomotrx detals LLL‘O spwxflod, tho tuna roquxed to prcssuro 

plot a head shape by thcso II&hods 1s from approxun,~tcly 20 rmnutos to 

3 hours. Tho methods wore chcckod in five trail cases asmst accwato 

prcssurs distributions, obtnlned by using van Qyke's socon? order theory, 

and gonerally gave very &ood agreement. The best method to use of the 

five dcponds on head shcpe and on the speed and accuracy roquirod, and 

recommended m&hods ar" gxvon. 

These recommended methods UYI greatly superior zn clccuracy to 

llnearxsed theory, and xn rapidity of computation to both the method 

of charnctenstxs and VM Dyke's second order theory. Cp 1s prodictod 

to within +2$ of tho value of Cp nt the noso, provided tho eff3Cts of 

rotation produced by the curved shock are negl=llL ad. provided the 

m&us of curvature 1s not infrrute at the point of zero slope. 

Two of these methods can bo readily applied to deten~ne minimum 

drag he-d shapes. This amlxntlon ~111 be described in :I subsoqucnt 
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report. The m&hods arc also of use when obtaining accurotc values of 

lift, etc. of bodies at incidcncc by the hybrid theory proposed by van Dykc. 

It my be possibk to adapt the rxthcd.3 of this report to apply to 

duct&d bodies of revolution. A possible cppcmch is suggcstcd. 
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E (‘1) ratio of static tc stcgmtion pressure after Praxxltl-Meyer 

cxpnrjion through Cnglc v fro~a scnic vrlocity 

G(Q) fUCtiOn Of v,!, dcfinod by CqUCtiOn (iil), kppcn&ix I 
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free atrcan Mach nunbcr of flow past arbitrary body 

free strmn Mach mmbcr of flow pzst ogiv3 of curmturc 

1ocnl~Iach Nulbcr 

surface Mach znmbcr just downstresn of nose shock 

surface static pmssurc 

free strcan static pressure 

surfmc stngnaticn prcssurc 

free strcci? stagmticn mmsuro 

'Fr cent head length cf D point on o circular arc tongcnt ogivc 

;:~xir.nu~ mdius of body 

abscissa of point on orbitrnry bocly, .msurcd from nose, prollcl 

to body axis, Cm1 cxprcsacd as n fmction of L 

ordinate of point on orbitrnry bcdy, rmsurcd ns prpcndicular 

di3tancG frail bCdy nxis, and cxprcssCd as C fraction of L 
dY 
z 

d2y 
2 

mtio of specific hcnts of gas flowing past body 

?lA2 

angle between body axis and tangint to body pofile 

nose 3mi4nglc of bcdy 

piranctcr occuring in cquaticn (1) of< 2 

V&UC of A given by equation (iii), Appendix I 

vnluc of h dcrivod fro:1 Pig.6 

angle between flow c?ircction ox? sinic flow 2ir3ction, in 

Pnndtl-Mcyr2 cxpm3ior 



F radius of curvature of body profile 
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d = d (10gJJ3p’ in axi-symetric flow 
dB 

0 = XF=% 

X nose smi-angle of ogivc of cummturc or of circular nrc ogivc 

w angle dcfinod by: F(w) = (Gag)P 

Suffices, 

A couditions at nose A of ogive of curvature at pcint P 

A -S corditiona in axi-aymetric flow rust n profile 

N conditions st surfam just downstreon of nose (or lending&go) shock 

P conditions at current point P on ourfacs. 

Q conditions at point Q on surfooc, cdjnccnt to P 

2 - D conditious in two dincnsional flow post a profile 

0. Intrcductioq 

There me nt prcaent three n&hods of prsssure plotting o 

non-lifting body of revolutioc of arbitrory shape ot supersonic 

speeds: 

(5) vnn Dyke’a SccoxxI Crdcr theory (refs. 1 and 2) which 

gives occuroto results over o wide mugs of Moth nwibcrs 

and nose angles, after a nininur~ of obout 20 hours 

computing tine per body per Mach nunbcr. 

(ii) The Mcthocl of Charoctcristics which givos occurote rosulta 

after about cm wcck’a cotquting, unl.css outomtic 

programed conputing imhinca (such as Eniac) ore used, 

When such mchincs ore used the tize of initial preparation 

is of the order of savcrol wcska, 

(iii) The First Order theory cf von Kornon and Moore (rsf .3). 

When tho body cross-asctionsl ares is o sinpls polyncnial 

function of the distance fron the nose, the prcsaure distribution 

con So colculatcd in an hour or less, The accuracy cf this 

ncthod docrcasm rapidly with docrense of fineness ratio. 

/Lit M q 2 the theory undorestimtes ths Cp of 10’ and 20’ 

acni-mglc coma by 15% and 34% respectively (SEC Fig.2, 

ref.2). The error increases with Mach nunbcr. 
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For the purpoas of dktcmining tb& projectile shape of ninimm wcvc 

dreg or stiply for pressure plotting an misting projcctilo shape mthods 

(i) and (ii) crc vsry lengthy end (iii) is too inaccurntc. In this report 

sevcrol nothods of prsssurc plottin, (1 on crbitrapy heed shape arc given 

which are frsc from thcss dcfccts nnd which give sxrsllcnt agracnent in 

Cp with accurotc solutions obtainsd by van Dylce’s Second Order theory, for 

a nunbcr of profilos ccvsring a wide rongc of different distributions of 

slop along the head. 

<2, The Five Methods cf Predictim Prcsgurc. 

2.1. The Pundcncntal ilssunu 

In ref. 4 it is shown that in nondiftin;, supersonic flow past 

circular nrc ogival hoads thcrc is c siriplc proportionality bctwccn 

the dccrcosc in prcssurc fron the nose to a point P on the profile 

nnd the dccrcnsc in prassurc fro11 the leoding sdgc of an ncrofoil 

section of the swc profile to the sa~c point P, when the local 

Mach nu?bcrs on.3 prsssurcs just downstrcnn of the lccding adge and 

of ths nose nrc the scne. If pp is the static prcssurc at point P, 

pN ths surface static prcssuro just downstrcan of the ncsc, 

(PN - PpJs = h ‘PK - Pp)2,D . . . . . . (1) 

whcrc suffices A-S and 2-D refer to axi-syxQstric and two-dirlensioncl 

flows past the saua profile, with the sailc surface prsssurs ard 

Mach nun&r, pi and MN, just behind tha shock. h dcpcnds soicly on 

tho free strwm Mach nmlber and ths pzticulnr circulnr arc pofilc 

concerned, and is plotted in Fig.1 of this report. (This figure 

suparscdcs Fig, 3 of ref. 4, It cxtcnds ths lcttcr to K = 0.4). 

This sinpls relation (1) holds, c s shown in ref. 4, to within about 

& 2% accuracy for a very wide rango of circular arc profiles ancl frsc 

strem Mach nuJ.ll:ors. 

The question nrisas whother ths low of expansion (1) would hold for 

non-circular profilss, For tangent circular arc ogivos, h dcpands on the 

radius of curvatura of ths profile exprsssed non-dinsnsionally in units of 

the calibre (or lsngth) of the tangent ogive, It would thcrcforc be 

expsctod t&t on 0 profile of continuously varying radius of cur*t,urf, A 

would also continuously vary, 
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It is ossumd, a6 tnc basis of o n&hod for pmdictine; pmssurcs on an 

arbitrary head shape, that the flow in cxpndiw 310% the profile fron a 

point&o the ndjacmt pint Q (see Fig.2) cxpnds as if the bod.y were 

rcploced by the ogivc of curvature ot P (i.e. the ogivc gcncratcd by the 

revolution &bout the oxis of on arc of the circle of curvnturc ot P.) Thus 

the value of k to use ot P in equation (1) is that corrcspondix ta the 

ogivo of curvature at P. This aasu+ion is an arbitrary one, but it givss 

the presmrs exactly in thres prticular WSES: 

(i) Flow Past Cones 

In this cssc the pofilc is D strcight lim so thnt 

(m - Ppj2a is cvernhcrc zero and equation (i) gives: 

(Pp)ns = (+JkS' (The vcluc of (p~)*~ is dctcrzincd fron the ncsc 

mglc and &ch nunber, usiw the Tclblcs of ref. 5). 

(ii) Flow Past Circular Am Oeiws. 

The assullption hem is cwatly true, since the ogivc of 

curvature coincides with the bcdy itself. 

(iii) Flow Just Downstrcan of the NC-X of Anv O~livc. 

The pressure gradiant at the nose of a bcdy at a glvcn 

Mach nmbcr is dctsrnincd solcljr by the slope ati radius of 

curvabre at the nose. The body onrl the ogivc sf curvature 

hove the scne slope and rcc!ius of curvnturc fit their COLU~O~ 

pcint, so the fundancntal assunption will give the correct 

prcsnurc grodisnt at the nose for any bcdy shopc. The mz+~hod 

also correctly gives the nose lmssurc is the prcssurc on a 

cone cf the snrlc nose angle, 

Since the fmdormtnl assunption gives the correct prcssurc ond 

prcssurc gradient ot,thc nose of any hccld and. gives the czrcct prcss~c 

olonc: the ontirc head when the profile slop varies effcctivoly; uniformlv 

along the head (circular arc ogivcs) cr is constant (cones), it is 

roasonablc to hop that ths fudazcntal assumption will give fairiy 

accurate pressure distributions along any head. 

The bosis of the first n&hod of pressure prediction is to find the 

~cssure just behind the nose shock by the Toblcs of ref.5 and &th this 

starting value to ~occcd a short distance along the head and obtain 
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the next value of ~cssurc by cqustion (1).and the fundmental ossmption. 

The prcasurc distribution is thus cstablishcd, step-by-step, along the head. 

The cletr?xLs of this procedure arc given in the following sect&n 2.2 and 

i!lApplXliXI. 

2 .2. The A Step==by=Stcp Method for nrbitrorv Profilcs. 

Suppose the flow hna been tmccd up to the point P in Fig.2, by 

sane ncans. Then the static prcssurs pP and stagnation pmssurc pskgp 

ot P are known, The value of 1~ ot P for the cxponsion fron P to the 

next point Q, close to Pt is that corresponding to ths ogiv~ of 

curvature at P nncl to souc hypothetical frec+&reou Mach number i?, which 

is ouch that when the ogivc of curvature is placsd in a unifom flow at 

Mach number M' the rntio of static to stagnation prcssurcs ot P is 

%a,, . 
Thcrc is only ono Mach mmbcr z satisfying this condition 

rind ths nethod of detcrriining h ond M' is explained in Appendix I. (It 

was discovered cnpirically thnt E was always the sollc (within the 

reading error of the graphs used, i.e. about O.CC5) ns the free strcnn 

Mach nun&r M of the flow past the body, and this discovery form the 

basis of n second, nore rapid ncthcd of pressure prediction described 

in 2.3.) 

Having obtained h by the procedure of Appendix I, the charge in 

P 
p%g 

over the short finite interval PQ is salculntcd, knowing( 9, pstng) 

nt the begin+ of the interval, froll: 

Tho details of this calculation are also given in Appendix I. Thus 

Ifi& and hence Cp can be found by this step-by-step process at a nunber 

Of points spaced along the head. If required, a second approximtion can 

be obtnincd as explained in Appendix I. In practice, a secorrl 

opproximtion is unnecessary uulsss the head shops has very rapid curve- 

turc at som point. Esch Cp requires about 30 i;inutss calculation. 

2.3. T~Q Or!ivs of Curvature Method. 

As stated in the preceding section, it was discovered mpiricnlly, 

when applying the h stop-by-stop nethod, that the rctio of statia to 

stamatton ureasurs at D. mint P on on arbitrarv bcdv at free strep 
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I&&L umber M is the sag&at P on the c~ivc of cuxv&ture n$ 

P at the scne frca atreac Nach nu;.lbcr M. 

Sinca the pressures on the ogivc of curvoturc can be detercined 

by the nethods cf cithcr ref.4 or rcf.6 (p.9), the pressures on any 

ogival head can be cclculatcd. The only infornation that is required 

about the gsonctry of the arbitrary head is the distributions along 

the head df the head surface inclination G to the axis and of the 

nose scni-anglc X of the ogivc of aurvaturc. In terns of rcctan&i.ar 

ccrtcsian co-ordinates x and y of the head profile (SCE Fig, 2), 

the dcrivativcs yl ani y2 and the rcdius cf curvature p, it will be 

readily vcrificd that thcsc on@s arc Civcn by: 

0 = tan-lyl 

x = co2 ;cos 0 -“/p 
I = cos4 ‘+3 0 (1 + y y2 oos2 Q)‘\ 

._ 
(Since S decroascs 010~; the head, which is assumd convex, y2 is -VC 

aad p = 
2 3//2 

my2 -l!l+y,) .I 

Once those an&s have been detcrs?ined the ncthod dcscribcd 

in ref. 4 can be applied to dctcnlinc -stoC ancl henoe CP ct any e--J-- 

point on the arbitrary Profile. (In ref. 4, the notation differs 

slightly in that SS replaces X .) The tine rcquircd to pmassurc 

Piiot an arbitrary head shape by this procedure, after 0 and >: have 

been ccJ.culatcd, is appoximtely 90 ninutes. ii worked excnple of 

this procedure ia given in Apper~'.ix II. 

Alternatively in fiC, 6 cf ref. 6, gcncralised curves are Given 

of the distribution of 
1 

P -Poi 

,' 
over tnugent ciroular arc ogives 

PO 
as a function cf the per cent head lcn&h ond the sinilarity 

Imauctcr K (the ratio of Mach nunbcr to the fineness ratio of the 

tongcnt circular crc oCivc.) These curves crc reproduced in 

Figs. 3a (0.3<k<l.O) amI 7s (l.O< k< 2.0), fcr the convenience 

of the reader. (A van Dyke second order solution for the flow 

pst n cimcular crc ogivc wns calculated at K = 0.4 aud these values 

of 3-1 have been used to extcud the curves to K = 0.4. They 
I \ % -. 

are extrapolated to K = 0.3, bearing in bird that for a needle-like 

body, i.e. K = s 0.) The per cent head .Leng% and 
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sinilarity permwter of the ogive of curvature-arc given by: 
sin S 

pr cent head len&h = 100 (1 - - 1 
sin X 

K = 2Mtan Y 
2 

For values of X up to ZOO, thG follow- sinplifi&, opProximte 

formla can be used, involving: less then 2% error: 

per cent head lcn&h = 100 ( 1 -z) 

After the distributions of S and X alon ths arbitrary 

bcdy have been detemined, the abovs quantities are calculated ati 

i I 

'P -Po\ 
the corresponding vslucs of - are rcod fron Fig. 3. Hcncc 

P 
PO 

---.,,,. 
P stat and hcnco CP. Tho tim required to pessure Plot D head t 
shops by this procsduro, after 0 and x have hem calculated, is 

alout 40 ninutes. This procsdure, although quicker than using the 

n&hod of ref. 4, is not quite os acxumte. The reason for this is 

that the curves of Fig. 3 are derived fron man curves through D. 

larec nmber of points, obtained by the ilcthod of characteristics 

for various circular are ogvies at various kiach nudbcrs, which 

arc scattered sli&htly about the mean CUTV~S. The occurocy of 

both procsdures is coxpxwed with that of van Dyke's Second Order 

Theory in <5. An illustrative exarlple of the application of 

both Procedures is given in Appendix II. 

2.4. The Derivotivc Forrnilo Method. 

By neans of the results of rsf. 6, it is possible to deduce 

on analytic form& in terns ofx and 8, and hence in terns of 

Y# Yl rind y2, for the Pressure distribution on an arbitrary head 

shape. This fornula nmI its derivation is given in Appendix III. 

It involks sone further ap~oximtions, but nevertheless gives 

q--lb3 nccurate values of cp. The &ne purpose of its derivotion 

was the qalculation of the Projectile shape of ninimm wave 
I 

resist&e, by ths Calculus of V&riations. This work will be 

reported in a later repcrt. 

205. The Linear lore D - 0 IaW. 

It socn becone apparent that the shape of the pressure 

distribution curves closely resmbled the shape of the slope 
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distribution curves. CGn~-o~tioa-ord-con~vitiea oti points of 

inflcxion in one were alwcya reproduced in the other. Ittherefore,. 

appeared that slope oncl ~essure wore closely relotad. In ref. 6, 

it is shown that tho pressure dccaya exponentially with distance along 

circular arc ogival hasda. Since alopc voriea effectively linearly 

with distance along a circular crc ogivcl hcod (when the nose nngle 

is leas thsn 200), therefore the pressure decoys exponentially with 

slope. A check showed in 011 coaes considered thct the pmasura 

decayed exponcntislly with slops on non-circular, cgival hsada also. 

Thus o plot Gf log10 p vs.0 would be a straight line, of gradient U, 

any. Thhc gradient, at the nose, of a log 1o p vs.8 plot la darivable 

f'ron the differential forn of equation (1): 

dP = hdo 
AS -2-D 

ati fro13 the Frardtl&yer rdatiOn. Re details of % &$.vetion arc 
-- -.. 

given in Appcudix IV and +$aso derived, viz. 0.0106 JF , 

is plotted as a function of Ca and M in Fig. 4. The ~essure at ariy 

point is then given by the fornula: 

106 10 0 
?z a(e -e) . . . . . . (2) 
P 

S 

where 0, is the nose aeni-cngle cf tha hood and pi the aurfcce 

static pressure juat domatresn of tha shock, obtainad fron ref.5. 

(In this formic S and 0, arc nsaaurcd in degrees when miltiplied 

bj the values of egivan in Fig. 4). This nethod requires about 

20 ninutea to pressure @.ot a head ahapc, once the distribution of S 

has bscn dotemined. 

Equation (2) my also be recast in approxieste, derivative 

forn for ninimm drag shape cnlculntions, thus: 

P k Yl =Ae . 

where: k= 2.303~ ( unow assured in rad -l) 

2.6, The Effects of Rotntioq. 

The five nethods developed in the previous section arc all bcssd 



on prcssurc distributions on circular arc o6ivcs calculntcd by the 

ncthcd of charoctcristics in ref. 6. Thcsc calmlntions wcro corriccl 

out on the aasmption of irrotational flow and nel;lcct changes of 

ontrol~ along the nose shock wsvc. Thus none of the hcthods cf the 

present report is applicable at hi&h K, i.e. cithcr to thick bodies 

or to vary high Mach mnbcrs, for thsn the cffccts of rotation 

causc2, by the curvatura of the nose shock wove, arc opprcciablc. 

The imgnitudc of thcsc effects can bc ascertained froLi ref. 10 in which 

ths pressure distributionsof ref. 6 on circular arc toq,cnt ocivcs arc 

rccalculatcd tokin;; account of the rotation of flow. It is fcund thot 

at K = 1 the ncglcct of rotation results in undcrcstimtin;: Cp over 

ACD qost of the hsad length by about 2% of E%; - , 
CD 

the correspondiq 

error in the wava drag ccefficient, is about 6%. The cffsct of 

rotation is zero at K = 0 and at first incrcascs very slowly with K, 

as shown in the following tob15: 

1 K 0.5 -0.6 0.7 0.8 1 0.9 1.0 2.0 

I=_ n GD 
I t.3 

c 0.010 0.010 0.020 0.035 0.063 0.280 
CD 

CP Thus, for K< 0.8 the effect of rotation on _ 
"PK 

find On CD wil.l 

not cxcecd one or two rzr cent, and at K = 1 rotation will 

probably incrcnsc Cp by about 2% of Cp n and CD by about 6% above 

their prcdictcd values. ~bovc K = 1, it is axpectsd that the ilcthods 

of this report, by nc@ectiy; rototion, would imrcducc errors in 

cD that my be as lnr&c as, say, 30%. For all the hcac' shapes 

pressure plotted in Figs. 8 -13, K lies between O.L+ alvl 0.7. 

53. Bcdics at Incidcncc. 

For supersonic bcdios of rcvclution nt incidcncc, van Dykc 

sqgcsts in rcf.1. that to obtain azcurotc vclucs of lift, prcssurc, etc, 

it is ncccssary to calculotc the SUrfGCC velocity coilponcnts in non-liftiq 

flow to the occurocy of van Dykc's second order theory and to supmposc 

on th5se the cross flow surfaco vclocitg conponmts obtained fron first 

order theory. The theory of this report is thcrsfore of direct application 
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in deternining the non-liftint; flow su,-fact pressures and hence these non- 

lifting flow surface velocity cdmponents, rcquircd for cuch a l'hybridt' theory. 

54. Aoplication of the Thcorv to External Flow Past Ductti Bodies of 

Revolution, 

Consider the extcrml flow past a ducted conical frustru of ss~;i-ar&c 

O,, whm the oxterra shock is attached to the nouth. The r>outh pressure is 

that corresponding to a two-dimnsional $.anc shock for a wcdgc an@ Ss. 'This 

~cssurc is considerably higher than that on a cone of scni-an& (3,. Far 

downstream of ths nouth, the pressure on the frustru.: bccctles illdependent of 

local coalitions at the uouth. Thus the prcssurc on tha frustrun falls 

asynptotically fron the two-dilensional wcc'gc prcsswc occuring at the nouth 

to the pressure on a cone of ssni-anglc Ss. 

Sinilarly the external prcssurc on an arbitrary ducted bdy with 

attachsd cxtcrnal shock will fall any.tiptotically frorl the two-dimnsicnal 

wadgc Imzssurc occuricC at the nouth to the pessurc that would occur if 

the profile wsrc cxtcndsd upstrcm fron the riouth to a sharp point. The 

prcssurs distribution by the cl&hods of this report when opplicd to the bcdy 

extcndcd to a sharp point, will thcrcfore spprooch asymptotically the correct 

pressure distribution, The ncuth ~cssurc can be exactly cslculoted fro= 

plane shock r~latioL1s, but the prcssurss predicted by the >lcthods of this 

report will cnly bccoric accurate ct ~011~: finite relaxation distance frantic 

mouth, where the local effect of the ilouth has sufficiently dcccycd. In the 

only cast the authors have so far invostiSctcd, in which the pressures by 

the n&hods of this report wcrc conparcd with prcssurcs by van Dykc's second 

order theory on a convex ductcd body ct M = 2.0,this rclcxation distcncc was 

2 nouth dimcters ond conscqucntly a 1arSc and i.nDortant part of the nressurc 

distribution curve could not be accurntcly pcdictcd. 

Reforc the ncthods of this report can be nodificd to apply over the 

relaxation distmcc, informtion Ilust be obtained about cxtornal pressure 

distributions on ducted conical frust-a. It my then bc possible to predict 

sccurnkly ths pressure cvcrywhcrc on a ductcd body, of nouth scni-anClc 

0, at Mach nuzbcr M, as ths sun of the p-cssurc by tho mthols of this report 

and a prcssurc, sufficient to give the correct vnlus at talc nouth, which 

decays to zero in the sauc way as for a ducted conical frustruc, 
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i.e. cp = c ?l +k (C P2 - %3" 

where: k= kis nearly 1) 
_ C' .-- 

cp4 ?3 

C 
- q 

= pmssurs cccfficicnt at M Predicted by the rlethods cf this 

report when the body is cxtsndsd to a sharp point 

(Cq)n' value of C9 at the nouth 

C 
p2 

= pressure cosfficicnt at M on conical frustnul,tangential 

to the ductcd body at their comon mouth 

cP3 = pa-cssum coefficient at M on cone with scni-anglc 0s 

cp4 
= prcssurc ccefficicnt at M corrcspondiw to plane shock 

with wedge an& Qs 

This formlo for Cp would give the correct nouth pressure, Cp = CP 
4 

) 

and the sorrect asynptotic pressure distribution, Cp = C 
9' 

a long 

way bock along the head, Also the relaxation distance is the sane as 

for the conical frustrun associated with CP2, which is a reasonable 

ossueption, The formla would give ths exact pressure distribution on a 

conical frustrun.' 

However the authors have no:, yet developed this approach and until 

this has been done, the ncthods of this report a:'e of little help in 

predicting the external pressure distributions on s clucted body with 

attochcd cxtcrnal shock, 

5. Amraisal of the Five Diffcrsnt Methods and Conmriso~ with Solutiocs 

bv von Dvkci~slSocond Order Thcorv. 
. :--=- -. 

The fivediffsrent nethods dsscribcd in § 2 were used to calculate , .*. 
prcssurs dist@butions on the fcllowi.~ hsode: 

1. 

2. 

3. 

L/D = 3, K = 0.667; 

L/D = 3, K = 0.667; 

0.02504 x . *- 2% 

,at M = 2.0 I/D = 3.5, 
K = 0.5'Lt 

This Profile was dsrivcd by modifying the slop0 distribution of 



Lighthill's ~~niziim.~ drag" ogivo (ref. 9) over the first 15% of the head 

length to obtain a pointed nose, and then following the slope distribution 

very closely along the rest of the head. 

4. y = 0.03968 (nx + sinII:r), at M = 1.6 and 2.8,>$ = 4, K = 0.400 

31 
and 0.700 

1 

5* y=; c 
1 - (1 L -x) j,ot M = 200, d; = 4, K = 0.500 

For conparison, solutions were also obtained for heads 1, 2, 3, azxl 4 

at Mach nunbers PS stated above, by the second order theory of van Dyke. As 

is &own in ref. 1 (p.p. 167-170), t'nis theory gives cxccllcnt agrccnent 

with the exact invisdd solutions for ogivcs (the n&hod of characteristics) 

and cones (Tay1or-Maccol.l). This is further borne o&t in the ITescnt 

investigetion, by the agrfenent in Ch betmen the second order and the 

exact values, which is within 1% in all the CGSCS investigated except for 

head 4 at M = 2.8, where C pN is overestimtcd by 2%. Consequently, the second 

order solutions are here considered to give the inviscid pressure 

distributions exactly, and are used as a standard for assessing the accuracy 

of tic five nethods. ' 

Fig. 7 shows the profiles and the slop distributions of thcsc five 

heads. The head Izrofiles wore chosen so that a wide variety of typos of 

slope distributions woulcl be reprcscntedssis scenfron Fig. 7, the curves of 

tan@( =$$) vs.x are concave, convex and inflexioml (changiag both fron 

concsve to convex and vice versa). It is to be noted that the slops 

bscone zero at x = 1 in all cases with the excepticn of head 2, which is a 

secant ogive. Further, at x = 1 the rod&i cf curvature of heads 1 and 3 

are zero, those of heads 4 and 5 are infinite, whilst head 2 ter&.natcs 

with a finite radius of curvature. The significance of this beconos 

apparent in section 5.6. 

5.1. The h Stca-,bvnrSteo Methcd. 

The prcssurc distributions on heads 1 - 4 obtnimd by this rlethod 

are shown in Fig. 8 coilparcd with those cal&.stcd by van L-ykels 

second order theory. 

It is seen that for heads 1, 2 and 3 the agrccmnt botwcen the 

two methods is excellent. The step-by-step ncthod reprcduccs very 

closely the shaps of the second order ~cssurc distributions, 
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There are slight discrepancies in the nagnitudes of Cp, but these mount 

to no nom than 2$ of the corresponding Cp valu33 at the nose (Cm) and 

my bs attributed pertly to the inaccuracies of the van Dyke solutions at 

the nose, as conpared with the exact Taylor-Haccoll values which were 

used in the stop-by-step nethod. 

In the case of head 4 ot M = 2.8, the step-by-step nethod gives 

accurate results over the first 70% of the head length. Bcyouncl x = 0.7, the 

nethod overestinatcs expansion and takes no account of the slight 

reconprsssion which appears to occur over the last 15% of the head length. 

fit about x = 0.94, the nethocl cease3 to give results since the values of 

X fall outside the range of fig. 6. On the sane head at M = 1.6, the 

agreenent is excellent over the first 40% of the head length. The 

divergence between the two nethods begins at x = 0.4 approximately, the 

step-by-step nethod in this case overestinating Cp by onou+ts of up to 

7% of c 
%' 

"hensss discreplnciss my partly be due to the fact that the values 

of X as a function of X deternined in ref. 4. are less reliable for M = 1.6 

than they arc for higher Mach numbers (2 and over). At M = 1.6, 

calculations by the step-by-step nethod cannot be carried beyond about 

x = 0.8 on this head, 

5.2. The Ogive of Curvature Method Using L.A.t.024 (Reti) 

Fig. 9 shows pressure distributions on heads 1 - 4 pmdictcd by the 

ogivc of curvature ncthod, usiq L.A.t.024. 

Conparison of figs. 9 and 8 rcvcols that the pressure distributions 

calculated for heads 1, 2 and 3 and head 4 at M = 1.6 by this nethod are 

practically idontieal with those obtained by td step-by-step method, 

and hence give equallgr gocd agreegent with the second order solutions, 

On head 4 at M = 2.8 the two n&hods agree closely as far 03 x = 0.4 aruJ. 
: 

then begin to diverge, the difference bstwecn thea increasing along the -.. 
head. Thus, it appars that the hypothesis which,form the basis of the 

‘I‘ .li - :"f 
ogive of curvature n&h&i, (viz, that the ratio of static wessure to 

,v .,.* -i- . , -*;z$ , -. 
stagnation Fess&e at a point P on an arbitrary body at a free strean 

Mach nuuber M is the sane as at P on the ogive of curvature at P at the sane 

free strean Mach nunbcr M - see sections 2.1., 2.2 and 2.3), is borne out 

in the cass of heads 1, 2 and 3 and head 4 at M = 1.6, but does not hold 
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with the mne accuracy for head ,!, at M = 2.8. Now,ths distribution 

ofxon head 4 is such that at M = 2.3 tho naximm diffcrcnce 

between the stagnation prcssurc lossss across the conical shocks cf 

the body and of the ogive of curvature is, approxizatcly, 2% of the 

fres &real: stagnation pressure. On the other hcocls and on head 4 

at M = 1.6, stagnation pwmrc 1osss.s did not sxcced $%> This 

suggests that the hypothesis on which the ol;ivc of curvature mthod 

is based becones less accurate as the differoncc increases bctwecn 

the stagnation pessure loss for the ogivc of curvature and the 

corresponding loss for the body. 

5.3. The Ogive of Curvature hcthod usiw NXA TN.2250 (Ref. 6) 

The pressure distributions Predicted by the ogivc of curvature 

nothod using NACk TN.2250 instead of L.A.t.024 ore ohown in Fig.10. 

Although the two proccdurcs are basically equivalent, the USC of 

curves of ref. 6 results in a slight loss of accuracy for rsasons 

explained in Section 2.3. Naverthclsss, ths ogrcenent with the 

second order solutions is still good. In the case of heads 1, 2 

' and 3, the predicted C ,p !s do not differ fron the second order C P 's 

by norc than about + 3% of Cm, the discrepancies being grcatcst 

nom the nose, On head 4 OG M = 2.8, CP appears to be undcrcstirdated 

by about 3% of CON over nest of the hsad; at M = 1.6, C p mar the 

nose is again undcrcstinatod by sane 3%, whilst for x,0.5 the 

crrcr is roughly one and a half tints that of the ilore accurate 

nethods discussed in eections 5.1 and 5.2. 

5.4. The Derivative Fort&a. 

Fig.l.l. shows the Pressure distributions calculated by the 

darivotive formula given in ~;ppsnd-& 111. 

Apart fron the singular behaviour beyond about x = 0.98 on 

heads 1 and 3, this form&. predicts the pressure distributions cn 

heads 1, 2 and 3 with error;: not greater than + 4% of CpN. The 

obvious failure of the nethod whsn it Predicts perfect va.cuun at 

x = 1 on heads 1 and 3 can be traced back to the apProx.inations 

involved in the derivation of the fomlula. In Particular, x is 

appwximtal by 
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which involves the assunption tboty/q is s&l. Now on hcods 1 and 3> 

? "O(Y2-+ - co ) as x-r 1, whilst y remins finite end so the 

above nssuqtion is mt sntisfiad. According to the theory of the 

dcrivativc forimla, X H ,ao as x -) 1, (in fmt,)C‘ cannot bc dctsr- 

nix-ml thmc, being an on& whose cosine exceads unity), and 2 -S 0, 
PO 

so that a porfcct vacuun is obtoincd. 

On head 4 at 14 = 2.8 a very gocd agrecncnt (within about + 2$ 

of C%) with van Dykc'a solution is obtained, cxccpt near the end of the 

head, whera at x = 1 the darivativc forrula Ix-edicts a snail positive 

c . On the sailc head at M = 1.6 the fornula undcrcstiilatcs Cp near the ? 
nose by about 4f~~ ovarestiimtcs it LVCI- the roar ?crt of the head and 

oxageratcs the rcccrqrasssion near the and. Ttr wide cY.sn~rco~lent over 

the last 10 cr 20% of the head lsngth and the pediction of D srJal1 

3positiva Cp at x = 1 is due to the fact thnt the rcm+osentation of 1-1 

and log (?g)K as lincnr functions of K (see irppmdix III) holds only 
0 

for K between 0.5 and 1 and is not: a good approximation for K<0.4, 

which is the case on head 4 as the end of the hcnd is approached. 

5.5. T~I&nmr LOG D J8Law. 

The m~ssure distributions calculatdd by this law cre shown in 

fig. 12. 

It can be sc.zn that the agrccncnt with the second order solution 

is cxccllcnt on heads 2 and 3 and on the front half of hcnd 1; Cp 

appars to be ovcrcstinotcd on the rear half pf head 1 by ancunts 

voryini: froi~ abcut 1; of CTN ot x = 0.6 to 3% at x = 0.9 nncl 9% at 

x = 1. 

On head 4, the qracncnt is cxcellcnt as far as x = 0.7 at M = 1.6 

and goccl a.3 far as x = 0.5 at M = 2.8. Towards the end of the hcnd ths 

law fails to take account of the slight recorqrcssion and for M = 1.6 

a large error results at x = 1. 

5.6. Merits and Linitations of the Five M&hods. , 

On the basis of the rasults prcscntcd in section 5.1to 5.5, it 

a>pcars that the n&hods which give the best ograenent with van Dykc's 

second or&r theory are the Et6pbyet6p nethod and the ogivc of 

curvature nethod, using L.A.t.024. Thero is little to choosa between 
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the accuracy cf thcsc two ncthcds. Smco the latter r&hoc! is the 

sinplcr ond Mae rapid of thi two , its WC will be prcfcrable in 

aost casts, Once the distributicns of 0 and X alo~ the head have 

been dctcmincd, the t&c rcquircd to conpti one pressure distribution 

by the o,rrivc of curvcturc .lcthcd, using L.A.t.024, is about l* hours, 

as cojiprcd with cbcut 3 hcurs by the step-by-step n&hod. 

The ogim of curvature nethod, usiw NiXb TN,225O, &~OWS s further 

saving in couputing tizc (me prcssurc Sistrib&ion csn be conpltcd in 

about 40 Llinutcs) hut, gcncr3lly, results in slight loss of accuracy 

(see sEction 5.3). 

The 105 p J 
/ . 

010~ is the nost rapi:ic' of the five nethods, as it 

r'equircs only about 20 ninutcs to ~essurc plot n haod shape. It gnve 

very gocd agromcnt with van Dyks's thccry in all the cases investigated, 

sxccpt nem the cm?. of head 4. It is suitable, cs is also the som- 

what less accurate derivative formula, for invastigntions in which Cp 

is required as an explicit function of heed geoLlctry and Mach nunber. 

The chcice of tho most suitcblc ncthod to use in a particular 

cass floes not depend solely on the accuracy which the u&hods can be 

cxpectcd to give an?, on the cor+AinC: labour involved but alsc, to 

a cartoin sxtcnt, on the geomtry of the head. If the radius of 

curvature bccoms zero at sons point (ns, for cxarlplc, on heads 1 and 3), 

the ogivc of curvoturc n&hod, usix N!ICA TN 2250, ceases to give 

results when the rac'ius of curvature bccoms sufficiently snsll, as then 

X falls cutsiGc the rouge of fig 3, whilst the derivative form& 

incorrectly predicts perfect vacuu%~ where the radius of curvature is 

mm. No serious difficulty is cxpcricncsd in this case with the 

step-by-step ilcthcd ati the ogivc of curvature nethod using L.A.t.024, 

since the ~cssurc Gstribution con be calculctcd right up to the 

point of zero rndius of curvature by assunirq: thot h -) 1 as F' 0. 

This nssmption is justified by the fact that for flow round c sharp 

corner the chaqcs of pressure cm two-dimnsionnl, i.e. A= 1 when 

p= 0. In practice, it is sufficient to assum in this cam that 

alow the usually mall portion of the head where h cannot be found Pan 

figs. 1 or 6, Xis constant and equal to the arithnetic man of 1 ond 
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the last value of h that cm be dctcrnincd. With the ogivc of 

curvaturr ilcthod usi% LA.t.024, the step-by-step rxthod is used in 

the mall region of 1arCc curvature where FiC. 1 cannot be uoed. 

This voccdurc was adopt& in cnlculatin; the ~essurc distributions for 

0,9 <x 41 on heads 1 and 3 and, as can be seen fron figs 80 and 90, 

resulted in very good agrecmnt with the seccnd order solutions, - 
Almst equally gocd agrcmcnt wos obtained thcrc with the log pi 9 

law (fig 12a). This law hos the additional advantage that it requires 

no special treatment as p -) 0. Thus, when the radius of curvature 

tends to zoro at 3om point on tce head, the suitnblc ncthods to USC 

arc the zcivo of curvature nothod (using L.ZA.t.024), the step-by-step 

nethod and the log pd ? law. 

On heads whose radius of curvature becoms infinite nt the point 

of zero slop (as, fcr exmple, on heads 4 and 5), the step-by-step 

liethod and the ogive of curvoturc nethods ccunot predict pressure 

distributions over the last 5 - 20% of the head length, dcpcn:ling 

on &ch Lunlxx and head gconctry. The dcrivativc form& and the log 

p- Claw give values of Cp over the entire head length but, as the 

colculntsd distributions on head 4 seen to indicate (figs 1% and 12b), 

thoy bccnne unreliable cs the end of the head is apmxached. On this 

hcnd the best ovmall accuracy was obtained with the two ogivc of 

curvature xthods. Over the rear end of the head, the ocivs of 

curvoturc n&hod using NGA TN.2250 is able to predict, with reasonable 

accuracy, the 31x111 recon~cssion that takes place there (sea fi.2. lob); 

the 3311~ n&hod using L.k.t.024 is not so satisfactory in this rcspxt, 

but is norc accurate ovor the fcrward 60% of the head. With these two 

nctho's, the errors in Cp along; the rtar of the head anount to about 

7% of CT+ and arc grcatcr than in the cast of heads tcminating with 

a finite or zero radius of curvature. 

Fig. 13 shows prcssurc distributions calculatccl fcr head 5 ot 

M = 2.0 by the five 1icthorls. On this head, too, p beco!les infinite 

at the ,>oint of zero slope and hcrc ngcin it is cvidcnt thot over the 

first 40% of the hcod length the agrccncnt between the diffaront 

nethods is very &ood, but as the end of the head is opprcachcd, the 
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nethcds b&n to divcrl:c, .;t x = 0.6, the di:fcrcncc between the 

cxtrcm VO~UCS of Cp is only obmt 3$ of Cm, incrcasin!: to abcut 

7$% at x = 0.8. It thus appcnrs tba% ths inaccumcies in the 

pressure c'istributions predicted over the roar end of heads 4 end 

5 arc associated with the radius cf curvature boconing infinite at the 

point of zero slop. It should bc sqzh&.sed that in this case, 

thoq,h the predicted ~essurcs are not very accurate mar the end of 

the head, this is of little conscquonce in calculating the wave drags 

for bctwccn x = 0.8 and 1 the slope is very mall (c.f. fig. 7 

&ads 4 end 5) an?. tho contribution of this part of the hood to the 

wtvc drag of the head is also very mall, so that oven rclotivcljr 

lcrgc errors in Cp have ncgligiblc cffcct on drag. 

On the l;asis of the results obtained in only three cases, viz. 

hmc' 4 at M = 1.6 an.l 2.8 an? hcnd 5 at !I = 2.0, the best workin;: 

rule for heads with infinite radius cf curvature at the point of 

zero slopz, x = 1, is probably as follows: JJctcminc the prcssurc 

distribution by the o~ivc of curvature lsthod using L.A.t.024 up to 

x = 0.7, then fro.; x = 0.7 to 0.9 (or 33 close to 0.9 as possible) 

by the ogivc cf curvature rlcthod usiq !&GA 'IN.2250, ord frori x = 0.9 

to 1.0 take the Imssure to rcrzJ.u oonstont at its value at x = 0.9. 

mmmd x = 0.7, fair in by eye the two arcs of CLUTE. 

Another point that arises in connection with head 4 is the apparent 

discrcpmcy bctwccn all the ;Jrcssurc distributions colculatcd by 

the i1ethocls of this report on head 4 at M = 1.6, and the corrcspmdiw 

second orkr px3urc distributions ovar the rcnr half cf the hcod. 

A3 ~03 seen fro,1 fi,os Eb to 120, this discrcpncy bqins at about 

x = 0.49 but up to x = 0.7 the five Ilcthods ngrcc ~011 with coch other. 

It scc.m unlikely that this is prcly the cffcct of the heed sha?c, 

since results for hcorl 4 at I$ = 2.6 and hcail 5 indicotc that when the 

geonctry of the heads causes inaccumcics in the ;Il‘esent mthods, thcro 

ore diocrcpancics not only betwccn'thc ~redictcd and the second order 

pressure distributions, but also bctwcen the prcssurc distributions 

predicted by the five .lcthods. It is believed that these discrepncics 

on head 4 at M = 1.6 can bc accounted for, at least partly, by the 
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possible slight inaccuracy of the second order solution, In this 

solution, the boundary condition is satisfied ot n rmibcr of control 

points along the body and for the sollc accuracy the nuribm of points 

shouldlbc incrcascd with dccrcosin;; &ch nunbcr (rcughly, in proportion 
-.-- 

to JM"-l 1. To smc tirlc nnd conputing labour the nunber of 

control pcints on hcsd 4 at M = 1.6 was kept the swc as on other heads 

at M = 2.0 nnd @ad 4 at M = 2.8 and, conscqucntly, this solution is 

likely to be less accurate than the others. 

The rccorusnded r&hods tc USC in any mrticular cast aregiven 

in the following table: 

Mcthccl Giving Best 
Typo of Hcod Shape J- Combination of Method Giving 

Accuracy and Speed. Greatest Accuracy. - --: 

Radius cf curvaturt Either LQ~ p-81~~; Stcp-byStcp Method.. 
everywhcrc finite or ogivc of curvoturc 
and nowhcrc zero. a&hod using L.A.t.024. 

Radius of curvature Ogivc of Curvnturc Method, Step-by-Stop M&hod, 
acre at sonc point using L.A.t.024 (rcf 4); 
on the profile. Step-by-step llcthod. is used 

in the srinll region of 
large curvature whcrc fig. 

, 1. cannot be used. 

Radius of curvature ' 0~ xc 0.7; Ogivc of curvature ncthod, using L.A.t.024. 
infinite at tha 
point of zero slope 0.7< x< 0.9 (or as close to 0.9 as possible); O&iv0 
on the profile, of curvnturo rIothod, using NXA TN, 2250. 
x = 1. 0.9 < x < 1.0; ta+ p-assure as rcrmining constant 

at its x = 0.9 value. 
Around x = 0.7 fo& in thG two CLUVES by eye. 

TABIE I 

Fran Figs. 8 -13 the accuracy which the reconnendcd i&h& can 

be cxpectcd to give is as follows:- 

for heads with:- 

(i) radius of curvature nowhere infinite (but can be zero ot sonc 

point on the profile) -all the CEIISES investigated hcrc indicate 

that accuracy bcttcr than ?: 2% of Cr;;\ can be obtained over tho 

whole of the head length; 

(ii) radius of curvature infinite at the point of zero slope on the 
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profile - accuracy of Cp within 4% of CpN should be obtoinoble 

within the ronge of figs 1 and 3. This conclusion is arrived at 

disregarding the results for head 4 ot M = 1.6, since the occursoy 

of the corresponding second ordsr solution is believed to be 

inferior to thot of the other second order solutions. 

On all the heod shapes which were pressure plotted, y and & its 

derivatives with respect to x are CVCrywhCre continuous. Howaver it is 

onljr necessary that y and Its first three derivatives bc continuous, 

For considsr a head along which one of the higher derivatives of y, 

SCY Y&9 is discontinuous at some point D. Then since p dCpcnds on 0 and 

X (by the basic assumption of the ogiveof curvature method) i.e. depends 
dP on y,yl ond y2, p and z arc continuous at D. Now ot some point E on 

thC hcod, 3t a sufficient distance downstream of the discontinuity at D 

the prCssurC distribution is uninfluenced by conditions at D, which is 

fcr up&-cam, and ths method of this rsport will give the prCssurss 

correctly, So tha methods of this report give oorrcctly both p and 
dP 
-atDordE. 
dx 

i.e. give correctly both ordinate ond tangent of the 

(p&x) curve ot D and E. Moreover the curve of p vs x derivCd from 
dP thess methods is quite l’smoothe between D and E (since p and - arc 
dx 

continuous), as also is the curve of exact, inviscid p vs x (since p 
dP 

nrxl Jx m-c continuous ). Hence between D and E the cxoct curve of p 

and ths curve of p by the m&hods of this report connot dcpclrt from each 

other to orgy appreciable extent. Hcncc the nethcds of this rCport may 

bc token to ripply accurately provided y and its first three derivatives 

with respect to x ore continuous. 

56. Conclusionq. 

1. Five diffcrcnt methods of prCssurC plotting an arbitrary pointed, 

convex, nb-syIm~ctric hCod shzpo hnvc been developed. All the m&hods 

give very gcod or good ogrecmcnt with accurate prcssurC distribution, at 

Fi = 1.6, 2.0 and 2.8 obtained by applying van Dy’:e’s second order theory 

of refs. 1 and 2, on four bend shapes with convexl concavoO oonvexeoncave 

2nd ccncoro-ccnvcx 010~~ distributions. licrkcd cx~nplcs cf the application 
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of three of ths five methods are given in Appetiicea I and II. 

2. The five nethods are also known to give with good accuracy the 

prcaaure distributions on circular arc ogives and to give cone pessures 

either exactly or with good accuracy; i.e. the ncthods apply too to 

heads with linearly verying and constant alopc distributions. The 

methods can tbus be applied for predicting pressures on pointed convex 

head shapca with any slope distribution likely to occur in pacticc, 

povidcd the ordinctc and its first three dcrivctivcs arc co.ltinuoua 

along the hoed. 

3. The quickcat and slcwcat of thcsc n&hods take about 20 ninutcs 

and 3 hours rcspcctivcly to prcssurc plot an arbitrnry head shops 

with given geonctric details. When these n&hods are used, there is 

a very lmgc saving of tim without loss of accuracy compared with the 

tine required when using the r&hod of characteristics or von Dykc'a 

second order theory, which both lcboriously trncc the flow step-by-step 

fron the nosc and require aoveral dnys for the conputations. 

4. The best nethod out of the five to usa for any particular hsad 

shape dcpcnds on the behaviour of ths radius of curvotilre along the 

profile and on the accurccy and speed rcquirad. Recormanded i&hods 

are listed in Tablc I of 5.6. 

5. Whon the rccomendcd n&hods crc used, for the crises for which 

pesaurc distributions cre given in this rsport Cp is pedictcd 

to within + 2% cf tXpR if the radius of curvnture nowhere tcrds to 

infinity, and to within + 4% of CpR if and mar where the radius of 

curvature tends to infinity at the point of zero slope, It is 

considered that the anm accuracy will be obtained, using the 

recor,~l~nded.r.lethcds,t~~~lUr pointed convex heod shops for which the 

ordi~te.anditcfira:tndorivati;ss err continuous,-sc long ca the effects 

of rototion.'&&ccd by the curved shock wnvc arc ncgligibla. (Set 2.6). 

6. . Two of ~heae?-u~thod$'g~~~~~p na a~functioh of fhc rsdius y, 

dy andd 
ax 3 ax ’ and my bc used to dctcrninc ninimn drag heed shops 

by applying the calculus of variations. Tho application of thase two 

methods to this poblen will bc dcscribcd in c lotcr report. 

7. The results of this report indicate that the pessurc on n 
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pointed body cf revolution at 3 pint P depends solely on ths local 

gconetry at P snd is independent of condition3 upstrean of P. 

8. The nethods of this report arc of direct application in obtaining 

accurate volucs of lift, prossurc, nanent, etc. of a body at incidence 

by the hybrid procedure proposad by ven Dyke in ref. 1. 

9. It my be possible to adapt the nothods of this report to give 

the external pressures on ducted bodies of revolution with attach& 

external shock. A possible approach is suggested. 
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The NunerJ,cnl Aaolicotion of ths h Steu-bv&eu Method 
to s Non&irculnr Profile. 

In fig 5, Q is a point on the profile a short distenco fron P. Knowing 

the static prossure at P, it is required to find it ot Q. 

SAP is the circle of c*urvatu>e at P to the profile and A is its 

intersection with the axis of the body. S is tho sonic point of the Prantl- 

Meyer expansion intrcducod when applying the n&hod of ref. 1, to expansion 

round the circular arc ogive AP. We shall first dctcraine the position of S, 

by deternining v4 so that it gives the correct static pressure at P on the 

circular arc ogivc SAP. 

Let P (Y) denote the ratio of static to stagnation pressure after 

Batia&y6r expansion through an angle Y fron sonic velocity. F (v) is given 

in Table I of ref. I. Then by the theory cf ref. 4, 

0,) . . . . . . (i) 

c 

F (  VP,) -F P’,)/ 

L 
F (VA) -F (VP)] 

F (V&F ( VA +‘$)-/. . . , . (ii) 
-: 

whcrc 0 is the nngle, ( x, - Qp), between the tangents at A and P to the 

circle of curva_t~~c a$ PC _ f :: mV I 

,~n-equ@~qnz(~%+ Vh%nd~& qrs the unknowns, 4 and -2- are known. 

..-1* _. q!- "EC; 
Pstag 

2 :+& . i i 1: P 

Now A is n funchio$@ cizyyhr @rc.ogive'gqactry md k& strenn Mach 

amber E; 
/ 

thus~ A is a fhction of yp md $;$ ',.-for these second two 
1 _ I 

:& i 

quantities unique~X&,srrdne the first two quantities. Therefore, by 

virtue of equation (i), A is a function of x and V . In Fig. 6, A is 
P A 

plotted againstXp and VA and this chart connecting together with 

equation (ii) kniquely deternines h and v for 
A , T adX p' Iines 

P 
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of constant M' cre also shown in Fig.6. 

To solve for k nnd V,,, let: 

t I P- = F (w). Then 11 is known 
a%3 p 

P 
since - 

( ) 

is known. 
P abe P 

Equction (ii) bcconcs: 

x = 
F ("*I -F (w) 

F (VA) -F(viL t $) l l l l l l (iii) 

i.e. A= G (vn) 
1 

since w and Q 3rc known, 

Now G (U - '$) = 1 ord G (1)) = 0. Thercforo, since h is generally 

between 1.0 and 0.75, and usually closer to 0.75 than to 1.0 we can take 

V,=(w-$)andVA=(w-$+) .es first ond second approximtions to V fL . 

These values of VA will give corresponding pcj.rrs of vnlues of A, viz. Al 

fron cquotion (iii) ond A2 fron Fig. 6. At the correct vsluc of VA, 5 and 

h2 nr6 cqucl. By calculcting the differenccsn h = (5 - AZ) we ccn 

interpolate linecrly to obtoin the value of v B corresponding toAh = 0, 

In nenrly all ccses it is sufficiently cccurote to toks the first inter- 

pointed value of vn as the corrcctv , 
A 

Land M' (if required) are then raod 

fron Fig.6 at this value of VA and the particular vnlue ofXp. bhen this 

procedure is systcnctiscd on c poforno only a few ninutea are required to 

find VA, h and G. 

With these threa qucntitias known, the pmsaurc at Q is readily 

deterr.kned. Ey the fuxdmcntnl nssunption, the flow expends fron P to Q 

(Fig. 5) na if the body wcrc replaced botwsen P and Q by the ogive of 

curvcture at P. Therefore tha prassure nt Q is given by: 

and hence Cp at Q. 
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,sone Elyh3.d &&Y&g . 
The best way to space the poiuts at which the pressurss arc deternined 

is so that e varies by rou&ly equal anounts between successive points, unless 

cud except where X varies very rapidly and here finer intervals should be 

taken. (For h will vary very rapidly, too). 

As the solution procoeds h should be plotted against x and by 

extrapolatix this curve the nean value of A over the next interval can be 

quite accurately predicted. This man value, and not the value of X at the 

start of the interval, should be used in equation (iv) to eliminate the 

mall error introduced by taking finits steps instead of infiniteaim ones. 

If required, a second approximation can be obtained, using the curve 

of h obtained in the first opproxination as a guide when extrapolating to 

find the neon h's. In ~actico, a seconrl approximation is unncessary unless 

the head shape has very rapid curvature at sane point. 

It will be found a considerable help to plot on a generous scale (i) 

F (V) vs, V, as givan in Table I of ref. 7, and (ii) cone Cp vs 80 for 

various convenient values cf M, as given in ref.5. 

lWXX9.cal Exannle of the h &en-bv-Steo Method. 

Profile: y = % l]l-(l-C.6~)~ i o< x <l.O 

$ = 3.205; 8, = ton4 0.3 = 16.70' 

i-4 = 2.0 

Divide the head into 5 intervals so thot 8 changes by roughly the scne 

arount in each interval, with finer intervals only if and wherex varies 

vary rapidly. 

A quick check,;on the values of 
&:&/g&.i 

,/ymiand yl shows thatx varies 
:, ,- r 1 

slowly over the ent--e-head ard;~hattfor'approxi&tely equal increnents of 
*!- 

8 the linits of the 'intervals sh&d.be as follows: ;p ' 
x = 0, 0.1, 0.Y; 0.5, 0.7 and. 1.0. 

by: 

X, B and 4 (=X-6) are required at these points, y, yl and y 2 
are given 

y = ik {l-(lUx)3 
I 



Sheet tie.: 28. 

yl = 0.3 (1 - 0.6 xj2 

y2 = -0,:5 (14,4x, 

Hence, using the ewct fvridse for 8 andx : 

First Interval. O< xcO.1 

For tho first intcrvsl, h is teken as the value corresponding to the 

nose seni+nglc of the head, 16.7', nncl the free stream Mach nuder 2.0. 

A= 0.793, from Fig+ 

The starting point of tbc solution is Cp = 0.2&t just behind. the nose 

shock (Fran rcf.5). 

Fro2 Table I, rsf. 7, 
I'stag, 
-= 7.82 at M = 2.0 

0 

From ref, 8 fig 3-2, 

stagnation ~essurc ratio across nose shock, at nose = 0.996. 
P 

At the first point (x = o), -----= 1 + 0.w x 2.8 

pstag 0.996 x 7.82 
= 0.2L!+ 

For the first interval, A coincides with N (see Fig.5). 

R-on equation (i), F ( %A) = OA,!+, so vA = 16.72' (Table I, ref. 7) 

Fro): Tnblc II, 

x -e = 16.7' 
P P 

-16.7' = 0; X p -eQ = 16.7' -l&.85' = 1.85' 

vg +x -en = 16.72', VA +x 
P - 

p mgQ = 16.72' + 1.85' = 18.57' 

.‘. F (Vii + X, -6,) = O.?.L!@ and F (vi1 +x, -OQ) = 0.1948 

Now = 0.m and A = 0.793. 

- 0.1948 by cqustion (iv) 

= 0.1988, ct x = 0.1 



2ni Intcmzl. 0.1&y 0.3 

.Virsc fild A. F (a) = (L-J ,p shG,=_ 0.1988;. W= 18.18' (Table I, refer. 7). 

3 From Tzblc II, at x = 2.1, '$ :?.:' andxp = 16.6? o- + = 16.36',~ - 2 Jo = 16.81'. { Those nrc the first and second 

rrpproximations to%.) 

(4) (5) (6) (7) 
F(ylL + 4, F(U,+F@) F (VA) - 

. (8) (9) 

=F((3)) = (2) - 
(zy7f, 0.1988 

) 

I-* 

18.63 0.1940 o.ol.42 

18.55 0.1950 0.0152 0.190 0.800 

‘/ 
0.0190 

1.0 
0.747 

The agreement in 
and A= 0;793 
R = 2.0. 

). 
columns (7) and (8) is sufficiently good tit this 

Hcnco from columns (1) and (~),VA = 16.73,', A = 0.793. 
stage. (A furthor interpolation only giwes2/ = 16.74O 

Also, from Fig.6 atVA = 16.~3~ and xp = 16.&', 

FromTable II, 
XP 

- ep = 16.67' - 14.85' = 1.82'; x, - OQ = 16.67O - 11.40' = 5.270 

vA + )b - BP = 16.73' + 1.82' = 18.55'; y, +xp - Ra = 16.73O + 5.270 = 22.0~ 

F tyA+& - BP' = 0.1950, F(uA +)6, - eQ’ = u,l@-5; 
. . .’ 

p = 0.1988; h = 0.793 

= 0.1988 - 0.793 (0.1950 - 0.1625) = 0.1730, atx= 0.3 



3rd 1ntzm1. 0.*x,(0.5 
c 

F (,.,I = (,l~~;u = 20.8: I$ = 4.93O (I.,- 6) = 15.87'; (w- 2 $1 = 17.1°e x, = 16.33: 

- (1) I (3) ' 
Ul, F(&' ,,'I) t 4,93O F $8) 

I 

15.87 / A / 

17.10 0.2100 22.03 0.1620 

17.01 
I I I 

I 

(2)(%l730 (i&4) 
(8) 

\= (7+5) 

0 
hz at (1) 0 &-(8) 
md&,= 
16.33 -L o&J370 / 0.0480 / 1-O 0.770 0.780 0.788 -0.018 0.220 

O-IS3 

Further approxjm:Lion is unncccssnry ‘and vL = 17.01', h= 0.788,%?= 2.G. 

Extropolatint h toX = 0.5 gives ncnn A = 0.784 for 3.36X< 0.5. 

XP 
- ep = 4..93O, 

XP 
- aQ = 7.96';~ n 

%P 
- op = 21.94",& +xp - eQ = 24.97'. 

F (Vii + x - Op' = 0.1629; P F (VIL + Y - *P 
QQ) = W.382. 

/ \ 
0.784 (0.1629 - o&82) = 0.1536, at% = 0.5 

. . 



4th Intcrvzl. 0.5<P co.7. 

F Q = 0.1536;~ = 23.04' &= 7.@ (Q- $) = 15.64'; (w- $ +, = 17.49'. ‘x p = IS.@. 

i I , I 

EcnccI/lr = 17.490, h = O-7@, M = 2.0. Extrapolating 1 to x= 0.7, Gives !xm h = 0.777 for 0.5s -x g.O.7. 

ep = 7.4'~~;~~ - eQ = 10.0~0; 1/, +xp - Qp = 24.G9';yJL + )( - QQ = 27.49'. 

F (YIL +li\P - $ ) = OJ389; F (YIL +xP - eQ; = 0.120 

= 0.1536 - 0.777 (Od.389 - O.ZK)) = 0.1339, at x= 0.7. 
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CP is found thus: 

208CPt1=>=> x,Pstag x pstag 
a pstag P stag, PO 

P stag 
- = 0.996 (from Fig. 3-2, ref. 8) 
Pdago 

P stag, 
-= 7.82 (from Table I, ref. 7) 
*o 

P 
7.79- 

pstag 
-1 

cp = 
2.8 

Hence the following values of C : 
P 

X 

0 

0.1 

0.3 

0.5 

0.7 

1.0 

P 
Pstag cP 

0.2l-4 0.;241 

0.1988 0.196 

0.1730 O.lti 

0.1536 0.073 

0.13% 0.029 

o.i2f+o 1 4.012 

These values of Cp are plotted in Fig. 8 (a). 

A speciqm proforma, Sor use with the A step-bT?tcp method, is given I: 
on th$ n@jpge. 



Interval. GX& 

F(U)= 

0 

4. 

(” - ?’ = 
6J - +#o= 
--- 

Hence I)*= 

F.090. 

; w= 

0 
F(a) 

Q 
0 +f= 
6+ 

-/- 

;@- 9) = 

---- _____... 

. Extropo1ating A to x = gives mean 1 = for 

. 
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APPE hQ$&jJ, -- 

Qp~&c of the Amlication of tbc OP& of Curva ur t c MC-. 

2. 
Profile: y= 8 c 

I 
1 -(l -x) !I : O<xSl.O 

J 
D = 4.0; Ba = ten -1 3 3 = 20.55' 

M = 200 

WQ shall find the pmscwes at the points x = 0, O-2, O.f,, 0.6, O,El 

and 1.0. The valms of: 
-1 

0 = tan y1 

x = 00*-l 
I 

i 

1 + Y12 + Y Y2 

(1-m- 
12 i 

( j 
x- 6 

c > 
1-z 

X-G rccpircd. They ore given in the table below: 

2 0 (DEG) X(DEG.) (X-e) l-f- 
(DEG) 

TABLE III -- 

WC can calculate prcssuraa on the body using the mthods cf oithcr 

ref.4 or r6f16j. In both onscs we nok L) the ccsu!lPtior: that th6 ratio of 

static to ats~~~~on~prca3ure,-at P on a body at free atrcajl Mach nunbe M 7:-q- ~- 
L 

is equal to Lhi&ratio a*P on-the o&e of curvature et I' ot the ,aam 

free strem Mo+h nmber M. We prcsccd as follows: 

(a) mbc Method of JA,t.O2A (ref.&.) 

P 
After detemining pp 

stag 
at the nose of the ogive of curvature, the 

P 
decrease in P- 

9 kig 
froi~ this vnluc to its voluc ot the pcint concerned is 
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P 
detcmimd as a fraction, A, of the two-dimnoional decrease in p' 

stag 

over the B~L.E profile. 

Having clcteruined FL 
atog 

along tho heed, Cp is found thus: 

pstne, pstag 
= 7.82 (Table I, ref. 7); - = 0.9@ (fi&0 3-2, ref.81 

PC ps<ag c 

2.8 cp + 1 =p.= 
PO 

7.71, 2- P 
P 

; foe. Cp = 2.76 - - 0.357 
stag P 

St-g 
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(6) Fstnr ,- at(z) ctrud~=.? 
&iJpo Rcf.3) 0.990 0.992 0.993 1.0 

(7) 5) x (6) =pqg. 
0 

7.74 7.76 7.80 7d2 

(3) (4)+(7)= y 
Pstag 

0.24s2 0.2320 0.207G 0.1720 

t3W~Iatr~) l r7from * 
, 

13079 15.12 17.30 20.92 

(10)(X- E)fron 
?' 

Tcblc III 6.65 10.35 1wd4 10.25 
- 

cu (9) + (10) 1 xJ.44 25.97 29.74 31.17 

(12) PQ& at (11) 
0.1765 0.1306 0.1053 0.0966 

0.073.7 0.1014 0.1025 0.0754 

(14) x at (2) 2nd N=2 
frc;m Fig.1. O&5 0.K~6 O.'IG3 0,744 

(15 t (l3)xW= 
L\.%StO. 3 ii4 0.0599 0.0527 o.cso3 0.0560 

-. 
(16) (S)-(15) = p PZ 0&x3 O&93 0.1275 0.1160 

-- 
(17) 2.76 x (16) 0,520 ' 0-42 0.352 0.320 

/ V - 1, 

(13) (17)-0.357 = Cp' 0.340 0.163 0.055 - 0.005 -0.037 
i ,(&y& 

As, nt 14 = 2, h is ummilablc for vtiucs of x loss than 11' (kc Fig,l), the 

curve of Cp vqxis cxtrapolztcd (without difficulty) the short dist.mcc from X= 0.C 

to x = 1.0. 

The vdluos of Cp ir: coluxn (1G) arc plotted in FiC.l.3, 
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At M = 2 tha stagnation prcsaurc loss is loss thanl% across cor?ical 

shocks pcx?uced by noae acni-on@ea of &p to 2@$c. Hence we can aseur:o, 

with pxl acmracy, that if the 8urZace atogmticn pressures of tlz flows 

the ccrreapndirlg free s:~eaz static pe-aures will be the SCL,~, (This wxll 
P 

be exactly true ot the ncsc of the body), Hmce, since --- is casuxd Ps t3E, 
the SOYE for both body cri;: ogive of cuzvaturc, the valuca cf? will be the 

0 
P 

3cl??f, too. -on circular arc tnwcnt ogivm ic ahox in rcf, 6 to depend p 0 
oclcly on eiml3rity pranet~r, K, and the per cent head M&h, P. For the 

cgive cf ou~:vaturc, thcac q%x,titics arc g?vcn by: 

Y K =2Mtsn 2 

P = 100 (1 m 2 ) 
x 

Hcncc fcllcva CP. The calculations ma given inthc fcllcwing proform: 
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APimDIX III 

Develocmnt of the Dmivative Formla fcr Frcssurs on an 

In ref. 6, it is shown that on tangent circular arc ogives, tho pressure 

is given by: 

. . . . . . (i) 

where x is distance alcng the hod, x = 1 corresponding to the end of the 

&mgcnt ogive. Frm Fig.10 of ref. 6, "Variation of the Logorithn of the 

Frcssurc Ratio along Ogivcs for Various Valms of the Siililmity Paranetcr~ 

the following results were obtnincd: 

(a) For values oj stitiority ~ra.@tar K bctwccn 0.5 ord 1.0, n is 

civcn by: 

n = 0.61 K -0.06S . . . . . . (ii) 

(b) For 0.4 <K <LO, 2 
1 

i L 

0 
is given very clo3cly by: 

-lo PO = 0.48$%062 . , , . . . (iii) 

Combining equations (i.), (ii) and (iii) gives: 
P 

l%lO iq ( ) 
= 0&35K-0.062 -(0.6lK-O.O6S)x. e . . , (iv) 

Now x and K 3re eiven by: 
sin 

x = 1 - sin >; 

where 0 ardx arc the surface 310~ ati nssc scni-engle of the circulcr arc 

pofile concmnd. 

For values ofxup to 20',the following nppoxinato fcmulae involve 

not norc than 1% error in tho values of x and K: 
\ 

x=l- a 
i 

. . . . . . (VI 
I( = lq I 

(In (v) 0 ond X are in raclinns). 

Substitution of (v) in (iv) lsncls to: e 

P -rc = 10 
0.006 + Z.&U48 &.125MX - 0.068 ;( 

PO 
0.6IMWL125t+ix - 0.068 

= 1.014 x 10 it 

2 
i.e. p 1.405m - 0.28@% - 0.157' 

0 = LOU, e. ;x * . . . . (vi) 
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As shown in l.ppndix II, prcwided.tha stagnation pressure losses of 

a body and the ogivc of curvature at their nose shocks are both very mall 

thcns will bc effectively the sam for both bmly and ogivc of curvature. 
PO 

For M $2, es< 20' the loss is<l% and for 2< M< 3, es <If? the loss is 

<2%. Hence for these rongcs of M and G, equation (vi) gives the pxssure 

on an arbitrary body, if 8 andxare taken as tne surface slops of the body 

and nose angle of the o&vc of curvature. 8 and X are then given by: 

? = tan-1 Yl , (vii) 

x = CO8 -1 - 
! “2i" 
cos e (1+y y2 cos e) 

where Y = y (x) is the profile of the body. 

For e <17' p tan 8 differs from 8 by not nom than 3% so a gocd 

appr@-mtion to (vii) is: 

e = 
y1 . . . . . . (viii) 

Now cpsX = 00s e (1 + y y2 cos2 e) 
. 

2 
sin X = 1 - c0s2 X = 1 - c0s2 e (1 + y y2 00s~ 8)2 

=l - (l-sin2 e) (1 + 2 y y2 cos2 e + y2 y; co3 4e) 

ia. sin2 X =bin2 e - 2 y y-j+ ~0s~ 8 yy,( 2 sin2 e -Y Y2 00s 4 0) 

& 
Dcrote by D the finemoss ratio of the ogive of curvature utisr 

consideration. 

0 
D2 

y y2=cI x2 
D2 

sin2 0 = 0 F2 ( 1 po: 

i.e. X2 = (y ,2- ;,,, (1 +o,[$)) 
2 

So with a relative error of p-&r only L., WC have the spproxirmte Q2 

formln: 

x4-I . . . . . . (ix) 

Substituting cquctions (viii) and (ix) in equation (vi) gives the 
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derivative formula for pressure on an arbitrary head, y = y(x): 

yl - -- 

P 
= l.Ol.& 

1.405M Yl - 0.157 Y: -2YY2 
- 
PO I-- 

-em --  - - -  
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APPEIDIX IV -- 

The Slo& of the 10s p-8 Curve at the Nose of a Body -- 

For the purpose of determining pressure gradient at the nose, 

the profile of a body may be replaced by its circle of curvature at the 

nose, as pointed out in 2.1. 

Therefore in Fig.2, at the nose, the decrease in pressure along 

an elementary length of profile is given by: 

dp A-S = hN dp 2-D, by the I\ - law for 

circular arc ogives of ref.&. (XN is the value of k at the nose, 

corresponding to M and the nose angle Bs of the profile), 

.*. = h (SQL) 
N (d6' )2-D l '* "' . . . (i) 

A-S 

Now in two-dimensional flow, 

[ i-z i,_, = V”L2P = . . . . . . . . . 

j-3 
(ii) 

L -1 

(where ML is 1ocalNach number). 

Combining equations (i) and (ii), and remembering that the 

starting conditions, MN and s, of the axi-symmetric and twc-dimensional 

flows along the profile are the same, we obtain 

I- 

1 I 

d(lwe P) = Y hN"N2 , at the nose 
db' A-S 

i.e. 

But 
d(loqO P) i I =Cl 

do 
A-S 

In this formula, 43 is measured in radians. If Q is measured 

in degrees and Y' taken as 1.4, the formula becomes: 

u = O.Olc6 
XN MN" 

aFy=i- 



Sheet No,: 44 

lfN end AN depend solely on the nose semi-angle 8 of the body md 
s 

free-strezm Mach numberli. In Fig. 4 0 , as given by this fonmla, is plotted 

against es for various values of LX. 
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