

Design of a Right-angled Bend with

Constant Velocities at the Walls

$$
B y
$$

A. S. Thom, B.Sc, Ph.D., A.M.Inst.C.E.

Design of a Right-angled Bend with Constant Velocities at the Walls
 - By -
 A. S. Thom, B.Sc., Ph.D., A.M.Inst.C.E.

Communicated by W. J. Duncan, F.R.S.

5th February, 1952

Summary

In deslgning a corner in a two-dinensional duct it is possible, by the insertion of an aerofoil, to maintain the same constant velocity on the outer and inner walls. It is, however, necessary to shape these walls to suit the conditions. The present paper gives a rethod whereby the aerofoil and walls can be designed. Tro examples are given.

List of Symbols
$z=x+i y$, the complex variable in the physical plane.
q, $\theta=$ modulus and amplitude of velocity vector.
$w=\phi+i \psi$.
$\phi=$ stream function.
$\psi=$ velocity potential.
$m, n=\phi$-interval from leading edge to trailing edge along the aerofoil, upper and lower surfaces respectively.
$\Delta=$ central value of a variable in a diamond, less mean of comer values.
$\epsilon=$ side of square in w-plane.
$r=d \ldots s t a n c e$ in physical plane neasured perpendicular to
∂r
a stream line. Hence $\frac{-\overline{\partial x}}{\partial x}=\sin \theta$.
$\mathrm{a}, \mathrm{b}=$ numerical multipliers.
1.0 Design of a Right-angled Bend with Constant Velocities at tho Walls

The rapid changes in velocity at an crdinary right-angled bend in a channel wust inevitably produce disturbed conditions. For two-dumensional flow of a perfect fluid, it is possiblo, by inserting a suitable aerofoil at the corner and re-shaping the walls, to keep the velocities at the walls constant. An infinite number of shapes can be designed; two are given in this paper. The shape of the nore promising of the tro i's shown in 'Fighire 1. Aorofoill and boundaries of the corner are so designed that the following conditions'will provail:-
(a) Constant velocity (unity) along the outer and inner walls AED and BCif respectively.
(b) Constant velocity (> 1) along KH.
(c) Constant velocity (< 1) along IJ.
(d) Zero velocity at the sungularnty G, rising monotonically to the requared values at K and L (see Table 5 (I)).
(e) The axis of symnetry, MHHD, will lie at 45° to the straight.

The present paper deals only whth the symuetrical case when the leading and trailing halves of the aerofoil are identical.

2.0 The Field of $\log ^{-1}$

When $\log q^{-1}$ in the $w-p l a n e$ is exarnined, it is seen that the required values and theur location are as follows (see Fig. 2.1):-

2.1 Addition of Three Fields.- The required log q^{-1} field inducated in Fig. 2.1 lay be obtalned by the addtion of rultiples of three separate fields. Three fields, A, B and C are indıcated on Fiss. 2.2, 2.3, and 2.2, respectively; field B is field A inverted. The final field is the surn ($a \times$ field $A+b x$ field $B+f i e l d C$). It is obviously permissible to make this addutzon since each of the fields A, B and C represents a solution of

$$
\nabla^{2} \log q^{-1}=0
$$

with the satie boundaries.
2.2ϕ-intervals.- It must be noted that, sunce there is lift on tho aerofoil, the number of ϕ-antervals along the top is dufferent fron the nuriber along the botton. It is, however, anteresting to note that the Intta-Joukowsky relation between lift and curculation does not apply sance the whole flow is beang turned through a defingto angle ($\pi / 2$).
2.3 Squarıng Flelds.- Field A can be "squared" and funally detemmed; field B inmedrately follows. Field C, which has a singularity, requires special treationt, described an Appendix I. The log q^{-i} values used on the nose are glven in Table 5 (i). Field C can be determined finally for these chosen boundary conditions.

3.0 Solution

In the final solution there are four unknowns, namely a, b , In and n . It is permissible to choose one of these, say n, arbitrarily. The effect of this choce is that the length/width ratio of the lower passags is fixed. For this example n has been chosen as 4. The other three unknowns are not free and riust be found from the mathe:atical conditions of the problem.
3.1 Equations.- Two conditions are obtained by equating the directions of the tangents at D and 11 to $+\pi / 4$. The third condition is that the line $I D$ rust lie at $-\pi / 4$, or that the traverse $\operatorname{AEDMCBA}$:ust close.

The first equation, for the outer wall, is

$$
\begin{equation*}
\pi / 4=-0.4443-b \times 0.1901-a\left(\frac{n}{2}+0.1645\right) . . \quad . \quad . \tag{1}
\end{equation*}
$$

the numerical values being obtained rospoctively fron fizeld C, field B and field A. In each of the fields A, B and C,
$\frac{\partial \log q^{-1}}{\partial \psi}=\frac{\partial \theta}{\partial \phi}$,
and $\delta \theta$ can be obtained for each ϕ-interval along the boundary being considered. Fron field C, (Figure 5.1), by thas nieans, $\Delta \theta$ fran end to end is -0.4443 . Iikowise the angle obtaned fron field B, (Figure 4.1), is $\mathrm{b} \times 0.1901$. In field A , (Figure 4.1), $\Delta \theta$ from end to ond is -2.1645 , and, for each internal of $1 / 4 \phi$ at the right hand end, $\delta \theta=-0.250$. At $\phi=2$, the values of log q^{-1} have becone practically independent of ϕ, and the curvature is, with sufficient accuracy, constant. Consequently, after 2 units of ϕ reasured from $\phi=0$, the angle turned through would be -2.0 radians. The correction to bo applied to the angle turned in $n / 2$ units of ϕ is thus $(-2.1645+2.0)$. Consequently the angle turned through by the boundary of fiold A is $a(-1.2 / 2-0.1645)$.

Sirilarly the second equation, for the angle turned through by the inner wall BGI, is

$$
\begin{equation*}
+\pi / 4=+0.4443+a \times 0.1901+b\left(\frac{n}{2}+0.1645\right) . . . \quad . \tag{2}
\end{equation*}
$$

When the final $\log q^{-1}$ field has been obtained, the distances necessary for the calculation of co-crdinates in the z-plane are easily found. We know q and θ. x, for example, follows from

$$
x=\int \cos \theta / q d \phi .
$$

3.2 Length of Fields.- The fields are taken to be infinitoly lons to the right and to the left. Obviously after quite a short distance in either durection each ficld will settle down and all subsequent sections will be sensibly identical. The solution is valid only if the passages aro sufficiently long for this to occur. Over the central portion of the bend tho assuraption is that the flow in each passage is identical with that in a free vortex.
3.3 Nunerical Solutiono- With $n=4$, equations (1) and (2) together with the third condition (para. 3.1) give, after a number of trials, final values of the constants as follows:-

$$
\begin{aligned}
\mathrm{m} & =9.254, \\
\mathrm{a} & =-0.2640, \text { and } \\
\mathrm{b} & =0.1808
\end{aligned}
$$

The line from II to D is found to lie at the requared angle ($-\pi / 4$), withan the lirits of accuracy used. Tables 1 and 2 show the calculations for the shape of the boundary walls AED and BCM.
4.0 Co-ordinates of H and J

The co-ordinates of H and J are calculated using

$$
q=\frac{\partial \psi}{\partial r},
$$

the values for q being obtaned fron the final $\log q^{-1}$ field. The distance apart of the strearn lines is

$$
r=\int_{\psi_{1}}^{\psi_{2}} q^{-1} d \psi .
$$

4.1 Aerofoil Boundaries.- The shape of the aerofoll boundaries HG and JG are worked out, see Tables 3 and 4 , using the values of $\mathrm{a}, \mathrm{b}, \mathrm{n}, \mathrm{n}$ and the comordinates of H and J already calculated.
4.2 Final Shape - The final shape is show plotted in Fig. 1 。 The position of the stagnation point is determned by naking a large scale sketch of the closing lines approaching the nose. The integrals along the top and botton surfaces of the aerofoil do not result in exactly the sane position for the stagnation point, but the "closing error" is less than 0.02 of the wiath of the channel and a mean position is assuaed. It is not possible to carry the integrals right up to the singulamty, but a consideration of the conditions in this neighbourhood on the lines given in Ref. 2, enables an estinate to be rade.

5.0 Conclusion

Once fields A, B and C have been obtained, a variety of solutions can be wrorked out with different values of n. If it is descred to sharpen the nose of the aerofoil, it will be necessaxy to "square" another field like C with a differont distribution of velocity at the nose. The field A (and B) will apply to any design of corner with the aerofoil on the central stream line.

It will be noted that the final shape is not known until the problem is completed. An earlier solution with a different assumption for the velocity distribution at the nose gave an aerofoil too thick to have any practical application. The results of the calculation, with the assumed velocity distribution, are shown in Fig. 3 and Table 5(ii), respectively.

The problen becomes much more difficult if an attempt be made to incorporate a rounded leading edge and a sharp trailing edge in the aerofoil, as symmetry can no longer be assumed.

It is not at all certain that the deslgn given would produce the desired result in practice. There wall be a cross flow in the boundary layer on the end walls, and in ary actual channel the velocity distribution in the approachang fluid will not be unfform. The departures from the assumed condztions, together with the growing boundaxy layer on the walls and aerofoil, and the break away at the trailing edge of the latter, may produce conditions whzch will prevent the scheme from being eifective. Nevertheless some of the dufficulties maght bo overcone by an erapirical nodification of the design.

Acknowledgement

This problem was suggestod to me by ryy father, Frofessor A. Thom, and I an indebted to him for guadance throughout the work.

Reforences

No.	Author(s)	Titie, etc.
1	A. Thon and Laura Klanfer	```Designing a slot for a given wall veloczty. O.U.E.L. 49. Gurrent Paper No. 76. December, 1950.```
2	A. Thon	Treatment of the stagnation point in arithmetical rethods. O.U.E.L. Report No. 53. A.R.C. 14,118. iray, 1951. (To be published as R. \& N. 2807.)

APPENDIX I

References 1 and 2 are intended to be used for symmetrical
fields. In the present problem the field is ultimately asymmetric, so that there will be a different velocity distmbution on the top and bottom surfaces of the "nose". In the absence of better information it seems advisable, when carrying out calculations near the stagnation point as described in Ref. 2, to use the mean of the values on the top and bottom surfaces.

Field A

In field A, Sheet 4, Fig. 4.2, at the stagnation point, the value of 0.417 is obtained by taking the mean of $\left(0.250+0.370+0.549+\frac{1}{2} \times 1.000\right)$. This is in agreenent with the convention used in field C , and rocomended in Ref. 2.

Field C
The method used in field c is described in References 1 and 2. Referring to Sheet 4, Fig. 5.2, the innermost sheet of the field, the convention usod is to put the mean of the four surrounding points for the value at the singularity. Each of the surrounding points is obtained in the same way, except that an appropriate Δ-value is added. For points C and G the Δ-values were obtained from Fig. 5, Ref. 2, where*

$$
I_{Q}=\frac{1}{3}\left\{\left(I_{B}+L_{G}+I_{C}\right)-\left(L_{A}+I_{H}+I_{D}\right)\right\}
$$

Δ-values for points F and E were obtained from Para. 2.4, Ref. 2, and for seven othor points near, Δ-values were obtained fram Table I, Ref. 2.

It should be noted that the values of Δ are unaffected by the scale or size of the diamonds, and so for sheets 3, 2 and 1, of the field, Δ-values are also applied on lines $\phi=-2 \epsilon, \psi=2 \varepsilon$ and $\psi=3 \varepsilon$ as above.

Final Field

In the final log $1 / 9$ field obtanned by adding the three fields together, the final L_{0} value will differ from the value obtainod in ficld C alone. At pount O, for example, when L_{Q} is calculated in this way, the change in Δ is 0.002 . This discrepancy is not serious in view of the general difficulty of working near a stagnation point.

Table 1

[^0]
Table 1

Table 2/

Table 2

$\begin{aligned} & a=-0.2645 \\ & b=0.1808 \end{aligned}$			Boundary BCM. $\quad \psi=-1$				$\begin{aligned} & m=9.24 \\ & n=4.00 \end{aligned}$		
$\delta \theta$ in Field									
ϕ	A	B	C	A x	$B \times b$	$\Delta \theta$ Final	θ	$\frac{x}{x \cos \theta d}$	$\underset{\int \sin \theta d \phi}{=}$
$3 \frac{1}{4}$	0	0	1	0	0	1	1	-. 250	1.000
-3	. 3	. 1	1	0	0	1	2	0.000	1.000
$2 \frac{3}{4}$. 5	. 4	2	0	0	2	4	. 250	1.001
$2 \frac{1}{2}$	1.1	1.1	4	0	0	4	8 .	. 500	1.002
$2 \frac{1}{4}$	2.2	2.2	6	-1	0	5	13 .	. 750	1.004
-2	3.8	4.1	9	-1	1	9	22	1.000	1.007
$1 \frac{3}{4}$	6.2	7.2	13	-2	1	12	34	1.250	1.012
$1 \frac{1}{2}$	9.5	12.3	19	-3	2	18	52	1.500	1.021
1 $\frac{1}{4}$	14.0	20.4	28	-4	4	28	80	1.750	1.034
-1	19.5	33.6	40	-5	6	41	121	1.999	1.053
$\frac{3}{4}$	25.1	54.3	54	-7	10	57	178	2.247	1.084
$\frac{1}{2}$	28.8	84.8	65	-8	15	72	250	2.493	1.128
$\frac{1}{4}$	27.8	124.8	65	-7	23	81	331	2.735	1.190
0	21.4	167.3	54	-6	30	78	409	2.972	1.271
$\frac{1}{4}$	13.4	201.9	38	-4	36	70	479	3.201	1.370
$\frac{1}{2}$	7.5	224.2	22	-2	41	61	540	3.423	1.486
$\frac{3}{4}$	3.9	237.0	12	-1	43	54	594.	3.637	1.614
$+1$	2.1	243.8	6	-1	44	49	643	3.845	1.754
$\frac{1}{4}$	1.3	247.0	3	0	45	48	691	4.044	1.904
$\frac{1}{3}$	1.0	248.5	2	0	45	47	738	4.237	2.063
- $22^{\frac{3}{4}}$. 7	249.5	1	0	45	46	784	$4 \cdot 422$	2.231
$\mathrm{n} / 22$	0	250	0	0				4.599	2.408

Table 3/

Table 4

Table 5

Velocity distrabution along $\psi=0$

(i)		(ii)	
ϕ	$\log \frac{1}{q}$	ϕ	$\log \frac{1}{q}$
0		0	
1/64	1.079	1/16	0.733
1/32	0.733	1/8	0.386
3/64	0.531	3/16	0.245
1/16	0.386	1/4	0.180
3/32	0.248	5/16	0.136
1/8	0.180	3/8	0.106
5/32	0.136	7/16	0.085
3/16	0.106	1/2	0.066
7/32	0.085	5/8	0.035
1/4	0.066	3/4	0.014
5/16	0.039	1	0.000
3/8	0.017		
7/16	0.004		
1/2	0.000		

Tho values for q in Table 5 (i), from $\phi=0$ to $\phi=1 / 16$ inclusive are calculated from $q=0 \phi^{\frac{1}{2}}$; wirch glves the velocity along the boundaries of a right-angled bend. The values in (ii) from $\phi=0$ "to $\tilde{y}_{2}^{\prime \prime}=1 / 8$ are calculated from

$$
q=\frac{\theta}{\sqrt{2}} \phi^{\frac{1}{2}}
$$

Figs. 2.1. - 2.4 .

f:G. 3.

Fio.4.1.

Fig 4.2.

Fig. 5.1

FiO. 5.2

C.P. No. 135

$(14,623)$
A R.C. Technical Report

CROWN COPYRIGHT RESERVED

PRINIED AND PUBLISHED bY her masest's stationery office
To be purchased from
York House, Kingsway, london, w.c. 2423 Oxford Street, London, w. 1
P.O. Box 569, LONDON, s.e. 1

13a Castle Street, boinburgh, 2 1St. Andrew's Crescent, cardiff
39 King Street, manchbster, 2 Tower Lane, bristoi, 1
2 Edmund Street, birminoham, 380 Chichester Street, beapast
or from any Bookseller
1953
Price 3s 6d net
PRINTED IN GHEAT ERATAIN

[^0]: the $1 / 3$ was onitted from the formula for L_{Q}. The correct value is Given here.

