NATIONAL AERONAUTICAL ESTABLISHMENT ` LIBRARY

C.P. No. 135 (14,623) A.R.C. Technical Report

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Design of a Right-angled Bend with Constant Velocities at the Walls

By

A. S. Thom, B.Sc, Ph.D., A.M.Inst.C.E.

LONDON HER MAJESTY'S STATIONERY OFFICE

1953

Price 3s 6d net

Design of a Right-angled Bend with Constant Velocities at the Walls - By -A. S. Thom, B.Sc., Ph.D., A.M.Inst.C.E.

Communicated by W. J. Duncan, F.R.S.

5th February, 1952

Summary

In designing a corner in a two-dimensional duct it is possible, by the insertion of an aerofoil, to maintain the same constant velocity on the outer and inner walls. It is, however, necessary to shape these walls to suit the conditions. The present paper gives a method whereby the aerofoil and walls can be designed. Two examples are given.

List of Symbols

- z = x + iy, the complex variable in the physical plane.
- q, θ = modulus and amplitude of velocity vector.
 - $W = \phi + i\psi$.
 - ϕ = stream function.
 - ψ = velocity potential.
- m, n = ϕ -interval from leading edge to trailing edge along the aerofoil, upper and lower surfaces respectively.
 - Δ = central value of a variable in a diamond, less mean of corner values.
 - ϵ = side of square in w-plane.
 - $r = distance in physical plane measured perpendicular to <math>\partial r$

a stream line. Hence $-- = \sin \theta$.

a, b = numerical multipliers.

1.0 Design of a Right-angled Bend with Constant Velocities at the Walls

The rapid changes in velocity at an ordinary right-angled bend in a channel must inevitably produce disturbed conditions. For two-dimensional flow of a perfect fluid, it is possible, by inserting a suitable aerofoil at the corner and re-shaping the walls, to keep the velocities at the walls constant. An infinite number of shapes can be designed; two are given in this paper. The shape of the more promising of the two is shown in Figure 1. Aerofoil and boundaries of the corner are so designed that the following conditions will prevail:-

(a)/

- (a) Constant velocity (unity) along the outer and inner walls AED and BCM respectively.
- (b) Constant velocity (> 1) along KH.
- (c) Constant velocity (< 1) along LJ.
- (d) Zero velocity at the singularity G, rising monotonically to the required values at K and L (see Table 5 (1)).
- (e) The axis of symmetry, MJHD, will lie at 45° to the straight.

The present paper deals only with the symmetrical case when the leading and trailing halves of the aerofoil are identical.

When $\log q^{-1}$ in the w-plane is examined, it is seen that the required values and their location are as follows (see Fig. 2.1):-

Loca	tion		Log q -1		
along	AED		Zero		
11	BCM	•	Zero		
u	KH	i	a		
11	LJ		Ъ		
at singu	larity G.		-00		

2.1 Addition of Three Fields. The required $\log q^{-1}$ field indicated in Fig. 2.1 may be obtained by the addition of multiples of three separate fields. Three fields, A, B and C are indicated on Figs. 2.2, 2.3, and 2.4, respectively; field B is field A inverted. The final field is the sum (a x field A + b x field B + field C). It is obviously permissible to make this addition since each of the fields A, B and C represents a solution of

$$\nabla^2 \log q^{-1} = 0$$

with the same boundaries.

2.2 <u> ϕ -intervals</u>.- It must be noted that, since there is lift on the aerofoil, the number of ϕ -intervals along the top is different from the number along the bottom. It is, however, interesting to note that the Kutta-Joukowsky relation between lift and circulation does not apply since the whole flow is being turned through a definite angle $(\pi/2)$.

2.3 <u>Squaring Fields</u>.- Field A can be "squared" and finally determined; field B immediately follows. Field C, which has a singularity, requires special treatment, described in Appendix I. The log q⁻¹ values used on the nose are given in Table 5 (i). Field C can be determined finally for these chosen boundary conditions.

3.0./

3.0 Solution

In the final solution there are four unknowns, namely a, b, m and n. It is permissible to choose one of these, say n, arbitrarily. The effect of this choice is that the length/width ratio of the lower passage is fixed. For this example n has been chosen as 4. The other three unknowns are not free and must be found from the mathematical conditions of the problem.

3.1 Equations. Two conditions are obtained by equating the directions of the tangents at D and H to $+\pi/4$. The third condition is that the line ND must lie at $-\pi/4$, or that the traverse AEDMCBA must close.

The first equation, for the outer wall, is

$$\pi/4 = -0.4443 - b \ge 0.1901 - a \begin{pmatrix} n \\ -2 \end{pmatrix} + 0.1645 \end{pmatrix} \dots \dots (1)$$

the numerical values being obtained respectively from field C, field B and field A. In each of the fields A, B and C,

$$\frac{\partial \log q^{-1}}{\partial \psi} = \frac{\partial \theta}{\partial \phi}$$

and $\delta\theta$ can be obtained for each ϕ -interval along the boundary being considered. From field C, (Figure 5.1), by this means, $\Delta \theta$ from end to end is -0.4443. Likowise the angle obtained from field B, (Figure 4.1), is -b x 0.1901. In field A, (Figure 4.1), $\Delta \theta$ from end to end is -2.1645, and, for each internal of $1/4 \phi$ at the right hand end, $\delta\theta = -0.250$. At $\phi = 2$, the values of log q⁻¹ have become practically independent of ϕ , and the curvature is, with sufficient accuracy, constant. Consequently, after 2 units of ϕ measured from $\phi = 0$, the angle turned through would be -2.0 radians. The correction to be applied to the angle turned in n/2 units of ϕ is thus (-2.1645 + 2.0). Consequently the angle turned through by the boundary of field A is a(-n/2 - 0.1645).

Similarly the second equation, for the angle turned through by the inner wall BCH, is

$$+\pi/4 = +0.4443 + a \times 0.1901 + b \begin{pmatrix} n \\ - + 0.1645 \end{pmatrix} (2)$$

1

When the final log q^{-1} field has been obtained, the distances necessary for the calculation of co-ordinates in the z-plane are easily found. We know q and θ . x, for example, follows from

$$x = \int \cos \theta / q \, d \phi$$
.

3.2 Length of Fields.- The fields are taken to be infinitely long to the right and to the left. Obviously after quite a short distance in either direction each field will settle down and all subsequent sections will be sensibly identical. The solution is valid only if the passages are sufficiently long for this to occur. Over the central portion of the bend the assumption is that the flow in each passage is identical with that in a free vortex. 3.3 <u>Numerical Solution</u>.- With n = 4, equations (1) and (2) together with the third condition (para. 3.1) give, after a number of trials, final values of the constants as follows:-

$$m = 9.254$$
,
a = -0.2640, and
b = 0.1808.

The line from M to D is found to lie at the required angle $(-\pi/4)$, within the limits of accuracy used. Tables 1 and 2 show the calculations for the shape of the boundary walls AED and BCM.

4.0 Co-ordinates of H and J

The co-ordinates of H and J are calculated using

 $\begin{array}{c} \partial \psi \\ q = --, \\ \partial r \end{array}$

the values for q being obtained from the final log q^{-1} field. The distance apart of the stream lines is

$$r = \int_{\psi_1}^{\psi_2} q^{-1} d\psi$$
.

4.1 <u>Aerofoil Boundaries</u>.- The shape of the aerofoil boundaries HG and JG are worked out, see Tables 3 and 4, using the values of a, b, m, n and the co-ordinates of H and J already calculated.

4.2 Final Shape. The final shape is shown plotted in Fig. 1. The position of the stagnation point is determined by making a large scale sketch of the closing lines approaching the noise. The integrals along the top and bottom surfaces of the aerofoil do not result in exactly the same position for the stagnation point, but the "closing error" is less than 0.02 of the width of the channel and a mean position is assumed. It is not possible to carry the integrals right up to the singularity, but a consideration of the conditions in this neighbourhood on the lines given in Ref. 2, enables an estimate to be made.

5.0 Conclusion

Once fields A, B and C have been obtained, a variety of solutions can be worked out with different values of n. If it is desired to sharpen the nose of the aerofoil, it will be necessary to "square" another field like C with a different distribution of velocity at the nose. The field A (and B) will apply to any design of corner with the aerofoil on the central stream line.

It will be noted that the final shape is not known until the problem is completed. An earlier solution with a different assumption for the velocity distribution at the nose gave an aerofoil too thick to have any practical application. The results of the calculation, with the assumed velocity distribution, are shown in Fig. 3 and Table 5(ii), respectively.

The/

The problem becomes much more difficult if an attempt be made to incorporate a rounded leading edge and a sharp trailing edge in the aerofoil, as symmetry can no longer be assumed.

It is not at all certain that the design given would produce the desired result in practice. There will be a cross flow in the boundary layer on the end walls, and in any actual channel the velocity distribution in the approaching fluid will not be uniform. The departures from the assumed conditions, together with the growing boundary layer on the walls and aerofoil, and the break away at the trailing edge of the latter, may produce conditions which will prevent the scheme from being effective. Nevertheless some of the difficulties might be overcome by an empirical modification of the design.

Acknowledgement

This problem was suggested to me by my father, Professor A. Thom, and I am indebted to him for guidance throughout the work.

References

No. Author(s)

1 A. Thom and Laura Klanfer

2 A. Thon

Designing a slot for a given wall velocity. 0.U.E.L. 49. Current Paper No. 76. December, 1950.

Treatment of the stagnation point in arithmetical methods. O.U.E.L. Report No. 53. A.R.C. 14,118. May, 1951. (To be published as R. & M. 2807.)

Title, etc.

APPENDIX I/

APPENDIX I

References 1 and 2 are intended to be used for symmetrical fields. In the present problem the field is ultimately asymmetric, so that there will be a different velocity distribution on the top and bottom surfaces of the "nose". In the absence of better information it seems advisable, when carrying out calculations near the stagnation point as described in Ref. 2, to use the mean of the values on the top and bottom surfaces.

Field A

In field A, Sheet 4, Fig. 4.2, at the stagnation point, the value of 0.417 is obtained by taking the mean of $(0.250 + 0.370 + 0.549 + \frac{1}{2} \times 1.000)$. This is in agreement with the convention used in field C, and recommended in Ref. 2.

Field C

The method used in field c is described in References 1 and 2. Referring to Sheet 4, Fig. 5.2, the innermost sheet of the field, the convention used is to put the mean of the four surrounding points for the value at the singularity. Each of the surrounding points is obtained in the same way, except that an appropriate Δ -value is added. For points C and G the Δ -values were obtained from Fig. 5, Ref. 2, where*

$$L_Q = \frac{1}{3} \{ (L_B + L_G + L_C) - (L_A + L_H + L_D) \}$$

 Δ -values for points F and E were obtained from Para. 2.4, Ref. 2, and for seven other points near, Δ -values were obtained from Table I, Ref. 2.

It should be noted that the values of Δ are unaffected by the scale or size of the diamonds, and so for sheets 3, 2 and 1, of the field, Δ -values are also applied on lines $\phi = -2\epsilon$, $\psi = 2\epsilon$ and $\psi = 3\epsilon$ as above.

Final Field

In the final log 1/q field obtained by adding the three fields together, the final L_0 value will differ from the value obtained in field C alone. At point C, for example, when LQ is calculated in this way, the change in Δ is 0.002. This discrepancy is not serious in view of the general difficulty of working near a stagnation point.

/Table 1

*An error in transcription appears in Ref. 2 where, in Fig. 5 and on p.5, the 1/3 was omitted from the formula for L_Q . The correct value is given here.

	.26 4 5 1808	Bou	ndary	AED.	<u> </u>	<u>+1</u>	m n	= 9.24 = 4.00	
	;								
¢	(-)A	(-) B	(-)C	Axa	Bxb	Δθ Final	θ	x = cos ∂dø	y = ∫sin 0∂¢
$\frac{1}{3} \frac{4}{7} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{7} \frac{1}{1} \frac{1}$	0 .1 1.1 2.2 4.1 7.2 12.3 20.4 33.6 54.3 84.8 167.3 201.9 224.2 237.0 243.8 247.0 248.5 250 250 """	0 •3 1.1 2.2 3.8 2.5 1.2 3.8 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.9 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5 1.0 0.5 2.5 1.0 0.5 2.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 12 46 93 19 20 56 55 48 22 10 0 """ adians	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 5 \\ 9 \\ 4 \\ 2 \\ 3 \\ 4 \\ 5 \\ 9 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 5 \\ 6 \\ 6 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 3 \\ 3$	0 0 0 0 1 1 2 3 4 5 5 5 4 2 1 1 0 0 " " " " " " " "	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-1 -248 -248 -2357 -11506 -22457 -22457 -22457 -22457 -22457 -22457 -2257 -2558 -2557	-250 0.000 250 .750 1.000 1.250 1.749 2.247 2.494 2.739 2.981 3.223 3.466 3.711 3.957 4.206 4.456 4.955 5.442 5.911 6.353 6.759 7.209	-1.000 -1.001 -1.002 -1.004 -1.007 -1.012 -1.021 -1.021 -1.034 -1.053 -1.082 -1.121 -1.172 -1.232 -1.296 -1.471 -1.473 -1.473 -1.473 -1.450 -1.473 -1.450 -1.339 -1.655 -0.931 -0.640 -0.298 -0.213

-

•

Table 1

Table 2/

Table	2
Contraction of the local division of the loc	

a = b =	-0.2645 0.1808		Boundar	y BCM.	<u> </u>	<u>1</u>		-	.24 .00
			δθ in	Field					•
ø	A	В	C	Аха	Bxb	· Δθ Final	θ	x = ∫cos θd	y = ∫sin 0dø
14 34-104-14 34-104-14 34-104-14 0 -14-104314 -14-104314 2 1 1 1 1 1 1 1 1 0 14-104-14 0 14-104314 14-104314 2 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 34-104-14 0 14-104314 14-104314 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 0 \\ \bullet 3 \\ \bullet 5 \\ 1 \bullet 1 \\ 2 \bullet 8 \\ 6 \bullet 5 \\ 14 \bullet 5 \\ 19 \bullet 5 \\ 25 \bullet 8 \\ 27 \bullet 4 \\ 13 \bullet 4 \\ 7 \bullet 5 \\ 21 \bullet 4 \\ 13 \bullet 4 \\ 7 \bullet 5 \\ 21 \bullet 4 \\ 13 \bullet 5 \\ 9 \bullet 1 \\ 1 \bullet 0 \\ 7 \\ 0 \end{array}$	0 .1 .4 1.1 2.2 4.1 7.2 12.3 20.4 33.6 54.3 84.8 124.8 167.3 201.9 224.2 237.0 243.8 247.0 248.5 249.5 250	1 1 2 4 6 9 3 9 8 0 4 5 5 4 8 2 2 6 3 2 1 0	0 0 0 -1 -1 -2 -3 -4 5 -7 8 -7 6 -4 2 -1 -1 0 0 0 0 0 0 -1 -1 -2 -3 -4 5 -7 8 -7 6 -4 2 -1 -1 0 0 0 0 0 0 -1 -1 -2 	00001124605306134555	1 1 2 4 5 9 2 1 8 2 4 5 72 1 8 70 1 4 9 8 70 1 5 4 9 8 70 1 5 4 9 2 8 70 1 5 72 1 8 70 1 5 72 1 8 70 1 5 72 1 8 70 1 5 70 1 70 1 5 70 1 70 1 5 70 1 70 1	$\begin{array}{c} 1 \\ 2 \\ 4 \\ 8 \\ 13 \\ 22 \\ 42 \\ 32 \\ 32 \\ 32 \\ 42 \\ 32 \\ 42 \\ 33 \\ 47 \\ 54 \\ 43 \\ 69 \\ 73 \\ 64 \\ 73 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78$	250 0.000 .250 .500 1.000 1.250 1.000 1.250 1.500 1.500 1.999 2.247 2.493 2.247 2.493 2.735 2.972 3.201 3.423 3.637 3.845 4.044 4.237 4.422 4.599	
	·			s x 1000		نی سری کا ہے کا سے کا سے ک	: هه ننه سر سر ۲۰۰ می نبی مریب میرور سر ۲۰۰		

\$

Table 3/

		a = -(.2640					Table 3			m =	9.254	
			1808			•	Boundary	GH. ∦ =	<u>0</u>		n =	4.000	
و میں شوالدہ ہوتی ہے اس	ه بونی خیرو در به ما او بو	}	δθ in	Field		Δ Θ		Log 1/q		ہ جو کر میں دنور میں انوا کے پیچ ہیں سیادہ م	x =		y =
¢	· (-) A	В	С	Axa	Bxb	Final	θ	0.264	Log 1 q	$\frac{1}{q}\cos\theta$	$\int_{q}^{1} \cos \theta d\phi$	$\frac{1}{q} \sin \theta$	$\int_{q}^{1} \sin \theta d\phi$
$\begin{array}{c} 0 \\ 1/32 \\ 1/16 \\ 3/32 \\ 1/8 \\ 5/36 \\ 7/3 \\ 1/4 \\ 5/16 \\ 3/16 \\ 5/1 \\ 5/1 \\ 5/1 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 3 \\ 1/2$	127 96 78 68 61 55 101 91 83 78 147 139 266 257 252 251 250 " " " " " " " " " " " " " " " " "	48 30 21 16 12 10 14 10 75 76 62 1 1 10 """""""""	166 106 47 31 49 32 27 32 1 8 5 4 1 0 " " " " " " " " " " " " " " " " " " "	345 21 16 15 242 21 37 08 77 66 66 66 66 66 66 66 66 66 66 66 66	95432232111110"""""""""""""""""""""""""""""	209 136 54 76 54 76 27 77 666 8 8 8 4 8 94 58 76 27 77 666 8 8 8 8 8 8 8 8 94 58 76 27 77 666 8 8 8 8 8 8 8 8 8 8 94 58 76 97 8 97 8 97 8 97 8 94 97 8 97 8 97 8 9	-1253 -1048 -98147 -664562 -50479221 -10921	0.773 0.386 0.248 0.180 0.136 0.106 0.085 0.066 0.039 0.017 0.004 0.000 "" " " " " " " " " " " " " " "	0.509 0.122 -0.016 -0.084 -0.128 -0.158 -0.179 -0.198 -0.225 -0.247 -0.260 -0.264 """"""""""""""""""""""""""""""""""""	0.354 0.495 0.565 0.603 0.627 0.644 0.656 0.696 0.707 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.742 0.758 0.765 0.765 0.764 0.755 0.764 0.755 0.745 0.745 0.730 0.713 0.693 0.693 0.693 0.640 0.614 0.583 0.548	3.417 3.428 3.443 3.461 3.480 3.500 3.520 3.520 3.541 3.583 3.626 3.669 3.713 3.804 3.897 4.086 4.277 4.469 4.661 4.852 5.041 5.227 5.409 5.587 5.760 5.927 6.087 6.240 6.386 6.523	-1.075 -0.850 -0.725 -0.640 -0.580 -0.534 -0.493 -0.493 -0.428 -0.376 -0.333 -0.299 -0.2243 -0.129 -0.129 -0.071 -0.016 0.038 0.090 0.140 0.190 0.238 0.286 0.332 0.377 0.420 0.420 0.461 0.538	-0.202 -0.236 -0.263 -0.286 -0.306 -0.324 -0.356 -0.383 -0.406 -0.427 -0.446 -0.427 -0.446 -0.501 -0.551 -0.555 -0.555 -0.546 -0.524 -0.524 -0.489 -0.489 -0.489 -0.489 -0.489 -0.489 -0.489 -0.524 -0.5
4.627	-		* R	adians x	1000	ینیز میر مد م <u>د</u> ویدانه به ب	, , , , , , , , , , , , , , , , , , ,	، بر جانا اور وران این	11 	0.545	6.592	0.545	0.415

Table 4/

- 9 -

			a = b =	-0.2640 0.1808			<u>I</u> Boundary	<u>able 4</u> GJ <u> </u>	<u>o</u>			.2 <i>51</i> 4 .000	
¢	ر میں میں میر _{میر} میں سر ی وراد میں اور میں میں میں	δθ	in Fiel	.d.			θ	$\operatorname{Log} \frac{1}{q}$	Log 1	1 - cos θ	$x = \int_{-\infty}^{\infty} \cos \theta d\phi$	$\frac{1}{-\sin\theta}$	$y = \frac{1}{2} \sin \theta d\phi$
	(-) A	B	(-)0	Axa	ВхЪ	Final	-	-0.181	р [—] - 8	q]q	đ]q
0 1/32 1/16 3/32 1/8 5/32 3/16 7/32 1/4 5/16 3/4 1/2 5/8 3/4 1/2 3/4 1/2 3/4 2	48 30 21 16 12 10 14 10 7 5 7 6 6 2 1 1 1	127 96 78 68 61 55 101 91 83 78 147 139 266 257 252 251	166 106 68 47 36 31 49 38 32 26 37 23 21 8 5 4 5 4 1 Radia	13 8 6 4 3 3 4 3 2 1 2 2 1 2 2 1 0 0 0 0 0 0 0 0	23 17 14 12 11 10 18 16 15 14 27 25 48 47 46 46 45	-130 -81 -48 -31 -22 -18 -22 -18 -27 -15 -15 -15 -15 -15 -15 -15 -18 +49 40 41 42 44	0.995 0.865 0.784 0.736 0.705 0.683 0.665 0.638 0.619 0.604 0.593 0.585 0.589 0.589 0.589 0.618 0.658 0.699 0.741 0.785	0.773 0.386 0.248 0.180 0.136 0.106 0.085 0.066 0.039 0.017 0.004 0.000 "" "	0.954 0.567 0.429 0.361 0.317 0.287 0.266 0.247 0.220 0.198 0.185 0.185 0.181 "" "	0.962 0.998 1.017 1.019 1.016 1.012 1.008 1.000 0.995 0.991 0.993 1.000 0.996 0.996 0.976 0.948 0.917 0.884 0.846	3.514 3.544 3.575 3.607 3.639 3.671 3.703 3.734 3.796 3.858 3.920 3.982 4.107 4.232 4.476 4.713 4.942 5.163 5.374	1.480 1.170 1.015 0.922 0.863 0.824 0.790 0.742 0.707 0.682 0.670 0.682 0.667 0.662 0.667 0.664 0.733 0.772 0.808 0.846	0.112 0.158 0.194 0.226 0.255 0.282 0.308 0.333 0.379 0.423 0.465 0.507 0.590 0.673 0.844 1.027 1.220 1.422 1.633

Table 5/

. 10 1

A.

(:	 i)	(i.	 i)
¢	log <mark>1</mark> q	¢	log 1 q
0	ر میرغیز کے سربو وہ لک بی ہے تو تیزیہ جدین اور	0	~~~ _~ ~ <i>&</i> ~ <i>2</i> ~ <i>2</i> ~ ~ ~ ~ ~
1/64	1.079	1/16	0.733
1/32	0.733	1/8	0.386
3/64	0•531	3/16	0.245
1/16	0.386	1 /4	0.180
3/32	0.248	5/16	0.136
1/8	0.180	3/8	0.106
5/32	0.136	7/16	0.085
3/16	0.106	1/2	0.066
7/32	0.085	5/8	0.035
1 /2+	0.066	3/4	0.014
5/16	0.039	1	0.000
3/8	0.017		
7/16	0.004		
1/2	0.000		

Velocity	distribution	along	ψ	æ	0
- All and the second					

- 11 -

Table 5

The values for q in Table 5 (i), from $\phi = 0$ to $\phi = 1/16$ inclusive are calculated from $q = e\phi^{\frac{1}{2}}$; which gives the velocity along the boundaries of a right-angled bend. The values in (ii) from $\phi = 0$ to $\phi = 1/8$ are calculated from $q = \frac{e}{\sqrt{2}} \phi^{\frac{1}{2}}$.

FIGS. 2.1. - 2.4.

FIG. 4.1.

Ð

FIG 4.2.

11 -0-

FIG. 5.1

Figures inside the dotted rectangle come from the next inner sheet

FIG. 5.2

				₹ 1 1 1 1 1		0
	- 4	139		113		\$) ??
			154	138	511	5 5 6
	<u>6</u> 3	197	188	121	144	106 106
- 601 0001			230	216	185	136 4
001	- B	282	287	276	244	9 081
			358	361	335	248
	-12	397	439	475	486 4	386 548 10
U			523	723 619 (-8) Δ(+2)	745 E	773
Field C.	0	494	583 A (-2)	723 Δ(-8)	66 66	55 ⁶
Sheet 4.			599	730 ∆(+2)	913 F	1061 C
She	-1-2	507	580	Δ (+2) Δ (+2)	650 761 (+2)	807 Δ(-8)
			544	600	650	672
	- <mark></mark> #	459		539		579

C.P. No. 135 (14,623) A R.C. Technical Report

CROWN COPYRIGHT RESERVED

-

-

.

PRINTED AND PUBLISHED BY HER MAJESTY'S STATIONERY OFFICE To be purchased from

York House, Kingsway, LONDON, W.C.2 423 Oxford Street, LONDON, W.1 P.O. Box 569, LONDON, S.E.1

.

13a Castle Street, EDINBURGH, 21 St. Andrew's Crescent, CARDIFF39 King Street, MANCHESTER, 2Tower Lane, BRISTOL, 12 Edmund Street, BIRMINGHAM, 380 Chichester Street, BELFAST

or from any Bookseller

1953

Price 3s 6d net

PRINTED IN GREAT BRITAIN