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Emonsi has given a relax&ion m&h& of dealing with shock 
meves when the compressible stream fun&ion ia the dependent variable. 

This paper briefly outlines a prooedurc to aduptmhen log ! (q I veloaity 

magnitude) is taken as the dependent variable 
P 

.* A method of allowinp for 
the presenoc of vortioi6y behind the shock wave is also given, 

Intrcduetion 

Nomenclature: 

W 

(%*I 

L 

a 

Physioalplane, in which z P x t iy. 

The tramformed inoomprossible flow plane in whiah the 
aerofoil is represented by a slit on I# = 0. 

q $I t i+.. 

Compres+ble flow velocity vector in polar ooordinates. 

= %(1/d 

Angle, between the 0ompre8sibl.e and inoompre.W.ble velmihy 
vectors. 

n Interval of the square mesh. 

X Residue3 of the relaxation prooese. 

M Looal %+number. 

-c------------_--------------------------------------------------------- 

1 
Thorn adopted the dependent variable log - beoause of its special 

9 
suitobllity for shook viave calculations. 
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MO Undisturbed strcem Maoh nlonbcr. 

a Loon1 velocity of sound. 

80 Stagnation point sound. velocity. 

It has been shm in refcrcnoc 2 that ignoring a which is usually 
smell, L ontisfios the equation 

a*L a2L 
(1) 

Figure 1 shows a typioal square of the mesh in the b,$) plane. The 
value of L at the point "3" say, ml11 be denoted by "Lj", etc. 

Points 6 and. 7 biseot the titcrvals 35 snd 51 respectively. Then a 
suitable difference equation representing (1) is* 

x5 = (l-M;)L, t L* t (1+L3 + L4 - 2(24)L5 + &X5 '; * *O 2(L, - L3)f (2) 
0 

in which the last term is usuelly negligible, While (2) is the most 
suitable form from nhioh to caloulato the residuals, it does not lead 
to n very suitable reluxntion pottern. It is easily sho\Jn' that an 
appropriate relaxation pattern 33 that given in Figure 2. 

Emmons' found that at times he was unable to eliminate by 
rolaxation all, the rosiduds in a supersonio patch in tho field. The 
author has experienced the seme diffioulty. Quoting from reference 3:- 

"Relaxation in the supersonic patohcs is still possible, but 
somewhat less convergent than in the olliptioal rcglon of the dzffcrenfial 
equ3tion. An essential requirement of relaxation is that the elimination 
of a residual at one mosh point should not involve the appoeranoe of 
lnrgcr residuals at nel 
already at these points F 

hbouring mesh points (not inoluding rosiduols 
, Examination of the rolaxotion pattern of 

Figure 2 for M> 1 , reveals that for this rcquircmont to be fulfilled 
it may be nooossary to eliminate a residual et ono point by altering 
L at n neighbouring mosh point. This prooedure works for a time but 
it has boon discovered that when M reaches a oertarn value it booomes 
impossible to find a oontinuous solution for L., i.o. it io not possibble 
to eliminate all the residuals. It IS however possible to arrange the 
unrelaxed rosduels in pairs of opposite sign along the lines in the 
flcld, and to deduce f'rom thcsc the existence of a disoontinuity in L 
lying between them. The magnitude and position of this shook wave can 
also be deduced from the size of the msiduds.11 

The unrelaxed residuals nrc arranged in pairs of opposite sign 
along two equipotential lmos of the mesh, startmg from the aerofoil 
boundary and fmishmg a short distance out in the field. There is no 
unique arrangement, but It 1s shown belcw thA having decided upon tho 
looation of the foot of the shook, we oan determine the position and 
shape of the rest of the shock nave. Actually, in the relaxation, the 
difficulty oo~urs when and where tho gradient become vory large, and SO 
12, seems natural to scloot the position of the foot of the shook to 
ooinoido nlth the point on tho boundary at which difficulty with the 
rcslduds first WCUTS. It may be true that the shook assumes the 

posztion/ 
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ponition in which tho svcrsgo strength 1s s minimum, but u any oasc It 
1s knO\M5 that tho boundary layer plays sn important rolo 2n the actual 
looation of the shock. Of ooursc these remarks only apply to the shocks 
springing from the ourvcd surfaoo of the ocrofoil, typioal of transonio 
floV. The method glvcn in this popor ~~11 apply to the highly obliqua 
shook of supersonlo flar but bettor mothods,involving tho USC of tho 
theory of chsraoterlstios exist. Hovicvcr the method of charaotcristios 
osnnot be applied to trsnsonic or "mixed" flow, 

Another important point is thot relaxntion nil1 not work if the 
mosh is too ooarse in a region in which the higher dorivativos of the 
dependent variable arc lsrgo. This is certainly true in the roglon 
vrhsro a shook is about to appear, and so thoro is no certainty whether 
tho inability of the oomputor to eliminate the rcsldusls is duo to the 
prcsenoe of n week shook, or due to havuy too coarse a mosh in the 
region. This is only important from a thooretioal point of view 911100 
lnfinitc rnteo of ohsnge of L never occur in prootioe. It is 
sufficient experimentally to d.eflne a shook wave ns existing when 
aL 
-- exoeeds n certain value. The mesh size must be selected so that 
as 
relsxotlon is still just possible when this gradient 1s aohioved. 

1. The Shook Wave Equations. 

These equations can be found in rsferenoes 5 or 6. In Figure 3 
wo have a shock wnvo CD nt nn sngle p to the veloolty vector qb . 

All qusntlties on the upstresm side of the shook will bc denoted by a 
suffix 'lb" # and those on the dovJnstream side by a suffix "a" . qb is 

resolved into Nb normal to the shook, and Tb tangential to the shook, 

whioh dcflcots the streamlines through an angle q . 

The conditions at the shook wave are 

Ta = Tbt i.e. qboos p = soos (e-d, 

and. Npb = a$ - $T2 , 

where 1.L2 P t-;-; ) ona a* is tho "oritiool speed", 

Now c+ = q,,+, whore q, is the "limit speed", which ooours in 

a2 
Bernoulli's law 1 2 

5% =*9” + --mm- , 

Y -1 

From these equations it follows that 

(3) 

(4) 

(5) 
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Inserting the Frye stream vnlues, q = 1, M ;: Ea, , into the right 

hand side of this equation, UJC hsve 

2 a* q 

Non Nb = qbsin p , N, = qa sin@ - TJ) , end so from (3) and (4) 

it follows that 

%qb 
(y + I) a;c2 

:: "--------_------------ 
ycos ?I - 0433 - d 

For a normal shook wave p = x/2, rl = 0 , and so 

%qb = f1, . (‘3) 

In this paper we also make use of the equntlon 

as 
sr; s T* -- 

an 
d%q2) 

- ..--- 2, , (roferanoe 5, 8 14) (9) 
dn 

rel+g the vortioity 2; , velcdty q and temperature 
rate of change of entropy S , 

T,s2to the 
and the BzfnBFli oonstent zq+ , at 

right sngles to the direction of flo\J. 
the shook, and constant on any given stre 

ah;;;; ",p,"-&zy" 

therefore, slnoe it is constant in the region of isentropic flow'in front 
of the shook, it must be constant throughout the isentropic region behind 
the shook, The entropy, however, is oonstant on each streamline, exoepf 
at the shock when it Lncres es an amount AS proportional to the third 

% power of the shook strength . Since the entropy is oonsfant in front 
of the shook, 

as ah s) 
--- = ----- , 
an an 

and using the gas equation, i.e. 

a2 = y P/P 8 (9) oan be written 

P GW 

P z RpT, , snd the equetion 

cq = -- Y-‘ RP 

One further result required io sn expression for AS . For the relatively 
weak shooks of trsnsonio flow, this cun be written (reference 6, $&.,I) , 

As i --, -w--m !2?3 , 
%Q 

(y+Q2 3 
(11) 

2/ 



-5- 

2, Calculation of the Shock Waves from Residuals. 

Taking logarithms NC deduce from (7) that 

Lb + La = Y ) (17-I 

nhero Y is a oonstant for a normal shook, and a funotion of p and 11 
for an oblique shock. The value of Y for a normal shook follows from 
cquotion (4). Figure 4 shows a shock nave orossi 

Y 
a acctmn of tha 

mesh, which is assumed to be sufficiently rof'incd see comments in the 
introduction), The value of L at "lb" is that which mould occur at 
point "1" if the "b" region were extended continuously beyond the 
shook wave. "Oat, is the result of a similar extension of the "a" 
region. We shall assume that the residuals are zero throughout the two 
regions except at mesh points neighbouring the shock wave, i.e. the prooess 
of’ oollocting rcs~duals in pairs mantioned in the mtroduction has been 
carried out, From the values of the residuals X0 and X, at points 

0 and 1, it is required to fix the position and strength of the 
shock wwe lying betr$een points 0 and 1 , The shock strength D , 
say, can be measured by 

La - Lb = D. (13) 

Ignoring the last tern of equation (2) , which is usually negligible, 
\-JO have 

x0 1 = L2 + L4 + (l'%)L3 + (I-M$L, - (4-2M3LO ) 

Xl = L6 t L7 t (1-$)L5 + (I-M;)LO - (4,2$)L, , and 

0 = L2 'L4 + (I-M$L, t (w&Llb - (4-2Mi)LO ) 

0 = L6 + L7 + (1-~~)L5 + (-()Loa - b-+L, , 

x0 
i.e. Lib = L, 

x0 - -a-- 
49% 

= L, - X$ , say, where X;, = ---z , 
l-MO 

which is permissible since KC # 1 , otherwise no shock would occur. 
Similarly 

Loa = Lo = x; , 

Now Lb ; $,+&lb-Lo) = LO+ E(L, "Lo-x;), 

and La ; L, + (1-E )(Loa - L,) = L, + (1-E )(Lo _ L, - x;) 8 

and so from (12) and (13) 

Y J 2Lo t 2s (L, - Lo) t E (x, - x0) - Xl , (14) 

D = E (x; + x$ - x; . (15) 

Prom (14) we have E = 
Y t Y1' - a0 

--------v..--....--..-.. 
2L, t xj :: (aJo t X6) 

(16) 

NOW/ 



Now a0 , and a, can be determined by sn integration carried 

out along cpposite sides of the shock nave (see equation 8, reference 3), 
otartlng as close as possible to the shock on the surface; extrapolation 
nil1 yield aa and ab , CUld hCIlCf2 11 = CL, - C‘b , CCUl be fOUnd. 

From equations (3) and (13) we can deduce that 

(17) 

Tho valuos of E and p deduced from (16) and (17) will 
probably be inconsistent, for knot7w.g the position of the foot of the 
shock and either E or p enables us to completely define the position 
of the rost of the shoolc. It follows that, sf the foot of the shook 1s 
fix&d, thorc is only one arrangement of the resdusls along tho parallel 
equipotential lines that will define E end e consistentb. The author 
has not investigated this further, but belleves that it would not be 
difficult by trial and error to arrange the L field in the neighbourhood 
of the shock so that (I 6) and (17) lead to consistent results. All this 
can be avoided, of course, by assuming that a normal shock vjave sufficiently 
represents the actual situation. 

3, The ICntr0a.y Gradrent Behind the Shock Wave. 

The effect of theentr 
approxlmotion (refcronce 5, 

y gradlent OM be ignored in a first 
578 but It may be of interest to 

investigate the rmnor efiects of’allalq for this gradient on a solution 
oalouinted by the methods of the previous section, 

We shall assumc that a oan be neglected, i.0. that 

a a 
--= --# s, where q. IS the incompressible velocity, and so 
an atg 

equations (10) and (II) yield 

or putt3ng y = 1.4, we have finally 
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Now in the Appendix of reference 2 it is shown that the presence of 
vorticity would add a term 

a k 

0 

--.. 
G qs, 

to the right hand side of equation (1). 

Equatxon (38) show. how this could be computed in the L f?icld.. 
It would make a small contribution to the residual whch could be 
relaxed by the usual pattorn since the effect is very snail. 

4* Conclusions. 

Until at least a normal shock wave has been treated by the 
method of'this paper no definite conclusions can be drawn. The author 
experienced the difficulty mentioned in the introduction with the 
cylinder problem in reference 4 at a Mach nmber of 0.5, but the 
oalculations were carried out only far enough to verY@ the 
practicability of the method of this paper. 
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