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OOP. NO. 13)4-

A Relaxation Treatment of Shock Waves
- By [
L. Gs Woods, MaS0s, ByBs (NeZi), DePhil,
Engineering Department, The University, Oxford.

Pregented by Professor A. Thom

Bth July, 1950,
SUMMARY .

Emmona! has given a relaxotion method of dealing with shock
waves when the compressible stream funotion is the dspendent variable.

This paper briefly outlines a prooedure to adoptiwhen log ! (g = velooity

q
magnitude) is teken as the dependent variable.,®* A method of allowing for
the presence of vortiocity behind the shock wave is also given,

Introduntion

Nomenolature:
(x4y) ©Physical plane, in which z = x + iy.

($,%) The trensformed incompressible flow plane in which the
aerofoil is represcnted by a sliton 4 = O.

W o ¢,+i1|1,t

(q,8) Compressible flow velocity vector in polar ccordinates.

L = log(41/q)

o Angle, between the compressible and incompressible wvelocity
vactors.

n Interval of the square mesh.

X Realdual of the relaxatlon process.

M Looal Mach number,
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Thom adepted the dependent verioble log - because of its special
q
suitebility for shock wave caleulations.
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Mo Undigturboed strcam Mach mmber.
a Local velocity of sound.
a, Stagnation peint sound velocity.

It has been showm in refercnce 2 that ignoring o which is usually
small, L satisfics the equation

341, 3%L, 3 aL ()

o + - - - M - 1
2 )

a5 ap 9 3

Figure 1 shows a typiocal square of the mesh in the Q;; ,1])) plane. The
value of L at the point "3" say, will be denoted by “Lj“ s etec.

Points 6 and 7 bisect the intorvals 35 and 51 respectively. Then a
suitable difference equation represcnting (1) is®

- 2 2 2 12 2o\ 2 2
x5 = (1'M5)L1 + L, + (1-N15)L5 +L, - 2(2--1:15)1,5 + ;M5(; (L1 - Lj), (2)

in which the last torm is usually negligible., While (2) is the most
suitable form from which to caloulato the residuals, it dogs not lead
to a very suitable relaxation pattern. It is ceasily shown® that an
appropriate relaxation pattern iz that given in Figure 2,

Emmons! found thet at times he was unable to eliminete by
rolaxation all ‘the residuals in a supersonic pateh in the ficld, The
author has oxpericnced the same difficulty. Quoting from reference 3i-

"Relaxation in the supersonic patchcs is atill possible, but
somewhat less convergent than in the clliptical region of the dafferential
equation. An essential requirecment of relaxation is that the climination
of a residunl at one mesh point should not involve the appearance of
larger rosiduals at neaghbouring mesh poants (not including rcsiduals
alrcady at these pomtsg. Bxamination of the rolaxation pattcrn of
Figurc 2 for My 1 , reveals that for this rcquircment to be fulfilled
it may be ncocssary to eliminate a residual at one point by altering
L at a neighbouring mesh point. This procedure works for a time but
it has been discovered that when M reaches a certain value it becomes
impossible to find a ocontinuous solution for L., i.ce it is not possible
to ¢liminate all the residuals, It 1s however possible to arrange the
unrelaxed residuals in pairs of opposite sign along the lines in the
faeld, and to deduce from thesc the existence of a discontinuity in L
lying between them. The megnitude and position of this shock wave can
also be deduced from the sizc of the residuals,"

The unrelaxed residuels arc arranged in pairs of opposite sign
along two equipotential lines of the mesh, starimg from the aerofoil
boundary and fanishing a short distance out in the ficld, There is no
unique arrangcment, but 1t 1s shown belcw that having decided upon the
location of the foot of the shock, wec can determine the position and
ghape of tho rest of the shock wave. Actually, in the relaxation, the
difficulty occocurs when and whore the gradient become vory large, and so
1t seems natural to selcect the position of the foot of the shock to
coinoide with the point on tho boundary at which difficulty with the
residuals first occurs. It may be true that the shock assumcs the

position/
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pogition in whioh the average strongth is a minimum, but in any case it
18 known? that tho boundary layer ploys an important role in the actual
location of' the shock. Of coursc¢ these rcmarks only apply to the shocks
springing from the curved surfacec of the acrofeil, typical of transonic
flow. The mothod gaven in this papor will opply to the highly oblique
shock of wsupersonic flow but better methods invelving the usc of tho
theory of characteristics exist. IHowever the method of characteristiocs
cannot be applied to transonic or "mixed" flow,

Another importent point is that relaxation will not work if tho
mesh is too coarse in a rogion in whioh the higher derivatives of the
dependent variablc aro large, This is certainly true in the regaon
where a shock is about to appear, and so there is no cortainty whether
tho inability of the computor to eliminate the residuals is duc to the
presence of a weak shook, or due to havang too coarse a mesh in the
region. This is only important from a theoretical point of view sinco
mnfinite rates of change of L never ocour in practices It is
sufficient experimentally to defane a shock wave as existing when
ok
~= exceeds a certain valus, The mesh size must be selected so that
aa
relexation is still Just possible when this gradient 1s achicved.

e Tho Shock Vave Equations.

These equations can be found in references 5 or 6. In Figure 3
wo have a shock wave CD at an angle f§# to the wvelocaty vector qp

All quantities on the upstream side of the shock will bo denoted by a
suffix "b", and those on thc downstrean side by a suffix "a" . gqp is

resolved into Ny normal to the shook, end Tb tangential to the shook,
which dcflects the streamlines through an angle n .

The conditions at the shoock wave are

Ty = Tps Leee quoos B = g,c08 (B~n), (3)
and NN, = a2 - por2 (&)
¥y~ 1
where pz a8 mmw-= , and & is tho "critical speed".
Y+ 1

Now & = qu, where g, is the "limit speed", which ocours in

a8

Bernoulli's law %qi = %q? b emm— (5)
7 =1
From these equations it follows that
2
KR R
(y = 1y?

Inserting/
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Inserting the free stream values, q = 1, M = M, , into the right
hand side of this equation, we have

2
2 -
8 = p [1 ¢ mmmmme———a ;  orwrating v = 1,
* (y - 13
1 1
2
e\ ae

Now Ny = q@inp, Ny = q, sin(f = m) , and so from (3) and (4)
it follows that

(-Y + 1) 82
%
QY = emmmmmmmmemeeesSemmee (7)
ycos n - cos(28 - m)
For a normal shock wave f =5/2, m = 0, eand so
Qap = af . (8)
In this paper we also make use of the equation
5 (i)
ag = T, ~- = ====%-, (reference 5, § 1L) (9)
on an

relating the vorticity 7 , velocity q and temporature Tx to the
rate of change of entropy S , and the Berngulli constont %q_% s at
right engles to the direction of flows, "q%" remains constant through
the shock, and constant on any given streaa%fine behind the shock, and
therefore, since it is constant in the region of isentropic flow in front
of the shoock, it must be constant throughout the isentropic region behind
the shock, The entropy, however, is constant on each streamline, except
at the shock when it .anrea%es en amount A8 proportional to the third
power of the shock strength®. Since the entropy is constant in front

of the shock,

3s a(y 8)

w3 . - 3

an on
and using the gas oquation, i.es p = RpT, , and the equation
a2 = yp/p » (9) can be written

p 3(A8) a2 a(A8)
fd = == smwmw = e eeeee (10)
Rp on YR én

One further result required is an expression for AS » For the relatively
weak shooks of transonic flow, this can be written (reference 6, 84.1) ,

24R (=1 )3
AS 3 = mmmum . (11
¥ (74-1)2 3 )

2/
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2. Calculation of the Shock Waves from Residuals.

Taking logarithms we deduce from (7) that
I, + L, = Y, (12)

wherec Y is a oonstant for a normal shock, and a funotion of B and n
for an oblique shock. The value of ¥ for a normal shook follows from
equotaon {4). PFigure 4 shows a shock wave crossing a scction of the
mesh, which is assumed to be sufficiently rcfined {see comments in the
introduction), The velue of L at ™"1b" is that which would ocour at
point "1" if the "b" region were extended continuously beyond the
shock wave, "Oa" dis the result of a similer extonsion of the "a
region, We shall assume that the residuals are zero throughout the two
regions except at mesh points neighbouring the shock wave, 1.e., the process
of collceting resaduals in pairs mentioned in the introduction has been
carried outs From the values of the residuals X, and X1 at points

0 and 1, it is required to fix the position and strength of the

shock wave lying between points O and 1 , The shock strength D,
say, can be measured by

L, - Iy = D (13)

Ignoring the last term of equation (2) , whach is usually noglagible,
vae have

2
(’-P"QMo)LO )

*

Ly + 1, + (1-M§)L3 + (1-M%)L1

X = Lg + Lo + (19015 + (1)L, - (42f)L, , and
0 = Ly + I + (15)0s + (195)Lyy, - (u-243)L,
0 = Lg+Ly+ (1-M12)L5 + (1-Mf)LOa - (4-21«:1%)1.1 ’
100 Lyy = Ly = -}-CC-J- = L, = X, , say, vihere .X(') -}-{-9- ’
4-.-1&1(2) 1-M(2)

vwhich is permissible since My # 1 , othorwise no shock would occur.
Sinilerly

Now Lb i'-'- LO + g (le - LO) = IJO + € (I.I1 - LO - X.(‘)) ’
and L, ::a L_I + (1=-¢ )(LOa - L‘I) = L, + (1-¢ )(LO oLy = xi) ’

and so from (42) and (13)

T = &g+ 2 (L ~Ly) + e(X -X5) =Xy, (14)
Dos el - (15)
Y+ - ZLO
¥rom (14) we have £ = —=wem-- e m e (16)
2uy + X = (&g + X))

Now/



—6-9

Now ay , end ay oan be determined by an integration carried

out aleng opposite sides of the shock wave (see equation 8, reference 3),
starting as close as possible to the shock on the surface; extrapolation
will yield o, end a , and hence m = ay = oy , can be found.

From equations (3) and (13) we can deducc that

) sin 1
B = cot ST msese——— (17)

el . cos m

The valuce of ¢ and (B deduced from (16) and (17) will
probably be inconsistent, for knowing the position of the foot of the
shock and either ¢ or P enables us to completely define the position
of the rcst of the shook. It follows that, 1f the foot of the shock as
fixdd, thore is only one arrangement of the residuals along the parallel
equipotential lines that will defane ¢ and P consistently., The author
has not investigated this further, but believes that it would not be
difficult bty trial and error to arrange the L ficld in the neighbourhood
of the shock so that (16) and (17) 1lcad to consistent results. All this
can be avoided, of course, by assuming that a normal shock wave sufficiontly
reprezents the actual situation.

3 The Entropy Gradient Behind the Shock Wave,

The ecffect of theentropy gradient can be ignored in a farst
approxamation (refcrence 5, 87, s but 1t may be of interest to
mvestigate the manor efivects of allovwang for this gradient on a solution
calculated by the methods of the previocus section.

Vie shall assume that o can be neglected, 1.0, that

0 3
== = g, ==, where g, 18 the incompressible velocity, and so

an EN
equations (10) and (11) yield

0 ', 1 d 1 a8

W \ g, TR 3 \M &
2 a2 [M2e1)2 a2

it
|

————— ] ey v - ..

(y+)2 & { ¥ a8y

=4 3 a, \2 3L
= ——---§ - (M2-1)2 -2 - ?
(y+1)}* 2y a/ &y
or putting Y = feliy we have finally
3 . 3 ag \2 3L
B $ =0.70 == {(21)? [ -2 ) -a (18)
o \49% e a ap

Now/
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Now in the Appendix of reference 2 it ls shown that the presence of
vorticity would a2dd a term

3 g
- —— to the right hand side of equation (1).

Bquation (18) shows how this could be camputed in the L field.
It would meke a small contribution to the residual which could be
relaxed by the usual patiorn since the effect is very small,

e Conclusions.

Until at least a normal shock wave has been treated by the
method of this paper no definite conclusions can be drawn. The author
experienced the diificulty mentioned in the introduction with the
cylinder problem in reference 4 at a Mach nmanber of 0.5, but the
calculations were carried out ondy far enough to verafy the
practicability of the method of this paper.
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