EXPERIMENTS ON RIGII AIRSHIP R.z9.

By J. R. Panvell, A.M.I.M.E., and A. H. Bell.

\qquad
Reports and Memoranda, No. 675. January, 1920.

Summary.-(a) Introductory. (Reasons for Inquiry.)-Airship R.29 was the last ship of the 27 Class and it was considered desirable that a. record of her performance should be obtained before she was placed out of commission. Arrangements were, therefore, made for the experiments described below to be carried out.

Other reports dealing with full-scale experiments are :-
R. \& M. 537. " A flight in R.26."
R. \& M. 674. " Experiments on R.26."
R. \& M. 668. " Experiments on R.33."
(b) Range of the Investigation.-The principal experiments were:-

Section (i).-Turning trials at various speeds and rudder angles for the original ship (R.29) ; with 303 sq . ft. of fabric removed from the upper fixed fin (R.29a) ; and with the whole of the fabric removed from the upper fixed fin (R.29b).

Section (ii).-Course with rudders amidships or at small angles
Section (iii).-Deceleration Trials.
Section (iv).-Airspeed for various engine combinations.
Section (v).-Attempted thrust measurements by pressure difference at amidships airscrew.

Section (vi).-Distribution of speed in various localities.
(c) Conclusions.-Section (i).-The variation of turning diameter with speed does not exceed the observational error. Expressing the diameter of the turning circle in terms of the length of the ship (turning coefficient) the minimum coefficient for the original ship is 9.9 whereas the values for R.29a and R.29b are 9.0 and 6.7 respectively; the latter figure is only 7 per cent. greater than that for R.33. R. 29 b is thought to be less unstable than R.33. A comparison of R.33, R.29, R.29a, R.29b and R. 26 is made in Table 6.

Section (ii).-.The course with rudders locked amidships indicates that R. 29 and R.29a are probably stable, while R. 29 b is unstable, for rectilinear flight.

Section (iii).-The mean resistance coefficient is found to be 0.0227 as compared with 0.0247 for R. 26 and 0.0173 for R.33. The excess of 9 per cent. in the resistance of $R .26$ over that of $R .29$ is judged to be due approximately as to 4 per cent. to the external keel, and as to 5 per cent. to the improved form of head on the latter ship.

Section (iv).-The average maximum airspeed attained was $79 \mathrm{ft} / \mathrm{sec}$. (46.8 knots).

Section (v).-The measurements of thrust were rendered of little value owing to the interference of the neighbouring radiator. It is shown that a correction can be applied which gives a value of the thrust coefficient of the same order as that obtained on the model.

Section (vi).-The distribution of speed was explored below the forward car and an increase of 17 per cent. was measured at a point 1 ft . below the under surface. Observations of speed were also taken behind the amidships radiator. The speed amidships was 11 per cent. low when the forward airscrews were at rest; but it was 16 per cent. high when the forward airscrews were running.

SYNOPSIS OF RESULTS.

Synopsis of Results-contd.

Section of Report.	Description of Data.	Table.	Fig.	Pago.	
				Text.	Table.
Section (ii).	Curvature of path with rudders amidships or at small angles.	7	-	209	226
Course with rudders amidships or at small angles.	Original observations Steering a course	二	$\begin{aligned} & 6 \\ & 6 \mathrm{a} \end{aligned}$	$\overline{210}$	
Section (iii). Deceleration experiments.	Resistance coefficient as calculated from deceleration experiments. Original observations	8 -	7	211	227
Section (iv).	Mean speeds for various combinations of engines-				
Forward	R. 29 ...	9		212	227
speed with	R.29a	9 a	-	-	228
various	R.29b	9 b			228
engine com-	Combinations at a like speed	10	-	212	228
binations.	Combinations at differing speeds.	11	8	212	229
Section (v). Thrust.	Values of thrust coefficient calculated from the original observations.	12	$9 \& 10$	213	230
Measurement of pressure difference at airscrew.	Illustration of the effect of assuming pressure difference at top to be zero, and comparison with model results. Original observations	12 a -	$9 \& 10$ $9 \& 10$	213 213	233
Section (vi)	Speed gradient below forward	13	11	215	234
Distribution of airspeed in various localities.	Distribution of airspeed aft of amidships radiator.	13	12	215	234
	Magnitude of " wash " due to	-	-	216	216
	Values of air density ...	14	-	-	235

INTRODUCTION.

In August, 1919, information was obtained to the effect that Airship R. 29 was to be deleted and broken up. A schedule of trials was drawn up and the ship placed at the disposal of the staff of the N.P.L. for a limited period.

Continuance of the experiments was prevented by instructions to proceed with the strength tests which were to be carried out during the destruction of the ship.

The observations were made during four flights taken respectively on September 15th and 16th, and October 7th and 9th, 1919, from the aerodrome at East Fortune in Haddingtonshire, Scotland.

Two representatives of the N.P.L. were on the ship for each flight, the place of Mr. A. H. Bell being taken on the 3rd and 4th flights by Mr. E. F. Relf, A.R.C.Sc.

At the conclusion of the experiments the engineer officer of R.29, Lieut. H. N. Hasler, supplied measurements of airspeed which he had taken during a flight on September 14th. These speeds were observed by means of a flying head and the Ogilvie indicator fitted to the airship. This anemometer was compared with the N.P.L. instrument in flight, and the two found to be in close agreement when a correction had been applied for calibration error of the airspeed indicator on the ship.

DESCRIPTION OF APPARATUS.

Anemometer.-The airspeed of the ship was measured by means of the flying head and Ogilvie indicator employed in the experiments on airship R. 33 and described in R. \& M. 668. Dimensions and details of its construction are given in Fig. 2 of the present report.

Yawmeter.-The observations from which the angle of yaw during the turning trials was deduced were taken by means of a yaw head of the ordinary type. The head was rotated until the Ogilvie manometer, to which it was connected, indieated equality of pressure in the two tubes. This apparatus is shown in Fig. 3, and is described in detail in R. \& M. 668.

Manipulation of Rudders.-Experience on R. 33 showed that it was essential to lock the rudders at the after end of the ship when it was necessary to maintain a constant known rudder angle. This was effected for each rudder by clamping together the two cables which run to it. When a given rudder angle was required, word was sent by telephone to an assistant at the auxiliary control station in the after car, from which point the rudders were manipulated. The angle of the rudders was read from scales fitted aft near the position at which the cables were clamped. Communication between this point and the after car was effected by voice pipe.

Apparatus for Pressure Measurement at the Amidships Airscrew. -The observations were made with a view to the measurement of thrust by the method employed on models and described in R. \& M. 460*. An anemometer head was fitted up-stream of the airscrew, and in a position about 3 ft . from the starboard side of the car, at which point the interference of the car was believed to be negligible. On the after side of the airscrew a length of duralumin channel was fixed in the hull in such a position that it projected downwards past the axis of the airscrew. A length of copper tube was fitted with a guide to slide over this piece of channel, and at the lower end of the tube a smaller pipe was fitted

[^0]at right angles to form a pitot tube. This pitot tube was manipulated from the walking way and the distribution of total head in the slip-stream was measured from the axis of the airscrew to within 11 ins. of the hull (i.e., 19 ins. beyond the tip of the airscrew). The horizontal distance from the plane of the airscrew to the mouth of the pitot tube was $26 \cdot 5$ ins.

METHOD OF EXPERTMENT AND REDUCTION OF RESULIS.

Turning Trials. Section (i).-It has long been realised that the use of a compass for measurement of the path of an aircraft during angular motion was open to objection. The error was not expected to be serious for a large airship which turns comparatively slowly, and as the fitting of a sun-dial was inconvenient in the trials of airship R. 33, observations were made by means of a compass only. It was found, however, that the compass reading during what was believed to be a steady turn, plotted on a time base, gave a slightly sinuous curve instead of a straight line, and it was apparent that in view of the comparatively short time which could be expended on each turn the accuracy with which the mean slope could be determined was appreciably reduced due to this characteristic of the compass.

For the trials of R.29, therefore, a sun-dial was mounted at the top of the climbing shaft. This sun-dial consisted of a cardboard dise about 15 ins. in diameter, graduated from 0° to 360° by intervals of two degrees. The cardboard was fixed to a wooden board, and a brass rod about 0.3 in . in diameter and 18 ins. long was mounted perpendicular to the dise at its centre. Owing to the apparent motion of the sun the readings of the sun-dial require correction to the extent of 15° per hour; in the present experiments the error is unimportant and no correction has been applied.

The master compass, which is mounted on top of the ship about 10 ft . aft of the climbing shaft, was, for these experiments, supported in a temporary mounting beside the sun-dial. In the carly experiments observations were taken throughout at 10 -second intervals alternately on the sun-dial and compass. Subsequently when the sun was available to cast a shadow, only the sun-dial was observed.

To facilitate comparison, representative sets of observations of the compass have been plotted for experiments in which sun-dial readings are available. In Fig. 15, Experiment 17, observations are plotted for the sun-dial, master compass and compass in the after car. Neglecting the first three values, the observations of the sun-dial lie on a close approximation to a straight line ; but both sets of compass readings follow a sinuous path of approximately the same average slope. Similar points on this curve occur at angles of approximately 50° and 410° indicating a complete period in 360°. This sinuous form with a period of 360° can be observed in varying degrees in all turns for the higher rudder angles. It is
found that the compass always lags in turning away from North a deviation which is in accordance with experience on aeroplanes (see R. \& M. 156).

The results have been reduced by the method of R. \& M. 668. If V be the speed and $\dot{\psi}$ the rate of turn in radians per second, then

$$
\mathrm{R}=\mathrm{V} / \dot{\psi}
$$

where \mathbf{R} is the radius of the turning circle. Further, if β be the true angle of yaw (i.e. at the centre of gravity), and β_{1}, the angle of yaw measured at a point distant l from the C.G.

$$
\tan \beta=\tan \beta_{1}+l \dot{\psi} / V \sec \beta_{1} .
$$

Turning to the experiments with small rudder angles, Figs. 13 and 16 , it is remarkable how faithfully the compass readings follow those of the sun-dial even through local deviations from the mean direction; a striking instance is afforded by Experiment 3 in Fig. 13 for which the compass and sun-dial readings are in close agreement even during the disturbance at 6 mins. Similar evidence may be found in Experiments 2 and 4, Fig. 13, and Experiments 66-74, Figs. 6 and 6a. On the contrary, however, in Experiment 1, Fig. 13, there is a considerable departure ; but local departures of the compass such as those which occur in Experiment 24, Fig. 16, are thought to be due to observational error.

Fig. 18 is a typical example of the results obtained with the sun-dial under satisfactory atmospheric conditions, while Experiment 38, Fig. 19, shows an interesting example of reversal in direction during a low speed experiment with rudders at 5°.

These comparisons make it abundantly clear that under steady conditions the use of a sun-dial in place of a compass will admit of considerable economy of time in experiments during which the angular velocity is high.

Deceleration. Section (iii).-In reporting on the trials of R. 33 it was remarked that the method of carrying out a decelcration experiment by means of visual observations on an Ogilvie indicatcr connected to a flying anemometer head, was not entirely satisfactory. In order to define the curve accurately it is necessary, during the early portion of the experiment, to take observations rapidly, and it was decided to employ a cinematograph camera for taking photographs of the Ogilvie indicator and a stop watch. This plan allowed the readings of pressure and time to be read off at leisure in the Laboratory.

In order to guard against the possible loss of the results due to failure of the film, a number of visual observations were also taken; these were found to be in very good agreement with tho values read off from the film.

The procedure of R. \& M. 668 has again been followed in reducing the results: if l be the cube root of the volume, and S the slope of the curves in Fig. 7, then $C=1 S$, where C is the non-dimensional coefficient defined on page 212.

Speeds for various Engine Combinations. Section (iv).—Owing to the limited time at disposal, the measurements of speed were not carried out in such a manner as to afford very comprehensive data. By including the results obtained by Lieut. Hasler it has, however, been possible to prepare a curve in the same manner as in the report on R.33* for the prediction of speed with the forward engine stopped, the amidships engine at constant speed and the after engine at varying speed. Owing to paucity of observations, however, the curve cannot be defined without resort to the method of calculation described in R. \& M. 668. It is there shown that over the range of speed where the resistance R is proportional to the square of the speed V, the sum of the thrust coefficients is equal to a constant. If all engines are running at the same speed a constant total thrust coefficient requires a constant value of V / ND, where the variable N is the rotational speed common to all the engines, so that changes in v will be proportional to those in N. Values of V / N have been calculated from those observations of speed in the present experiments where the rotational speed of all the engines running is the same.

In the case where the engines are running at differing speeds, $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$, it will be readily seen that when $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ (or as many engines as are running) all vary in a given ratio V must vary in the same ratio in order that V / ND for each engine (and in consequence the sum of the thrust coefficients) may remain constant. Thus if N_{1} is zero, $N_{2} 800$ r.p.m. and $N_{3} 1,000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. a change of N_{2} to 1,200 r.p.m. and of N_{3} to 1,500 r.p.m. will cause the speed, V , to increase to 1.5 times its former value. This principle has been employed in converting observations of speed in which engines 2 and 3 only were running, so that they could be employed in plotting the curve for R. 29 in Fig. 8.

Thrust Experiments. Section (v).-The observations of pressure difference at the amidships airscrew were taken by means of an Ogilvic indicator connected on the one side to the pitot tube of the fixed head up-stream of the airscrew and on the other to the adjustable pitot tube which was located in the slip stream at varying values of the radii. The speed of inflow at the airscrew was measured on a second Ogilvie indicator connected to the fixed anemometer head. Experiments were carried out at various values of $\mathrm{V} / n \mathrm{D}$ (n denotes the rotational speed of the airscrew) \dagger both with and without the forward airscrews running.

The method of calculating the thrust coefficient (T_{c}) from the measurements of pressure difference $\left(p_{2}-p_{1}\right)$ is the same as that given in R. \& M. 460. The non-dimensional quantity

$$
\pi \times \frac{\left(p_{2}-p_{1}\right)}{\frac{1}{2} \rho \mathrm{~V}^{2}} \times \frac{r}{\mathrm{D}}=\mathrm{T}^{\prime}
$$

[^1]where r and D are respectively the radius and diameter of the airscrew, is plotted as ordinate on a base of r / D, and the value of T_{c} obtained from the resulting curve by graphical integration.

Distribution of Airspeed.-The speed gradient below the forward car was determined by hauling in the N.P.L. flying head by 5 ft . intervals and comparing the readings of the Ogilvie indicator connected to it with those of the ship's anemometer. The exploration at the after side of the amidships radiator was carried out by means of an anemometcr head fixed to a staff, and projected through a hole cut for the purpose in the outer cover. In this case the head fixed to the side of the car was used to give a reference speed. This radiator was 4 ft . square ($16 \mathrm{sq} . \mathrm{ft}$. in area), and replaced a circular one which had been used until shortly before the trials.

Variations of the airspeed of the ship during the experiments were taken into account by multiplying the reading of the exploring anemometer at a given time by the ratio of the mean. reference speed for the experiments to the actual reference speed at that time.

DISCUSSION OF RESULTS.

Turning Trials. Section (i).-The results of the turning trials are given in Tables 2, 3, 4, and 5, and are plotted on a speed base in Fig. 4. The variation of the turning coefficient with speed is less well defined than for R.33, and does not appear to exceed the observational error. In this connection it may be remarked that the atmospheric conditions on the fourth flight, when the results for R.29b wore obtained, were markedly less steady than for the other flights.

No account is, therefore, taken of variation of the turning coefficient with speed, and the values used in plotting the curve in Fig. 5 were obtained by calculating the arithmetical means for each rudder angle. It will be noticed that values for port and starboard rudder angles fall on distinct curves, and a mean curve has been drawn to reprosent the 29 Class with each condition of the upper fin.

Calling the condition with the roduced upper fin R.29a, and that with the whole of the fabric removed from the upper fixed fin R. 29 b , the various modifications give rise to the following effects on the turning circle. With the rudder at 5° the diametcr of the turning circle expressed as a fraction of that with the original fin is 0.76 for R.29a and 0.50 for R.29b; at 15° the effect is much less, the former being 0.87 , the latter 0.66 .

A comparison is made in Table 6 between the minimum turning coefficients* of R. 33 (R. \& M. 668), R.29, R.29a, R. 29 b and R. 26

[^2](R.\& M. 674). These quantities are $6.22,9.92$ and 11.78 respectively for R. 33, R. 29 and R. 26 when the rudders are at 19° (approximately the maximum attainablo). The greator diameter for R. 26 than for R. 29 is probably due jointly to the greater fin area on the former and to its external keel. On removal of the whole of the fabric from the upper fixed fin of R. 29 (R.29b) the value falls from 9.92 t) 6.67 , a quantity which docs not differ greatly from that for R. 33 (6.22).

The results obtained with R. 33 and R. 29 b repuesent the order of controllability which would bo expected on a modern ship and, thercfore, they only need be considered in further comparison. It is worthy of note that though the minimum turning ccefficients of R. 33 and R.29b are approximately equal, this departure from rectilinear flight is produced in the first case by the inclination of rudders which constitute only 0.25 of the area of the total vertieal stabilising surface while the corresponding fraction on R.29b is $0 \cdot 40$. If it be conceded that it is legitimate to compare turning coefficients for ships of different sizes, it appears that if all the rudders are equally efficient it is permissible to assume a lower degre of stability in rectilinear fight for R. 33 than for R.29b. For the turning coefficients are approximately the same for the same rudder angles, and since tho rudders on R.29b constitute 0.40 of the total vertical surface as egainst 0.25 on R.33, it may he arguod that the departure of $R .33$ from a straight course is producel by a smaller disturbing force than on R.29b and that the stability of the former ship is therefore lower.

For the purpose of the present discussion a stable airship may be defined as one which, for a certain rudder angle, will fly on a straight path, and after a disturbance will tend to return to motion along a straight path, though that path may not be the original or one parallel to it.

It should be noted however that, since, in R.29b the upper rudder docs not operate bohind a fixed fin, its officiency may well differ from that of the lower ruddor. Experiments in the wind channel* show that the lateral force on a rudder alone is 10 per cent. groater than when a fin is in place before it. This experiment is probably analogous to the use of an airship rudder during approximately straight flight, and would serve to emphasize the conclusions drawn above as to stability. In considering the flow in the neighbourhood of the rudder during turning it appears probable that in using the rudder to stop a turn the rudder alone will be more efficient ; but, on the other hand, during a steady turn the absence of the fin is likely to render the rudder less effective. In view of the large difference in the proportion of the fin area which the rudders on tho two ships constitute it is unlikely that the efficiency of the upper rudder on R. 29 b will be sufficiently reduced to invalidate the argument as to the relative stability of R. 29 b and R. 33 .

[^3]An alternative means of estimating the relative stability of R. 29 b and R. 33 would bo to compare the turning coefficients when the rudders are set for rectilinear flight; but the observations on R. 29 b were only taken at one speed and owing to paucity of observation the speed effect on R. 33 is not accurately defined. On R.29b at $65 \mathrm{ft} / \mathrm{sec}$. the turning coefficient is 47 , while the corresponding figure for R. 33 is 22 if it be legitimate to compare at the same speed. R. 33 is therefore again shown to be markedly less stable than R.29b, though for the reasons stated above the quantitative comparison cannot be regarded as accurate.

The following table shows the magnitude of certain quantities which affect the stability of the ships :-

	R. 33.	R.29b.	$\frac{\mathrm{R} .33 .}{\mathrm{R} .29 \mathrm{~b} .}$
Area of hull projected upon a vertical plane (sq. ft.).	39,800	26,480	1.51
Total vertical fin area (sq. ft.)	1,880	1,069	1.76
Distance from C.G. to centre of area of fins divided by total length of ship.	$0 \cdot 47$	$0 \cdot 45$	1.05

These values show that the increase of fin area on R. 33 over that on R. 29 b is proportionally greater than that of the projected area of the hull and further that on the former airship the leverage of the fins is proportionally 5 per cent. greater ; these differences should increase the stability of R. 33 relative to that of R.29b. It has been shown, however, that there are good reasons for bel:eving R.29b to be less unstable than R.33, and it therefore appears that the fins of the latter ship are less efficient, or that the hull itsolf is more unstable. In all probability the reduced stability of R. 33 is due jointly to the two causes.

Course with Rudders approximately Amidships. Section (ii).Tho observations taken with rudders approximately amidships are plotted in Fig. 6 and the quantities derived from them given in Table 7. Roference to Fig. 6 shows that for R. 29 the departure from a straight course is very slight and it is highly probable that, had time permittod, a rudder angle could have been found for which the path would have been practically straight. The turning cef fficient is given in Table 7 as 71.5 at $36 \mathrm{ft} / \mathrm{sec}$. and 162.5 at 67 ft . per sec. Though these results show an effect due to speed in tho same direction as that observed on R. 33 it should be remembered that, in spite of the slight curvature of the path, R. 29 is believed to be stable and, therefore, the change has not the same significance as on R. 33 .

The mean path of R.29a (303 sq . ft. of canvas removed) for rudders amidships has been taken as straight; at 61 ft . per sec. the deviation was less than for R.29, while at, 35 ft . per see. the ship turned slightly first to port and then to starboard.

In the case of R.29b (all fabric removed from upper fixed fin) there was a decided turn when the rudders were clamped amidships, the turning coefficient being reduced to 47 as against 162 , and infinity for R. 29 and P. 29 a at approximately the same speed. The value of the three remaining turns at lower speed on R.29b was seriously impaired by the unclamping of the rudders which occurred as the result of a misunderstanding. The angle of the rudders was observed approximately by the rating on duty as about 1° starboard (see Table 7) which, as the ship was already turning to starboard, resulted in an increased rate of turn. This error precludes the possibility of an accurate estimate of the speed effect in the only case where it was likely to be of interest, viz., the unstable condition. The reason for dividing the low speed experiment into three parts (Expts. No. 71, 72 and 73) is that for the first three minutes the speed was higher than during the remainder of the experiment, while between time $6 \frac{1}{2}$ and 9 minutes there was scarcely any departure from a straight course.

Though these results are far from complete the authors are of the opinion that they indicate a condition of instability for R.29b, while both R. 29 and R.29a are probably stable for rectilinear flight in a horizontal plane.

During the second flight in R. 29 (original fins) some obstrvations were taken to indicate the behaviour of the airship in yaw while being flown on a given compass course. These values are plotted in Fig. 6a in comparison with similar observations taken on R. 33 (see R. \& M. 668, Fig. 8), the personal element being to some extent eliminated by the same obscrver manipulating the helm on the two airships. The experiment on R. 29 may be regarded as commencing at time 5 mins., and it will be noted that though the experiment was continued for 22 minutes the rudder angle was only changed twice and the deviation from the mean course was less than 20°. On R. 33 , the rudder angle was changed 11 times in the same period and it was only by keeping the closest watch that the variations of course shown in the figure were not exceeded. The variation of course for R. 33 was about 35° on either side of the mean as compared with about 18° for R.29. The greater departure of R. 33 from a straight course would result in the distance flown by that ship during a flight from one point to another being appreciably greater than for R.29. The path of R. 33 would, of course, have been more nearly straight (by close application the deviation can be reduced to a very small magnitude) had larger rudder angles been employed, but this would have the concomitant disadvantage of increasing the resistance.

This comparison appears to bring out very forcibly the advantage of stability in an airship. A given course can bo flown with much greater accuracy and, as may be seen by comparison of the movements of the rudders on the two ships, with a greatly reduced effort on the part of the helmsman. The latter advantage would be of very great value on a long voyage
such as a flight to America. The authors fully realize that excossive stability is objectionable under disturbed atmospheric conditions, and it is possible that since the dimensions of a gust may be comparable with the length of the ship, even a condition of neutrality might be objectionable. Practical experience will probably form the best guide to the degree of stability most suited to the flying in all weathers.

It is probable that a straight course would have been steered with equal ease and accuracy on R.29a. No records of this nature were taken on R.29b; but it may be confidently asserted that for the same rudder angles a straight course could not have been steered so readily as on R.29. It was interesting to note that the helmsmen found R.29b markedly more difficult to steer than R. 29 and were frankly of the opinion that the ship was unsatisfactory. Yet R. $29 b$ was probably more controllable for straight flight than R.33, and on this point it would have been of interest to have had the opinion of a helmsman from: R.33.

It will be urged that though the degree of stability posscssed by R. 29 or R. 29 a may be of value in straight flight the controllability in turning is reduced to an inadmissible extent. Reference to Table 6 shows that the minimum turning cocfficients excoed that for R. 33 by the following amounts, R.29, 60 per cont.; R.29a, 44 per cent., and R.29b, 7 per cent. It is probable that of these only R. 29 b would be regarded as satisfactorily controllable for manouvring and here the stability is shown to be sufficiently reduced to impair ease of steering in straight flight. To secure a high degree of both stability and controllability it appears that such control surfaces must constitute a larger proportion of the total area of stabilizing surface than do those at present in use.

This plan is adopted on the Italian airships where, with tho occasional exception of a small upper plane, the whole of tho stabilizing surface is moveable. No experiments were carried out on airship S.R.I (an Italian built semi-rigid) beforo she was dismantled; but it is understood that the controllability of Italian ships is regarded as satisfactory if the minimum diameter of turning circle does not exceed eight times the length. No information is available as to the stability of these ships.

In concluding this section it may be remarked that, though no records were taken, the advantage of R. 29 over R. 33 in the facility with which a given height could be maintained under steady conditions, was as great as in steering a course. Since control in a vertical plane is of prime importance and always requires close attention, the reduction of effort would be much appreciated by the height coxswain.

Deceleration. Section (iii).-Three experiments were carried out on deceleration, but at the conclusion of the first the rubber tube to the airspeed indicator was found to be kinked so that this set of observations was rejected. The valuos obtained from tho
two remaining experiments are plotted in Fig. 22, a line representing the estimated mean slope being drawn through each set of points. Values of $1 / V$ are here carried as far as 0.06 as compared with 0.04 on R. 33 and this difference is largely responsible for the more crratic behaviour of the observations on R. 29 at the lower speeds. These observations at low speed were taken with the object of determining if there was any consistent departurc of the resistance from proportionality to V^{2}, as shown by the failure of the observations plotted in Fig. 22 to lie upon a straight line. Although at low speeds there is considerable departure from the mear line, it is in opposite directions in the two experiments, and is probably due to unsteady atmospheric conditions.

The mean value of the resistance coefficient C^{*} is 0.0227 , from which the value for each experiment differs by 3 per cent.

The following comparison may be made with R. 26 and R. 33 :-

$$
\begin{array}{lll}
\text { R. } 29 . & \text { R. } 26 & \text { R. } 33
\end{array}
$$

(R. \& M. 674.) (R. \& M. 668.)

Resistance coefficient $\mathrm{C} \quad \ldots 0.0227 \quad 0.0247 \quad 0.0173$
Coefficient in terms of $\mathrm{R} .29 \ldots 1.00 \quad 1.09 \quad 0.77$
It will be seen from this comparison that R. 33 has a resistance 0.77 times, and R. 26 1.09 times, that of R.29. Experiments on models are not yet available for the prediction of the relative resistances of R. 33 and R.29, but since the difference between the latter ship and R. 26 is confined to the external keel and a slight modification in the form of head, the comparison between these two ships may be attempted. In R. \& M. 619† it is stated (Table 1) that the ressistanco of the keel is about 8 per cent. of that of hull and keel, and Table 5 gives the resistance of hull and keel as 62 per cent, of the total. The results from the model, therefore, indicate that due to the kcel the resistance of R. 29 should be 5 per cent. less than that of R.26. The resistance coefficient of the model hull is falling rapidly at the highest value of Vlobtained so that the difference due to the keel on the actual ship should be less than 5 per cent.

As a result of experiments in the wind channel, the head chosen for R. 29 consisted of a modification of that on R. 26 made by increasing the length slightly, and reducing the curvature near the cylindrical portion at the expense of an increase of curvature near the nose. It may be inferred from the present comparison that this modification resulted in a reduction in resistance of the whole ship of about 5 per cent.

Air Speed for various Engine Combinations. Seciion (iv).-Examination of the results shows that the speeds obtained with R.29a and R.29b were decidedly lower than that for R. 29 (original

[^4]fins). Tables $9,9 a$, and $9 b$ give mean valucs of the spoed under these three conditions, and show that the speed of R. 29 is approximately 5 per cent. higher than that of R. 29 a or R. 29 b when the rudders are amidships or at 5°. The observations are not sufficiently complete to establish any difference in speed between R.29a and R.29b. This increase in resistance of 10 per cent. due to uncovering the girder work of the upper fin on such a high resistance ship as R. 29 provides a striking illustration of the manner in which resistance may be caused by objects of relatively small dimensions.

Dealing, then, with the results in Table 9 only, the observations constitute a comparison of speeds for various engine combinations; but they do not afford a direct measure of the maximum speed of the airship. In view of this omission the speeds attained during turning trials on R. 29 (Table 2) were examined in order to discover whether the mean values for experiments with the rudder at 5° could be employed in the present section of the report without serious error.

It was found that the angle of yaw was only about 2°, and values of V / N (where V is the airspeed and N the rotational speed of the engine in revolutions per minute*) calculated from these observations did not differ from the mean by as much as certain of the direct observations with all engines running at a like speed. The mean speeds for Experiments Nos. 1 and 5 (Table 2) have, therefore, been employed without correction in compiling Table 10 .

The average maximum speed is given in Table 10 as $79 \cdot 2 \mathrm{ft} / \mathrm{sec}$. (46.8 knots) and a value of V / N of 0.048 is calculated for all engines running at a like speed. With engines 2 and 3 at a like speed V / N was 0.042 , while a value of 0.030 was obtained for engine No. 2 only running.

A curve is given in Fig. 8 showing the airspeed for various rotational speeds of the after engine when the forward engine is at rest, and the amidships engine is running at 1,400 r.p.m. As previously stated (see p. 206) it was necessary to resort to calculation in preparing this curve as only three of the direct observations were of the required type. It should also be stated that the majority of the values employed in this figure were based on observations taken by Lieut. Hasler. Curves of this type may be readily prepared for any rotational speed of the amidships engine; 1,400 r.p.m. was chosen as a normal running speed.

Thrust Measurement. Section (v).-The observations of pressure difference at the amidships airscrew are given in Table 12 and are plotted for Experiments No. 100 and 102 in Figs. 9 and 10. It will be noticed that the mean curve through the observations

[^5]becomes ncgative in the regions of the boss and the tip. The negative portion at the tip is so important that on calculating values of $\mathrm{T}^{* *}$ and obtaining the value of the thrust coefficient T_{c}, it was found that in each case this latter quantity was very much lower than the corresponding value obtained on a model. It was realised from the outset that a correction would probably be necossary for the offect of the radiator which is situated between the car and the hull, filling the entire space. With the object of evaluating such corrections the observations of speed behind the radiator (Fig. 12) were made ; but the accurate use of them in calculating a correction is prevented by the lack of information as to the value of the static pressure in that region.

The distanco from the tip of the airscrew to the hull was $2 \cdot 5 \mathrm{ft}$., and observations were taken to a distance of 19 ins. beyond the tip. Reference to Table 12 shows that beyond the tip the curve of pressure difference is horizontal to the accuracy of the observations, and it may, therefore, be assumed that there is no marked effect over this region due to the proximity of the hull, so that the reading of the travelling pitot tube when in this position affords a measure of the true value of the datum. Under these circumstances it appears legitimate to assume the datum line in the neighbourhood of the tip to be in such a position as to render the pressure difference there zero. This conclusion is supported by the recent investigation carried out on models by Messrs. Tage and Howard to check the results of R. \& M. 565 ; they found that if the pressure difference was measured as close as possible to the airscrew on either side of it, and at the same radius on the inflow and outflow sides, the pressure difference at the tip was approximately zero.

An attempt to apply an approximate correction to the present results has, therefore, been made in the following manner. The datum in the region of the tip of the airscrew has been taken so as to make the pressure difference there zero, and this datum has been assumed to apply down to a radius of 60 ins. ($r / \mathrm{D}=0.37$) which is the position of the roof of the car. There was no reason for supposing that the radiator caused an error in the region of the boss of the airscrew and the measured datum was assumed to be correct up to a radius of 20 ins. $(r / \mathrm{D}=0.123) \dagger$; these data were connected by the arbitrary curves shown in Figs. 9 and 10, and values of the pressure difference were scaled off using this new datum curve. From the quantities thus obtained T^{\prime} was calculated and the thrust coefficient T_{c} evaluated graphically in the manner explained on page 206 , the process being carried through for one experiment in which the forward airscrews were running,

[^6]and for another in which they were at rest. The results obtained are given in the following table:-

VALUES OF T_{c}.

	$\begin{aligned} & \text { Expt. No. } 100 . \\ & (V / n D=0.38) . \end{aligned}$	$\begin{aligned} & \text { Expt. No. } 101 . \\ & \text { (V/nD }=0.34) . \end{aligned}$	Expt. No. 102. $(V / n D=0.31) .$
	Tc	Tc	Tc
Full scale (original observations)	$0 \cdot 041$	$0 \cdot 12$	$0 \cdot 20$
Full scale (new datum) ...	$0 \cdot 34$	-	$0 \cdot 54$
Model	$0 \cdot 39$	$0 \cdot 54$	$0 \cdot 65$

Note.-The observations were not carried to the tip of the airscrew in Experiment No. 99; T_{c} has not been calculated for that experiment.

It will be seen that the values of T_{c} derived by the use of the arbitrary datum are from 15 to 20 per cent. lower than the values from the model, so that by the use of a slightly different but no more improbable datum line, the full-scale results could be brought into agreement with those obtained on the model.

The results obtained are, of course, of no value as measurements of the thrust of this airscrew, but it appears to the authors that the method of dealing with them which has been adopted indicates that under more favourable circumstances a satisfactory measurement of thrust might be obtained.

In calculating T_{e} from the original observations (Table 12) it was found that for all three Experiments (100, 101, 102) the value of T^{\prime} at the tip was approximately the same. If the exploring pitot tube when at the radius of the tip of the airscrew is regarded as beyond the influence of the slip-stream, a constant value of T^{\prime} ' means that the ratio of the pressure difference between the travelling pitot tube and the pitot tube fixed at the side of the car to $\frac{1}{2} \rho \mathrm{~V}^{2}$ is constant. It should be noted that this constancy is maintained, though in experiment 100 the forward airscrews were running, while in experiment 102 they were at rest. It may, therefore, be inferred that the influence of the slip-stream from the forward airscrews was felt equally on both pitot tubes at the amidships car, though one projects 3 feet from the side of the car and the other is in the neighbourhood of the hull.

Distribution of Speed in Various Localities.-The distribution. of speed below the forward car (see Fig. 11) is of the type expected; the highest value observed (at a position approximately one foot below the bottom of the car) was 17 per cent. above the mean forward speed of the ship. The local speed did not exceed the mean forward speed by more than 1 per cent. when the length of tube let out was 30 ft . During the experiments on R. 33 (R. \& M. 668) it was found that at a speed of 68 ft . the flying head was deflected horizontally 20 feet, when 45 ft . of tubing was lowered. In
making an approximate estimate of the position of the flying head it may be assumed that the tube takes up the form of a circular are, under which circumstances the vertical distance to the head will be 38 ft . when 45 ft . of tubing are lowered.

The distribution of speed along a vertical line behind the amidships radiator is given for three values of the forward speed, in Fig. 12. The curves show a reduction of speed of the order of 70 per cent. with a marked dip in the curve near the centre of the radiator. Of the two maxima observed on this line the one on the side nearest the hull is rather lower.

A comparison was also made between the airspeed as given by the flying hoad at the forward car and by the fixed head at the amidships ear, both with and without the forward airscrews rumning. The results obtained were as follows :-

Expt. Nos.	r.p.m. of Engines.			Mean Air Speed (ft /sec.).		Forward Car.Amichips Car.
	No. 1.	No. 2.	No. 3.	$\begin{aligned} & \text { At } \\ & \text { Forwnrd } \\ & \text { Car. } \end{aligned}$	$\begin{aligned} & \text { At } \\ & \text { Amidships } \\ & \text { Car. } \end{aligned}$	
107	Stop	1,200	Full	$60 \cdot 2$	$53 \cdot 7$	1. 12
85, 86 \& 100	1,200	1,200	1,200	$56 \cdot 5$	$65 \cdot 5$	0.86

The speeds given in Experiment 107 are each derived from about 25 observations, while the remaining speeds are mean values from the experiments quoted.

It will be seen that whereas when the forward airscrew is at rest the ratio of the speed by the flying head to that at the amidships car is $1 \cdot 12$, when all the airscrews run at 1,200 the ratio is only $0 \cdot 86$. The high value of $1 \cdot 12$ is thought to be due to the "wash" from the forward car and the reduction to 0.86 prosumably represents the effect of the slip-stream.

It must, however, be remarked that the second ratio is liable to errer because the value $65.5 \mathrm{ft} / \mathrm{sec}$. is the mean speed during Experiment 100, while the value $56.5 \mathrm{ft} / \mathrm{sec}$. is the mean value from the speed trials carried out at various times with all engines at 1,200 . If, however, extreme values had been chosen so as to make the sccond ratio a maximum it would still have been less than unity.

In concluding the report the authors desire to tender their thanks to those who assisted in carrying out the trials. The Commonding Officer of R.29, Captain A. H. Wann, nevigated the airship throughout in such a manner as to secure the lest possible conditions for the experiments. In constructing and fitting up the apparatus the engineer officer, Lieut. H. N. Hasler, rendered invaluable assistance.

For the manipulation of the helm from the after car, and for numerous observations of the compass fitted there the authors are indebted to Sergt. F. Smith, R.A.F.

Many of the observations on the two last flights were taken by Mr. E. F. Relf, A.R.C.Sc., of the Aeronautical staff of the N.P.L.; the authors are also indebted to him for criticism of the report.

Table 1 (see Fig. 1).
VARIOUS PARTICULARS OF R. 29.

Displacement	\ldots	\ldots	\ldots	\ldots	\ldots	$1 \cdot 06 \times 10^{6} \mathrm{cu} . \mathrm{ft}$.
Volume of Gas	\ldots	\ldots	\ldots	\ldots	\ldots	$990,000 \mathrm{cu} . \mathrm{ft}$.
Length overall	\ldots	\ldots	\ldots	\ldots	\ldots	$539 \cdot 5 \mathrm{ft}$.
Maximum Diameter	\ldots	\ldots	\ldots	\ldots	53 ft.	

Engines:-Forward and aft cars. One 275 h.p. Rolls-Royce driving two swivelling airscrews.
Amidships car. One 275 h.p. Rolls-Royce driving one airscrew.

Airscrews :--Forward and aft, each of 10 ft . diameter, four-bladed, swivelling, Integral.
A idships, one 2 -bladed Farringdon, 13.5 ft . diameter.

Gear Ratio:-Forward and aft 0.512 to 1. Amidships 0.64 to 1.

Stabilizing Surfaces.			$\begin{gathered} \text { R. } 29 . \\ \text { (Sq. ft. }) . \end{gathered}$	$\begin{aligned} & \text { R.20a. } \\ & \text { (Sq.ft.). } \end{aligned}$	$\begin{gathered} \text { R.29b. } \\ \text { (Sq. ft.). } \end{gathered}$
Total fixed vertical area	\ldots		$1274 \cdot 9$	$971 \cdot 9$	$643 \cdot 4$
Total moveable vertical area			$425 \cdot 4$	$425 \cdot 4$	$425 \cdot 4$
Total fixed horizontal area ...	\ldots		$1263 \cdot 0$	$1263 \cdot 0$	$1263 \cdot 0$
Total moveable horizontal area	\cdots		$425 \cdot 4$	$425 \cdot 4$	$425 \cdot 4$

DEDUCED FROM PRESENT EXPERIMENTS.
Maximum speed $79 \mathrm{ft} / \mathrm{sec}$. (46.8 knots).

		Feet.	In Terms of Length of Airship.
Minimum diameter of Turning circle R.29			
Minimum diameter of Turning circle R.29a	\ldots	5,350	$\mathbf{4 , 8 5 0}$
Minimum diameter of Turning circle R.29b	\ldots	3,600	6.00

Table 2 (see Figs. 4 and 5).
TURNING TRTALS—R. 29 (ORTGINAL FINS).
Calculation of Diamoter of Turning Circle, \&c.

$\begin{aligned} & \text { Expt. } \\ & \text { No. } \end{aligned}$	Angle of Rudders (Deg.).			Engine Combinations. ${ }^{*}$			$\begin{gathered} \text { Speed } \\ \mathrm{Vt} / \mathrm{sec} . \end{gathered}$	$\begin{aligned} & \text { Rate of Turn. } \\ & \text { Rad. /sec. } \end{aligned}$	Diameter of Turning Circle.		$\begin{gathered} \text { Mean } \\ \text { Inclination, } \\ \text { (Deg.). } \end{gathered}$	True Angle of Yaw, β (Deg.).
				$\underset{(\mathrm{n}, \mathrm{p} . \mathrm{m.})}{\mathrm{No.}} .$	$\begin{gathered} \text { No. } 2 \\ (\text { r.p.m. }) \end{gathered}$	$\begin{gathered} \text { No. } 3 \\ \text { (r.p.m.). } \end{gathered}$			Feet.	Turning Coefficient.;		
1	5° port			1,650	1,600	1,700	$79 \cdot 2$	0.0108	14,680	27.2	0	-1.96
2	5° ",	\ldots		1,200	1,200	1,200	$57 \cdot 6$	$0 \cdot 00809$	14,300	26.5	$-5 \cdot 0$	-2.90
3	5° ",	\ldots	\ldots	1,200	1,200	0	$48 \cdot 7$	$0 \cdot 00699$	13,900	$25 \cdot 8$	-1.0	-1.99
4	5° ",	\ldots		0	1,200	0	$37 \cdot 0$	$0 \cdot 00596$	12,400	$23 \cdot 0$	$1 \cdot 0$	2.70
5	5° starb		\ldots	1,600	1,600	1,700	77.5	0.0103	15,050	27.9	-	-
6	$5{ }^{\circ}$			1,400	1,200	1,200	$57 \cdot 0$	$0 \cdot 00803$	14,200	$26 \cdot 35$	-	-
7	5°			1,200	1,200	0	$46 \cdot 3$	$0 \cdot 00646$	14,330	$26 \cdot 6$	-2.0 -1.75	0.26 +0.29
8	5°			0	1,200	0	$35 \cdot 6$	$0 \cdot 00489$	14,580	27.05	- 1.75	-0.29
9	10° port	\ldots		1,600	1,600	1,700	78.5	0.0187	8,400	$15 \cdot 59$	-	-2.98
10	$10^{\circ} \quad$,	\ldots		1,200	1,200	1,200	$57 \cdot 6$	0.01415	8,150	$15 \cdot 11$	$-3 \cdot 5$	$-3 \cdot 30$
11	10° ",	\cdots		1,200	1,200	?	48.8	$0 \cdot 0116$	8,420	$15 \cdot 62$	$-4 \cdot 0$	-3.12
12	10° "	0	1,200	0	$\mathbf{3 5 \cdot 6}$	$0 \cdot 00879$	8,110	$15 \cdot 05$	-4.5	-3.69
* Forward engine \ldots No. 1. Amidships ". No. No. 2. Aft \because .. No. 3.								$\dagger \text { Turning Coefficient }=\frac{\text { Diameter of Turning Circle. }}{\text { Length of Airship. }}$				

Table 2 (contld.).
TURNING TRIALS—R. 29 (ORIGINAL FINS).
Calculation of Diameter of Turning Circle, \&c.

$\begin{aligned} & \text { Expt. } \\ & \text { No. } \end{aligned}$	Angle of Rudders (Deg.).			Engine Combinations.			$\begin{gathered} \text { Speed } \\ \mathrm{Ft} / \mathrm{sec} . \end{gathered}$	$\begin{gathered} \text { Rate of Turn. } \\ \text { Rad. } / \mathrm{sec} . \end{gathered}$	Diameter of Turning Circle.		$\begin{gathered} \text { Mean } \\ \text { Inclination. } \\ \text { (Deg.). } \end{gathered}$	True Angle of Yaw, β (Deg.).
				$\begin{gathered} \text { No. } 1 \\ (\text { r.p.m. }) . \end{gathered}$	$\begin{gathered} \text { No. } 2 \\ (\mathrm{x} . \mathrm{p} . \mathrm{m} .) \end{gathered}$	$\begin{gathered} \text { No. } 3 \\ \text { (r.p.m. }) . \end{gathered}$			Feet.	* Turning Coefficient.		
13	$10^{\circ} \mathrm{s}$	ard		1,600	1,580	1,700	$75 \cdot 1$	$0 \cdot 0173$	8,690	$16 \cdot 10$	-	+ $2 \cdot 52$
14	10°		...	1,200	1,400	1,200	$59 \cdot 0$	$0 \cdot 0140$	8,440	$15 \cdot 65$	-2.0	+2.45
15	10°		...	1,200	1,400	0	$51 \cdot 3$	0.0116	8,850	$16 \cdot 42$	$-4 \cdot 0$	+2.15
16	10°		...	1,000	1,000	0	39-3	$0 \cdot 00886$	8,870	16.45	-1.0	+2.03
17	15°		\cdots	1,600	1,580	1,700	$74 \cdot 9$	$0 \cdot 0242$	6,195	$11 \cdot 49$	-2.5	- 3.93
18			\ldots	1,400	1,400	?	$54 \cdot 6$	$0 \cdot 0178$	6,140	11.38	- 2.5	- $4 \cdot 10$
19	15°	...	\ldots	0	1,200	0	$31 \cdot 6$	$0 \cdot 0108$	5,855	$10 \cdot 87$	-6.5	-4.31
20	$15^{\circ} \mathrm{s}$	ard	...	1,600	1,560	1,700	$74 \cdot 0$	$0 \cdot 0225$	6,580	12.20	$-1 \cdot 0$	+2.99
21	15°		...	1,400	1,400	?	$54 \cdot 3$	$0 \cdot 0171$	6,355	11.80	-4.0	+ $3 \cdot 75$
22	15°		...	0	1,400	0	34-8	$0 \cdot 01065$	6,540	$12 \cdot 12$	$-\mathbf{3} \cdot 0$	+3.57

*Turning Coefficient $=\frac{\text { Diameter of Turning Circle }}{\text { Length of Airship }}$

Table 3 (see Figs. 4 and 5).
TURNING TRLALS-R.29a (Upper fixed fin area reduced by $303 \mathrm{sq} . \mathrm{ft}$.).
Calculation of Diameter of Turning Cirele, \&c.

$\begin{aligned} & \text { Lixpt. } \\ & \text { No. } \end{aligned}$	Angle of Rudders (Deg.).				Engine Combinations.			$\begin{gathered} \text { speed } \\ \text { y } / \mathrm{sec} . \end{gathered}$	$\begin{gathered} \text { Rate of Turn, } \\ \text { Rad. } / \mathrm{sec} . \end{gathered}$	Diameter of Turning Circle.		$\begin{gathered} \text { Mean } \\ \text { Inclination. } \\ \text { (Deg.). } \end{gathered}$	True Angle of Yaw, β (Deg.).
					$\underset{(\mathrm{r}, \mathrm{p}, \mathrm{~m} .)}{\mathrm{No.}} .$	$\begin{gathered} \text { No. } 2 \\ \text { (r.p.n.). } \end{gathered}$	$\begin{gathered} \text { No. } 3 \\ \text { (r.p.m.). } \end{gathered}$			Feet.	* Turning Coefficient.		
23		port			1,600	1,700	1,700	$73 \cdot 5$	$0 \cdot 0140$	10,500	$19 \cdot 48$	$+3 \cdot 0$	-2.58
24	$5{ }^{\circ}$...	1,400	1,400	1,400	$63 \cdot 0$	$0 \cdot 0125$	10,100	$18 \cdot 72$	- $2 \cdot 0$	- $3 \cdot 13$
25	$5{ }^{\circ}$				1,200	1,200	1,200	$52 \cdot 6$	$0 \cdot 0101$	10,400	19.29	-1.0	- $2 \cdot 99$
26	$5{ }^{\circ}$,"	\ldots		0	1,000	1,000	$36 \cdot 0$	$0 \cdot 00699$	10,300	19.10	-8.0	$-2 \cdot 52$
27		starbo		\ldots	1,600	1,700	1,700	$74 \cdot 8$	$0 \cdot 0130$	11,500	21.30	-1.5	$+2.11$
28	$5{ }^{\circ}$				1,400	1,400	1,400	$63 \cdot 0$	$0 \cdot 0112$	11,250	20.85	- $3 \cdot 5$	+2.47
29	5°				1,200	1,200	1,200	$55 \cdot 0$	$0 \cdot 0102$	10,800	$20 \cdot 02$	-4.6	+2.19
30	5°				1,000	1,000	0	$39 \cdot 0$	$0 \cdot 00686$	11,350	21.05	-5.2	$+1.96$
31	10°	port		\ldots	1,600	1,700	1,700	72.5	$0 \cdot 0215$	6,750	$12 \cdot 50$	$-3 \cdot 0$	-4.76
32	10°	,"			1,200	1,200	1,200	$52 \cdot 8$	$0 \cdot 0166$	6,360	11.80	$-2 \cdot 0$	-4.43
33				\cdots	1,000	1,000	0	$35 \cdot 2$	$0 \cdot 0106$	6,640	12.30	-6.0	- $3 \cdot 77$
34	10°	starbo		\ldots	1,600	1,700	1,700	$69 \cdot 2$	$0 \cdot 0191$	7,250	$13 \cdot 45$	-4.0	$+3.59$
35	10°				1,400	1,400	1,400	61.0	0.0169	7,220	$13 \cdot 40$	$-3 \cdot 7$	+3.28
36	10°				1,200	1,200	1,200	53.9	0.0147	7,250	$13 \cdot 45$	$-4 \cdot 3$	$+3 \cdot 37$
37	10°	,		\ldots	1,000	1,000	0	$35 \cdot 9$	$0 \cdot 0105$	6,850	$12 \cdot 70$	-4.3	+3.32

[^7]Table 3 (contd.).
TURNING TRIALS-R.29A (Upper fixed fin area reduced by $303 \mathrm{sq} . \mathrm{ft}$.).
Calculation of Diameter of Turning Circle, \&c.

$\begin{aligned} & \text { Expt. } \\ & \text { No. } \end{aligned}$	Angle of Rudders (Deg.).		Engine Combinations.			$\begin{gathered} \text { Speed } \\ \text { Fit see. } \end{gathered}$	$\begin{gathered} \text { Rate of Turn. } \\ \text { Rad. } / \mathrm{sec} . \end{gathered}$	Diameter of Turning Circle.		$\begin{gathered} \text { Mean } \\ \text { Inclination. } \\ \text { (Deg.). } \end{gathered}$	True Angle of Yaw, β (Deg.).
			$\begin{gathered} \text { No. } 1 \\ \text { (r.p.m. }) \end{gathered}$	$\begin{gathered} \text { No. } 2 \\ \text { (r.p.m.). } \end{gathered}$	$\begin{gathered} \text { No. } 3 \\ \text { (r.p.m.). } \end{gathered}$			Feet.	* Turning Coefficient.		
38	15° port		1,200	1,600	1,650-75	$69 \cdot 0$	$0 \cdot 0262$	5,270	$9 \cdot 77$	$-5 \cdot 5$	$-5 \cdot 28$
39	15° "		1,200	1,200	1,200	$50 \cdot 9$	0.01985	5,140	$9 \cdot 53$	-4.6	$-5 \cdot 69$
40	15° "		1,000	1,000		$34 \cdot 7$	$0 \cdot 0133$	5,215	$9 \cdot 66$	-7.3	-5.48
41	15° starb	...	1,600	1,700	1,700	70.5	$0 \cdot 0244$	5,790	$10 \cdot 71$	$+2 \cdot 0$	$+4.13$
42	15°	\ldots	1,400	1,400	1,400	57.8	$0 \cdot 0205$	5,640	$10 \cdot 44$	-1.0	$+4 \cdot 11$
43	15°	\ldots	1,200	1,200	1,200	52.8	$0 \cdot 0186$	5,690	$10 \cdot 53$	0	+4.00
44	15°	\ldots	1,000	1,000	0	36.25	$0 \cdot 0125$	5,800	$10 \cdot 75$	- $4 \cdot 0$	$+3.87$

*Turning Coefficient $=\frac{\text { Dianeter of Turning Circle. }}{\text { Iength of Airship. }}$

Table 4 (see Figs. 4 and 5).
TURNING TRIALS-R.29B (Whole of fabric removed from upper fixed fin).
Calculation of Diameter of Turning Circle, \&c.

$\begin{aligned} & \text { Expt. } \\ & \text { Xo. } \end{aligned}$	Angle of Ruduers (Deg.).			Engine Combinations.			$\begin{gathered} \text { Speed } \\ \text { Ft/sec. } \end{gathered}$	$\begin{gathered} \text { Rate of Turn. } \\ \text { Rad. } / \text { sec. } \end{gathered}$	Diameter of Turning Cirele.		$\begin{aligned} & \text { Mean } \\ & \text { Enclination. } \\ & \text { (Deg.). } \end{aligned}$	True Angle of Yow, β (Deg.).
				$\begin{gathered} \text { (r.p. . } 1 \end{gathered}$	$\begin{gathered} \text { No. } 2 \\ (\mathrm{r}, \mathrm{p}, \mathrm{~m}) . \end{gathered}$	$\begin{gathered} \text { No. } 3 \\ (\mathrm{r} . \mathrm{p}, \mathrm{~m}, \mathrm{~m} \end{gathered}$			Feet.	* Turning Coefficient		
45	5° port	\ldots	\cdots	1,600	1,700	1,700	$72 \cdot 75$	0.0211	6,900	12.80	-1.0	- $4 \cdot 46$
46	5°,	\ldots	...	1,400	1,400	1,400	$62 \cdot 7$	$0 \cdot 0186$	6,750	$12 \cdot 50$	$-4 \cdot 7$	- 3.95
47	$5{ }^{\circ}$,	...	\ldots	1,200	1,200	1,200	51.5	0.01595	6,470	$12 \cdot 00$	$-4 \cdot 3$	- 4.12
48	$5{ }^{\circ}$	\ldots	...	1,200	1,200	0	$42 \cdot 8$	0.0117	7,320	$13 \cdot 58$	-6.5	- 2.92
49	5° starb		\ldots	1,600.	1,700	1,600	$71 \cdot 1$	0.0205	6,950	12.89	- 4.0	$+3 \cdot 65$
50	5		\ldots	1,400	1,400	1,400	$62 \cdot 1$	$0 \cdot 0182$	6,840	$12 \cdot 67$	-3.5	+ $3 \cdot 79$
51	5°		\ldots	1,200	1,200	1,200	$52 \cdot 2$	0.01425	7,340	$13 \cdot 60$	-7.0	+ $+2 \cdot 58$
52			...	1,200	1,200	0	$42 \cdot 4$	0.01105	7,670	14.21	$-8 \cdot 7$	$+2.55$
53	10° port	\cdots	\ldots	1,600	1,700	1,600	$69 \cdot 9$	$0 \cdot 0283$	4,950	9.18	-4.0	- 5.16
54	10°,	...	\ldots	1,200	1,200	1,400	54.5	0.0234	4,670	$8 \cdot 65$	$-5 \cdot 7$	- 5.52
55	10° "	\ldots	\ldots	1,200	1,200	0	41-1	$0 \cdot 0166$	4,950	$9 \cdot 18$	$-6 \cdot 3$	- $5 \cdot 20$
56	10° starb		\cdots	1,600	1,700	1,600	63.7	$0 \cdot 0232$	5,500	$10 \cdot 20$	-2.5	+ 4.22
57	10°		...	1,200	1,200	1,400	55.6	$0 \cdot 0210$	5,300	$9 \cdot 83$	$-9 \cdot 3$	+ 4.73
58	10°		...	1,200	1,200	0	41.2	$0 \cdot 0170$	4,850	8.99	-9.7	+5.40

*Turning Coefticient $=\frac{\text { Diameter of Turning Circle }}{\text { Length of Airship. }}$

Table 4 (contd.).
TURNING TRIALS-R.29B (Whole of fabric removed from upper fixed fin).
Calculation of Diameter of Turning Circle, \&c.

$\begin{aligned} & \text { Expt. } \\ & \text { No. } \end{aligned}$	Augle of Rudders (Deg.).				Engine Combinations.			$\begin{gathered} \text { Speed } \\ \mathrm{Ft} / \mathrm{sec} . \end{gathered}$	$\begin{array}{\|c\|} \text { Rate of Turu. } \\ \text { Rad. } / \mathrm{sec} . \end{array}$	Diameter of Turning Circle.		Mean Inclination. (Deg.).	True Angle of Yaw, β (Deg.).
					$\begin{gathered} \text { No. 1 } \\ \text { (r.p.m.). } \end{gathered}$	$\begin{gathered} \text { No. } 2 \\ \text { (r.p.m.). } \end{gathered}$	$\begin{gathered} \text { No. } 3 \\ \text { (r.p.m.). } \end{gathered}$			Feet.	*Tuming Coefficient.		
59	15°	port	...		1,600	1,700	1,600	$65 \cdot 7$	0.0325	4,050	$7 \cdot 51$	$-6 \cdot 3$	- 6.71
60	15°	-	\ldots		1,400	1,400	0	$46 \cdot 9$	$0 \cdot 0244$	3,850	$7 \cdot 14$	$-10 \cdot 0$	-6.32
61	15°	,,			1,200	1,200	0	$37 \cdot 8$	0.0192	3,940	$7 \cdot 31$	-8.7	-6.40
62	15°	starbo			1,600	1,700	1,600	69.0	$0 \cdot 0314$	4,400	$8 \cdot 16$	-4.3	+ 5.58
63	15°				1,400	1,400	1,400	$59 \cdot 8$	$0 \cdot 0285$	4,200	$7 \cdot 79$	-5.5	$\underline{5.73}$
64	15°				1,200	1,200	1,400	51.8	0.0241	4,300	$7 \cdot 96$	-5.4	+5.57
65	15°				1,200	1,200	0	$38 \cdot 3$	0.0175	4,380	$8 \cdot 13$	-8.2	+ 5.82

*Turning Coeficient $=$ Diameter of Turning Cirele.
Length of Airship.

Table 5 (see Fig. 5).
MEAN DIAMETER OF TURNING CTRCLES.

*Approximate value for "hard over." †By extrapolation.
Dianeter of Turning Circle.
\ddagger Turning coefficient $=\frac{\text { Diameter of Turning Circle }}{\text { Length of Airship. }}$

Table 6.

TURNING TRIALS.
Comparison of R. 29 with R. 26 and R. 33.

Rudder Angle. (Deg.).	Mean Diameter of Turning Circle.									
	R.29. With Original Fin Area.		R.29A.		R. 29 B .		R. 26.		R.33.	
			* With 303 sq. ft. of Fabric removed from Upper Fin.		With Whole of Fabric removed from Upper Fin.		Feet.	Turning Coeffit:		
	Feet.	Turning Coefft.	Feet.	Turning Coeffit.	Feet.	Turning Coefft.			Feet.	Turning Coefft. \ddagger
5	14,180	$26 \cdot 30$	10,775	$19 \cdot 98$	7,030	$13 \cdot 03$	15,800	29.55	7,340	
10	8,491	15.75	6,863	$12 \cdot 73$	5,036	$9 \cdot 34$	9,400	17.58	5,816	$9 \cdot 04$
15	6,278	11.64	5,469	$10 \cdot 14$	4,134	$7 \cdot 66$	6,800	$12 \cdot 70$	4,738	7.35
$19 \dagger$	5,350	$9 \cdot 92$	4,850	$9 \cdot 00$	3,600	$6 \cdot 67$	6,300	11.78	4,000	$6 \cdot 22$
Total area of vertical surface (sq. ft .) ...	$\begin{array}{r} 1700 \cdot 3 \\ 1274 \cdot 9 \\ 425 \cdot 4 \end{array}$		1397.3		$1068 \cdot 8$		1789		1880	
Area of fixed vertical surface (sq. ft.) ...			971.9		643.4		1339450		1410470	
Area of rudders (sq. ft.)							450		470	
Area of rudders	$0 \cdot 250$		$0 \cdot 305$		$0 \cdot 399$		$0 \cdot 252$		$0 \cdot 250$	
Area of total vertical surface Length (ft.)	539		$\stackrel{539}{1.06 \times 10^{6}}$		$\stackrel{539}{1.06 \times 10^{6}}$		535		$\stackrel{644}{ } 2.810^{6}$	
Displacement of hull (cubic ft.) ...	1.06×10^{6}		1.06×10^{6}		1.06×10^{6}		1.05×10^{6}		2.2×10^{6}	

* 303 sq . ft. $=0.48$ of upper fixed fin area. \quad Extrapolated, approximately the maximum attainable.
\ddagger Turning Coeffeient $=$ Diameter of Turning Circle.

Table 7 (see Fig. 6).
CURVATURE OF PATH WITH RUDDERS AMIDSHIPS OR AT SMALL ANGLES, FOR R.29,
R.29A AND R.29B.

$\begin{aligned} & \text { Expt. } \\ & \text { No. } \end{aligned}$	Angle of Rudders (Deg.).		Engine Combinations.			$\begin{aligned} & \text { Speed } \\ & \text { Vt /see. } \end{aligned}$	$\left\|\begin{array}{c} \text { Rate of Turn. } \\ \dot{\psi} \\ \text { Rad. } / \mathrm{sec} . \end{array}\right\|$	Diameter of Turning Circle.		$\begin{gathered} \text { Mean } \\ \text { Inelination. } \\ \text { (Deg.). } \end{gathered}$	True Angle of Yaw, β (Deg.).
			$\underset{(\text { r.p.m. })}{\text { No. } 1}$	$\begin{gathered} \text { No. } 2 \\ \text { (r.p.m.). } \end{gathered}$	$\underset{\text { (r.p.m.). }}{\text { No. }}$			Feet.	\dagger 'Turning Coefficient		
					Airship	R. 29.					
66	Amidships	...	1,400	1,400	1,400	$67 \cdot 5$	$\begin{gathered} 0 \cdot 00154 \\ \text { port } \end{gathered}$	87,700	$162 \cdot 5$	- $3 \cdot 0$	- 0.46
67	Amidships	...	0	1,200	0	$35 \cdot 9$	0.00186	38,550	71.5	-0.5	-0.22
					Airship	R.29a.					
68	Amidships	\ldots	1,400	1,400	1,400	$61 \cdot 1$	-	Inf.	Inf.	- $5 \cdot 0$	-
69	Amidships	\ldots	0	1,000	1,000	$34 \cdot 6$	-	Inf.	Inf.	-6.5	-
					Airship	R.29b.					
70	Amidships	\ldots	1,400	1,400	1,400	$64 \cdot 6$	$0 \cdot 00512$ starboard	25,300	$46 \cdot 9$	- 3.0	$+0.81$
71	$\left\{\begin{array}{c} * U l^{\circ} \mathrm{S} . \\ \mathrm{L} \frac{1^{\circ}}{}{ }^{\circ} \mathrm{S} . \end{array}\right\}$		0	1,000	1,000	$37 \cdot 2$	$0 \cdot 00466$	15,950	$29 \cdot 6$	$-10 \cdot 0$	-
							starboard 0.00405				
72		\ldots	0	1,000	1,000	32-3	$0 \cdot 00405$ starboard	15,050	$29 \cdot 6$	-10.0	-
73	* Do.	...	0	1,000	1,000	31.9	$0 \cdot 00358$ starboard	17,800	$33 \cdot 0$	$-10 \cdot 0$	-

Table 8.

RESISTANCE COEFFICIENT CALCULATED FROM DECELERATION EXPERIMENTS.

Expt. No.				$\frac{1}{V^{2}} \times \frac{d V}{d t}$		$\begin{gathered} \text { Coefficient } \mathrm{C}^{*} \\ \frac{l}{V^{3}} \times \frac{d V}{d t} \end{gathered}$
	$\begin{aligned} & 75 \\ & 76 \end{aligned}$			$\begin{aligned} & 2 \cdot 30 \times 10^{-4} \\ & 2 \cdot 16 \times 10^{-4} \end{aligned}$		$\begin{aligned} & 0.0234 \\ & 0.0220 \end{aligned}$
Mean	\ldots	$\cdots \quad .$.	\cdots	$0 \cdot 0227$

* $\mathrm{R}=\mathrm{CpV} \mathrm{a}^{2}$
$\boldsymbol{\gamma}=$ vol. $^{1 / 3}=101.9 \mathrm{ft}$.

Table 9.
FORWARD SPEED FOR VARIOUS ENGINE COMBINATIONS.-R.29.

Expt. No.	Date.	$\begin{gathered} \text { † Engine Speed } \\ \text { (r.p.m.) } \end{gathered}$			Speed V (ft/sec.).		$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Obs. } \\ \text { of } \\ \text { Speed. } \end{gathered}$	Mean Inclina. tion. (Deg.)	Remaris.
		No. 1.	No. 2.	No. 3.	Extremes.	Meran.			
78	Sept. 15	1,400	1,400	1,400	70-2-66.1	$68 \cdot 6$	7	-0.7	+ No. $1=$
67	Sept. 15	1,400	1,400	1,400	$70 \cdot 2-62 \cdot 6$	67.5	9	- 3.0	Forward
103	Sept. 16	1,400	1,400	1,400	67-5-56.8	$65 \cdot 6$	10	-	Engine.
80	Sept. 16	0	1,200	1,700	$62 \cdot 7-57.5$	$60 \cdot 4$	12	-0.7	No. $2=$
*81	Sept. 14	0	1,700	1,200	-	57.9	1	-	Amidships
*82	Sept. 14	0	1,700	1,000	-	$56 \cdot 3$	1	-	Engine.
*83	Sept. 14	0	1,700	800	-	$52 \cdot 3$		-	No. $3=$
84	Sept. 16	1,400	0	1,400	59-6-56.0	57.8	2	-0.5	After
85	Sept. 16	1.200	1,200	1,200	57-7-55.1	$56 \cdot 6$	3	-0.3	Engine.
86	Sept. 15	1,200	1,200	1,200	57-8-53•(56.5	6	- $9 \cdot 4$	
88	Sept 16	1,200	1,000	1,200	$54 \cdot 5-54 \cdot 3$	$54 \cdot 4$	2	0	
*89	Sept. 14	0	3,400	I,200	-	$55 \cdot 4$	1	-	
74	Sept. 16	0	1,200	1,200	53-3-48-4	$50 \cdot 7$	34	-	
*90	Sept 14	0	1,200	1,200	-	$50 \cdot 5$	1	-	
*91	Sept 14	0	1,200	1,200	-	50.5	1	-	
*92	Sejt 14	0	1,200	1,200	-	$45 \cdot 6$	1	-	
*96	Sept 14	0	1,400	0	-	41.4		-	
*97	Sept. 14	0	1,400	0	-	$39 \cdot 7$	1	-	
*98	Sept. 14	0	1,200	0	-	38.0	1	-	
66	Sept. 15	0	1,200	0	37.4-34•4	$35 \cdot 9$	16	-	

* Observations from Lt. Hasler.

Table 9a.
FORWARD SPEED FOR VARIOUS ENGINE COMBINATIONS.-R.29A.

$\begin{gathered} \text { Expt. } \\ \text { N!. } \end{gathered}$	Date.	* Fingint Speed N. (r.p.mi)			Speed V (ft/sec.).		$\underset{\substack{\text { No. } \\ \text { of }}}{ }$ Olus. of Speed.	Mean inclination (deg.).	Kemarks.
		No. 1.	No. 2	No.	Extremes	Mean.			
7	Uct. 7	1,600	1,700	1,700	77.0-72.9	$75 \cdot 9$	8	$+3 \cdot 5$	No. 1
79	Oct. 7	1,400	1,400	1,400	65.8-61-5	$64 \cdot 2$	6	- $2 \cdot 2$	Eorward
69	Oct. 7	1,400	1,400	1,400	63.6-53.6	$61 \cdot 1$	12	-5.0	Engine.
87	Oct. 7	1,200	1200	1,200	54.8-49.2	$53 \cdot 1$	9	$-3 \cdot 6$	No. $2=$
43	Oct. 7	1,200	0	1,200	44.7-42.0	$43 \cdot 8$	7	$-3 \cdot 6$	Amidships
94	Oct. 7	1,000	1,000	1,000	$45 \cdot 1-39 \cdot 8$	$43 \cdot 5$	6	$-3 \cdot 0$	Engine.
45	Oet. 7	800	800	800	40.7-35.9	$38 \cdot 5$	6	$-5 \cdot 0$	No. $3=$
88	6et. 7	1,000	0	1.000	36.7-32.2	$34 \cdot 6$	27	-6.5	After Engine.

Table 9b.
FORWARD SPEED FOR VARIOUS ENGINE COMBINATIONS.-R.29B.

70	Oet.9	1,400	1,400	1,400	$68.1+60.7$	64.6	13	$-3 \cdot 0$
22-73	Oct. 9	${ }^{6}$	1,000	1,000	$34.8-30.8$	$32 \cdot 2$	22	-10.0

Table 10.
FORWARD SPEED FOR VARIOUS ENGINE COMBINATIONS.--R. 29.
(Engines running at a like speed.)

$\begin{aligned} & \text { Expt. } \\ & \text { No. } \end{aligned}$	Encine Speed N (r.p.m.).			Mean Forward Speed V (ft/sec.).	$\begin{aligned} & \mathrm{V} * \\ & \mathrm{~N} \end{aligned}$	Triclinometer (deg.).	No. of observations ofSpeed.	$\begin{gathered} \text { Mean } \\ \mathbf{V}^{*} \\ \mathbf{N} \end{gathered}$
	No. 1.	No. 2.	No. 3.					
1	1,650	1,600	1,700	$79 \cdot 2 \dagger$	$0 \cdot 0480$	0	15	
5	1,600	1,600	1,700	$77 \cdot 5 \dagger$	$0 \cdot 0475$	-	16	
78	1,400	1,400	1,400	$68 \cdot 6$	$0 \cdot 0490$	-0.75	7	
67	${ }^{\text {' }} 1,400$	1,400	1,400	67.5	$0 \cdot 0482$	- 3.0	9	
103	1,400	1,400	1,400	$65 \cdot 6$	$0 \cdot 0469$	-	10	
85	1,200	1,200	1,200	$56 \cdot 6$	$0 \cdot 0471$	$-0 \cdot 3$	3	
86	1,200	1,200	1,200	56.5	$0 \cdot 0470$	-2.4	6	$0 \cdot 0479$
74	1	1,200	1,200	$50 \cdot 7$	$0 \cdot 0423$	-	34	
90	0	1,200	1,200	$50 \cdot 5$	$0 \cdot 0421$	-	,	
91	0	1,200	1,200	$50 \cdot 5$	$0 \cdot 0421$	-	1	
92	0	1,200	1,200	$45 \cdot 6$	$0 \cdot 0381$	-	1	$0 \cdot 0422$
96	0	1,400	0	41-4	$0 \cdot 0296$	-	1	
97	0	1,400	0	$39 \cdot 7$	$0 \cdot 0284$	-	1	
98	0	1,200	0	$38 \cdot 0$	0.0317	-	1	
66	0	1,200	0	$35 \cdot 9$	0.0299	-1.0	16	$0 \cdot 0299$

[^8]Table 11 (see Fig. 8).
FORWARD SPEED WITH ENGINES RUNNING AT DIFFERENT ROTATIONAL SPEEDS.

No. of Original Experiment	Engine Speed N (r.p.m.).			$\begin{gathered} \text { Speed } \\ V \\ \text { (fi fsec. }) . \end{gathered}$	No. of ObservaSpeed.	Remarks.
	No. 1.	No. 2.	No. 3.			
80	0	1,400	1,982	70.5	12	* These values are
74	0	1,400	1,400	59.1	34	original observa-
90	0	1,400	1,400	$58 \cdot 9$	I	tions.
91	0	1,400	1,400	$58 \cdot 9$	1	The remaining
92	0	1,400	1,400	$53 \cdot 3$	1	values are calcu-
89	0	1,400*	1,200*	$55 \cdot 4^{*}$	1	lated on the prin-
81	0	1,400	985	$47 \cdot 7$	1	ciple explained in
82	0	1,400	825	$46 \cdot 4$	1	the text. (See
83	0	1,400	660	43.1	1	p. 206.)
98	0	1,400	0	$44 \cdot 3$	1	
66	0	1,400	0	41.9	16	
96	0	1,400*	0	41-4*	1	
97	0	1,400*	0	39•7*	1	

Table 12 (see Figs. 9 and 10).
MEASUREMENTS OF PRESSURE DIFFERENCE AT AMIDSHIPS ATRSCREW.
Caleulation of Thrust Coefficient (T_{c}) from original observations.

Expt. No. 100.					
Redius (ins.)	Velocity Head $\frac{1}{2} \rho V^{2}$ (ins.of water).	$\begin{gathered} \text { Pressure } \\ \text { Difference } \\ p_{2}-p_{2} \text {) } \\ \text { (ins.of water). } \end{gathered}$	r / D	T ${ }^{\prime}$	
-1	1.08	-0.685	0.006	- 0.0120	Engines-
2	$1 \cdot 00$	- 0.685	$0 \cdot 012$	-0.0258	No. $1=1,200 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
5	0.955	- 0.500	0.031	- 0.0510	No. $2=1,200$ r.p.m.
8	1.035	- 0.575	$0 \cdot 049$	- 0.0855	No. $3=1,200 \mathrm{r} . \mathrm{p} . \mathrm{m}$.
11	1.035	- 0.525	0.068	- 0.108	$D=13 \cdot 5 \mathrm{ft}$.
14	1.035	- 0.455	$0 \cdot 086$	- $0 \cdot 119$	$\rho=0 \cdot 00235$.
14	0.955	- 0.410	0.086	- 0.116	$\mathrm{N}=12.8 \mathrm{revs} / \mathrm{sec}$.
17	0.975	- 0.300	$0 \cdot 105$	-0.101	$\mathrm{V}=65 \cdot 5 \mathrm{ft} / \mathrm{sec}$.
20	$1 \cdot 005$	- 0.235	$0 \cdot 123$	- 0.009	
23	0.975	- 0.145	$0 \cdot 142$	-0.066	$n \mathrm{D}=0.38$.
23	$0 \cdot 955$	-0.075	0. 142	-0.035	$\mathrm{T}_{6}=0.041$.
26	$0 \cdot 975$	- 0.050	$0 \cdot 161$	- 0.026	
29	0.955	+ 0.085	$0 \cdot 179$	+ 0.050	$\mathrm{T}_{c}($ model $)=0 \cdot 39$.
32	$0 \cdot 897$	+ 0.335	$0 \cdot 198$	+ 0.232	
32	1.01	+ 0.145	$0 \cdot 198$	+ 0.089	
35	$0 \cdot 870$	+ 0.5045	$0 \cdot 216$	+ 0.393	
38	$0 \cdot 920$	+ 0.685	$0 \cdot 235$	+ 0.550	
41	$0 \cdot 940$	+ 0.745	$0 \cdot 253$	+ 0.630	
44	0.915	+0.845	0.272	+ 0.790	
44	0.975	+ 0.710	$0 \cdot 272$	+ 0.622	
47	0.940	+ 0.805	$0 \cdot 290$	+ 0.780	
47	$0 \cdot 890$	$+0.775$	$0 \cdot 290$	+ 0.793	
47	$0 \cdot 890$	+ 0.875	$0 \cdot 290$	+0.895	
47	$0 \cdot 900$	+ 0.800	$0 \cdot 290$	$+0.810$	
47	1.035	+0.710 $-\quad 0.70$	$0 \cdot 290$	+ 0.625	
47	$1 \cdot 000$	+ 0.745	$0 \cdot 290$	+ 0.679	
50	0.955	+0.805	$0 \cdot 309$	+ 0.819	
53	1.005	$\therefore 0.775$	$0 \cdot 327$	+ 0.792	
56	1.005	+ 0.790	$0 \cdot 346$	+ 0.854	
59	0.990	+ $0 \cdot 795$	0.364	+0.918	
62	$0 \cdot 990$	+ 0.645	$0 \cdot 383$	+ 0.784	
65	0.990	+ 0.335	0.401	+ 0.426	
66	0.940	+0.335	0.407	+ 0.456	
66	0.87	$\begin{array}{r}+ \\ \hline\end{array}$	0.407	+0.389	
66	$0 \cdot 975$	+0.370	0.407	+ 0.485	
66	0.975	+ 0.235	$0 \cdot 407$	+ 0.308	
67	0.975	+ 0.10	$0 \cdot 414$	+ 0.133	
68	0.975	- 1-30	0.420	- 0.176	
68	0.955	+0.75	$0 \cdot 420$	- 0. 104	
69	0.975	-0.055	0.426	- 0.076	
69	$1 \cdot 00$	- 0.145	0.426	- 0.194	
70	0.975	- 0.145	0.432	- 0.202	
71	0.975	- 0.455	0.438	-0.642	
71	1.01	- 0.475	0.438	- 0.646	
72	0.975	- 0.775	$0 \cdot 444$	- 1.109	
73	0.98	- 1.00	0.451	-1.444	
73	0.92	- 0.775	$0 \cdot 451$	-1.194	
74	$1 \cdot 00$	- 1.04	$0 \cdot 457$	- 1.495	
75	0.955	- 1.08	0.463	- 1.647	
81	$0 \cdot 990$	- 1.12	$0 \cdot 500$	-1.775	
87	0.955	-1.04	$0 \cdot 537$	-1.839	
93	$1 \cdot 00$	- 1.08	0.575	- 1.950	
100	0.955	-1.04	0.618	- 2.112	

Table 12 (contd.).
MEASUREMENTS OF PRESSURE DIFFERENCE AT AMIDSHIPS AIRSCREW (contd.).
Calculation of Thrust Coefficient (T_{c}) from original observations.

Table 12 (contal.).

MEASUREMENTS OF PRESSURE DTFFERENCE AT AMIDSHIPS AIRSCREW (contd.).

Calculation of Thrust Coefficient (T_{c}) from original observations.

Expt. No. 102.				
$\begin{gathered} \text { Kadius } \\ \text { (ins. } \end{gathered}$	Velocity Head ip V^{2} (ins.of water).	$\begin{gathered} \text { Pressure } \\ \text { Difference } \\ \left(p_{\mathrm{a}}-p_{\mathrm{f}}\right) . \\ (\text { (ins. of whter }) \text {. } \end{gathered}$	$\left.r^{1} \mathrm{l}\right) \mathrm{T} *$	
-1	$0 \cdot 65$	- 0.455	$0.006-0.0132$	Engines -
	$0 \cdot 635$	- 0.410	0.006 i - 0.0122	No. $1=$ stopped.
2	$0 \cdot 600$	- 0.335	$0.012-0.0210$	No. $2=1,200$ r.p.m.
5	$0 \cdot 665$	- 0.350	$0.031-0.0512$	No. $3=1,700$ r.p.m.
8	0. 665	- 0.385	$0.049-0.089$	$\mathrm{D}=13 \cdot 5 \mathrm{ft}$.
11	0.700	-0.285	0.068 - 0.087	$p=0.00229$.
14	$0 \cdot 690$	-0.195	$0.086-0.0764$	$n=12.8$ revs $/ \mathrm{sec}$,
17	$0 \cdot 675$	- 0.055	0.105 - 0.0268	$\mathrm{V}=53.6 \mathrm{ft} / \mathrm{sec}$.
19	$0 \cdot 665$	- 0.010	0.117 - 0.0055	
20	0.65	+0.025	0.123 + 0.0149	$n \mathrm{D}=0.3$.
23	$0 \cdot 675$	+0.130	$0.142+0.086$	$\mathrm{T}_{\mathrm{c}}=0.20$.
23	0.705	+ 0.115	0.142 + 0.073	$\mathrm{T}_{6}-0$.
26	$0 \cdot 635$	+0.235	$0.161+0.187$	$\mathrm{T}_{6}($ model $)=0.65$.
29	0.705	+ 0.300	$0.179+0.239$	
29	$0 \cdot 700$	+ 0.285	$0 \cdot 179+0.229$	
32	$0 \cdot 755$	+ 0.775	$0.198+0.638$	
35	$0 \cdot 68$	+ 0.615	$0.216+0.614$	
36	$0 \cdot 67$	+ 0.655	$0.222+0.681$	
38	0.665	+0.76	$0.235+0.844$	
41	$0 \cdot 67$	+ 0.86	$0.253+1.02$	
44	0.645	$+1.55$	$0.272+2.05$	
44	$0 \cdot 665$	+ 0.88	$0.272+1.13$	
47	$0 \cdot 645$	+1.00	$0.290+1.41$	
47	$0 \cdot 585$	+1.00	$0.290+1.56$	
50	$0 \cdot 575$	+ 1.00	$0 \cdot 309+1.69$	
50	0-690	+0.92 $+\quad 0.985$	$0.309+1.29$	
53	0.615	$+0.985$	$0.327+1.64$	
56	$0 \cdot 610$	+ 1.00	$0.346+1.78$	
59	$0 \cdot 595$	+1.00	$0.364+1.92$	
62	$0 \cdot 600$	$+0.805$	$0 \cdot 383+1.61$	
65	$0 \cdot 675$	+ 0.35	$0.401+0.654$	
67	$0 \cdot 600$	$+0.145$	0.414 + 0.314	
68	$0 \cdot 615$	+ 0.235	$0.420+0.503$	
68	$0 \cdot 685$	+ 0.55	$0.420+1.06$	
63	$0 \cdot 705$	+ 0.27	$0.426-0.512$,
69	$0 \cdot 620$	0.00	$0.426 \quad 0.00$	
69	$0 \cdot 600$	$0 \cdot 00$	$0.426!0.00$	
70	$0 \cdot 625$	-- 0.225	$0.432-0.489$	
70	$0 \cdot 600$	- 0.100	$0.432-0.226$	
71	$0 \cdot 705$	-0.300	$0.438-0.585$	
71	$0 \cdot 705$	- 0.365	$0.438-0.71$	
71	$0 \cdot 655$	- $0 \cdot 170$	$0.438-0.357$	
71	$0 \cdot 620$	-0.235	$0.438-0.521$	
72	$0 \cdot 655$	-0.220	$0.444-0.467$	
73	$0 \cdot 690$	- 0.475	$0.451-0.975$	
73	$0 \cdot 625$	-0.575	$0.451-1.30$	
74	$0 \cdot 625$	- 0.715	0.457 - 1.64	
75	0.65	- 0.745	$0.463-1.66$	
81	$0 \cdot 645$	- 0.715	$0.500-1.74$	
100	$0 \cdot 720$	- 0.805	$0 \cdot 618-2 \cdot 17$	
100	0.65	-0.715	0.618 - $2 \cdot 13$	

$*^{\prime} \mathrm{T}^{\prime}=\frac{p_{2}-p_{1}}{\frac{1}{2} \mathrm{~V}^{3}} \times \pi \stackrel{r}{\mathrm{D}}$

R. \& M. 675.

ON
RIGID AIRSHIP R. 29.

Detalls of flying Anemometer Head.

 SCALE ${ }^{\circ} 23456$ inches

Rubber tubes to indicator on airship.

Variation of DIAMETER of Turning Circle with

 Speed for Constant Rudder Angles.

R. 8 M. 675

Fic. 5.
(See tribles 25.485)
EXPERIMENTS on RIGID AIRSHIP R. 29
Variation of Mean turning Coefficient with Rudodr Angle.

EXPERIMENTS ON RIGID AIRSHIP R. 29.

EXPERIMENTS ON RIGID AIRSHIPR. 29
Rudders amidships or at Small Angles.
COMPASS COURSE.

- Readings of Sundial.
- Readings of Sundial. "Master Compass.

EXPERIMENTS on RIGID ARSHIP R. 29.

EXPERIMENTS on RIGID AIRSHIP R. 29.
PREDICTION OF FORWARD SPEED
FOR
Various Engine Combinations.

Rotational Spect of Engine No 3 (R.P.M)

Experiments on RIGID AIRSiHIP R. 29.

EXPERIMENTS on RIGID AIRSHIP R. 29

MeAsurements of Pressure Difference at amidships Airscren.

Fig. 13.

EXPERIMENTS on RIGIO AIRSHIP R. 29. R. 29 (ORIGINAL Fins).

Turving Trials. RUDDERS Clampeo Aft
at 5° Port
Ooservations.

Fig. 14.
EXPERIMENTS on RIGID AIRSHIP R. 29.
R.29. (ORIGINAL FINS).
turning trials.
Rudoers Clampeo Aft
at 10° PoRT:

RaM675. EXPERIMENTS ON RIGID AIRSHIPR. 29.

Fig. 16.

ExpERIMENTS on RIGID AIRSHIP R. 29. R.29(A)- (UPPER FIXED FIN AREA REDUCEDBY 303SQ.FT)
turning trials-
RUDDERS CLAMPED AFT
AT 5° Port.
Observations.

EXPERIMENTS on RIGID AIRSHIP R. 29.

R.29(A)-(UPPER FIXED FIN AREA REDUCEO BY 303 SQ.FT.)

Turning Trials:
Rudoers Clamped Aft at 10° Port:

EXPERIMENTS on RIGID AIRSHIP R. 29
R.29(A)- (UPPER FIXEO FIN AREA REDUCED by 303sq.FT.)

TURNING TRIALS.
RUODERS Clamped AFt at 15° STG

ExpERIMENTS on RIGID AIRSHIP R. 29.
$\frac{\text { R.29.(B) Whol ef Fabric removed from UPper Fixed Fin }}{\text { Turning Trials. }}$
Rudgers Clamped aft at 5° PORT. Observations.

R.\&M. 675

EXPERIMENTS ON RIGID AIRSHIP R. $2 \frac{5}{9}$
R. 29 (B) WHOLE OF FABRIC REMOVED FROM UPPER FIXED FIN.

TURNING TRIALS.

R. $\$ 165$

EXPERIMENTS ON RIGID AIRSHIP R.29. FIG. 21
R.29(B) WHOL E OF FABRIC REMOVED FROM UPPER

Table 12a (see Figs. 9 and 10).
MEASUREMENTS OF PRESSURE DIFFERENCE AT
AMIDSHIPS AIRSCREW.
Calculation of Thrust Coefficient (T_{c}) using Arbitrary Datum.

Expt. No. 100.				Expt. No. 102.			
r / D	* Pressure Difference. (ins. water).	$\mathbf{T}^{\prime} \dagger$		r / D	$\begin{aligned} & \text { * Pres. } \\ & \text { sure } \\ & \text { Differ. } \\ & \text { ence } \\ & \text { (ins. } \\ & \text { water). } \end{aligned}$	T \dagger	
0	-0.67	0		0	-0.42	0	
$0 \cdot 025$	-0.63	-0.050	Engines-	0.025	-0.38	-0.0460	Engines-
0.049	-0.57	-0.090	No. $1=1,200$	$0 \cdot 049$	-0.34	-0.0805	No. $1=$
0.074	-0.49	-0.117	r.p.m.	$0 \cdot 074$	-0.25	-0.0895	stopped:
$0 \cdot 099$	-0.38	-0.121	No. $2=1,200$	$0 \cdot 099$	-0.11	-0.0530	No. $2=1,200$.
$0 \cdot 123$	-0.24	-0.095	r.p.m.	$0 \cdot 123$	$+0.03$	+0.0178	r.p.m.
0.148	-0.11	-0.052	No. $3=1,200$	0:148	+0.19	$+0.1355$	No. $3=1,700$
0.173	$+0.10$	$+0.055$	r.p.m.	$0 \cdot 173$	+0.38	$+0.318$	r.p.m.
$0 \cdot 198$	+0.44	+0.280	Mean $\frac{1}{2} \rho V^{2}=$	$0 \cdot 198$	$+0.64$	$+0.61$	Mean $\frac{1}{2} \mathrm{p}^{\mathrm{m}}=$
$0 \cdot 222$	+0.80	$+0.568$	0.98 ins. of	$0 \cdot 222$	+0.94	+1.00	0.65 ins. of
$0 \cdot 247$	+1.11	+0.880	water.	$0 \cdot 247$	+1.20	+1.43	water.
$0 \cdot 271$	+1.38	+1.20	$V=0.38$	$0 \cdot 271$	+1.41	+1.85	
$0 \cdot 296$	$+1.59$	$+1.505$	$\bar{n} \bar{D}=0 \cdot 38$.	$0 \cdot 296$	$+1.61$	+1.85 +2.30	$n \mathrm{D}=0.31$.
$0 \cdot 321$	+1.76	+1.92	$\mathrm{T}_{6}=0.34$.	$0 \cdot 321$	$+1.73$	$+2 \cdot 68$	$\mathrm{T}_{c}=0.54$.
$0 \cdot 345$	$+1.84$	$+2.04$		$0 \cdot 345$	$+1.77$	+2.96	$\mathrm{I}_{6}=0.54$.
0.370	$+1.75$	$+2.06$	$\mathrm{T}_{c} \mathrm{model}=$	$0 \cdot 370$	$+1.68$	+3.00	T (modely
0.395 0.420	+1.51	$+1.90$	$0 \cdot 39$.	$0 \cdot 395$	$+1.44$	+2.74	$=0.65$
$0 \cdot 420$	+1.07 +0.40	+1.43 +0.57		0.420 0.445	+1.00 +0.41	+2.03 +0.875	
$0 \cdot 468$	$0 \cdot 00$	0.00		$0 \cdot 468$	$+0.10$	+0.226 +0.22	
$0 \cdot 494$	$0 \cdot 00$	$0 \cdot 00$		$0 \cdot 494$	$+0.02$	+0.0474	

* Measured from new datum (see Figs. 9 and 10
$\div \mathrm{T}^{\prime}=\binom{p_{2}-p_{\mathrm{I}}}{\frac{3}{2} \rho \mathrm{~V}^{2}} \times \pi \frac{r}{\mathrm{D}}$

Table 13 (see Figs. 11 and 12).
DISTRIBUTION OF SPEED IN VARIOUS LOCALITIES.

Below Forward Car.		Behind Amidships Radiator.			
$\begin{gathered} \text { Nupt. No. } 103 . \\ \text { Mera Speed } 65 \cdot 0 \mathrm{ft} / \mathrm{sec} . \end{gathered}$		Expt. No. 104. Mean Speed $68.3 \mathrm{ft} / \mathrm{sec}$.		Expt.No. 105 Mean Speed $54 \cdot 2 \mathrm{ft} / \mathrm{sec}$.	Expt. No. 106. Mean Speed $55 \cdot 1 \mathrm{ft} / \mathrm{sec}$.
$\begin{gathered} \text { Position* } \\ \text { (feet). } \end{gathered}$	Speed Ratio. \dagger	Distance below Hull (inches).	Speed Ratio. \dagger	Speed Ratio.	Speed Ratio.
36	1.015	6	$0 \cdot 460$	-	-
36	1.022	9	-	0.575	$0 \cdot 564$
31	1.00	12	$0 \cdot 558$	$0 \cdot 686$	$0 \cdot 624$
31	$1 \cdot 024$	18	$0 \cdot 576$	$0 \cdot 720$	$0 \cdot 720$
26	1-002	24	$0 \cdot 524$	$0 \cdot 631$	0.605-0.628
21	1.01	30	$0 \cdot 594$	$0 \cdot 608$	$0 \cdot 754$
16	$1 \cdot 04$	36	$0 \cdot 690$	$0 \cdot 795$	$0 \cdot 741$
11	$1 \cdot 041$	42	$0 \cdot 665$	$0 \cdot 784$	$0 \cdot 766$
6	$1 \cdot 052$				
1	$1 \cdot 17$				

[^9]Table 14.
VALUES OF ATR DENSTTY ρ.
Standard value for Air Density at $288 \mathrm{~A}\left(15^{\circ} \mathrm{C}\right.$.) and $1,012 \mathrm{mb}$. is 0.00237 .

Sept. 15th, 1919.		Sept. $16 \mathrm{th}, 1919$.		Oct. 7th, 1919.		Oct. 9th, 1919.	
Time (B.S.T.) Hr. Min. Hr. Min.	$\text { (Slugs } \left.{ }^{\rho} / \mathrm{ft} .{ }^{3}\right) .$	Time (B.S.T.). Hr, Min. Hr. Min.	$\left(\mathrm{Slugs} / \mathrm{ft} .{ }^{3}\right) .$	Time (G.M.T.). Hr. Min. Hr. Min.	(Slugs/ft.s).	Time (G.M.T.). Hr. Min. Hr. Min.	$\stackrel{\text { (Slugs } / \mathrm{ft.}{ }^{\text {a }} \text {) }}{ }$.
$1051-1204$	$0 \cdot 00236$	$1017-1028$	$0 \cdot 00235$	$1030-1044$	0.00239	$1039-1058$	$0 \cdot 00242$
$1207-1251$	0.00235	$1041-1130$	$0 \cdot 00234$	$1046-1140$	0.00238	$1100-1105$	$0 \cdot 00243$
$1438-1456$	$0 \cdot 00234$	$1315-1402$	$0 \cdot 00227$	11.46-12 23	$0 \cdot 00238$	$1109-1128$	$0 \cdot 00243$
$1457-1511$	0.00234	$1402-1440$	$0 \cdot 00230$	$1225-1302$	$0 \cdot 00238$	$1142-1148$	$0 \cdot 00243$
$1530-1545$	0.00234	$1448-1455$	$0 \cdot 00232$	$1436-1439$	$0 \cdot 00237$	$1155-1253$	$0 \cdot 00242$
$1547-1553$	$0 \cdot 00233$	$1516-1550$	$0 \cdot 00230$	$1507-1639$	$0 \cdot 00238$	$1256-1351$	$0 \cdot 00241$
$1555-1601$	$0 \cdot 00233$	$1601-1624$	$0 \cdot 00232$			$1427-1433$	$0 \cdot 00241$
$1607-1610$	$0 \cdot 00234$	$1656-1701\}$	$0 \cdot 00233$			$1434-1440$	$0 \cdot 00242$
$1613-1615$	$0 \cdot 00232$	$1703-1709\}$	$0 \cdot 00233$			$1441-1447$	0.00242
$1621-1634$	0.00230	$1745-1751$	$0 \cdot 00233$			$1449-1454$	$0 \cdot 00241$
$1636-1642$	0.00234	$1754-1758$	$0 \cdot 00232$				
$1643-1650$	$0 \cdot 00235$	$1801-1805$	$0 \cdot 00232$				
$1659-1706$	$0 \cdot 00233$						
$1733-1737$	$0 \cdot 00233$						

[^0]: * On a method of estimating, from observations on the slip-stream of an airscrew, the performance of the elements of the blades, and the total thrust of the screw. By Dr. Stanton and Miss Marshall.

[^1]: * R. \& M. 668. Pannell and Frazer.
 \dagger To conform with the usual practice of engineers, engine speed (N) is given in r.p.m.; airscrew speeds (n) are in revs. per sec.

[^2]: * The " turning coefficient" for any particular radder setting on an airship has been defined in R. $\&$ M. 668 as the diameter of the turning circle divided by the length of the airship.

[^3]: * R. \& M. 156. Táble 21.

[^4]: * $\mathrm{R}=\mathrm{C}_{\mathrm{p}} \mathrm{V}^{2} l^{2}$ where l equals the cube root of the volume.
 \dagger The prediction from models of the Resistance of an Airship of the 23 Class. R. \& M. 619. Pannell, Jones and Pell.

[^5]: * To conform with the usual practice of engineers, engine speed (N) is given in r.p.m. ; airscrew speeds (n) are in revs. per sec.

[^6]: * $\mathrm{T}^{\prime}=\pi \times \frac{p_{2}-p_{1}}{\frac{1}{2} p V^{2}} \times \frac{\gamma}{\mathrm{D}}$
 \dagger It maybe remarked that for the highest accuracy in future experiments it will be advisable to travel both pitot tubes.

[^7]: * Turning Coefticient $=\frac{\text { Diameter of Turning Circle }}{\text { Length of Airship. }}$

[^8]: * I denotes r.p.m. of those engines rumning.
 © ${ }^{3}$ htaned during tuming trial with rudder at 5° (see Table 9).

[^9]: * Indimites length of tube between flying head and point at which tube leaves the airship. (See Fig. 1.)
 \dagger Dones the ratio of local speed to the mean speed of the airship.

