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Summary a~¢d Comlusions.--The i~resent paper discusses the effects on the performance of a contra-r6tating 
airscrew pair of the oscillatory nature of the flow round tile blades. The blade sections at a representative radius 
are developed into two infinite cascades in a plane, and the two-dimensional flow in this plane is discussed : for 
simplicity the blade sections are replaced by vortices with strengths equal to tb.e circulations round the blades. 

On this basis, it is shown t h a t i f  the ' two screws a re  to absorb equal powers at equal rotational speeds, tile mean 
circulations round the blades must be equal ; however, this implies, for similar sections and equal chords, a coarser 
pitch setting for the front screw than for the rear. For this condition, the slipstream .velocity has an oscillatory 
rotational component ; its mean rotation is, however, zero. 

In designing a contra-rotating airscrew pair; the most obvious way of assessing mean values for the local wind 
speed and direction is to imagine the number of blades to become infinite, while the blade settings and solidifies are 
maintained;  the slipstreams are then uniform. In  the numerical example given it is shown that  this method is 
quite good enough ; although the local thrust variations are of the order of ~ 20 per cent. from their mean values, 
tt~e latter are less than 0-5 per cent. different from those given by the assumption of an infinite number ot blades. 

No account has been taken in the present paper of the vortices shed by the blades as the circulation changes; 
it may  be anti.cipated that  their effect will be to reduce the magnitude of the oscillatory variations in thrust, etc., 
to a degree defending on the value of the frequency parameter. 

1. I r ~ t r o d u c t i o n . - - I n  a recent paper I the writer has pointed out that  the angles of incidence 
of the blades of either airscrew of a contra-rotating pair vary periodically, owing to the passage 
of the blades through the velocity field resulting from the circulations round the blades of the 
other screw. In that  paper, attention was confined to the possible effects of the oscillation 
in angle of incidence on stalled blade sections. In the present note, the effects in relation to 
unstalled sections are examined rather more fully. 

2. T h e  K a t z m a y r  E f f e c t . - - T h e  Katzmayr  effect has been analysed by Cowley e. I t  may be 
recalled that  Katzmayr  showed that  when an aerofoil is oscillated in a steady stream its 
drag increases ; but when the aerofoil is held stat ionary in an oscillating stream, the " drag ", 
referred to axes fixed in the aerofoil, is reduced and may even become negative. Cowley 
showed that  the reason for this is as follows: when the incidence increases from tile mean, 
the lift force increases and at the same time develops a component directed forward along the 
mean incidence line. When the incidence decreases from the mean, the component of the lift 
force is directed backward, but  since the lift is now reduced, the magnitude of the backward 
component is less than that  of the previous forward component, and on the average there is 
a forward component opposing the drag force. The effect may be quite large; for example, 
in the case of one aerofoil of normal section and infinite aspect ratio (Section E of the family 
of airscrews 3) the mean " drag " is zero at a mean. " lift " coefficient of 0.7 when the incidence 
oscillates sinusoidally with an amplitude of about -4- 4 deg. 

In practice, it is of course usually the case (e.g. in flutter) that  the aerofoil is oscillating in 
a steady wind, so that  the drag increases. In the case ~f contra-rotating airscrews, however, 
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it is the direction of the relative wind which changes, and therefore the Katzmayr  effect might  
be expected to occur. 

As a very simple illustration of the effect in relation to an airscrew, consider the blade section 
/x, shown in Fig. 1. OA is normal  and O B  parallel to the 

0 B 
FIG. 1 

plane of the airscrew disc;  the resultant  wind has 
velocity W and makes an angle ~ with OB. If the 
lift and drag coefficients of the section corresponding 
to the angle 6 are CL and C j,, then by resolution of 
the forces along OA and 013 the thrust  and torque 
grading for the screw, according to the formulae of 
the vortex theory, are given by 

2 d T  
, p I I/'ZNC dr- 

2 dO 

-= C~. cos 6 -- C~, sin 6. 

-~ C L sin ~ + C~) cos ~. 

Suppose now tha t  ~# is increased by e ; it will be assumed tha t  W is unchanged in magnitude.  
The blade incidence is therefore decreased by ~; if the slope of the curve of lift coefficient 
against incidence (assumed linear) is a0, the new lift coefficient is CI,--  a0.~. If ~: is not  very 
large the change in C~, is unimportant ,  and we obtain in place of (1) 

2 d T  
pH/~Nc dr - -  (C~ --  aoe) cos(6  2_ c ) - - C  va in  ( 4 ' +  e), 

. . . .  ' ( 2 )  

2 dQ __ (C L _ aoe) sin (~ @ e) -~ C v cos (~ + ~). 
II: 2Nc3" dr 

%ltppose that  regimes of flow represented by e positive and negat ive occur in alternation,  
changing abrupt ly from one to the other after equal t ime intervals. The average values of 
thrust  and toique grading are then given by the ar i thmetic  mean of equations (2) and the same 
c'~iuations with the sign of e changed. To second order in e these means are 

2 dT  __ C, cos q~ -- Cz, sin ~ -t- ~2 { a0 sin~ -- ½(C L cos~b -- C~) sin~) / 
p H:'-"A.'c dr " j 

/ 2 dO - - C  z sin~b -- C ' v c o s 6 - -  e 2 a 0cos~-}-  .}(C L s i n 6 - S C D c o s ~ ) j  
?H'"-Ncr d r  - ' ' 

If ,' varic.a sinusoidally instead of abruptly, the coefficients of e ~ in these equations are halved. 
However,  ur~der all operating conditions (except perhaps near static, when 6 is small and C c may  
be large) the expressions in braces are both  posi t ive;  the effect of the oscillation is therefore 
to increase the thrust  grading while decreasing the torque grading. 

On consideration it will be evident  that  the energy required to produce the apparent  increase 
in efficiency is provided by the oscillating airstream ; and in the case of a contra-rot~iting pair 
of screws, this energy must  be supplied by the other screw. On tile whole, therefore, it is not  
to be expected tha t  the oscillatory effects discussed above can give rise to an overall increase 
in efficiency*; the work done against profile drag cannot  be avoided. Nevertheless, the 
oscillations evident ly  affect the thrust  and torque grading, and an investigation of the mutua l  
interactions of the blades is therefore desirable. 

* There will, however, be a gain in efficiency due to reduction in slipstream rotation. 



3. T h e  Cascade A n a l o g y . - - C o n s i d e r  a pair of contra-rotat ing screws each having N blades ; 
take  a cylinder coaxial with the screws and of radius r. I t  will be assumed tha t  there is no 
component  of velocity normal  to the surface of this cyl inder :  this is the assumption of the 
vortex theory  of airscrews, which has now been superseded;  however, it is approximate ly  
true except when the rate  of advance is high and the number  of blades small. The performances 
of the blade sections at the  surface of the cylinder can be de termined by developing the cylinder 
into part  of an infinite plane and considering the two-dimensional  flow round the two infinite 
cascades into which the blade sections develop. 

A s  an approximation,  the blade sections will be replaced by vortices with s trengths equal to 
the  circulations round the sections. Consider the single infinite cascade of vortices part  of 
which is shown in Fig. 2. 
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z(ac, 

K 

' ) K  

2x; 

Each vortex is of s t rength K (positive when the circulation is clockwise) and they  are disposed 
in the z-plane at  the points z --  0, z = + i s ,  z = ~ 2is ,  . . . ,  where s -= 2 a r / N .  The velocity com- 
ponents  at any  point z are therefore given by  

2~ z q- z -4-  i~  4-' z - - i s  + " "  - -  2s coth , , . .  " (3) 

o r  

K sin 2a~ 7 K 
¢~ --- 2s (cosh 2~8 --  cos 2~?) ~ 2s f ( $ '  '?) . . . . . . . . .  (4) 

and 

K sinh 2~z8 K F ( 8 ,  ~l) . . . . . . . .  (5) 
v = 2s (cosh 2a8 --  cos 2arl) - 2s 

where / o = x/s ,  ~ = y / s .  
(72193) A'.' 



4 
The local velocity components  at any vortex due to the remaining vortices of the cascade 

are, by symmetry ,  zero. To check this, superpose on the system of Fig. 2 a vortex of s t rength 
--  K at the origin • the velocity components  then become, by (3) 

-2s coth s -  2~z 2s coth ~-  -~z I" 

The limit of this expression as z becomes indefinitely small is zero. 

4. Iustantaneous Velocity Components for the Double Cascade.--In §§4-6 we shall consider 
only the conditions which,exis t  at any given instant,  so that  the variation of c o n d i t i o n s w i t h  
t ime will not enter into the discussion. 

The two cascades of vortices representing the blade sections of the contra-rotat ing pair are 
shown in Fig. 3. The distance between the planes of the airscrew discs is h ;  each cascade of 
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vortices has the spacing s. At the given instant,  take the y-axis along the front cascade, with 
one vor tex at the origin ; let one vortex of the back cascade be at the  point  (h, y). Suppose 
the vortices of the front cascade each to have s t rength K 1 and those of the rear cascade -- Ks, 
and let the speeds Of the two cascades in the positive direction of y be - - r f ~ l  and rf~2, 
respectively. 

On the  instantaneous velocity field due to the two cascades, superpose a uniform velocity 
having components  U, V in the directions of x, y, respectively. The component  U is the usual 
axial velocity component ,  and will be assumed to include the axial interference velocity. The 
component  V can he determined from the condit ion tha t  far in front of the two cascades, 
i.e. at x -- --oo, the total  resultant  flow must  be purely real, since there is no rotat ion in the  
s t ream approaching an airscrew. The total  imaginary component  at x = -- oo is, on use of (3), 

whence 

K1 K 2 
- -  

V -- KS -- K1 . . . . . . . . . . . . . .  ( 6 )  
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We may  now write down the velocity components  at any point  of the field, and in particular, 
may  evaluate tile velocity components  at any vortex due to all the remaining vortices of both  
cascades and to the uniform velocity. Thus at the point  (h, y), there is no contr ibut ion from 
the  other vortices of the second cascade, and there are contr ibutions given by (4) and (5) due 
to the first cascade : there are also contr ibutions U and V, where V is given by (6), from the 
uniform velocity. These are the total  contributions to the velocity components  relative to 
tile fixed axes. Relative to the vortex itself, however, there is an addit ional  component  equal 
to the reversed translat ional  velocity of the  vortex, i.e. a contr ibut ion -- rf2 2 in the positive 
direction of y. Hence if the components  relative to the vortex are u2, % 

u,. = U + @ f ( n ) ,  • . . . . . . . . . . . . .  (7) 

v2 = - -  rf~2 + K2 - -  K1 K1 
2s  2s  F(,~) . . . . . . . . .  (S) 

where f(v), F(,/) are wri t ten  for f($, ~]), F(~, *l) when ~ assumes the constant  value h/s. 
In a similar way, the velocity components  relative to the vortices of the front cascade are 

readily shown to be 

U 1 ~-- U - - 1 -  - - ~ f ( ~ ' ] ) ,  • . . . . . . . . . . . . .  (9)  

Vl = r~-'~l - t -  Ko -- K 1 K~ 
" 2s 2s F(,~) . . . . . . . . . . .  (10) 

If the  resultant  of Ul, v 1 is W 1 and of u2, v 2 is W~, and if these resultants make angles ¢1, ¢2 with 
the  planes of the screws, then  (see Fig. 4) 

I *  z 
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FIG. 4 

and 

u 1 = W l s i n ¢ l  . . . . . . . . . . . . . . .  (11) 

V 1 = W 1 c o s  ¢1  . . . . . . . . . . . . . . .  (12) 

u 2 = W~ sin ¢2 . . . . . . . . . . . . . . .  (13) 

- v2 = W2 c o s  ¢2 . . . . . . . . . . . . . . .  (14) 

the negative sign being introduced in (14) so tha t  ¢3, as is conventional,  shall lie in the first 
quadrant .  
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5. fnstautaueous Thrust  and Tor que . - -The  lift  force on a v o r t e x  of s t r e n g t h  K in a s t r e a m  of 
v e l o c i t y  W is p W K  a n d  is a t  r igh t  angles  to  t he  d i r ec t ion  of W "  t he  d r ag  force is zero. 
Acco rd ing ly ,  t he  force c o m p o n e n t s  a long  t h e  t h r u s t  axis due  to  t he  N vor t i ces  r e p r e s e n t i n g  
the  sec t ions  of each  screw give  t he  t h r u s t  g r a d i n g s  as 

d~[ 1 = 9 N W I K 1  cos ¢1 
dr 

_---- pNKIv l ,  

dT2 _ pNK2( - -  @,  
dr 

on use  of (12) a n d  (14). Si lni larly,  t he  t o r q u e  g r ad ings  are 

, dQ~ _-_- p r N K l u l ,  
dr 

_dQ~_ = prNK2u 2. 
dr 

S u b s t i t u t i o n  f r o m  e q u a t i o n s  (7) to  (10) gives 

1 d T  1 _ r t~ lKl  + K 1 ( K  2 --  K1) K 1 K  ~ 

K , ) ( K  2 - -  K1) K1K2 1 d T  2 = r Q 2 g  2 -  - - + . . . . . . .  F(O) . . . . . . .  (16) 
oN dr 2s 2s 

1 dQi K21K~ f(,j ) , (17) and prN dr .... U K I  + . . . . . . . . . . . .  

K tK2 ~l 
1 d G  .... -+ - 2 s  . . . . . . . . . . . . .  (18) prN dr 

T h o u g h  t he  e q u a t i o n s  so far  obtab~ed re la te  on ly  to  i n s t a n t a n e o u s  cond i t ions ,  some  i n t e r e s t i ng  
d e d u c t i o n s  m a y  be m a d e  f r o m  t h e m .  

T h e  i n d i v i d u a l  t h r u s t  g rad ings  due  to  each screw ifl t h e  absence  of the  o the r  are f o u n d  b y  
p u t t i n g  K, z = 0 in (15) a n d  K 1 = 0 in (16). T h e  resu l t s  are 

1 d7" l __ r.Q1K1 K12 
pN  dr 2s ' 

1 d T  2 K22 
pN  dr . . . .  rg22K~ - -  2s ' 

a n d  these  equatioI~s are, as w o u l d  be expec t ed ,  i n d e p e n d e n t  of ~j. T h e  second  t e r m  on t he  
r i g h t - h a n d  side in the  two  express ions  r ep re sen t s  t he  loss in t h r u s t  due  to  s l i p s t r e a m  ro t a t i on .  

T h e  t o t a l  t h r u s t  g r a d i n g  due  to  the  two  screws in t he  p resence  of each  o t h e r  is o b t a i n e d  b y  
a d d i n g  (15) a n d  (16) ; it is t he re fo re  g iven  b y  

! d ( r~  + T2) = r f ~ K ~  + r~.zK 2 - -  (K1 - -  K2)2 . . . .  (19) 
pN dr 2s " " 

This  exceeds  t he  s tun  of t he  i n d i v i d u a l  c o m p o n e n t s  g iven  a b o v e  b y  K1K2/s;  t h e  increase  is 
due  to  t he  r e d u c t i o n  in s l i p s t r e a m  ro t a t i on .  T h e  m a g n i t u d e  of t he  s l i p s t r e a m  r o t a t i o n  is 
d e t e r m i n e d  b y  t he  ve loc i ty  para l le l  to  0 y  at  x = + oo • th i s  is 

V --  K1 K 2 _ K2 - -  K~ . . . . . .  (20) 
-2s- + 2s s ' " . . . . .  
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on use of (6). If K~ = K 2, there is no sl ipstream rotation,  while the effÉciency of the system 
under  consideration is evident ly  a maximum.  Moreover, when K~ = K 2 there is no torque 
reaction from the  screws, as is evident  when (18) is subtracted from (17).* 

We may  also compare the contra-rotat ing pair with a pair rotat ing in t h e  same sense. In 
practice such a pair would be locked together,  and would probably be identical  and coplanar ; 
however, the general result can be simply obtained by  reversing the signs of both  f~z and K z in 
the foregoing discussion. As regards the thrust  'grading, this is, by (19) 

1 d(r~ + T2) _ r f~K1  + rf~zK2 (Ka -~- K2) 2 
pN dr 2s . . . . . .  (21) 

This thrust  is less than  the  sum of the  individual  thrusts by the amount  K1K2/s ; the decrease 
is due to the  increased slipstream rotation, the magni tude  of which is determined by (20) as 
a velocity --  (K 1 -¢- K2)/s parallel to the planes of the screws. 

6. Conditions .for Equal Power Absorption.--The most  common operating condit ion for a pair 
of contra-rotat ing screws would probably be tha t  for which the power input  to each is the  same. 
The rates of absorption of power by the sections are f~ldQ~/dr and flflQz/dr ; if these are equal  
then  by (17) and (18) 

K1K2 .,, , 0 =  U ( f ~ a K 1 -  f2zKz) + ( g 2 ~ -  D,a) ~ s  j l , l) . . . . . . .  (22) 

There is no unique solution of (22), but  an obvious case which satisfies the equat ion is that  for 
which 

~1 = rQ2 = £2, • . . . . . . . . . . . . . . .  (23) 

K s = K z = K . . . . . . . . . . . . . . . . .  (24) 

These yield the  advantages  specified in §5; and in addit ion the engines deliver equal power 
at equal rotat ional  speeds. 

It  should be remarked,  however, tha t  even when both  conditions (23) and (24) are satisfied, 
v 1 and - - v  2 are not  equal, though ul and u 2 are (see equations (7) to (10)). It  follows tha t  
the  angles ¢, the  resul tant  speeds W, and the lift coefficients, are all unequal  for the front and 
back blades. Subst i tut ion from (23) and (24) in (7) to (10) and use of (11) to (14) gives 

2sU + Kf(v) . . . . . . . .  (25) 
tan ¢2 -- 2sr f~- -  K F ( ~ ) '  " . . . . .  

2sU + Kf(v) 
tan ¢~ = 2srf~ + KF(v)  " 

Now for all values of v, F(V) is .positive; 

. . . . . . . . . . . . . .  ( 2 6 )  

circulations and chord, CL1 > CL2. 
the  front screw as well as a larger 
pi tch set t ing than  the rear screw. 

Again, though the torques are equal and opposite, the thrusts  are unequal.  
from (23) and (24) in (15) and (16) gives 

pN dr 

hence ¢2 > ¢2, also W 2 > W~, so tha t  for equal 
For similar sections, this implies a larger incidence for 

angle ¢, so tha t  the front screw always requires a coarser 

K 2 
1 d T 1  - -  r f ~ K  - -  - -  F ( ~ )  

pN dr 2s ' 

K ~ 1 d T  2 _ r f2K + ~  F(~), 

so tha t  the thrust  of the rear screw exceeds tha t  of the front screw. 

Subst i tut ion 

..  (27) 

. .  ( 2 s )  

* Tile torque reaction is given by the difference, and not the sum, of (17) and (18), since each component is 
measured in the sense of rotation of its own screw. 



8 

7. Cond i t i om  D u r i n g  M o t i o n . - - T h e  analysis Of §§4-6 is concerned with the ins tantaneous  
comlitions occurring during mot ion of the screws ; and the results of §6, based on the condit ions 
(2"~) and (24), only apply at the given instant .  I t  is evident ly  possible to main ta in  the 
condition (23) th roughout  the motion,  but  the magni tudes  of the circulations K 1 and K 2 depend 
(m the mutua l  interact ions of the blades, and would be expected to va ry  differently th roughout  
the cycl~ 0 < ~j < 1. We now proceed to examine this question. 

i f  the pitch set t ing of a blade of the front screw, referred to its no-lift line, is 01, the incidence 
relative to this line is 01 -- ¢~. The lift coefficient is accordingly 

Q = a 0 sin (O 1 --  61) . . . . . . . . . . . . . . .  (29) 

In equat ion (29) the ,,dope of the lift curve at no lift is wr i t ten  a 0 ; the theoret ical  value of a o 
for au isolated aerofoil is 2n. For  aerofoils in cascade, this is modified a, but  in the case of 
airscrew blade sections the spacing is so wide tha t  the theoret ical  value would be only very  
slightly less than 2~. However ,  in practice, for an isolated aerofoil under  s teady conditions, 
a.  is only about  90 per cent. of the theoretic.al value. Moreover, it has been shown ~ tha t  the 
f requency parameter  of the oscillatory changes for a contra- ro ta t ing  airscrew pair is of the 
order of uni ty ,  so tha t  a reduct ion in a 0 of the order of 40 per cent,  m a y  be expectedS:  this 
reduct ion,  however,  would only apply to the var iat ions from the mean  incidence. For  
simplici ty this complicat ion will be omi t ted  in the present  paper,  but  its effect would probably  
be to reduce by 3O-4O per cent.  the magn i tude  of the  oscil latory variat ions in thrust ,  etc., 
found in the present  discussion. 

Since the circulation round  a section of the front screw is K1, equat ion of the expressions 
for tile lift force gives 

1 2 . . . .  p W 1 K 1  : 2p1~/1 clCL . . . . . . . . . . .  (30) 

which with. (29) reduces to 

K 1 = a ° q  W 1 sin (01 - -  (~1)" 
2 

Similarly, for the sections of the rear  screw, 

(31) 

K2 - -  a°c2 W 2 sin (02 --  62). (32) . .  . . o o . . . o . . 

If we expand the sines in (31) and (32) and use equations (7) to (14) we obtain the following 
equat ions for K 1 and K~ 

where 

A1K1 + BIK~ = C1 . . . . . . . . . . . . . . . . .  (33) 

A2K2 + B2K1 = Ca . . . . . . . . . . . . . . . . .  (34) 

4s 
A 1 -- + sin 01, . . . . . . . . . . . . . . . .  (35) 

aoCl 

4s 
A 2 - + sin 02 . . . . . . . . . . . . . . . . .  (36) 

aoC 2 

B 1 - - - f  COS 01 @- (/L" __ 1) sin 01 . . . . . . . . . . . . .  ( 3 7 )  

B~ = f c o s  02 -- (F  + 1) sin 02, • . . . . . . . . . . .  (38) 

(:1 - 2 s ( r ~ l  sin 01 --  U cos 01) . . . . . . . . . . . . .  (39) 

C a = 2 s ( r f ~  sin 02 --  U cos 0~) . . . . . . . . . . . . .  (40) 
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In these equations the functional dependence of f and F on ~ has for convenience been omitted. 
The solutions of equations (33) and (34) are 

A 2 C 1 -  B1C~ . . . .  (41) 
K1 = A1A2 _ B1B~, • . . . . . . . . .  

A 1 C ~ -  B~CI . . . . . . .  (42) 
K 2 = A1A2 - B1B~ . . . . . . . .  

Equations (41) and (42) determine the values of K1 and K s for any given values of blade setting, 
rotational speed, etc., as functions of ~, which defines the positions of the blades relative to each 
other. I t  will be seen that  K1 and K 2 depend on ~ through the quantities B 1 and B 2, which alone 
involve the functions f and F of ~. 

When tables or curves of K~ and K s have been found as functions of ~, these can be used 
in conjunction with equations (15) to (18) to determine the variation of thrust  and torque 
grading with ~. 

We may remark that ,  to determine the performance of either screw in the absence of the 
other, it is sufficient to imagine the chord of the other blade to become indefinitely small. 
Thus, if c a is made indefinitely small, the quant i ty  A 2 tends to infinity. Equation (42) then 
shows that  K s tends to zero, while (41) reduces to 

K1 = C1/A1, . . . . . . . . . . . . . . . .  (43) 

which is, as would be expected, independent of v. 

Equations (41) and (42) also show that  it is not possible to maintain equality of circulation 
throughout the cycle 0 < v < 1. The conclusions of §6 accordingly require further examination. 
I t  is, however, evident at once that ,  since th (c i rcu la t ions  are not always equal, slipstream 
rotation cannot be always absent, t f  the mean torques on the screws are equal and opposite, 
the mean slipstream rotation must evidently be zero, but  it is now apparent that  in this case 
the angular velocity of the slipstream will oscillate about its mean value of zero. It  is 
interesting to note that  as a result there will probably be a true Katzmayr  effect on the wing 
roots and tail surfaces of an aircraft with contra-rotating screws: these surfaces will tend to 
extract any oscillatory energy from the slipstream. It  is also conceivable that  breakaway on 
wing root surfaces which might bepresent  in a steady stream would be removed by the known 
unstalling effect of oscillatory motion 1. 

8. Conditions for Equal Mean Power A bsorption.--We now proceed to examine afresh the 
conclusion of §6, that  for the two screws to absorb equal powers the front screw requires to be 
set at a coarser pitch than the rear screw. This conclusion of course implies equal rotational 
speeds and chords ; we shall therefore use equation (23), and shall write c for c I and c~. 

The condition for equal mean power absorption is evidently that  the time integrals of the 
rates of power absorption shall be equal over a complete cycle. Since the speeds of rotation 
are constant with time, the time integral may be replaced by a space integral, so that  the 
condition is 

f l  dQ~ f l  dQ., d,~" o f~ - - 5  d~ = o f  2 - d ~  

On use of (t7) and (18), this equation reduces simply to 

f l  0 Kld~ = flK2d~], • . . . . . . . . . . . . .  (44)  

which is the generalisation of equation (24). We may note that  since the mean powers are 
equal and the rotational speeds are equal, the mean torques are equal, so tha t  the mean slipstream 
rotation is zero. 
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\¥e  m a y  regard the condit ion (44) as fixing some relation between the quanti t ies  defined by 
equat ions (35) to (40). In practice this relat ion would usual ly  be between the blade sett ings 
01 and 02. In a pract ical  application of the formulae,  the dimensions of the screws and f2 
and U would be regarded as fixed, and (41) and (42) would then be used to obtain curves of K 1 
and K 2 as functions of ~j for a range of values of 0, and 09. ; corresponding pairs of values of 01 
and 02 would then be chosen from the curves of K 1 and K~ which satisfied (44). 

To obtain more general  insight into the question of blade settings, however,  we shall 
in t roduce a simplification into equat ions (41) and (42). Suppose both  blade settings (which are 
referred to the no-lift lines) to be reduced unt i l  the  thrus t  on each vanishes ; there is then no 
circulation round  either blade and no interact ion between them. Equat ions  (33) and (34) 
then show tha t  C 1 ---- C 2 - - 0 ,  so that ,  by (39) and (40) (and on use of (23)) both  blade sett ings 
become equal  to ¢o, where 

W o sin ¢0 = U, • . . . . . . . . . . . . .  (45) 

W o cos ¢o --  r f 2 ,  • . . . . . . . . . . . . .  (46) 

and W,, is the resul tant  of U and rf2. 

For  the general  settings, let 

0~ - - ¢ o  q- d01 . . . . . . . . . . . . . . .  (47) 

= ¢0 + . . . . . . . . . . . . . . .  (48) 

and let a01 and d0,~ be small. If these equat ions are used to subst i tute  for 0~ and 02 in 
equat ions (35) to (40) then to a first approximat ion  it is found tha t  

K ~  - C ( A  ~01 - -  .B1~02) . . . . . .  (49)  
A e __ B I B  2 ' • . . . . .  

= C(A  - -  . . . . . .  (50) 
A "  - -  B 1 B  2 ' " . . . . .  

where A -- sin ¢o q- 4s . . . .  (51) - - - - )  . . . . . . . . . .  

ao6 

13.1 --=-f cos ¢o -- sin ¢o + F sin 6o, • . . . . . . . . .  (52) 

B 2 - - = - f c o s ¢ o - s i n ¢ o - F s i n ¢ o ,  • . . . . . . . . .  (53) 

C = 2 s W o  . . . . . . . . . . . . . . . . .  (54) 

If now we subst i tute  K 1 and K 2 from (49) and (50) in the condit ion (44) and rearrange,  we 
obtain 

f f l  A q _ B 1  1 A + B 2 d,,? = d02 dv . . . . . . .  (55) 
~°1 o A 2 - -  B 1 B 2  o A " - -  B I B  ~ 

On inspection of these equat ions it will be evident  tha t  in all pract ical  cases A e - -  B~B , ,  is 
positive and tha~ A -t- B 1 and A + B~ are also positive, while 

A ÷ B ~ > A - t - B  2 

for all values of ~, since F is positive. I t  follows tha t  the integral  on the right of (55) is greater  
than  tha t  on the left ; and hence 

> . . . . . . . . . . . . . . .  (56) 

This supports  the conclusion of §6. 
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We may  evaluate the integrals  in (55) approximate ly  as follows. We first note tha t  in view 
of (3), (4) and (5) 

fl(.£i~" - -  i f )d~ 7 = f lcoth(ZZ)d. .v ,  1 f~+i= - -  d 
o s < :  : ,  

since ~ is constant .  This gives 

f l ( F - / f )  dr1 -- 1 , /sinh(~,$ + i = ) )  1 log e;=-- - 1. 

Hence = ,  1 . . . . . . . . . . . . . . . . . . .  (57) 

f'fd   = 0, . . . . . . . . . . . . . . . . . .  ( a s )  
0 

independent ly  of the value of 2. I t  follows tha t  the mean values of B 1 and B 2 in (52) and (53) 
are 0 and --  2 sin ¢0, respectively ; while from the forms of F and f it is evident  tha t  the varia- 
tions of B 1 and B 2 from these means will not  be more than  a uni t  or two unless ~ is very  small. 
On the other hand,  since s/c is usual ly large, A 2 will be of the order of 102 ; accordingly we m a y  
without '  much  error replace B 1 and B 2 in the denominators  of the integrals in (55) by  their  
mean values. The equat ion then gives at once 

001 _ 01 -- ¢o _ 4s -7- aoC sin ¢o . . . . . . . . . .  (59) 
602 02 -= ¢0 4s --  aoC sin ¢0 '  

in confirmation of (56). This simple equation gives fair agreement wi th  the more exact  results 
obtained by  the method indicated earlier. 

9. A Comparisoi,~ between Oscillatory and Steady Motion Cases.--In the discussion of the 
K a t z m a y r  effect in §2 it was assumed tha t  the incidence was the only variable. In  the case 
of a contra-rota t ing airserew pair, the local veloci ty is also a variable ; and from the form of 
the equations it is evident  tha t  the analyt ica l  determinat ion of the mean incidence and speed 
presents considerable difficulty. The simplest way  of assessing mean values for these quanti t ies ,  
and the way  which would probably  be used in determining blade sett ings for a cont ra- ro ta t ing  
pair, is to imagine the number  of blades to become indefinitely large, while the solidity remains 
constant .  The airsci-ews then become sheets of vort ici ty,  and the velocities on each side 
become independent  of circumferential  displacement.  

In  the cascade analogy, it is evident  that ,  instead of reducing chord and spacing indefinitely,  
the same result m a y  be achieved by  increasing indefinitely the distance h between the cascades. 
In  the present  discussion we shall assume tha t  the chords and rota t ional  speeds of the two 
cascades are respectively equal , -and  tha t ,  when h is indefinitely large, the blade set t ings are 
such tha t  there are equal circulations K 0 round each i the power inputs  are then equal (see §6). 

Equat ions  (4) and (5) show tha t  when $ becomes indefinitely large, f becomes zero and 
F u n i t y ;  these values agree wi th  (57) and (58). On subst i tu t ion in (37) and (38) we obtain 

= 0 . . . . . . . . . . . . . . . . .  ( 6 0 )  

B 2 = - 2 s i n  0 2 - - S  . . . . . . . . . . . . .  (61) 

and when these values are subs t i tu ted  in (41) and (42) these equat ions readily yield 

A1K o = C~, 

oL in fall, 

+ sin 01 K o -~ 2s(r~Z sin' 0~ --  U cos 01), 
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and (A 2 --  S) K o = C2, 

(4s  ) . . . . . .  
or -- si~ 02 K0 = 2s(rf~ sin 02 --  U cos 02). 

t~0C 

Equa t ion  (62) is the same as (43), which defines the circulation round  the front screw blades 
when the rear  screw is removed.  Equat ions  (62) and (63), in the present  i n s t a E e ,  respect ively 
define 01 and 02 for a given value of K 0. 

\\Then 01 and 02 have been fixed in this way, the distance h m a y  be made  to assume its actual  
finite value ; in equat ions  (35) to (40), A 1, A 2, C 1 and C, are then given fixed quanti t ies ,  while 
B, and B e are given functions of ~. Accordingly,  K 1 and K 2 are given as functions of ~; by (41) 
and (42), and m a y  be compared  with  the s teady value K 0 they  assume when h is infinite ; while 
the differences between ./t20 and the integrals of K 1 and K 2 over the range 0 to 1 of v m a y  be 
regarded as the " effect " of the oscil latory charac ter  of the motion.  When  K 1 and K 2 have 
been de termined  as functions of ~, the oscillatory variat ions in th rus t  and torque grading m a y  
be found from equat ions (15) to (18). 

In view of (62) and (G3), the equat ions (33) and (34) become 

A 1K1 4: B 1 K  2 = A 1Ko, . . . . . . . . . . . .  (64) 

A 2 K  2 + B 2 K  1 =- (A 2 - -  S)  K o, . . . . . . . . . .  (65) 

which yield K 1 _ _  A , A  2 - -  B I ( A  2 - -  S )  . . . . . . . . . . . .  (66) 
Ko A r A 2  - -  B 1 B  2 ' 

K2 : A I A 2  - -  (Be + S ) A ,  . . . . . . . . . . . .  (67) 
K o  A I A 2 -  B , B  2 ' 

which are ra ther  more convenient  for computa t ion  than  (41) and (42). 

We m a y  obtain general  insight into the effect of the oscillatory charac ter  of the motion by  
considering the case where h is large but  finite. By  equat ions (3) to (5) 

F - -  i f  = coth ~ (~ -}- i~) 

_ 1 + e -  2~(,~ + ,~) . . . . .  ( 6 8 )  
- 1 - e -  2"(e + i.) . . . . . . . . . .  

If h is large, we m a y  wri te  

e - 2 ~  =-- s ,  . . . . . . . . . . . . . .  ( 6 9 )  

where e is small ; to the second order  in s, (68) then becomes 

F - -  i f  = 1 + 2ee  -2'~i~ @ 2 e % - ~ %  

or F --  1 = 2e cos 2~v + 2e 2 cos 4~1 . . . . . . . . . . .  (70) 

f---- 2e sin 2~v + 2e 2 sin 4 ~  . . . . . . . . . . .  (71) 

We shall neglect powers of e higher than  the second in the following analysis. Equat ions  (37) 
and (38) give, in view of (70) and (71), 

B 1 ~--- 2e sin ( 2 ~  + 01) @ 2e 2 sin (4~rj + 01), . . . . . .  (72) 

B 2 ---~ - -  S @ 2s sin (2zV --  02) + 2e 2 sin (4zV -- 02) . . . . .  (73) 

Wri te  K 1 = Ko(1 + alS - t -  bts2), . . . . . . . . . . . .  (74) 

K2 = K0(1 -F a2e + b2e 2) . . . . . . . . . . . . .  (75) 
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We now subst i tute  from (72) to (75) in equations (64) and (65) and expand to second order 
in e ; equat ion of the coefficients of the powers of s in the two equations yields four equations, 
,the solutions of which are given by 

½A1A#~ = - - A  2 sin (2~7 + 0~), . . . . . . . . . . . .  (76) 

½A1A2a2 = --  A1 sin (2~7 -- 02) --  S sin (2-7 + 01), . . . . . .  (77) 

1A 2A 2~ AIA2 ~" sin (4m7 + 01) + A1A2{  cos (0 m + 02) 

- -  cos (4~7 + 01 -- 02) } + A~S{  1 -- cos (4z7 + 20,) ]-r, "" (78) 

I A 2A 2~ _ ~ . 1  ,.2 ~2 = AI2A2 sin (4~7 -- 02) -- A1A2S sin (4~7 + 0,) 

-Jr- A I ( A  2 ~- S) { cos (01 -~ 02) - -  COS (4=7 + 01 - -  02) } 

+ s2  { 1 - cos + 20 ) } . . . . . . . . . . .  (79) 

Equat ions  (74) to (79) define the  way in which K 1 and K 2 vary with 7. We may  use these 
equations to find how the mean values for a complete cycle depend on ~ ; from (74) and (75) 

1 f l  f l  f lb ld7  ' Kid7 ---- 1 + e a i d 7  -~- e2 . . . . . . . . . .  (80) 
Ko o o 

K2dfl = 1 + e a2d 7 + ee . . . . . . . . . .  (81) 
Ko o o 

Equat ions  (76) and (77) show tha t  the coefficients of ~ in (80) and (81) both  van i sh ;  the 
difference between K 0 and the mean  values of K 1 and K 2 is thus of the second order in e. 
We find 

K~d,~ = 1 + A1A 2 cos (O 1 + O2) + A2S (82) 
Ko o A12A2 ~ ' " . . . . .  

1 f l  '2s2  1 A I ( A 2 + S )  cos(O 1 +  02) + S  2/ ° . (83) 
Ko oK2d~ = 1 + A12A22 j . . . .  

The coefficients of s 2 in these equations are evident ly  small quan t i t i e s ;  accordingly it m ay  
be ant ic ipated tha t  the mean values of the circulations will differ only very  slightly from the 
s teady value of K 0. 

Except  for the radii at which the sum of the blade angles considerably exceeds 90 deg., bo th  
coefficients of s 2 in (82) and (83) are positive. We may  accordingly conclude tha t  the  effect 
of the oscillations is to increase t.he mean  circulations. The increases, however, are not  equal 
for the front and back screws. 

By subst i tut ion from (74) and (75) in equat ions (15) to (18), and use of (76) to (79), the 
variat ion and mean values of thrust  and torque may  be obtained also. It  will be sufficient 
to remark  here t h a t  the changes in mean thrust  and torque grading are also of the second 
order in s. 

10. A Comment on the Theory . - - In  the analysis of the present paper, it has been assumed 
tha t  the  s t rength  of a vortex in a perfect fluid can change. This ,  of course, is not  strictly 
va l id ;  however,  if it is assumed, it must  also be assumed tha t  vort ic i ty  is shed when the  
circulation changes ; the total  s t rength of the vortices shed in a given t ime being eq~tal to the  
change in circulation. In  the present theory,  no account has been taken of the velocities 
induced by the  shed vortices ; however,  if the variations from the mean circulation are small, 
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the  velocities induced  by  the  shed vort ices  will also be small.  I t  follows t ha t  the  present  
t heo ry  can only  be expec ted  to app ly  when  the  d is tance  be tween  the  screws is sufficiently large 
for the  var ia t ions  in c i rculat ion to be reasonably  small  c o m p a r e d  wi th  the  m e a n  circulat ion.  

I t  was r e m a r k e d  in §7 t ha t  the  m a g n i t u d e  of the  osci l latory var ia t ions  in th rus t  and  to rque  
would  p robab ly  be reduced  by  the  f requency  p a r a m e t e r  effect. This  effect results  f rom the  
velocities induced  by  the  vort ices shed by  an aerofoil in osci l latory m o t i o n ;  it therefore  seems 
possible t h a t  the  effects due  to the  shed vort ices  m a y  be represented,  wi th  sufficient accuracy  
by  a reduc t ion  in the  amp l i t udes  of the  forces cor responding  to the  given f requency  paramete r .  

11. A Numerical Example.--The numer ica l  values a ssumed  for the  present  i l lus t ra t ion are 
based on d a t a  appl icable  to a par t i cu la r  con t ra - ro t a t ing  airscrew pair. The  condi t ions  assumed  
cor respond  ve ry  rough ly  to cruising at 240 m.p .h ,  at 15,000 ft. The  numer ica l  values a d o p t e d  
are 

N = 3  

c =- 0 . 7  ft. 

h = 0 .75  f t .  

r - - 4 f t .  

s =: 2=r/N --  8 .379  ft. 

2 ~  = Nh/r = 0 .5625 

U = 360 ft./sec. 

rt~ = 540 ft./sec. 

a 0 = 5 .6 .  

The  value  of r chosen is ve ry  near ly  0 . 7  of the  t ip  radius  of the  airscrew pair,  which  is 11 ft. 6 in. 
in d iameter .  The ro ta t iona l  speed corresponds  to 2,400 engine r .p .m,  nearly.  

We shall commence  by  a de t e rm ina t i on  of the  blade angles 01 and  02 (referred to the  no lift 
lines) at  r = 4 ft., on the  a s sumpt ion  m e n t i o n e d  at  the  beg inning  of §9, namely ,  t ha t  each 
alrscrew cat, be t r ea t ed  as a sheet  of vor t ic i ty ,  so t h a t  there  are no osci l latory effects. The  
blade angles are t hen  defined by  (62) and  (63). In  these formulae  we shall assume 

K 0 = 100 ft.2/sec. 

a value which  gives the  cruising lift coefficient of the  blades as abou t  0 .45  at r = 4 ft. This  
lift coefficient is low, bu t  the  to ta l  sol idi ty  of the  screws is cor responding ly  h i g h ;  and  the  
t h rus t  of the  screws, c o m p u t e d  f rom the  fo rmula  

T = 0 . 8  r 
r = 0 . 7 R  

is found  to be of the  correct  order  of m a g n i t u d e  for the  value of K 0 chosen. 

W i t h  K 0 = 100, e q u a t i o n s  (62) and  (63) give 

0 t = 38 .53  deg., 

02 = 37 .87  deg., 

so t ha t  the  difference in blade angle* is 0-66 deg. 

* It should be remarked that the theoretical difference in blade angle is based on the assumption that the 
streamlines lie on the surface of a cylinder. In practice this is probably not true, with the result that 01 -- 0,, at a given 
radius r may differ appreciably from the theoretical value. 
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Retaining these blade angles, we shall now compute  the variations with ~ of K 1 and K 2 as 
de termined by equations (41) and (42). As a prel iminary the variat ion of the functions.f0j)  
and F(~) will be found. For the given data  these become, by (4) and (5) 

sin 2~7 
f(v) = 1" 1624 --  cos 2u~7 ' 

O" 5926 
E(~) = 1" 1624 -- cos 2~,~ ' 

and graphs of these functions are given in Fig. 5. 

By means of (37) and (38) the  variat ion of B 1 and B 2 with ~l is next  found, and then (41) 
and (42) determine the circulations K1 and K,. Curves of these quanti t ies  are also given in Fig. 5. 
I t  will be seen tha t  the variations from K 0 = 100 are of the  order of 4- 20 per cent. Mean 
values of K 1 and K~ have been found by Simpson's rule, with ordinates spaced 1/48 apart  where 
the  variat ion is rapid. They are 

f'oKldrl : 100.45 ft.2/sec., 

f lK2d ~ = ft.2/sec., 100. 33 
0 

and it will be seen tha t  the difference ,from K 0 is trifling. I t  may  be remarked here tha t  the 
accuracy of this application of Simpson s rule m @  be es t imated by using it to determine a mean 
value of F(~), ordinates of which are known at the same abscissae as for K1 and K 2. The mean 
value should be uni ty  ; Simpson's rule gives in the present instance 

f l  oF(,~) d~ = 1.00055. 

The formulae (82) and (83) also lead to the  conclusion tha t  the differences between K 0 and 
the mean values of K 1 and K 2 are trifling, a l though the value of e given by (69) is too high for 
any accuracy to be a t tached t o  the results. Equat ions  (82) and (83) give 

lfl K~d~ = 1.0028, 
K0 0 

1 f 1 K2d ~ = 1.0022. 
Ko o 

We may  conclude that ,  so far as blade settings and overall performance of a contra-rotat ing 
pair are concerned, it is quite accurate enough to 'assume tha t  the screws can each be replac6d 
by a sheet of vort ici ty  as suggested in §9. 

From the values of K 1 and K 2 at .each given value of 7, values of u 1, v 1, u~ and % were 
calculated, and these were used to determine the curves of variat ion with ~l of the thrust  
grading at r = 4 given in Fig. 6. These also vary  by about  4- 20 per cent. from their means ; 
the means, found by Simpson's rule, are given by 

1 fl"dT1 d~ = 53.64 × 10 a 
pN 3o dr 

1 fl dT~ dr/ = 54"77 × 10 a 
pN o-d ; -  
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and these also are only slightly different from the values 53.40 × 103 and 54.60 × 10 z 
obtained on the " vortex sheet " assumption• It will be observed that the thrust on the back 
screw (assuming it to be proportional to the thrust grading at r = 4) is only just over 2 per cent. 
in excess of that on the front• The difference would, however, increase at lower rates of 
advance, that is, for the climb and static conditions. 

The angular oscillation in the slipstream at a large distance behind t h e  airscrew pair is, by 
equation (2(}) determined by the angle 

K 2 - -  K 1 

for the particular radius considered. In the present example A varies from -ff 0.60 deg. to 
- - 0 . 1 8  deg. For comparison, an equivalent single six-bladed screw working under the same 
conditions would give the constant value A -- 3.8 deg. It will be noticed that for lower rates 
of advance and higher lift coefficients, the values of A given above would be correspondingly 
increased• 

Finally, curves of ¢1 and ¢2, obtained from the components of the local velocity, are plotted 
in Fig. 6. It will be seen that the range of variation, which is the range of variation of 
incidence, is of the order of -b 1 deg. 
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