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Summary.— Reasons for Investigation.—For an efficient design of spar with thin sheet web it is important to know
the load which will just cause the web to buckle. As stiffeners divide the web into panels, it is required to find the
buckling stress of rectangular panels bounded on two sides by spar flanges and on the other two sides by stiffeners.
Boundary conditions which represent closely this type of edge fixing are clamping (along the flanges) and simple support
(along the stiffeners), and the object of this report is to find the critical shear stress for a square panel held in this way.

Conclusions and Further Development.—1It is found that the value of the critical shear stress is almost midway between
its values when all four edges are clamped and all four edges are simply supported.

The method of solution developed in this report is of very general application, and can be used to investigate the
stability of rectangular panels when the loading is any combination of shear and compression or tension, and the edges
are clamped or simply supported, and not necessarily all clamped or all simply supported. By an easy extension the
method of solution can also be used to find the periods of transverse vibration of rectangular panels for the same types
of loading and edge fixing.

§1. Introduction.—For an efficient design of spar with thin sheet web, the behaviour of the
web must be known in detail. Since its main purpose is to carry shear, a thorough knowledge of
its behaviour under this type of loading is therefore necessary. This requires the solution of
two problems. The first is to determine the smallest value of the shear for which the panels,
into which the web is divided by stiffeners, just become unstable ; the second is the behaviour
of these panels when buckling has taken place and the applied shear is increased still further.
In this report attention is confined to the former of these two problems.

The buckling of flat rectangular panels when the edges are either all clamped? or all simply
supported?® has already been fully investigated. The case where two edges are clamped and
two are simply supported has not. Since in an ordinary spar the booms are torsionally stiff
and restrained by ribs, whereas the stiffeners are torsionally weak, it follows that it is the last
mentioned edge conditions which are in best agreement with practice.

§2. Statement of Problem and Results obtained.—In this report attention is confined to the
initial buckling of a flat square rectangular panel under shear, when one pair of opposite edges
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is clamped and the other pair is simply supported. This result and the critical values of the
shear for other types of edge condition are given in the adjoining table.

| |
Edge conditions .. . .. CC.&CC? CC.&SS. | S5 &S5S83
Critical shear for square plate .. 15-4 Da?/a® 12-6 Dn?/a® 9:-34 Dn?/a?

Here C.C. means that two opposite edges are clamped, S.S. that two opposite edges are simply
supported ; D is the flexural rigidity, and a is the length of a side.

It will be noted that the new result of 12:6 Dz?%/a? is almost midway between the other two,
being actually 2 per cent. above their average value.

The method of solution developed in this report and described in detail in the appendix, is an
extension of that used by Timoshenko?® when all the edges are simply supported, and is of very
general application. Provided that the rectangular panel does not differ too widely from a
square—in which case the computation involved becomes unduly heavy—the method can be
used to investigate the stability of rectangular panels when the loading is any combination of
shear and compression or tension, and the edges are clamped or simply supported, and not
necessarily all clamped or all simply supported. By a simple extension the method of solution
can also be used to find the periods of transverse vibration of rectangular panels for the same
types of loading and edge fixing.
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APPENDIX

General Method and Details of Solution

Consider a flat panel acted on by a given system of external forces, and suppose that the panel
undergoes a small transverse distortion consistent with the given boundary conditions, and such
that there is no stretching of the middle surface. The increase in strain energy of the panel is
solely due to bending, and if the panel is just on the point of buckling in the assumed form of
distortion, this is equal to the work done by the forces acting in the middle surface.

In the problem considered here the external force system is a constant shearing force N &
(see Fig. 1),

o..‘___‘_.‘_,_q__..“_ .F FIG.]. o x

and hence, denoting by o the normal displacement of any point in the middle surface, the funda-
mental equation from which to obtain N, is

D e 02w 22w\ 2 02w 02w o2\ 2
3], n{(a—ez top) A =9 [ T \Beay ]}d'f dr

~ N, JJO 58_12’ ag; de dy

which reduces immediately to

D e row | 8%w\2 ©** dw ow
e il = g = — [V, R — ] - .. . -
2 ..[0[0 o&? + 8?} d d” N“q J(J‘o o0& o at d,:‘, ) (1)
since e LT 02w \2 | _
[ {5a5s- (G} ae an

and the two line integrals, taken round the edge of the panel, vanish identically by virtue of the
boundary conditions.



Making the substitutions

x ="
a 3
/]
Y=
N, a®
S ="=f0"
Dn?’
equation (1) reduces to
* ot | w2 T (% Jw Ow
— i d ] — — —_— = . . .. 2
..[oJo ox2 T 8y2> xay 25 JU -[0 ox oy axey (2)

It is now necessary to consider the form to be assumed for w. Two of the edges being clamped,
it is not permissible to take w as a double sine series which can be differentiated term by term,
and instead we proceed as follows. On physical grounds 88w /éx* dy* is a continuous function
of x and y, and hence can be expanded as a double Fourier series of sines in the form

8. o0 w®
%4 = g Z mirtA,, sin mx sin ry. . .. & " (3)
Then by the properties of double Fourier series
K
| Amr i Wﬁ’ (4)

where K is a positive constant, and it is legitimate to integrate the infinite series on the right of (3)
term by term. Carrying out this process eight times, a possible form for w is

% é Am{sin mx + ¢, + p.x + ¢,.x% + smx3} {sin ry +h, + ey + £+ g,ys}, (5)

and the above constants, obtained from the edge conditions

2
w—-aw-i—ca—zze;:(), x =0, x,

 ox? oy
w = %—tj =0 y=0,=,
are given by the relations
t, =0, h, =0,
pn=0, e, = —7,
7. =0, =241}
T
] e (6)
Sm:o, g':‘—-ﬂ:—2{1+(——)'}?'
From (5) and (8) the expression for @ can be put in the form
é sin mx{é A, sinry + Ey + F,y* 4 G,,,y:”}, .. - .. .. (7)
m=1 . r=1
where E,=— é r4,,,

. _1 @ Ry
Fo='S {2+ r}ra.,

1 =
Gm:“:z_gé {1+(_—),}”Amr'
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It is now possible to simplify the form for w still further by utilising the fact that

w(x,y) = w (n — %m — ).

For by substituting in this relation the expression for o given by (7), it can be shown that m + »
must be even.

The next step is to evaluate the two double integrals on the right and left hand sides of
equation (2), denoted below by L and M respectively. From (4) it follows that all the series
involved are absolutely and uniformly convergent, so that term by term integration or differen-
tiation is legitimate in every case. The evaluation is accordingly quite straightforward, but
the work involved is heavy, and only the final expressions are given here. They are

e = 2nm - 2rs S W2 . \s
L=2Z = i [2 = oy T=Z g ) )}

m=1 n=1 r=1 s=I

(m—+n odd) (r-+s odd)

== s} {1 — -y (-}

22500+ )= 0)- B0~ )0+ D)} Ak

M. — (;)2 g Z (m> + r?)2 4, 2

3z zs[{f-CEler e}

aridss

{42y 2+ Ay () )

25 L16 — 4(—) = 4(—) + 16 (<) (=) }

S is now given in terms of the A’s by substituting for L and M in (2), and the next step is to
find for what type of distortion S is a minimum. Since S is stationary when regarded as a function
of the A’s, there results the following system of equations from which to determine the ratio of
the A’s and the corresponding value of the critical shear

6L | oM _

Y g

A 0.
In general the only solution of this infinite set of equations linear in the A4’s, is that in which all
the A’s are zero. If, however, the infinite determinant formed by eliminating the A’s vanishes,
an exception arises and there exists a non zero solution. Since it is only this case which is
significant, it follows that, by equating the infinite determinant to zero, there results an equation
from which to determine the critical values of S. Being of indefinitely large order, this equation
has an infinite number of roots, but in practice it is only the smallest of these roots that is of
interest.

(72176) B
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The determinantal equation is of the form

sinx siny L an Ay Ay Ay Gy Gy Ay gy Ay
SINZY Sin2y | ay Gy Ay Ay dy; Ay ay dog  dag
sin3x siny Ay Ay Ay Gy Ay Ay Ay gy gy
sinx sin3y i Agy Agp Ay Agq Qg5 Ay Agg Aqg gy
sin3x sin3y A5y sy Ay Ay sz Azg Ay Azg dgg | =0, .. . (8)
sindx sin2y | ag ag Agy Agy Ay gy A gy gy
SIN2x Sindy | ay A g Gy Gy Gy G (g ang
sindx siny | Agy gy gy gy gy Agg Agy Agg Qg
siny sin5y |Gy (g gy gy gy Agq Ay Agg g9

where a;; is the coefficient of A, A, in 2SL + M after m, n, 7, s have been given their appro-
priate values. Since L and M are homogeneous quadratic expressions in the A4’s

ai 1

Since the solution as expressed by the equation (8) is merely a formal one, it is now desirable
to consider the convergence of the determinant comprising its left hand side. For some infinite
determinants it is often possible to construct a purely analytical proof of convergence. This,
however, does not appear practicable here, and instead we proceed otherwise. Denote by S,
the smallest root of the equation for S when the infinite determinant (8) is replaced by the finite
determinant containing its first %2 elements. Then since the type of distortion corresponding
to S,., is a more general one than that corresponding to S,, actually including it as a special
case, it follows that S,,, < S,. Since in addition S, is essentially positive, it follows that
S,(n=1,2, — —0) is a decreasing sequence which is bounded below and accordingly tends to a
limit ; and it is this limit which is the critical value of S required. In order to show the nature
of the determinants irtvolved, the one corresponding to # equal to 9 is given below.

— ajg.

0-7829 —0-3410 S 0 —10-67 0 —0-1364 S 1:007 S 0 —16-25
—0-3410S  36-34 0-6138 S 6-061 S —10-91 S 0 —126-1 0-2436 S 5:070 S
0 0-6138 S 9-849 0 —134-7 —0-8768 S —1-812 S 0 0

—10-67 6-061 S 0 264-5 0 2-424 S —21-828S L0 34-21

0 —10:91S  —134-7 0 2123 15-58 S 39-28 S 0 0
—0-1364 S 0 —0-8768 5 2424 S 15-58 S 174-8 0 1-137 S 2-028 S
1-0075 —126-1 ' —1-8125 —21-82 S 39-28 S 0 968-7 —0-7192 S —3-087 S

0 0-2436 S 0 0 0 1-137 S —0-7192 S 62-88 0
—16-25 5070 S 0 34-21 0 2:028 S —3-087 S 0 1732

The values of S,, from which the limiting value is obtained, are given in the adjoining table.

| i
-4 ! S ’ 7 | 9 ©

n

S, : 13-3(7) ‘ 12-6(8) ‘ 12-6(7) ‘ 12-6 12-6

Owing to the very large amount of multiplication which has to be performed in the evaluation of
the determinants, a cumulative error occurs, and no weight is to be attached to the fourth figure.

(72176) Wt 87116 346 Hw. G.377/1




Publications of the
‘Aeronautical Research Committee

TECHNICAL ‘REPORTS OF THE AERONAUTICAL
RESEARCH COMMITTEE—

1934-35 Vol. I. Aerodynamics. 40s. (40s. 84.) :
Vol. II. Seaplanes, Structures, Engmes,Matcnals, etc.
40s. (40s. 8d.)
1935-36 Vol. I. Aerodynamics. 30s. (304 74.)
Vol. II. Structures, Flutter, Engines, Seaplanes, etc.
304. (30; 7d.)
1936 Vol. I. Acrodynamics General, Performance, Air-
screws, Flutger and Spinning. 4os.
9d) -
Vol. II. Stabllity and Control, Structures, Seaplancs,
: Engines, etc. 5os. (50s. 104.)
1937 Vol. . I. Aerodynamics General, Performance, Air-.
. screws, Flutter and Spinning. 4os.
(40s. 9d.)
VoI II. Stability and Control, Structures, Seaplancs,
Engines, etc. 60s. (615.)

ANNUAL REPORTS OF THE AERONAUTICAL RESEA RCH

- COMMITTEE—
1933-34 =~ 1s. 6d. (.IJ'. 84.)
I034=3% .- ‘15 6d {15:-84) _
~ April 1, 1935 to December 31, 1936. 45 (45. 44.)
1937 2s. (25. 2d.) '
1938 15. 6d. (15. 84.)

INDEX TO THE TECHNICAL REPORTS OF THE
- ADVISORY COMMITTEE ON AERONAUTICS—

1909-1919 Reports and Memoranda No. 1600. 8. (8s. 5d.)

Prices in brackets include pa:z‘age

Obtainable- from

. L ] ’ .
His Majesty’s Stationery Office
: London W.C.2: York House, Kingsway -
Edinburgh 2: 134 Castle Street Manchester 2: 39-41 King Street
Cardiff: 1 St. Andrew’s Crescent Belfast: 80 Chichester Street
or through any boekseller.

$.0. Code No. 23~1991




