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Summary.--The initial buckling of flat rectangular panels under combined shear and compression has been investi- 
gated theoretically in R. & M. 1965. This report extends the results given there to panels which are long and slightly 
curved. 

On aircraft with laminar flow wing sections, it is desirable that the wing cover should remain smooth up to a factor 
of 141g, and to achieve this a possible type of construction is one in which stringers are dispensed with, and the cover 
is reinforced with closely spaced ribs and stiffeners. These divide the cover into a large number of long and slightly 
curved panels, and the results given in this report should be of value in estimating the combined shear and compression 
which such panels can carry without buckling and so developing waviness. 

LIST OF CONTENTS 

I. Introduction . . . . . . . . . . . . . . . . . .  
2. Statement of Problem and Method of Solution . . . . . . . .  
3. Description of Results . . . . . . . . . . . . . . . .  
4. Conclusions . . . . . . . . . . . . . . . . . .  
List of References . . . . . . . . . . . . . . . . . .  
Appendix I---The Inftial Buckling of a Long and Slightly Curved Panel in Shear 
Appendix II--The Initial Buckling of a Long and Slightly Curved Panel in Compression 

Page 
I 

2 
3 
4 
4 
5 

12 

1. I n t r o d u c t i o n . - - T h e  ini t ia l  buck l ing  of f la t  r e c t a n g u l a r  pane l s  u n d e r  c o m b i n e d  shear  a n d  
compress ion  has  been  i n v e s t i g a t e d  t heo re t i ca l l y  in R. & M. 1965, and  the  pu rpose  of th is  r epo r t  
is to  e x t e n d  t h e  resu l t s  g iven  t he r e  to  panels  w h i c h  a re  long a n d  s l ight ly  curved .  

F o r  f lat  panels ,  i t  is shown  in R. & M. 19651 t h a t  t h e  c o m b i n a t i o n  of  shea r  s t ress  q, a n d  
compress ive  s t ress  f ,  w h i c h  will jus t  cause  buck l ing  are  c o n n e c t e d  b y  the  r e l a t i o n - -  

a n d  for t h e  s l igh t ly  c u r v e d  pane ls  cons ide red  in th is  r epo r t  i t  is a s s u m e d  t h a t  t he  s a m e  re la t ion  
is a p p r o x i m a t e l y  correc t .  2 On  this  basis  t he  p r o b l e m  a m o u n t s  t he re fo re  to f inding % a n d  f ,  
for  va r ious  c u r v a t u r e s  a n d  d imens ions  of panel .  

* R.A.E. Report No. S.M.E. 3274, received 6th March, 1944. 
(71550) 
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The buckling of a short cylinder in torsion, of which a long and slightly curved panel in shear 
can be regarded as a special case (Fig. 1), has already been investigated theoretically by L. H. 
Donnell. a His treatment, however, involves a number of scarcely justifiable assumptions about 
boundary conditions, and the more accurate solution developed in this report shows that 

Fro. 1 

Donnell's approximate values for the initial buckling stress are appreciably too high. A 
comparison of the theoretical results found here with the experimental values obtained by 
E. E. Lundquist ~ shows that for the small curvatures that exist over the major portion of a wing 
the agreement is good. For larger curvatures, however, owing to the increasing importance of 
initial irregularities, experimental values are less than the theoretical, and the latter are to be 
regarded as an ideal upper limit for panels which are perfectly formed and accurately loaded. 

The symmetrical buckling of a cylinder under end load, of which a long and slightly curved 
panel in compression can be regarded as a special case (Fig. 2), has been investigated theoretically 
by R. V. Southwell, S. Timoshenko ~ and others, and what is done here is to sol;ce the fundamental 

IITTTII t 
FIG. 2 

equations derived by them for alternative boundary conditions. For slightly curved panels 
there are very few experimental results available. But such evidence as is supplied by tests 
on curved panels whose straight edges are much longer than their curved ones, suggests that 
even for the small curvatures considered in this report experimental values of the buckling stress 
are somewhat less than the theoretical. 

2. Statement of Problem and Method of Solution.--The problem considered is the initial buckling 
of a long and slightly curved panel under combined shear and compression. The applied shear 
is constant round the panel, and the compression is uniformly distributed over the two curved 
edges (Fig. 3). Owing to the length of the panel the type of support for the two straight sides 
is unimportant, but for the two curved sides results are worked out on the assumption of clamped 
or simply supported edge conditions. 

The method of obtaining qc, and fc~ is explained in the appendices. 
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3. Descr ip t ion  

E ----- 
V 

h ---- 
a 

b = 
r ~ -  

K -~ 

fc ,  ~-  
fc,o = 
f 
kcrc 
kc 
qcr 

~c~o 
q 
kcrs 
k, 
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o f  R e s u l t s . - - T h e  following notation is used throughout : - -  

Young's modulus 
Poisson's ratio (taken as 0.25) 
semi-thickness of panel 
width of panel, measured along short straight edge 
length of panel, measured along long curved edge 
radius of curvature of panel 
a non-dimensional constant ---- [3 (1 - -  v ~)/z~'~] 1 i~ a 2/rh 
stress at  which panel buckles under compression alone 
value of f0r when panel is flat and the edges are simply supported 

= compression stress at  which panel buckles when the shear stress is q 
=fo,/fo,o 

---= stress at which panel buckles under shear alone 
-~ value of q0, when panel is flat, and the edges are simply, supported 
---- shear stress at  which panel buckles when the compressmn stress is f 
= q /%o 
= q/qo,o 

The results are shown graphically in Figs. 4 to 7. 
Fig. 4 refers to the case of pure shear, and gives the variation of k~r, with K for simply 

supported or clamped edges. Donnell's results are shown by the broken curves and give values 
for the buckling stress which are between 10 per cent. and 20 per cent. too high. 

Fig. 5 also refers to the pure shear case and shows how the wave length of the buckles varies 
with K. 

Fig. 6 refers to the case of pure compression, and gives the variation of kcrc with K when the 
edges are simply supported or clamped. 

Fig. 7 includes the results given in Figs. 4 and 6, and shows, for given K, i.e. for given curvature 
and size of panel, the various combinations of shear and compression which will just cause the 
panel to buckle. In Fig. 7 the full and broken curves refer respectively to simply supported 
and clamped edge conditions. 

Table 1 shows the values of K which correspond to typical values of a, r and h. 

TABLE 1 
.Values  ~ K  

I 
a 2h I r K a 2h r K 

6 0.036 9 0.036 

0.048 

0.064 

0.080 

100 
200 
300 

100 
200 
300 

100 
200 
300 

100 
200 
300 

3.4 
1.7 
1.1 

2.5 
1.3 
0.8 

1.9 
1"0 
0.6 

1"5 
0 ' 8  
0"5 

0.048 

0.064 

0.080 

100 
200 
300 

100 
200 
300 

100 
200 
300 

100 
200 
300 

7"6 
3"8 
2 '5  

5.7 
2.9 
1.9 

4.3 
2-2 
1.4 

3"4 
1"7 
1"1 

All dimensions are in inches. 

(71559) .A 2 



4 

4. Conclusio~s.--This report shows under what combinations of shear and compression a long 
and slightly curved panel may first be expected to buckle. 

In aircraft with laminar flow wing sections, it is desirable that  the wing cover should remain 
smooth up to a factor of l ig ,  and to achieve this a possible type of construction is one in which 
stringers are dispensed with, and the cover is reinforced with closely spaced ribs and stiffeners. 
These divide the cover into a large number of long and slightly curved panels, and the results in 
this report should be of value in estimating the combined shear and compression which such 
panels can carry without buckling and so developing waviness. 
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APPENDIX I 

The Initial Buckling of a Long and Slightly Curved Panel in Shear 

FIG. 8 

Additional notation used in Appendix I : - -  
G = shear modulus = E/2(1 + v). 

The co-ordinate axes OX, 0 Y, OZ are shown in Fig. 8, and are such that  OX and 0 Y  are the 
generator and line of curvature through the mid point of one of the curved edges, and 07. is 
normal to the middle surface. Referred to these axes the edges of the panel are X = 0, a ; 
Y = ± b/2 ; and the equilibrium displacements %, v 0, w 0, are such that  

u o : 0 ,  Vo-- qo, X G ' Wo=0 .  

If this configuration is one of neutral equilibrium 

Uo+U, Vo+V, Wo+W, 

are also possible displacements, where u, v, w are indefinitely small but not all zero. Substituting 
each of these sets of displacements in the shell equations obtained by W. R. Dean* for problems 
of this kind and assuming that  a/r and h/a are small and of the same order, the three funda- 
mental  stability equations reduce to 

2 ~-X\~x+~-Y +~x  ~ + ~-X 

h2V~ ~, ~w 1 ~V w + v 
-~ w + 2 (1 -- v~) ~XOY r O-Y r 

- - 0 ,  

- -0 .  

* Proc. Roy. Soc. A, Vol. 107, 1925, p. 734. 
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P u t t i n g  these  in to  non -d imens iona l  fo rm b y  m e a n s  of t he  subs t i t u t ions  

ax ay 
X = - - , Y - -  

~ 7g 

we h a v e  

aw ( --  O av Ou 
. . . . . .  ~ x  + ~ + - - -  O, ~x ~y ~-r 2 ~y -Fx - +  = 

2 ~ x  ~-x + + b ~  Oy ~r + ~ - ~  = 0 ,  

g v  w + 2 ( 1 - -  v ~) a 2q~, 02 w av aw + v = 0 .  
\ ~ E ~xOy ~ar Oy ~r ~-X 

I n t r o d u c i n g  a s t ress  func t ion  f for t h e  pu rpose  of s impl i fy ing  t h e  analys is ,  t he re  resu l t  t h e  
fol lowing five equa t ions  (only four  of which ,  however ,  are  i n d e p e n d e n t ,  since equa t i on  (4) is 
o b t a i n e d  b y  e l imina t ing  u and  v f r o m  (1) - (3) ) ,  

( 1 -  v) @ ~v) ~2f 
..... 2-- + ~ x  = -- ~ gxa-~ . . . . . . . . . . .  

~u ~ Ov aw ) ~2f 
~--x + ~ Oy 7 ;  = ~ . . . .  Oy2 ' • . . . . . . . . . . .  

( ~v aw ) ~u ~o.f 
~y ~ -  + ~ ~ x  = ~ Ox - - 2  . . . . . . . . . . . . .  

V 4 f +  R ~2w 
~x 2 --  O, 

V a P ~ 2 f  ~ 2 w 
w - -  + Q  - 0 ,  

~x 2 ~x~y 

(1) 

(2) 

(3) 

(4) 

(s) 

wbere  

Case I. 
(1) to (5) wh ich  satisfies t he  b o u n d a r y  cond i t ions  

U--~ V = 0 ,  

32w . . . .  
w --  ~x~. = O, 

for x = O, ~ ; and  a solut ion of w a n d f i s  sough t  for in t he  fo rm 

Edges S imply  Supported.*--I t  is now requ i red  to find a solut ion of t he  equa t ions  

. . . . . .  (6) 

w = w 1 cos my + w 2 sin my,)._ 
f - - f l  co s 'my  + f2 sin my. f . . . . . . .  (7) 

Here  Wl, w2, f l ,  f2, are  func t ions  of x only,  a n d  m is real  b u t  o therwise  unspeci f ied  (except  in t he  
case of a comple t e  cy l inde r  w h e n  zrm/a m u s t  be an in teger) .  

We  express  w, (s = 1, 2) in t h e  fo rm 
oo 

w, --  ~ A~t sin tx~, 0 <~ x <~ 
t = l  

* For a more detailed description of the method used, see writer's paper on a similar problem in Proc. Roy. Soc. A, 
Vol. 162, 1937, p. 62. 

t By considering the boundary conditions which w~ must satisfy, it can be shown that it is legitimate to differentiate 
this serie~ term by term four times. 
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and  introduce the complex quant i t ies  W, F and A,, defined by  the relations 

W ---- w l + iw2, F = f l  + if2, At = AI, + iA2,. 

By this means w and f in (7) can be wri t ten in the form 

w = (R) We  -''~v, f =  (R)Fe-'"% . . . . . .  

where (R) denotes real part .  

Subst i tu t ing  for w and f in (4), F is then given by  the differential equat ion 
oo 

d~F ,~ 2d2F 
dx* ~m -d-if2 + m 4 F  = R ~ A, t 2 sin tx, 

t = l  

(s) 

the  general solution of which is 

F = {A cosh mx + B sinh rex} + x {C cosh mx + D sinh rex} 

O0 
+ R ~ A, t 2 sin tx . .  (9) 

,=1. ( + 2 . . . . . . . . . . .  

The next  step is to determine the a rb i t ra ry  constants  A, B, C, D in terms of At from the 
first two boundary  condit ions in (6). Since, however, these involve u and v, it is first necessary 
to express u and v in terms of F and W. This is done by  solving the equations (1), (2) and (3), 
and the boundary  condit ions can then be expressed in the  form 

d2F 
dx 2 + ~ m ~.F = O, 

daFdx 3 (2 + v) m 2dF~ + (1 --~2r,,2) a dWdx - -  O, . . . . . .  (10) 

for x = 0, ~. Now subst i tut ing for F and W in (10), the a rb i t ra ry  constants  A, B, C, D are 
given by  

A K  = 2 R X m  (1 + v) {(3 --  ,,) sinh m~ cosh m~r + m~ (1 + ~,)} 

- -  2 R Y m  (1 + v) {(3 -- ~) sinh m.~ + rnx (1 + v) cosh m~}, 

B K  --  R X m  (1 q- v) {mL~ 2 (1 + v) 2 --  2 (3 -- v) sinh 2m~} 

- -  R Y m  2~ (1 + v) 2 (1 -- ,,) sinh m~, 

C K - - - - - R X m  2 (1 + ~)~ ( 3 -  v)s inh  ~m~r - - R Y m 3 ~  (1 + v)3 sinh m~, 

D K - ~  - -  R X m  ~ (1 + v) 2 {(3 -- v) sinh m:z cosh m~ + m x  (1 + v)} 

+ R Y m  ~ (1 + v) ~ {(3 -- v) sinh m~ + mr: (1 + v) cosh m~}, 

whe re  K = m 2 (1 + v) 2 {(3 --  v) 2 sinh 2mu -- mx ~ (1 + v)2}, 

X = ~ = I  A, (t~ + m2)2 =-~~=1 A t K t '  

cX3 

t=J. 

These expressions for 
and f given by  (8) will 

( - ) ,  A, (t2 + m )2 =- ( - - ) '  A, K,. 
t = l  

A, B, C, D are now subst i tu ted in equat ion (9), with the result tha t  w 
satisfy all the fundamenta l  equations and boundary  conditions except (5). 
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It  accordingly remains to subst i tute  for w a n d f  in (5) and equate  to zero the coefficient of e -~'~. 
Doing this we have 

oo o0 oe l 4 sin tx 
A t(t  2 + m 2 )  2 s i n t x - i m Q ~ .  t A ,  c o s t x + P R ~  A,  

t=l t=l t=l ( t2 @ 7~2) ) 

--  P m  2 {A cosh m x +  B sinh m x +  x (C cosh mx + D sinh rex)} 
- - 2 P r o  (D coshmx -¢- C sinh rex) = 0, • . . . . . . . . .  (1 1) 

which must  be satisfied for all x in (0, ~). The next  step is to express in a Fourier  series of sines 
all those terms in equat ion (11) which are functions of x, and then  to equate  to zero the 
coefficients of the sines. In  this way we deduce, after considerable algebraic reduction, the  
following system of equations 

Go P Rt4 
(l 2 + me) z A t - -  imQ ~=l c,,, A,~ + (t 2 _}_ mz ) zA t  

+ ( P R L  t K,,A,, + (_) t  ~ ( - - )"K, ,A.  = 0 . . . . .  (12) 

Here t =- 1, ..,o . . . .  oo, and the  c's and L's are given by 

where 

~ [1 - cos (t + n) 
L 

4mKt  T 
L, = (1 + v)' 

T N  -- {(3 -- v) cosh r ~  sinh m~ + m~ (1 + ,.)} 

-- cos t~ {(3 --  v) sinh m~ + m~ (1 + v) cosh m,~}, 
N = (3 -- v)~sinh 2m~ -- m2~ ~ (1 + v) 2. 

+ 1 - c o s  ( t  - n )  ~] 
¢ - -  1~ J 

To show tha t  the  solution given by equat ion (13) is not  merely a formal one, it is necessary 
to show tha t  the de te rminant  is convergent.  The proof however  is on exactly the same lines 
as tha t  given in the  paper  already referred to* and so is omit ted.  

* Loc  cit. p. 6. 

= 0 .  (13) 

Z l  --  imQc12 2 R P K z L  1 - -  imQcl4 

- imQc21 z 2 - imQc23 2 R P K a L  2 

2 R P  KaLa - irnQc~2 Za --  imQc34 

--  imQ Q a 2 R P  K~L 4 --  imQc 4. ~ Z4 

and 

Since the equations (12) are linear in the A's ,  their  only solution is in general tha t  in which all 
the  A's vanish. If however the de te rminant  formed by el iminating the A ' s  itself vanishes this 
is no longer true, so tha t  the  vanishing of this de te rminant  provides the required equat ion 
for qcr. The order of this equat ion being infinite, qc, has an infinite number  of roots, one corre- 
sponding to each possible form of instability. But  since we are only concerned with tha t  form 
of instabil i ty which is most  likely to occur in practice, it is only the  smallest value of qc, which 
is of interest.  

In t roducing Z, defined by the relation 
P R t  4 

Zt _~ (t~. _}_ m 2) 2 _}_ ( t2 + m2)., + 2 P R K ,  L,, 

the de terminanta l  equat ion for the critical shear stress is 



9 
As it is not possible to solve equation (13) directly, it is necessary to approximate to the 

solution for Q, i.e. for qo,, by  replacing the infinite determinant in that  equation by the finite 
determinant which contains its first n 2 (n = 2, 3, . . .) elements. The results of the successive 
approximations, and those obtained by Donnell, are given in Table 2. 

TABLE 2 

K 

0 
1 
2 
3 
4 
5"5 
7 

10 
15 

First 
Approximation 

7/q, 2 

0"59 
O" 75 
1 "05 
1"4 
1"7 
2"1 
2"6 

kc~s 

1.046 
1.134 
1.307 
1.507 
1.712 
2.020 
2.325 

Second 
Approximation 

m 2 kcr s 

Third 
Approximation 

m 2 kcrs 

1.003 
1.144 
1.331 
1.515 
1.693 
1.947 
2.189 
2.643 
3.331 

1.000 
1.071 
1.211 
1.367 
1.524 
1.754 
1.981 
2.420 
3.114 

0"63 
0"78 
1"1 
1 "45 
1"8 
2"3 
2"7 
3"6 
4"9 

1.070 

1. 521 

1.976 
2.400 
3.069 

m 

0.78 

1.8 

2.7 
3-7 
5.05 

Donnell's 
Results 

kc , ,  Percentage 
• Increase 

0.3 
6.9 

10.0 
11.0 
11.3 
11.3 
10.8 
10.1 
8.6 

Case I I .  Edges Clamped.--In this case we again t ry  for a solution of w and f in the form (7), 
but the boundary conditions to be satisfied are now 

U -~- V ------ 0, 
bw 

w = ~--~= 0, 

for x = 0, =, and it is no longer possible to express ws as a sine series which can be differentiated 
term by term four times. Instead, it  can be shown by  expanding d~ws/dx ~ as a sine series and 
i n t eg r a t i ng  fou r  t imes ,  t h a t  t he  co r r e spond ing  express ion  for  w, (s = 1, 2) is 

oo 

ws = ~ ,  As, sin tx + H, + E,x + J,x 2 + Gsx a . . . . . . .  (14) 
t = l  

In (14) the sine series is such that  it can be differentiated term by term four times, and Hs, E .  
J,, Gs, are given by 

H,=0, z = l £  {2+(--)'}tA,,, 
t=l 

OO 

E , = - - Z  ,A,,, G, --  
~=1 

1 oO 
~ ~ .  {1 + (--)'} IA,,. 

t = l  

I n t r o d u c i n g  E ,  J and  G, def ined  b y  the  re la t ions  

E = E 1 @ i E  2, J = J1 + i J2, G = G1 + iG~, 

we have, after substituting for w and f in (4), the following differential equation for F 

d4 F ,, ~ d2 F { oo ] 
dx 4 xm  -d~ ~ + m 4 F  = R ~ .  A~t 2 sin tx - -  2.[ - -  6 Gx , 

t=l 
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which has for its general solution, 

F -- {A cosh m x  + B sinh rex} + x {cosh mx + D sinh rex} 

,=1 ( t ~ + m ~ )  2 m 4 " 

The general procedure is now very similar to tha t  in Case I. The a rb i t ra ry  constants  A, B, 
C, D are determined from the boundary  conditions, and in place of (11) there u l t imate ly  results 
the equat ion 

OO 

A, (t 2 + m2)2 sin tx + {m ~ (Ex + J x  2 + Gx a) - -  2m ~ (2J + 6Gx)} 
t= l  

oo o~ sin tx 
- -  imQ ~ .  tA, cos tx - -  imQ (E + 2 I x  + 3Gx ~) + P R  ~ .  A,t 4 

,=i ,= i  (t ~ + m 2) ~ 
- -  P m  2 {A cosh mx + B sinh m x +  x (C cosh mx + D sinh rex)} 

- -  2Pro {C sinh mx + D cosh rex} = O. 

Expressing the lef t -hand side of this equat ion as a sine series, and equat ing to zero the coefficient 
of sin tx, it follows tha t  

oo  0 0  O0 

(t2 + m 2 ) ~ A , +  m47~" " e , , A , - - 4 m 2 ~ ,  j , ,A, ,  - -  imQ .~  c,,~A,, 
n =1 ,~ = i n =i 

- -  imQ ~,,=1 gt,, A ,  + (t 2 + m2) 2 + P R  L, t ,=1 A,, (K, + q,,) 

+ (--)~ ~ .  (--)" A,(K,,  + qJ - -  (U, + S,) ~ A,,p~, + (--) '  Z (--)" A,,p,~ - -  O, ..  (15) 

where the c's, K ' s  and L's  have the same meaning as in Case I, and the e's, ]"s, g's, p's,  q's, 
U's and S's, are given by  

4n (_),~ , 
et,, = - ~t312 + (_)t  + + 2 (__),+,~] 

Jr,," = ~2~ [2 + ( - ) ' +  (-),* + 2 ( - ) " - J ,  

g,o _ 2~,.~ {1 - (-),+,,} + ~12~ {1 - ( - ) , }  {1 + ( - ) j ,  

2vn {2 + (--) '} 

n 6 ( 2 +  ,,) 

2 ,~t [2~y  (1 + ~) 2 m ~  (1 + ~)~ 
U ~ : N ~ ( I + ~ , ) L  (t 2 + m 2 ~  c°s t~s inhCn~ + (t z + m ~ ) z  cos t z s inhm~ 

1 
+ (t ~ + m2 ) {(3 -- v) (1 -- ,,) sinh 2mz~ - -  ,n2:~ ~ (1 + v) ~} 

- - 2 m  ~ (1 + v ) ( 3 -  ,,) ] 
-- (t 2 + m~.)~ sinh 2m~] , 

4 tm 
St = x N  (t 2 + m ~) [(3 --  ~) sinh 2rex -- m~ (1 + v) cost~ sinh m~] . 
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The equation for q,, is now found from the condition that  there exists a non-zero solution of the 
system of equations (15). 

Introducing N,, defined by the relations 

P R i  4 N. = (i 2 + mZ) 2 + m~tei~--4m~j. + 
(i 2 + m 2) 

+ 2PREL,(K,+ q,)--p,(U, + $3" ], 

Ns~ : m a e , ~ -  4 m2£~ 

(s t) 
+ P R  {1 - I - ( - ) ' + ' ) E L ,  (K, --F q, -- p, ( u, -4- S,)'] 

this gives rise to the determinantal equation 

Nix -imQ (c12 +g1~) NI3 -imQ (q4 +g~4) 

- -  imQ (c21 -j-g21) N22 - -  ilgQ (c23 +g23) N24 
NsI -iraQ (ca~+gs~) Na3 -iraQ (c34+gaa) 

-imQ (cal+g~a) N42 -imQ (ca3+ga8) N~4 

----0. (16) 

As in Case I, it is now necessary to consider the convergence of the determi~aant in (16), but the 
proof is omitted as it is very similar to that  given in the paper referred to.* 

The procedure is now the same as in Case I, except that  attention is confined to the second 
approximation, found by taking the first three rows and columns of the determinant. The 
results, together with those derived by Donnell, are given in Table 3. 

TABLE 3 

D Second Approx ima t ion  onnell  s Resul ts  

K m ~ kc,. s k c r s  Percentage 
Increase 

0 

1 

2 

3 

4 

5 .5  

1 .5  

1 .6  

1 .7  

1 .9  

2 .2  

2 .65 

1.664 

1.689 

1.753 

1.846 

1.952 

2.130 

1.680 

1.787 

1.949 

2. 124 

2.302 

2.560 

0 .9  

5 .8  

11.2 

15.1 

18.0 

20 .2  

*Loc.  cit. p. 6. 
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A P P E N D I X  II 

The Initial Buckling of a Long and Slightly Curved Panel in Compression 

FIG 9. 

Addit ional  notat ion used in Appendix  II  : - -  

D = flexural r igidity = 2Eh3/3 (1 -- v2). 

The co-ordinate axes OX, OY, OZ are shown in Fig. 9, and the equat ion of neutral  equilibrium, 
applicable to types of distort ion in which there are no displacements parallel to the  Y axis, i s - -  

dhe~ d2w w 
O -d-fi + 2hfc" dx 2 + 2 E h  ~ = 0 . . . . . . . . .  (17) 

It  remains to find the  smallest values of fc~ for which there exists a non-zero solution for w 
satisfying the required boundary  conditions.* 

Case I. Edges Simply Supported.--For this case the  boundary  conditions are 

W - -  
d 2 w  a 
dx ~. - - 0 ,  f o r x =  ± ~ ;  

w is A sin - -  
mT~x mT~x 

(m even) or A cos - -  (m odd); 

and the  corresponding values of f,, are given by 

D m 2  ~ 2 E a 2 

f o - -  2ha~ + m2~r2  . . . . . . . . . . . . .  (18) 

Case I I .  Edges Clamped.--The boundary  conditions are now 

ZO - -  d w  
dx = O' f°r x = ± ~-; 

and the  solution is in this case more complicated. 

* See S. T i m o s h e n k o ,  " T h e o r y  of E l a s t i c  S t a b i l i t y  ", F i r s t  ed i t i on ,  p. 81. 
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If w is an odd function of x, i.e. if the form of distort ion is ant i -symmetr ical  with respect to 0, 
w is 

A, sin ~x + B, sin/~x, 

where A,, B, are constants  whose ratio is de termined by the boundary  conditions, 

~2= If . .-F { f  J - -  2ED h/r 2 }I/ , ' ] /D,  

, ' :  [ s . . - - { s : -  h/v, 
and the equat ion for fc, is 

c~a ~a /~a ~a (19) 2 tan 2 -- 2 tan  2---. . . . . . . . . . . . .  

If w is an even function of x, i.e. if the form of distort ion is symmetr ica l  with respect to 0, w is 

A c cos c~x + B c cos ~x, 

where A c, B~ are constants  whose ratio is de termined by  the 
equat ion for fc, is 

boundary  conditions, and the 

~ a  ~ a  S a  ~ a  . . . . .  (20)  - ~  tan - ~  = --~--tan 2 "" " . . . .  

Owing to the  different types of distort ion which are theoretically possible, the equat ions for 
f,,, i.e. (18), (19) and (20), are mult i-valued,  and the  two curves given in Fig. 6 are the envelope 
of all possible solutions when the  edges are either clamped or simply supported. 
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